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Abstract

Inside individual cells, expression of genes is inherently stochastic and manifests as cell-to-
cell variability or noise in protein copy numbers. Since proteins half-lives can be comparable
to the cell-cycle length, randomness in cell-division times generates additional intercellular
variability in protein levels. Moreover, as many mRNA/protein species are expressed at
low-copy numbers, errors incurred in partitioning of molecules between the mother and
daughter cells are significant. We derive analytical formulas for the total noise in protein
levels for a general class of cell-division time and partitioning error distributions. Using
a novel hybrid approach the total noise is decomposed into components arising from i)
stochastic expression; ii) partitioning errors at the time of cell-division and iii) random
cell-division events. These formulas reveal that random cell-division times not only gener-
ate additional extrinsic noise but also critically affect the mean protein copy numbers and
intrinsic noise components. Counter intuitively, in some parameter regimes noise in pro-
tein levels can decrease as cell-division times become more stochastic. Computations are
extended to consider genome duplication, where the gene dosage is increased by two-fold at
a random point in the cell-cycle. We systematically investigate how the timing of genome
duplication influences different protein noise components. Intriguingly, results show that
noise contribution from stochastic expression is minimized at an optimal genome duplica-
tion time. Our theoretical results motivate new experimental methods for decomposing
protein noise levels from single-cell expression data. Characterizing the contributions of
individual noise mechanisms will lead to precise estimates of gene expression parameters
and techniques for altering stochasticity to change phenotype of individual cells.
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1 Introduction

The level of a protein can deviate considerably from cell-to-cell, in spite of the fact that cells are
genetically-identical and are in the same extracellular environment [1–3]. This intercellular variation
or noise in protein counts has been implicated in diverse processes such as corrupting functioning of
gene networks [4–6], driving probabilistic cell-fate decisions [7–12], buffering cell populations from hostile
changes in the environment [13–16], and causing clonal cells to respond differently to the same stimu-
lus [17–19]. An important source of noise driving random fluctuations in protein levels is stochastic gene
expression due to the inherent probabilistic nature of biochemical processes [20–23]. Recent experimental
studies have uncovered additional noise sources that affect protein copy numbers. For example, the time
take to complete cell-cycle (i.e., time between two successive cell-division events) has been observed to
be stochastic across organisms [24–32]. Given that many proteins/mRNAs are present inside cells at
low-copy numbers, errors incurred in partitioning of molecules between the mother and daughter cells
are significant [33–35]. Finally, the time at which a particular gene of interest is duplicated can also
vary between cells [36, 37]. We investigate how such noise sources in the cell-cycle process combine with
stochastic gene expression to generate intercellular variability in protein copy numbers (Fig.1).
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Figure 1. Sample trajectory of the protein level in a single cell with different sources of
noise. Stochastically expressed proteins accumulate within the cell at a certain rate. At a random point
in the cell-cycle, gene-duplication results in an increase in production rate. Stochastic cell-division events
lead to random partitioning of protein molecules between the mother and daughter cells with each cell
receiving, on average, half the number of proteins in the mother cell just before division. The steady-state
protein copy number distribution obtained from a large number of trajectories is shown on the right. The
total noise in the protein level, as measured by the Coefficient of Variation (CV ) squared can be broken
into contributions from individual noise mechanisms.

Prior studies that quantify the effects of cell-division on the protein noise level have been restricted
to specific cases. For example, noise computations have been done in stochastic gene expression mod-
els, where cell-divisions occur at deterministic time intervals [33, 38, 39]. Recently, we have analyzed a
deterministic model of gene expression with random cell-division events [40]. Building up on this work,
we formulate a mathematical model that couples stochastic expression of a stable protein with random
cell-division events that follow an arbitrary probability distribution function. Moreover, at the time of
cell-division, proteins are randomly partitioned between the mother and daughter cells based on a gen-
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eral framework that allows the partitioning errors to be higher or lower than as predicted by binomial
partitioning. For this class of models, we derive an exact analytical formula for the protein noise level
as quantified by the steady-state Coefficient of Variation (CV ) squared. This formula is further decom-
posed into individual components representing contributions from different noise sources. A systematic
investigation of this formula leads to novel insights, such as identification of regimes where increasing
randomness in the timing of cell-division events decreases the protein noise level.

Next, we extend the above model to include genome duplication events that increase the gene’s
transcription rate by two-fold (corresponding to doubling of gene dosage) prior to cell-division [36, 41].
To our knowledge, this is the first study integrating randomness in the genome duplication process with
stochastic gene expression. An exact formula for the protein noise level is derived for this extended
model and used to investigate how the timing of duplication affects different noise components. Counter
intuitively, results show that doubling of the transcription rate within the cell-cycle can lead to smaller
fluctuations in protein levels as compared to a constant transcription rate through out the cell-cycle.
Finally, we discuss how formulas obtained in this study can be used to infer parameters and characterize
the gene expression process from single-cell studies.

2 Coupling gene expression to cell-division

We consider the standard model of stochastic gene expression [42, 43], where mRNAs are transcribed
at exponentially distributed time intervals from a constitutive gene with rate kx. For the time being,
we exclude genome duplication and the transcription rate is fixed throughout the cell-cycle. Assuming
short-lived mRNAs, each transcription event results in a burst of proteins [43–45]. The corresponding
jump in protein levels is shown as

x(t) 7→ x(t) +B, (1)

where x(t) is the protein population count in the mother cell at time t, B is a random burst size drawn
from a positively-valued distribution and represents the number of protein molecules synthesized in a
single-mRNA lifetime. Motivated by observations in E. coli and mammalian cells, where many proteins
have half-lives considerably longer than the cell-doubling time, we assume a stable protein with no active
degradation [46–48]. Thus, proteins accumulate within the cell till the time of cell-division, at which
point they are randomly partitioned between the mother and daughter cells.

Let cell-division events occur at times ts, s ∈ {1, 2, . . .}. The cell-cycle time

T := ts − ts−1, (2)

follows an arbitrary positively-valued probability distribution with the following mean and coefficient of
variation (CV ) squared

〈T 〉 = 〈ts − ts−1〉, CV 2
T =

〈T 2〉 − 〈T 〉2

〈T 〉2
, (3)

where 〈.〉 denotes expected value through out this paper. The random change in x(t) during cell-division
is given by

x(ts) 7→ x+(ts), (4)

where x(ts) and x+(ts) denote the protein levels in the mother cell just before and after division, respec-
tively. Conditioned on x(ts), x+(ts) is assumed to have the following statistics

〈x+(ts)|x(ts)〉 =
x(ts)

2
,

〈
x2+(ts)− 〈x+(ts)〉2

∣∣∣∣x(ts)

〉
=
αx(ts)

4
. (5)
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The first equation implies symmetric division, i.e., on average the mother cell inherits half the number
protein molecules just before division. The second equation in (5) describes the variance of 〈x+(ts)〉 and
quantifies the error in partitioning of molecules through the non-negative parameter α. For example,
α = 0 represents deterministic partitioning where x+(ts) = x(ts)/2 with probability equal to one. A
more realistic model for partitioning is each molecule having an equal probability of being in the mother
or daughter cell [49–51]. This result in a binomial distribution for x+(ts)

Probability{x+(ts) = j|x(ts)} =
x(ts)!

j!(x(ts)− j)!

(
1

2

)x(ts)
, j ∈ {0, 1, . . . , x(ts)}, (6)

and corresponds to α = 1 in (5). Interestingly, recent studies have shown that partitioning of proteins
that form clusters or multimers can result in α > 1 in (5), i.e., partitioning errors are much higher than
as predicted by the binomial distribution [33, 39]. In contrast, if molecules push each other to opposite
poles of the cell, then the partitioning errors will be smaller than as predicted by (6) and α < 1.

The model with all the different noise mechanisms (stochastic expression; random cell-division events
and partitioning errors) is illustrated in Fig. 2A and referred to as the full model. We also introduce
two additional hybrid models [52, 53], where protein production and partitioning are considered in their
deterministic limit (Fig. 2B-C). Note that unlike the full model, where x(t) takes non-negative integer
values, x(t) is continuous in the hybrid models. We will use these hybrid models for decomposing the
protein noise level obtained from the full model into individual components representing contributions
from different noise sources. However, before computing the noise, we first determine the average number
of proteins as a function of the cell-cycle time distribution.
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Figure 2. Stochastic models of gene expression with cell-division. Arrows denote stochastic
events that change the protein level by discrete jumps as shown in (1) and (4). The differential equation
within the circle represents the time evolution of x(t) in between events. A) Model with all the different
sources of noise: proteins are expressed in stochastic bursts, cell-division occurs at random times, and
molecules are partitioned between the mother and daughter cells based on (5). The trivial dynamics
ẋ = 0 signifies that the protein level is constant in-between stochastic events. B) Hybrid model where
randomness in cell-division events is the only source of noise. Protein production is modeled determin-
istically through a differential equation and partitioning errors are absent, i.e., α = 0 in (5). C) Hybrid
model where noise comes from both cell-division events and partitioning errors. Protein production is
considered deterministically as in Fig. 2B. Since x(t) is continuous here, x+(ts) has a positively-valued
continuous distribution with same mean and variance as in (5)

3 Computing the average number of protein molecules

To quantify the steady-state mean protein level we consider the full model illustrated in Fig. 2A. It
turns out that all the models shown in Fig. 2 are identical in terms of finding 〈x(t)〉 and in principle
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any one of them could have been used. To obtain differential equations describing the time evolution
of 〈x(t)〉 we model the cell-cycle time through a phase-type distribution, which can be represented by a
continuous-time Markov chain. Phase-type distributions are dense in the class of positively-valued con-
tinuous distributions, i.e., one can always construct a sequence of phase-type distributions that converges
point wise to a given distribution of interest [54]. We use this denseness property as a practical tool for
modeling the cell-cycle time.

3.1 Cell-cycle time as a phase-type distribution

We consider a class of phase-type distribution that consists of a mixture of Erlang distributions. Recall
that an Erlang distribution of order i is the distribution of the sum of i independent and identical
exponential random variables. The cell-cycle time is assumed to have an Erlang distribution of order
i with probability pi, i = {1, . . . , n} and can be represented by a continuous-time Markov chain with
states Gij , j = {1, . . . , i}, i = {1, . . . , n} (Fig. 3). Let Bernoulli random variables gij = 1 if the system
resides in state Gij and 0 otherwise. The probability of transition Gij → Gi(j+1) in the next infinitesimal
time interval [t, t+ dt) is given by kgijdt, implying that the time spent in each state Gij is exponentially
distributed with mean 1/k. To summarize, at the start of cell-cycle, a state Gi1, i = {1, . . . , n} is chosen
with probability pi and cell-division occurs after transitioning through i exponentially distributed steps.
Based on this formulation, the probability of a cell-division event occurring in the next time interval
[t, t+ dt) is given by kpi

∑n
j=1 gjjdt, and whenever the event occurs, the protein level changes as per (4).

Finally, the mean and the coefficient of variation squared of the cell-cycle time is obtained as

〈T 〉 =
n∑
i=1

pi
i

k
, CV 2

T =
1

k

1

〈T 〉
(7)

in terms of the Markov chain parameters. Our goal is to obtain 〈x〉 := limt→∞〈x(t)〉 as a function of 〈T 〉
and CV 2
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Figure 3. A continuous-time Markov chain
model for the cell-cycle time. The cell-
cycle time is assumed to follow a mixture of Er-
lang distributions. At the start of cell-cycle, a
state Gi1, i = {1, . . . , n} is chosen with probabil-
ity pi. The cell-cycle transitions through states
Gij , j = {1, . . . , i} residing for an exponentially
distributed time with mean 1/k in each state.
Cell-division occurs after exit from Gii and the
above process is repeated.

3.2 Time evolution of the mean protein level

Time evolution of the statistical moments of x(t) can be obtained from the Kolmogorov forward equations
corresponding to the full model in Fig. 2A combined with the cell-division process described in Fig. 3.
We refer the reader to [52, 55, 56] for an introduction to moment dynamics for stochastic and hybrid
systems. Analysis in Appendix A shows

d〈x〉
dt

= kx〈B〉 −
k

2

〈
n∑
j=1

xgjj

〉
. (8)
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Note that the time-derivative of the mean protein level (first-order moment) is unclosed, in the sense that,
it depends on the second-order moment 〈xgij〉. Typically, approximate closure methods are used to solve
moments in such cases [52,56–61]. However, the fact that gij is binary can be exploited to automatically
close moment dynamics. In particular, since gij ∈ {0, 1}

〈gnijxm〉 = 〈gijxm〉, n ∈ {1, 2, . . .} (9)

for any non-negative integer m. Moreover, as only a single state gij can be 1 at any time

〈gijgrqxm〉 = 0, if i 6= r or j 6= q. (10)

Using (9) and (10), the time evolution of 〈xgij〉 is obtained as

d〈xgi1〉
dt

=
kx〈B〉pi

i
+
k

2
pi

〈
n∑
j=1

xgjj

〉
− k〈xgi1〉, (11a)

d〈xgij〉
dt

=
kx〈B〉pi

i
− k〈xgij〉+ k〈xgi(j−1)〉, j = {2, . . . , i} (11b)

and only depends on 〈xgij〉 (see Appendix A). Thus, (8) and (11) constitute a closed system of linear
differential equations from which moments can be computed exactly.

To obtain an analytical formula for the average number of proteins, we start by performing a steady-
state analysis of (8) that yields 〈

n∑
j=1

xgjj

〉
=

2kx〈B〉
k

, (12)

where 〈.〉 denotes the expected value in the limit t → ∞. Using (12), 〈xgi1〉 is determined from (11a),
and then all moments 〈xgij〉 are obtained recursively by performing a steady-state analysis of (11b) for
j = {2, . . . , i}. This analysis results in

〈xgij〉 =
kx〈B〉
k

pi

(
1 +

j

i

)
. (13)

Using (7), (13) and the fact that
∑n
i=1

∑i
j=1 gij = 1 we obtain the following expression for the mean

protein level

〈x〉 =

〈
x

n∑
i=1

i∑
j=1

gij

〉
=

n∑
i=1

i∑
j=1

〈xgij〉 =
kx〈B〉〈T 〉

(
3 + CV 2

T

)
2

. (14)

It is important to point that (14) holds irrespective of the complexity, i.e., the number of sates Gij
used in the phase-type distribution to approximate the cell-cycle time distribution. As expected, 〈x〉
increases linearly with the average cell-cycle time duration 〈T 〉 with longer cell-cycles resulting in more
accumulation of proteins. Consistent with previous findings, (14) shows that the mean protein level is also
affected by the randomness in the cell-cycle times (CV 2

T ) [40,62]. For example, 〈x〉 reduces by 25% as T
changes from being exponentially distributed (CV 2

T = 1) to periodic (CV 2
T = 0) for fixed 〈T 〉 fixed. Next,

we determine the noise in protein copy numbers, as quantified by the coefficient of variation squared.

4 Computing the protein noise level

Recall that the full model introduced in Fig. 2A has three distinct noise mechanisms. Our strategy for
computing the protein noise level is to first analyze the model with a single noise source, and then consider
models with two and three sources. As shown below, this approach provides a systematic dissection of
the protein noise level into components representing contributions from different mechanisms.
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4.1 Contribution from randomness in cell-cycle times

We begin with the model shown in Fig. 2B, where noise comes from a single source - random cell-division
events. For this model, the time evolution of the second-order moment of the protein copy number is
obtained as

d〈x2〉
dt

= 2kx〈B〉〈x〉 −
3k

4

〈
n∑
j=1

x2gjj

〉
, (15)

and depends on third-order moments 〈x2gjj〉 (see Appendix B). Using the approach introduced earlier for
obtaining the mean protein level, we close moment equations by writing the time evolution of moments
〈x2gij〉. Using (9) and (10)

d〈x2gi1〉
dt

= 2kx〈B〉〈xgi1〉+
k

4
pi

〈
n∑
j=1

x2gjj

〉
− k〈x2gi1〉, (16a)

d〈x2gij〉
dt

= 2kx〈B〉〈xgij〉 − k〈x2gij〉+ k〈x2g(i−1)j〉, j = {2, . . . , i} . (16b)

Note that the moment dynamics for 〈x〉 and 〈xgij〉 obtained in the previous section (equations (8) and
(11)) are identical for all the models in Fig. 2, irrespective of whether the noise mechanism is modeled
deterministically or stochastically. Equations (8), (11), (15) and (16) represent a closed set of linear
differential equations and their steady-state analysis yields

〈x2gij〉 =
k2x〈B〉2〈T 〉

(
3 + CV 2

T

)
3k

pi +
2k2x〈B〉2

k

(
j2 + j

i

)
pi. (17)

From (96)

〈x2〉 =

〈
x2

n∑
i=1

i∑
j=1

gij

〉
=

n∑
i=1

i∑
j=1

〈x2gij〉 = k2x〈B〉2
〈T 3〉+ 4CV 2

T 〈T 〉3 + 6〈T 〉3

3〈T 〉
, (18a)

〈T 3〉 =
2

k
CV 2

T +
3

k
〈T 〉2 + 〈T 〉3, (18b)

where 〈T 3〉 is the third-order moment of the cell-cycle time. Using (18) and the mean protein count
quantified in (14), we obtain the following coefficient of variation squared

CV 2
E =

1

27
+

4
(

9 〈T
3〉

〈T 〉3 − 9− 6CV 2
T − 7CV 4

T

)
27 (3 + CV 2

T )
2 , (19)

which represents the noise contribution from random cell-division events. Since cell-division is a global
event that affects expression of all genes, this noise contribution can also be referred to as extrinsic
noise [49, 63–66]. In reality, there would be other sources of extrinsic noise, such as, fluctuations in the
gene-expression machinery that we have ignored in this analysis.

Note that CV 2
E → 1/27 as T approaches a delta distribution, i.e., cell divisions occur at fixed time

intervals. We discuss simplifications of (19) in various limits. For example, if the time taken to complete
cell-cycle is lognormally distributed, then

〈T 3〉
〈T 〉3

=
(
1 + CV 2

T

)3
=⇒ CV 2

E =
1

27
+

4
(
21CV 2

T + 20CV 4
T + 9CV 6

T

)
27 (3 + CV 2

T )
2 (20)
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and extrinsic noise monotonically increases with CV 2
T . If fluctuations in T around 〈T 〉 are small, then

using Taylor series

〈T 3〉/〈T 〉3 ≈ 1 + 3CV 2
T . (21)

Substituting (21) in (19) and ignoring CV 4
T and higher order terms yields

CV 2
E ≈

1

27
+

28CV 2
T

81
, (22)

where the first term is the extrinsic noise for CV 2
T → 0 and the second term is the additional noise due

to random cell-division events.

4.2 Contribution from partitioning errors

Next, we consider the model illustrated in Fig. 2C with both random cell-division events and partitioning
of protein between the mother and daughter cells. Thus, the protein noise level here represents the
contribution from both these sources. Analysis in Appendix C shows that the time evolution of 〈x2〉 and
〈x2gij〉 are given by

d〈x2〉
dt

= 2kx〈B〉〈x〉+
1

4
αk

〈
n∑
j=1

xgjj

〉
− 3

4
k

〈
n∑
j=1

x2gjj

〉
, (23a)

d〈x2gi1〉
dt

= 2kx〈B〉〈xgi1〉+
k

4
pi

〈
n∑
j=1

x2gjj

〉
+

1

4
αkpi

〈
n∑
j=1

xgjj

〉
− k〈x2gi1〉, (23b)

d〈x2gij〉
dt

= 2kx〈B〉〈xgij〉 − k〈x2gij〉+ k〈x2g(i−1)j〉, j = {2, . . . , i} . (23c)

Note that (23a)-(23b) are slightly different from their counterparts obtained in the previous section
(equations (15) and (16a)) with additional terms that depend on α, where α quantifies the degree of
partitioning error as defined in (5). As expected, (23) reduces to (15)-(16) when α = 0 (i.e., deterministic
partitioning). Computing 〈x2gij〉 by performing a steady-state analysis of (23) and using a similar
approach as in (18) we obtain

〈x2〉 =
〈T 3〉+ 4CV 2

T 〈T 〉3 + 6〈T 〉3

3〈T 〉
+

2αkx〈B〉〈T 〉
3

. (24)

Finding CV 2 of the protein level and subtracting the extrinsic noise found in (19) yields

CV 2
R =

4α

3(3 + CV 2
T )

1

〈x〉
, (25)

where CV 2
R represents the contribution of partitioning errors to the protein noise level. Intriguingly, while

CV 2
R increases with α, it decrease with CV 2

T . Thus, as cell-division times become more random for a

fixed 〈T 〉 and 〈x〉, the noise contribution from partitioning errors decrease.
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4.3 Contribution from stochastic expression

Finally, we consider the full model in Fig. 2A with all the three different noise sources. For this model,
moment dynamics is obtained as (see Appendix D)

d〈x2〉
dt

= kx〈B2〉+ 2kx〈B〉〈x〉+
1

4
αk

〈
n∑
j=1

xgjj

〉
− 3k

4

〈
n∑
j=1

x2gjj

〉
, (26a)

d〈x2gi1〉
dt

=
kx〈B2〉pi

i
+ 2kx〈B〉〈xgi1〉+

k

4
pi

〈
n∑
j=1

x2gjj

〉
+

1

4
αkpi

〈
n∑
j=1

xgjj

〉
− k〈x2gi1〉, (26b)

d〈x2gij〉
dt

=
kx〈B2〉pi

i
+ 2kx〈B〉〈xgij〉 − k〈x2gij〉+ k〈x2g(i−1)j〉, j = {2, . . . , i} . (26c)

Compared to (23), (26) has additional terms of the form kx〈B2〉, where 〈B2〉 is the second-order moment
of the protein burst size in (1). Performing an identical analysis as before we obtain

〈x2〉 =
〈T 3〉+ 4CV 2

T 〈T 〉3 + 6〈T 〉3

3〈T 〉
+

2αkx〈B〉〈T 〉
3

+
kx〈B2〉〈T 〉(3CV 2

T + 5)

2
, (27)
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Figure 4. Scaling of noise as a function of the mean protein level for different mechanisms.
The contribution of random cell-division events to the noise in protein copy numbers (extrinsic noise)
is invariant of the mean. In contrast, contributions from partitioning errors at the time of cell-division
(partitioning noise) and stochastic expression (production noise) scale inversely with the mean. The
scaling factors are shown as a function of the protein random burst size B, noise in cell-cycle time (CV 2

T )
and magnitude of partitioning errors quantified by α (see (5)). With increasing mean level the total noise
first decreases and then reaches a baseline that corresponds to extrinsic noise. For this plot, B is assumed
to be geometrically-distributed with mean 〈B〉 = 1.5, CV 2

T = 0 and α = 1 (i.e., binomial partitioning).
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which yields the following total protein noise level

CV 2 =CV 2
E + CV 2

R + CV 2
P = CV 2

E +

Partitioning noise (CV 2
R)︷ ︸︸ ︷

4α

3(3 + CV 2
T )

1

〈x〉
+

Production noise (CV 2
P )︷ ︸︸ ︷

3CV 2
T + 5

3(3 + CV 2
T )

〈B2〉
〈B〉

1

〈x〉︸ ︷︷ ︸
Intrinsic noise

, (28)

that can be decomposed into three terms. The first is the extrinsic noise CV 2
E representing the contribution

from random cell-division events and given by (19). The second term CV 2
R is the contribution from

partitioning errors determined in the previous section (partitioning noise), and the final term CV 2
P is the

additional noise representing the contribution from stochastic expression (production noise). We refer to
the sum of the contributions from partitioning errors and stochastic expression as intrinsic noise. These
intrinsic and extrinsic noise components are generally obtained experimentally using the dual-color assay
that measures the correlation in the expression of two identical copies of the gene [49].

Interestingly, for a fixed mean protein level 〈x〉, CV 2
T has opposite effects on CV 2

R and CV 2
P . While

CV 2
R monotonically decreases with increasing CV 2

T , CV 2
P increases with CV 2

T . It turns out that in certain
cases these effects can cancel each other out. For example, when B = 1 with probability one, i.e., proteins
are synthesized one at a time at exponentially distributed time intervals and α = 1 (binomial partitioning)

CV 2 = CV 2
E +

4

3(3 + CV 2
T )

1

〈x〉
+

3CV 2
T + 5

3(3 + CV 2
T )

1

〈x〉
= CV 2

E +
1

〈x〉
. (29)

In this limit the intrinsic noise is always 1/Mean irrespective of the cell-cycle time distribution T [33].
Note that the average number of proteins itself depends on T as shown in (14). Another important limit
is CV 2

T → 0, in which case (28) reduces to

CV 2 ≈

CV 2
E︷︸︸︷

1

27︸︷︷︸
Extrinsic noise

+

CV 2
R︷ ︸︸ ︷

4α

9

1

〈x〉
+

CV 2
P︷ ︸︸ ︷

5

9

〈B2〉
〈B〉

1

〈x〉︸ ︷︷ ︸
Intrinsic noise

, (30)

and is similar to the result obtained in [38] for deterministic cell-division times and binomial partitioning.
Fig. 4 shows how different protein noise components change as a function of the mean protein level

as the gene’s transcription rate kx is modulated. The extrinsic noise is primarily determined by the
distribution of the cell-cycle time and is completely independent of the mean. In contrast, both CV 2

R

and CV 2
P scale inversely with the mean, albeit with different scaling factors (Fig. 4). This observation

is particularly important since many single-cell studies in E. coli, yeast and mammalian cells have found
the protein noise levels to scale inversely with the mean across different genes [67–70]. Based on this
scaling it is often assumed that the observed cell-to-cell variability in protein copy numbers is a result of
stochastic expression. However, as our results show, noise generated thorough partitioning errors is also
consistent with these experimental observations and it may be impossible to distinguish between these
two noise mechanisms based on protein CV 2 versus mean plots unless α is known.

5 Quantifying the effects of gene-duplication on protein noise

The full model introduced in Fig. 2 assumes that the transcription rate (i.e., the protein burst arrival
rate) is constant throughout the cell-cycle. This model is now extended to incorporate gene duplication
during cell cycle, which is assumed to create a two-fold change in the burst arrival rate (Fig. 5). As
a result of this, accumulation of proteins will be bilinear as illustrated in Fig. 1. We divide the cell-
cycle time T into two intervals: time from the start of cell-cycle to gene-duplication (T1), and time from

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2015. ; https://doi.org/10.1101/026559doi: bioRxiv preprint 

https://doi.org/10.1101/026559
http://creativecommons.org/licenses/by-nc-nd/4.0/


11

gene-duplication to cell-division (T2). T1 and T2 are independent random variables that follow arbitrary
distributions modeled through phase-type processes (see Fig. S2 in the Supplementary Information). The
mean cell-cycle duration and its noise can be expressed as

〈T 〉 = 〈T1〉+ 〈T2〉, β =
〈T1〉
〈T 〉

, CV 2
T = β2CV 2

T1
+ (1− β)2CV 2

T2
, (31)

where CV 2
X denotes the coefficient of variation squared of the random variable X. An important variable

in this formulation is β, which represents the average time of gene-duplication normalized by the mean
cell-cycle time. Thus, β values close to 0 (1) imply that the gene is duplicated early (late) in the cell-cycle
process. Moreover, the noise in the gene-duplication time is controlled via CV 2

T1
.

Cell-division 

Gene-duplication 

0x0x
xx

Bxx  Bxx 

xk2xk

Figure 5. Model illustrating stochastic
expression together with random gene-
duplication and cell-division events. At the
start of cell-cycle, protein production occurs in
stochastic bursts with rate kx. Genome duplica-
tion occurs at a random point T1 within the cell-
cycle and increases the burst arrival rate to 2kx.
Cell-division occurs after time T2 from genome
duplication, at which point the burst arrival rate
reverts back to kx and proteins are randomly par-
titioned between cells based on (4).

We refer the reader to Appendix E for a detailed analysis of the model in Fig. 5 and only present the
main results on the protein mean and noise levels. The steady-state mean protein count is given by

〈x〉 =
kx〈B〉〈T1〉

(
4− β + βCV 2

T1

)
2

+ kx〈B〉〈T2〉
(
3− β + (1− β)CV 2

T2

)
, (32)

and decreases with β, i.e., a gene that duplicates early has on average, more number of proteins. When
β = 1, then the transcription rate is kx throughout the cell-cycle and we recover the mean protein level
obtained in (14). Similarly, when β = 0 the transcription rate is 2kx and we obtain twice the amount
as in (14). As per our earlier observation, more randomness in the timing of genome duplication and
cell-division (i.e., higher CV 2

T1
and CV 2

T2
values) increases 〈x〉.

Our analysis shows that the total protein noise level can be decomposed into three components

CV 2 = CV 2
E + CV 2

R + CV 2
P (33)

where CV 2
E is the extrinsic noise from random genome-duplication and cell-division events. Given its

complexity, we refer the reader to equation (100) in Appendix E2 for an exact formula for CV 2
E . More-

over, the intrinsic noise, which represents the sum of contributions from partitioning errors (CV 2
R) and

stochastic expression (CV 2
P ) is obtained as

CV 2
R + CV 2

P =

CV 2
R︷ ︸︸ ︷

4α(2− β)
3
(
(β2 − 4β + 6) + β2CV 2

T1
+ 2(1− β)2CV 2

T2

) 1

〈x〉
+

CV 2
P︷ ︸︸ ︷

(10− 8β + 3β2) + 6(1− β)2CV 2
T2

+ 3β2CV 2
T1

3
(
(β2 − 4β + 6) + β2CV 2

T1
+ 2(1− β)2CV 2

T2

) 〈B2〉
〈B〉

1

〈x〉
.

(34)

Note that for β = 0 and 1, we recover the intrinsic noise level in (28) from (34). Interestingly, for B = 1
with probability 1 and α = 1, the intrinsic noise is always 1/Mean irrespective of the values chosen for
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CV 2
T1

, CV 2
T2

and β. For high precision in the timing of cell-cycle events (CVT1
→ 0, CVT2

→ 0)

CV 2 ≈

CV 2
E︷ ︸︸ ︷

4− 3(β − 2)2β2

3 (β2 − 4β + 6)
2︸ ︷︷ ︸

Extrinsic noise

+

CV 2
R︷ ︸︸ ︷

4α(2− β)

3 (β2 − 4β + 6)

1

〈x〉
+

CV 2
P︷ ︸︸ ︷

(10− 8β + 3β2)

3 (β2 − 4β + 6)

〈B2〉
〈B〉

1

〈x〉︸ ︷︷ ︸
Intrinsic noise

, (35)

where mean protein level is given by

〈x〉 ≈kx〈B〉〈T1〉 (4− β)

2
+ kx〈B〉〈T2〉 (3− β) . (36)

We investigate how different noise components in (35) vary with β as the mean protein level is held
fixed by changing kx. Fig. 6 shows that CV 2

P follows a U-shaped profile with the optima occurring at
β = 2 −

√
2 ≈ 0.6 and the corresponding minimum value being ≈ 5% lower that its value at β = 0.

An implication of this result is that if stochastic expression is the dominant noise source, then gene-
duplication can result in slightly lower protein noise levels. In contrast to CV 2

P , CV 2
R has a maxima at

β = 2−
√

2 which is ≈ 6% higher than its value at β = 0 (Fig. 6). Analysis in Appendix E5 reveals that
CV 2

R and CV 2
R follow the same qualitative shapes as in Fig. 6 for non-zero CV 2

T1
and CV 2

T2
. Interestingly,

when CV 2
T1

= CV 2
T2

, the maximum and minimum values of CV 2
R and CV 2

P always occur at β = 2 −
√

2
albeit with different optimal values than Fig. 6 (see Fig. S3 in the Supplementary Information). For
example, if CV 2

T1
= CV 2

T2
= 1 (i.e., exponentially distributed T1 and T2), then the maximum value of

CV 2
R is 20% higher and the minimum value of CV 2

P is 10% lower than their respective value for β = 0.
Given that the effect of changing β on CV 2

P and CV 2
R is small and antagonistic, the overall affect of

genome duplication on intrinsic noise may be minimal and hard to detect experimentally.

6 Discussion

We have investigated a model of protein expression in bursts coupled to discrete gene-duplication and
cell-division events. The novelty of our modeling framework lies in describing the size of protein bursts,
T1 (time between cell birth and gene duplication), T2 (time between gene duplication and cell division)
and partitioning of molecules during cell division through arbitrary distributions. Exact formulas con-
necting the protein mean and noise levels to these underlying distributions were derived. Furthermore,
the protein noise level, as measured by the coefficient of variation squared, was decomposed into three
components representing contributions from gene-duplication/cell-division events, stochastic expression
and random partitioning. While the first component is independent of the mean protein level, the other
two components are inversely proportional to it. Key insights obtained are as follows:

• The mean protein level is affected by both the first and second-order moments of T1 and T2. In
particular, randomness in these times (for a fixed mean) increases the average protein count.

• Random gene-duplication/cell-division events create an extrinsic noise term which is completely
determined by moments of T1 and T2 up to order three.

• The noise contribution from partitioning errors decreases with increasing randomness in T1 and T2.
Thus, if 〈x〉 is sufficiently small and α is large compared to B in (34), increasing noise in the timing
of cell-cycle events decreases the total noise level.

• Genome duplication has counter intuitive effects on the protein noise level (Fig. 6). For example,
if stochastic expression is the dominant source of noise, then doubling of transcription due to
duplication results in lower noise as compared to constant transcription throughout the cell-cycle.
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Figure 6. Contributions from different noise sources as a function of the timing of genome
duplication for CV 2

T1
= CV 2

T2
= 0. Different noise components in (35) are plotted as a function of

β, which represents the fraction of time within the cell-cycle at which gene-duplication occurs. The
mean protein level is held constant by simultaneously changing the transcription rate kx. Noise levels
are normalized by their respective value at β = 0. The noise contribution from partitioning errors is
maximized at β ≈ 0.6. In contrast, the contribution from stochastic expression is minimum at β ≈ 0.6.
The extrinsic noise contribution from random gene-duplication and cell-division events is maximum at
β ≈ 0.2 and minimum at β ≈ 0.8.

• For a non-bursty protein production process (B = 1) and binomial partitioning (α = 1), the net
noise from stochastic expression and partitioning is always 1/〈x〉, the noise level predicted by a
Poisson distribution.

We discuss our results on gene duplication in further detail and how noise formulas derived here can be
used for estimating model parameters from single-cell expression data.

6.1 Affect of gene duplication on noise level

In this first-of-its-kind study, we have investigated how discrete two-fold changes in the transcription rate
due do gene duplication affect the intercellular variability in protein levels. Not surprisingly, the timing
of genome duplication has a strong effect on the mean protein level – 〈x〉 changes by two-fold depending
on whether the gene duplicates early (β = 0) or late (β = 1) in the cell-cycle. In contrast, the effect of
β on noise is quite small. As β is varied keeping 〈x〉 fixed, noise components deviate by ≈ 10% from
their values at β = 0 (Fig. 6). Recall that these results are for a stable protein, whose intracellular copy
number accumulate in a bilinear fashion. A natural question to ask is how would these results change for
an unstable protein?

Consider an unstable protein with half-life considerably shorter than the cell-cycle duration. This
rapid turnover ensures that the protein level equilibrates instantaneously after cell-division and gene-
duplication events. Let γx denote the protein decay rate. Then, the mean protein level before and after
genome duplication is 〈x〉 = kx〈B〉/γx and 〈x〉 = 2kx〈B〉/γx, respectively. Note that in the limit of large
γx there is no noise contribution form partitioning errors since errors incurred at the time of cell division
would be instantaneously corrected. The extrinsic noise, which can be interpreted as the protein noise
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level for deterministic protein production and decay is obtained as (see Appendix F)

CV 2
E =

(1− β)β

(2− β)2
. (37)

When β = 0 or 1, the transcription rate and the protein level are constant within the cell cycle and
CV 2

E = 0. Moreover, CV 2
E is maximized at β = 2/3 with a value of 1/12. Thus, in contrast to a stable

protein, extrinsic noise in an unstable protein is strongly dependent on the timing of gene duplication.
Next, consider the intrinsic noise component. Analysis in Appendix F shows that the noise contribution
from random protein production and decay is

CV 2
P =

1

2

(
〈B2〉
〈B〉

+ 1

)
1

〈x〉
, 〈x〉 =

kx〈B〉(2− β)

γx
. (38)

While the mean protein level is strongly dependent on β, the intrinsic noise Fano factor = CV 2
P × 〈x〉

is independent of it. Thus, similar to what was observed for a stable protein, the intrinsic noise in an
unstable protein is invariant of β for a fixed 〈x〉. Overall, these results suggest that studies quantifying
intrinsic noise in gene expression models, or using intrinsic noise to estimate model parameters (see below)
can ignore the effects of gene duplication. Finally, note that the mean and noise levels obtained for an
unstable protein are independent of the cell-cycle time T .

6.2 Parameter inference from single-cell data

Simple models of bursty expression and decay predict the distribution of protein levels to be negative
binomial (or gamma distributed in the continuous framework) [71,72]. These distributions are character-
ized by two parameter – the burst arrival rate kx and the average burst size 〈B〉, which can be estimated
from measured protein mean and noise levels. This method has been used for estimating kx and 〈B〉
across different genes in E. coli [47, 73]. Our detailed model that takes into account partitioning errors
predicts (ignoring gene duplication effects)

Intrinsic noise =
4α

3(3 + CV 2
T )

1

〈x〉
+

3CV 2
T + 5

3(3 + CV 2
T )

〈B2〉
〈B〉

1

〈x〉
. (39)

Using CV 2
T � 1 and a geometrically distributed B [50, 74–76], (39) reduces to

Intrinsic noise =
4α

9

1

〈x〉
+

5

9

1 + 2〈B〉
〈x〉

. (40)

Given measurements of intrinsic noise and the mean protein level, 〈B〉 can be estimated from (40)
assuming α = 1 (i.e., binomial partitioning). Once 〈B〉 is known, kx is obtained from the mean protein
level given by (14). Since for many genes 〈B〉 ≈ 0.5 − 5 [47], the contribution of the first term in (40)
is significant, and ignoring it could lead to overestimation of 〈B〉. Overestimation would be even more
severe if α happen to be much higher than 1, as would be the case for proteins that form aggregates
or multimers [33]. One approach to estimate both 〈B〉 and α is to measure intrinsic noise changes in
response to perturbing 〈B〉 by, for example, changing the mRNA translation rate through mutations in
the ribosomal-binding sites (RBS). Consider a hypothetical scenario where the Fano Factor (intrinsic
noise times the mean level) is 6. Let mutations in the RBS reduces 〈x〉 by 50%, implying a 50% reduction
in 〈B〉. If the Fano factor changes from 6 to 4 due to this mutation, then 〈B〉 = 3.6 and 〈α〉 = 3.25.

Our recent work has shown that higher-order statistics of protein levels (i.e., skewness and kurtosis)
or transient changes in protein noise levels in response to blocking transcription provide additional in-
formation for discriminating between noise mechanisms [77, 78]. Up till now these studies have ignored
noise sources in the cell-cycle process. It remains to be seen if such methods can be used for separating
the noise contributions of partitioning errors and stochastic expression to reliably estimate 〈B〉 and α.
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6.3 Integrating cell size and promoter switching

An important limitation of our modeling approach is that it does not take into account the size of growing
cells. Recent experimental studies have provided important insights into the regulatory mechanisms
controlling cell size [79–81]. More specifically, studies in E. coli and yeast argue for an “adder” model,
where cell-cycle timing is controlled so as to add a constant volume between cell birth and division
[82–84]. Assuming exponential growth, this implies that the time taken to complete cell-cycle is negatively
correlated with cell size at birth. In addition, cell size also affects gene expression – in mammalian cells
transcription rates linearly increase with the cell size [85]. Thus, as cells become bigger they also produce
more mRNAs to ensure gene product concentrations remains more or less constant. An important
direction of future work would to explicitly include cell size with size-dependent expression and timing of
cell division determined by the adder model. This formulation will for the first time, allow simultaneous
investigation of stochasticity in cell size, protein molecular count and concentration.

Our study ignores genetic promoter switching between active and inactive states, which has been
shown to be a major source of noise in the expression of genes across organisms [86–95]. Taking into
account promote switching is particularly important for genome duplication studies, where doubling the
number of gene copies could lead to more efficient averaging of promoter fluctuations. Another direction of
future work will be to incorporate this addition noise source into the modeling framework and investigate
its contribution as a function of gene-duplication timing.

Appendix

A Mean of protein in the presence of cell-cycle variations

Based on standard stochastic formulation of chemical kinetics [96, 97], the model introduced in Figure
2A coupled with phase-type distribution introduced in Figure 3 contains the following stochastic events

Event Reset Propensity 

,)()( 1tgtg ijij 

111  )()( )()( tgtg jiji 

,ijkg
},,,{ ni 2

},,{ 11  ij 

Phase-type 

Evolution 

Cell-division 

),()( ss txtx 
,)( 0sjj tg

111 )()( sisi tgtg  },,{ ni 1




n

j

jji gkp
1

,

utxtx )()( Protein production "pk x u

Note that x+(ts) is protein level after division, characteristics of x+(ts) is related to protein level before
division as shown in equation (5) of the main text. Whenever an event occurs, protein level and states of
phase-type distribution change based on the stoichiometries shown in the second column of the table. The
third column of table shows event propensity function f(x, gij), which determines how often reactions
occur, i.e., the probability that an event occurs in the next infinitesimal time interval (t, t+dt] is f(x, gij)dt.
Protein production is a stochastic event which happens in bursts, each burst generates B molecules where
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B is a general random variable with distribution

Probability{B = u} = p′′u, u ∈ {0, 1, . . . ,∞}. (41)

The probability of having a burst in the time interval (t, t+dt] is kxp
′′
udt. Events related to time evolution

of phase-type distribution happen with a constant rate k. Cell-division changes both the level of protein
and states of phase-type. This event contains start of new cell-cycle, hence whenever this event occurs,
the last state of phase-type distribution resets to zero, and a new cell-cycle which is sum of i exponentials
starts with probability pi; protein count level also resets to x+(ts). The probability of cell-division and
starting a new cell-cycle from state gi1 in the time interval (t, t+ dt] is kpi

∑n
j=1 dt.

Theorem 1 of [55] gives the time derivative of the expected value of any function ϕ(x, gij) as

d〈ϕ(x, gij)〉
dt

=

〈 ∑
Events

∆ϕ(x, gij)× f(x, gij)

〉
, (42)

where ∆ϕ(x, gij) is a change in ϕ when an event occurs. Based on this setup, mean dynamics of protein
can be written by choosing ϕ to be x

d〈x〉
dt

= kx〈B〉+ k

〈
n∑
j=1

(
x

2
− x)gjj

〉
⇒

d〈x〉
dt

= kx〈B〉 −
k

2

〈
n∑
j=1

xgjj

〉
,

(43)

where we replaced conditional expected value of x+ by x/2 based on relation between statistical properties
of x+ and x shown in equation (5).

Dynamics of 〈x〉 is not closed and depends to moments 〈xgjj〉, hence in order to have a closed set of
equations we add new moments dynamics by selecting ϕ to be xgij . We do it in two steps: first we write
the moment dynamics of 〈xg11〉

d〈xg11〉
dt

= kx〈B〉〈g11〉+
k

2
p1
〈
xg211

〉
− kp1

〈
xg211

〉
− k

n∑
i=2

pi 〈xg11〉 . (44)

In the equation (9) of the main text it has been shown that

〈gnijxm〉 = 〈gijxm〉, n ∈ {1, 2, . . .}, (45)

thus the term
〈
xg211

〉
will simplify as 〈

xg211
〉

= 〈xg11〉 , (46)

and the dynamics of 〈xg11〉 can be written as

d〈xg11〉
dt

= kx〈B〉〈g11〉+
k

2
p1 〈xg11〉 − k 〈xg11〉 . (47)

In the second step we write dynamics of the moments of the form 〈xgij〉 other than 〈xg11〉

d〈xgi1〉
dt

= kx〈B〉〈gi1〉+ kpi

〈
n∑
j=1

(
x

2
+
x

2
gi1 − xgi1)gjj

〉
− k〈xgi1〉, (48a)

d〈xgij〉
dt

= kx〈B〉〈gij〉 − k〈xgij〉+ k〈xgi(j−1)〉, j ∈ {2, . . . , i}, (48b)
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where dynamics of 〈xgi1〉 can be written as

d〈xgi1〉
dt

=
kx〈B〉pi

i
+ kpi

〈
n∑
j=1

x

2
gjj

〉
+ kpi

〈
n∑
j=1

−x
2
gi1gjj

〉
− k〈xgi1〉. (49)

The equation (10) in the main text shows that

〈gijgrqxm〉 = 0, if i 6= r or j 6= q, (50)

hence
〈∑n

j=1
x
2 gi1gjj

〉
= 0, and equation (49) simplifies to

d〈xgi1〉
dt

= kx〈B〉〈gi1〉+
k

2
pi

〈
n∑
j=1

xgjj

〉
− k〈xgi1〉. (51)

Further based on Figure 3 in the main text the probability of selecting a branch of i exponentials is
pi, and because all the transitions happen with a constant rate k, hence mean of each of these i states is

〈gij〉 =
pi
i
. (52)

Thus equations (47), (48b), and (51) can be compactly written as shown in equation (11).

B Moment dynamics of hybrid model introduced in Figure 2B

Stochastic hybrid system introduced in Figure 2B coupled with phase-type distribution contains the
following stochastic events

Event Reset Propensity 

,)()( 1tgtg ijij 

111  )()( )()( tgtg jiji 

,ijkg
},,,{ ni 2

},,{ 11  ij 

Phase-type 

Evolution 

Cell-division 

,/)()( 2ss txtx 

,)( 0sjj tg

111 )()( sisi tgtg  },,{ ni 1




n

j

jji gkp
1

,

and deterministic protein production dynamics

ẋ = kx〈B〉. (53)

Time derivative of the expected value of any function ϕ(x, gij) for this hybrid system can be written
as [55]

d〈ϕ(x, gij)〉
dt

=

〈 ∑
Events

∆ϕ(x, gij)× f(x, gij)

〉
+

〈
∂ϕ(x, gij)

∂x
kx〈B〉

〉
, (54)
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where the first term in the right-hand side is contributed from stochastic events and the second term is
contributed from deterministic protein production dynamics. Based on this equation, the mean dynamics
of the protein is calculated by choosing ϕ to be x

d〈x〉
dt

= kx〈B〉 −
k

2

〈
n∑
j=1

xgjj

〉
, (55)

which is the same as equation (43). In addition to mean, dynamics of 〈xgij〉 are also equal to their
equation in the previous section.

The second order moment dynamics of protein can be expressed by choosing ϕ to be x2

d〈x2〉
dt

= 2kx〈B〉〈x〉+ k

〈
n∑
j=1

((x
2

)2
− x2

)
gjj

〉
, (56)

which can be simplified as

d〈x2〉
dt

= 2kx〈B〉〈x〉 −
3k

4

〈
n∑
j=1

x2gjj

〉
. (57)

In order to have a closed set of equations we select ϕ to be of the form x2gij . At the first step we write
moment dynamics of 〈x2g11〉

d〈x2g11〉
dt

= 2kx〈B〉〈xg11〉+
k

4
p1
〈
x2g211

〉
− kp1

〈
x2g211

〉
− k

n∑
i=2

pi〈x2g11〉. (58)

Based on equation (9) of the main text, the term
〈
x2g211

〉
simplifies as〈

x2g211
〉

=
〈
x2g11

〉
, (59)

hence dynamics of 〈x2g11〉 will be

d〈x2g11〉
dt

= 2kx〈B〉〈xg11〉+
k

4
p1
〈
x2g11

〉
− k〈x2g11〉. (60)

In the second step, we write dynamics of moments 〈x2gij〉 when gij 6= g11

d〈x2gi1〉
dt

= 2kx〈B〉〈xgi1〉+ kpi

〈
n∑
j=1

(
x2

4
+
x2

4
gi1 − x2gi1

)
gjj

〉
− k〈x2gi1〉, (61a)

d〈x2gij〉
dt

= 2kx〈B〉〈xgij〉 − k〈x2gij〉+ k〈x2g(i−1)j〉, j = {2, . . . , i} , (61b)

where dynamics of 〈x2gi1〉 can be shown to follow

d〈x2gi1〉
dt

= 2kx〈B〉〈xgi1〉+
k

4
pi

〈
n∑
j=1

x2gjj

〉
− 3k

4
pi

〈
n∑
j=1

x2gi1gjj

〉
− k〈x2gi1〉. (62)

Based on equation (10) in the main text
〈∑n

j=1 x
2gi1gjj

〉
= 0, thus equation (62) simplifies to

d〈x2gi1〉
dt

= 2kx〈B〉〈xgi1〉+
k

4
pi

〈
n∑
j=1

x2gjj

〉
− k〈x2gi1〉. (63)

Equations (60), (61b), and (63) can be compactly written as equation (16) in the main text.
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C Moment dynamics of hybrid model introduced in Figure 2C

Stochastic hybrid system introduced in Figure 2C coupled with phase-type distribution contains the
following stochastic events

Event Reset Propensity 

,)()( 1tgtg ijij 

111  )()( )()( tgtg jiji 

,ijkg
},,,{ ni 2

},,{ 11  ij 

Phase-type 

Evolution 

Cell-division 

),()( ss txtx 

,)( 0sjj tg

111 )()( sisi tgtg  },,{ ni 1




n

j

jji gkp
1

,

and deterministic protein production dynamics

ẋ = kx〈B〉. (64)

Note that in this model x(t) is a continuous random variable, thus we also use a continuous distribution
to describe x+(ts), however statistical properties of x+(ts) is still given by (5). For this model we still can
use equation (54) to derive moment dynamics; equations describing time evolution of mean and 〈xgij〉
are the same as previous models, thus mean of protein for this model is equal to its value in Appendix A.
The second order moment dynamics of protein can be written by choosing ϕ to be x2 in equation (54)

d〈x2〉
dt

= 2kx〈B〉〈x〉+ k

〈
n∑
j=1

(
x2

4
+
αx

4
− x2

)
gjj

〉
, (65)

where conditional expected value of x2+ is substituted based on equation (5). Dynamics of 〈x2〉 can be
simplified as

d〈x2〉
dt

= 2kx〈B〉〈x〉+
αk

4

〈
n∑
j=1

xgjj

〉
− 3k

4

〈
n∑
j=1

x2gjj

〉
. (66)

The same as before we add dynamics of the form 〈x2gij〉 to have a closed set of dynamics. First we add
dynamics of 〈x2g11〉

d〈x2g11〉
dt

= 2kx〈B〉〈xg11〉+
αk

4
p1
〈
xg211

〉
+
k

4
p1
〈
x2g211

〉
− kp1

〈
x2g211

〉
− k

n∑
i=2

pi〈x2g11〉, (67)

Based on equation (9) of the main text dynamics of 〈x2g11〉 simplifies to

d〈x2g11〉
dt

= 2kx〈B〉〈xg11〉+
αk

4
p1 〈xg11〉+

k

4
p1
〈
x2g11

〉
− k〈x2g11〉. (68)

Now we express dynamics of moments 〈x2gij〉 for gij 6= g11

d〈x2gi1〉
dt

= 2kx〈B〉〈xgi1〉+ kpi

〈
n∑
j=1

(
x2

4
+
x2

4
gi1 +

αx

4
+
αx

4
gi1 − x2gi1

)
gjj

〉
− k〈x2gi1〉, (69a)

d〈x2gij〉
dt

= 2kx〈B〉〈xgij〉 − k〈x2gij〉+ k〈x2g(i−1)j〉, j = {2, . . . , i} , (69b)
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where dynamics of 〈x2gi1〉 can be shown as

d〈x2gi1〉
dt

=2kx〈B〉〈xgi1〉+
αk

4
pi

〈
n∑
j=1

xgjj

〉
+
k

4
pi

〈
n∑
j=1

x2gjj

〉

+
αk

4
pi

〈
n∑
j=1

xgi1gjj

〉
− 3k

4
pi

〈
n∑
j=1

x2gi1gjj

〉
− k〈x2gi1〉.

(70)

Based on equation (10) in the main text
〈∑n

j=1 x
2gi1gjj

〉
= 0, and

〈∑n
j=1 xgi1gjj

〉
= 0, hence equation

(70) simplifies to

d〈x2gi1〉
dt

= 2kx〈B〉〈xgi1〉+
αk

4
pi

〈
n∑
j=1

xgjj

〉
+
k

4
pi

〈
n∑
j=1

x2gjj

〉
− k〈x2gi1〉. (71)

Equations (66), (68), (69b), and (71) can be compactly written as equation (23) in the main text.

D Second and third-order moment dynamics of the full model

Based on model introduced in Appendix A, second order moment dynamics of protein is expressed by
choosing ϕ to be x2 in equation (42),

d〈x2〉
dt

= kx〈B2〉+ 2kx〈B〉〈x〉+ k

〈
n∑
j=1

(
x2

4
+
αx

4
− x2

)
gjj

〉
, (72)

where conditional expected value of x2+ is substituted based on equation (5). Dynamics of 〈x2〉 can be
simplified as

d〈x2〉
dt

= kx〈B2〉+ 2kx〈B〉〈x〉+
αk

4

〈
n∑
j=1

xgjj

〉
− 3k

4

〈
n∑
j=1

x2gjj

〉
. (73)

The same as before we add dynamics of the form 〈x2gij〉 to have a closed set of moments. First we write
dynamics of 〈x2g11〉

d〈x2g11〉
dt

= kx〈B2〉p1 + 2kx〈B〉〈xg11〉+
αk

4
p1
〈
xg211

〉
+
k

4
p1
〈
x2g211

〉
−kp1

〈
x2g211

〉
−k

n∑
i=2

pi〈x2g11〉, (74)

Based on equation (9) of the main text dynamics of 〈x2g11〉 simplifies to

d〈x2g11〉
dt

= kx〈B2〉p1 + 2kx〈B〉〈xg11〉+
αk

4
p1 〈xg11〉+

k

4
p1
〈
x2g11

〉
− k〈x2g11〉. (75)

Next, dynamics of moments 〈x2gij〉 when gij 6= g11 can be written as

d〈x2gi1〉
dt

=
kx〈B2〉pi

i
+ 2kx〈B〉〈xgi1〉

+ kpi

〈
n∑
j=1

(
x2

4
+
x2

4
gi1 +

αx

4
+
αx

4
gi1 − x2gi1

)
gjj

〉
− k〈x2gi1〉, (76a)

d〈x2gij〉
dt

=
kx〈B2〉pi

i
+ 2kx〈B〉〈xgij〉 − k〈x2gij〉+ k〈x2g(i−1)j〉, j = {2, . . . , i} , (76b)
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where dynamics of 〈x2gi1〉 can be shown as

d〈x2gi1〉
dt

=
kx〈B2〉pi

i
+ 2kx〈B〉〈xgi1〉+

αk

4
pi

〈
n∑
j=1

xgjj

〉
+
k

4
pi

〈
n∑
j=1

x2gjj

〉

+
αk

4
pi

〈
n∑
j=1

xgi1gjj

〉
− 3k

4
pi

〈
n∑
j=1

x2gi1gjj

〉
− k〈x2gi1〉.

(77)

Based on equation (10) in the main text
〈∑n

j=1 x
2gi1gjj

〉
= 0 and

〈∑n
j=1 xgi1gjj

〉
= 0, hence equation

(77) simplifies to

d〈x2gi1〉
dt

=
kx〈B2〉pi

i
+ 2kx〈B〉〈xgi1〉+

αk

4
pi

〈
n∑
j=1

xgjj

〉
+
k

4
pi

〈
n∑
j=1

x2gjj

〉
− k〈x2gi1〉. (78)

Equations (73), (75), (76b), and (78) can be compactly written as equation (26) in the main text.

E Contribution of different sources of stochasticity in protein
by taking into account gene-duplication

We study the contribution of different sources of stochasticity by using models introduced in Figure
S1. The cell-cycle time consists of two time intervals: the time interval before gene-duplication and
the time after gene-duplication. These time intervals are modeled by using two independent phase-type
distributions as shown in Figure S2. Based on phase-type characteristics mean of the states of the first
phase-type 〈sij〉 and the second phase-type 〈gij〉 are

〈sij〉 =
pi
i
β, i ∈ {1, . . . , n1}, j ∈ {1, . . . , i},

〈gij〉 =
p′i
i

(1− β), i ∈ {1, . . . , n2}, j ∈ {1, . . . , i},
(79)

where β is defined as

β :=
Mean time interval before gene-duplication

Mean cell-cycle time
=
〈T1〉
〈T 〉

. (80)

We start our analysis by deriving mean level of protein in the next section.

E.1 Mean of protein count level in the presence of gene-duplication

After gene-duplication the amount of genes expressing a specific protein doubles. Thus the rate of protein
production increases by a factor of two as shown in Figure S1A. This model coupled with phase-type
distributions contains the following stochastic events
Note that in the protein production event, before gene-duplication all the states gij are zero thus propen-
sity function will be kxp

′′
u. After gene-duplication and before division, one of the states gij is one hence

propensity function will be 2kxp
′′
u. In time of gene-duplication, states of the first phase-type will reset to

zero and state gi1 of the second distribution will be selected with probability p′i; hence propensity function
of gene-duplication event is k1p

′
i

∑n1

j=1 sjj . At the end of cell-cycle, states of the second phase-type will
reset to zero and a new cell-cycle which is sum of i exponentials will be selected with probability pi; thus
propensity function of cell-division event is k2pi

∑n1

j=1 gjj .
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Figure S1: Stochastic hybrid models for quantifying different sources of noise. Gene-duplication
and cell-division times are random events. A) Protein production happens in random bursts with burst
frequency kx. After gene-duplication event burst frequency doubles (2kx). In the time of division proteins
will be distributed between mother and daughter cells randomly, and the protein burst frequency will
be kx again. B) Protein production is considered in a deterministic fashion, and after gene-duplication
dynamics of protein production is multiplied by a factor of two, i.e., ẋ = 2kx〈B〉. In the division event
proteins are distributed between mother and daughter cells equally. Thus the only stochastic events are
duplication and division events. C) Protein is produced in a deterministic fashion, but in time of division
protein levels in daughter and mother cells are random. Thus duplication, division, and partitioning are
random events.

Theorem 1 of [55] gives the time derivative of the expected value of any function ϕ(x, sij , gij) as

d〈ϕ(x, sij , gij)〉
dt

=

〈 ∑
Events

∆ϕ(x, sij , gij)× f(x, sij , gij)

〉
, (81)

where ∆ϕ(x, sij , gij) is a change in ϕ when an event occurs. The first-order moment dynamic of this
model can be expressed by selecting ϕ to be x in equation (81)

d〈x〉
dt

=kx〈B〉

1 +

〈
n2∑
i=1

i∑
j=1

gij

〉− k2〈 n2∑
j=1

(
x

2
− x)gjj

〉
, (82)

where conditional expected value of x+ is replaced from equation (5); by using equation (79) mean
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Figure S2: Cell-cycle time consists of two time intervals: at the end of the first interval
gene duplicates, and at the end of the second one cell divides. Two independent phase-type
distributions are used to model cell-cycle time in the presence of genome duplication. The states of the first
distribution are denoted by Sij , i = {1, . . . , n1}, j = {1, . . . , i}; transition between these states happens at
a constant rate k1. The states of the second distribution are shown by Gij , i = {1, . . . , n2}, j = {1, . . . , i},
and transition between these states occurs at a rate k2.

dynamics can be simplified as

d〈x〉
dt

=kx〈B〉 (2− β)− k2
2

〈
n2∑
j=1

xgjj

〉
, (83)

Mean dynamics is not closed thus we add dynamics of 〈xsij〉, i = {1, . . . , n1}, j = {1, . . . , i} and
〈xgij〉, i = {1, . . . , n1}, j = {1, . . . , i} to have a closed set of moment equations. These moment dynamics
are simplified by using equations (5), (9), (10) and (79) as

d〈xsi1〉
dt

=
kx〈B〉p′iβ

i
+
k2
2
p′i

〈
n2∑
j=1

xgjj

〉
− k1〈xsi1〉, (84a)

d〈xsij〉
dt

=
kx〈B〉p′iβ

i
− k1〈xsij〉+ k1〈xsi(j−1)〉, j = {2, . . . , i}, (84b)

d〈xgi1〉
dt

=
2kx〈B〉pi(1− β)

i
+ k1pi

〈
n1∑
j=1

xsjj

〉
− k2〈xgi1〉, (84c)

d〈xgij〉
dt

=
2kx〈B〉pi(1− β)

i
− k2〈xgij〉+ k2〈xgi(j−1)〉, j = {2, . . . , i}. (84d)

In order to find the mean of protein, first we need to find the moments 〈xsij〉, i = {1, . . . , n1} , j =
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Event Reset Propensity 
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 
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j jjspk ,'

},,{ 21 ni 

,)()( 1tgtg ijij 

111  )()( )()( tgtg jiji 

,ijgk2
},,,{ 22 ni 

},,{ 11  ij 

Second phase-type 

evolution 

i

 

2

12

n

j jji gpk ,

u

{1, . . . , i} and 〈xgij〉, i = {1, . . . , n2} , j = {1, . . . , i}. For calculating these moments we should calculate

the term
〈∑n2

j=1 xgjj

〉
; this term can be obtained by analyzing equation (83) in steady-state

kx〈B〉(2− β) =
k2
2

〈
n2∑
j=1

xgjj

〉
⇒

〈
n2∑
j=1

xgjj

〉
=

2kx〈B〉(2− β)

k2
. (85)

By having this term, we calculate 〈xsij〉 by recursion process: we start by calculating 〈xsi1〉 by substi-

tuting equation (85) in equation (84a). In the next step we use the definition we derived for 〈xsi1〉 to
calculate 〈xsi2〉 from equation (84b). We continue this process until we derive all the moments

〈xsij〉 =
kx〈B〉
k1

p′i

(
β
j

i
+ (2− β)

)
, i = {1, . . . , n1}, j = {1, . . . , i}. (86)

Now we need to calculate the moments 〈xgij〉, i = {1, . . . , n2} , j = {1, . . . , i}, thus we need the expression

of the term
〈∑n1

j=1 xsjj

〉
; from equation (86) we have the following

〈
n1∑
j=1

xsjj

〉
=

2kx〈B〉
k1

. (87)

Substituting this term in equations (84c) and (84d) result in

〈xgij〉 =
2kx〈B〉
k2

pi

(
(1− β)

j

i
+ 1

)
, i = {1, . . . , n2}, j = {1, . . . , i}. (88)
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Note that
n1∑
i=1

i∑
j=1

sij +

n2∑
i=1

i∑
j=1

gij = 1⇒ 〈x〉 =

〈
x

 n1∑
i=1

i∑
j=1

sij +

n2∑
i=1

i∑
j=1

gij

〉

⇒ 〈x〉 =

n1∑
i=1

i∑
j=1

〈xsij〉+

n2∑
i=1

i∑
j=1

〈xgij〉.

(89)

Thus by adding all the term calculated here and using equation (7) mean of protein can be calculated as

〈x〉 =
kx〈B〉〈T1〉

(
4− β + βCV 2

T1

)
2

+ kx〈B〉〈T2〉
(
3− β + (1− β)CV 2

T2

)
. (90)
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E.2 Noise in protein count level contributed from cell-cycle time

In order to calculate the noise contributed from cell-cycle time variation, the model introduced in Figure
S1B coupled with phase-type distributions is used. This model contains following stochastic events

Event Reset Propensity 
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evolution 

 

2
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n

j jji gpk ,

i

and deterministic protein production

ẋ = kx〈B〉

1 +

n2∑
i=1

i∑
j=1

gij

 . (91)

Theorem 1 of [55] gives the time derivative of the expected value of any function ϕ(x, sij , gij) as

d〈ϕ(x, sij , gij)〉
dt

=

〈 ∑
Events

∆ϕ(x, sij , gij)× f(x, sij , gij)

〉

+

〈
∂ϕ(x, gij)

∂x
kx〈B〉

1 +

n2∑
i=1

i∑
j=1

gij

〉 , (92)

where the first term in the right hand side is contributed from stochastic events, and the second term is
contributed from deterministic protein production. In this model, dynamics of 〈x〉, 〈xsij〉 and 〈xgij〉 are

the same as equations (83) and (E.6), thus mean of protein, 〈xsij〉, and 〈xgij〉 will be equal to their value
in previous section. Further, the second-order moment dynamics of protein can be added by selecting ϕ
to be x2 in equation (92)

d〈x2〉
dt

= 2kx〈B〉

〈x〉+

〈
n2∑
i=1

i∑
j=1

xgij

〉− 3k2
4

〈
n2∑
j=1

x2gjj

〉
. (93)

This equation is not closed thus we add dynamics of 〈x2sij〉, i = {1, . . . , n1} , j = {1, . . . , i} and
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〈x2gij〉, i = {1, . . . , n2} , j = {1, . . . , i} to have a closed set of equations

d〈x2si1〉
dt

= 2kx〈B〉〈xsi1〉+
k2
4
pi

〈
n2∑
j=1

x2gjj

〉
− k1〈x2si1〉, (94a)

d〈x2sij〉
dt

= 2kx〈B〉〈xsij〉 − k1〈x2sij〉+ k1〈x2s(i−1)j〉, j = {2, . . . , i} , (94b)

d〈x2gi1〉
dt

= 4kx〈B〉〈xgi1〉+ k1pi

〈
n1∑
j=1

x2sjj

〉
− k2〈x2gi1〉, (94c)

d〈x2gij〉
dt

= 4kx〈B〉〈xgij〉 − k2〈x2gij〉+ k2〈x2g(i−1)j〉, j = {2, . . . , i} . (94d)

In order to calculate noise we need to express 〈x2sij〉, and 〈x2gij〉, which requires calculating the term

〈
∑n2

j=1 x
2gjj〉; this term can be derived by analyzing equation (93) in steady-state

3k2
4

〈
n2∑
j=1

x2gjj

〉
= 2kx〈B〉

〈x〉+

〈
n2∑
i=1

i∑
j=1

xgij

〉⇒
〈

n2∑
j=1

x2gjj

〉
=

4k2x〈B〉2〈T1〉
(
(4− β) + βCV 2

T1

)
3k2

+
16k2x〈B〉2〈T2〉

(
(3− β) + (1− β)CV 2

T1

)
3k2

,

(95)

where in deriving this term we used equation (90) and we summed all the terms in equation (88). By
having this term, we calculate 〈x2sij〉 by recursion process. we derive 〈x2si1〉 by substituting equation

(95) in equation (94a). In the next step we use the definition of 〈x2si1〉 to calculate 〈x2si2〉 from equation
(94b). We continue this process until we derive all the moments

〈x2sij〉 =
k2x〈B〉2〈T1〉

(
(4− β) + βCV 2

T1

)
3k1

p′i +
4k2x〈B〉2〈T2〉

(
(3− β) + (1− β)CV 2

T2

)
3k1

p′i

+
2k2x〈B〉2

k1
p′i

(
βj2 + (2− β)j

i

)
, i = {1, . . . , n1}, j = {1, . . . , i}.

(96)

Expressing 〈x2gij〉 requires calculation of the term 〈
∑n1

j=1 x
2sjj〉 which can be obtained from equation

(96) as〈
n1∑
j=1

x2sjj

〉
=

4k2x〈B〉2〈T1〉
(
(4− β) + βCV 2

T1

)
3k1

+
4k2x〈B〉2〈T2〉

(
(3− β) + (1− β)CV 2

T2

)
3k1

. (97)

Thus 〈x2gij〉 can be obtained with a recursion process from equations (94c) and (94d)

〈x2gij〉 =
4k2x〈B〉2〈〈T1〉

(
(4− β) + βCV 2

T1

)
3k2

pi +
4k2x〈B〉2〈T2〉

(
(3− β) + (1− β)CV 2

T2

)
3k2

pi

+
8k2x〈B〉2

k2
pi

(
(1− β)j2 + j

i

)
, i = {1, . . . , n2}, j = {1, . . . , i}.

(98)

Note that
∑n1

i=1

∑i
j=1 〈x2sij〉+

∑n2

i=1

∑i
j=1 〈x2gij〉 = 〈x2〉 thus the second order moment of protein can

be derived by adding all the terms in equations (96) and (98). 〈x2〉 can be simplified by using equations
(7) and (18b) in the main article as

〈x2〉 = k2x〈B〉2
4〈T 3

1 〉+ 16〈T 3
2 〉+ 2〈T 〉3(3(2− β)2 + β2(5− 3β)CV 2

T1
+ 8(1− β)2CV 2

T2
)

3〈T 〉
. (99)
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Finally, using the definition of CV 2 results in noise of protein raised from cell-cycle time variations

CV 2
E =

(4〈T 3
1 〉+ 16〈T 3

2 〉)/〈T 〉3 − 3(2− 4β + β2)2

3
(
(β2 − 4β + 6) + β2CV 2

T1
+ 2(1− β)2CV 2

T2

)2
−3β2(β2(−2 + CV 2

T1
))CV 2

T1
− 4(β2CV 2

T1
+ (1− β)2CV 2

T2
)(2− 12β + 3β2 + 3(β2CV 2

T1
+ (1− β)2CV 2

T2
))

3
(
(β2 − 4β + 6) + β2CV 2

T1
+ 2(1− β)2CV 2

T2

)2 .

(100)
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E.3 Noise in protein count level contributed from random partitioning

In order to take into account noise caused by random partitioning of proteins between two daughter cells,
we use the model shown in Figure S1C coupled with phase-type distributions. This model contains the
following stochastic events

Event Reset Propensity 
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Second phase-type 

evolution 

 

2
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n

j jji gpk ,

i

and deterministic protein production

ẋ = kx〈B〉
n2∑
i=1

i∑
j=1

gij . (101)

Note that here x is a continuous random variable, hence x+ is also obtained from a continious distribution.
Connection between statistical statistical moments of x and x+ is given by (5).

For this model, 〈x〉, 〈xsij〉, and 〈xgij〉 are equal to their value in Section E.1 and Section E.2. However,
dynamics of 〈x2〉 and 〈x2si1〉 are different

d〈x2〉
dt

= 2kx〈B〉

〈x〉+

〈
n2∑
i=1

i∑
j=1

xgij

〉+
1

4
αk2

〈
n2∑
j=1

xgjj

〉
− 3k2

4

〈
n2∑
j=1

x2gjj

〉
, (102a)

d〈x2si1〉
dt

= 2kx〈B〉〈xsi1〉+
k2
4
p′i

〈
n2∑
j=1

x2gjj

〉
+

1

4
αk2p

′
i

〈
n2∑
j=1

xgjj

〉
− k1〈x2si1〉, (102b)

note that dynamics of 〈x2sij〉, 〈x2gi1〉, and 〈x2gij〉 are identical to equations (94b), (94c), and (94d).

Similar to previous section, we start by deriving the term 〈
∑n
j=1 x

2gjj〉. Analyzing equation (102a) in
steady-state gives this term as〈

n2∑
j=1

x2gjj

〉
=

4k2x〈B〉2〈T1〉
(
(4− β) + βCV 2

T1

)
3k2

+
16k2x〈B〉2〈T2〉

(
(3− β) + (1− β)CV 2

T1

)
3k2

+
2αkx〈B〉(2− β)

3k2
.

(103)
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Substituting equation (103) in equations (102b) and (94b) results in

〈x2sij〉 =
k2x〈B〉2〈T1〉

(
(4− β) + βCV 2

T1

)
3k1

p′i +
4k2x〈B〉2〈T2〉

(
(3− β) + (1− β)CV 2

T2

)
3k1

p′i

+
2k2x〈B〉2

k1
p′i

(
βj2 + (2− β)j

i

)
+

2αkx(2− β)〈B〉
3k1

p′i,

i = {1, . . . , n1} j = {1, . . . , i}.

(104)

In the next step we derive moments 〈x2gij〉; we start by calculating 〈
∑n1

j=1 x
2sjj〉 from (104)〈

n1∑
j=1

x2sjj

〉
=

4k2x〈B〉2〈T1〉
(
(4− β) + βCV 2

T1

)
3k1

+
4k2x〈B〉2〈T2〉

(
(3− β) + (1− β)CV 2

T2

)
3k1

+
2kx〈B〉(2− β)

3k1
.

(105)

By having this term, the moments 〈x2gij〉 are derived by solving equations (94c) and (94d) in steady-state

〈x2gij〉 =
4k2x〈B〉2〈〈T1〉

(
(4− β) + βCV 2

T1

)
3k2

pi +
4k2x〈B〉2〈T2〉

(
(3− β) + (1− β)CV 2

T2

)
3k2

pi

+
8k2x〈B〉2

k2
pi

(
(1− β)j2 + j

i

)
+

2αkx〈B〉(2− β)

3k2
pi,

i = {1, . . . , n2}, j = {1, . . . , i}.

(106)

Note that

〈x2〉 =

〈
x2

 n1∑
i=1

i∑
j=1

sij +

n2∑
i=1

i∑
j=1

gij

〉 =

n1∑
i=1

i∑
j=1

〈x2sij〉+

n2∑
i=1

i∑
j=1

〈x2gij〉, (107)

hence the second-order moment is

〈x2〉 =
4〈T 3

1 〉+ 16〈T 3
2 〉+ 2〈T 〉3(3(2− β)2 + β2(5− 3β)CV 2

T1
+ 8(1− β)2CV 2

T2
)

3〈T 〉

+
2αkx〈B〉(2− β)〈T 〉

3
.

(108)

Coefficient of variation squared gives noise raised from partitioning and cell-cycle variations, which sub-
tracting equation (100) from results gives partitioning noise as

CV 2
R =

4α(2− β)

3
(
(β2 − 4β + 6) + β2CV 2

T1
+ 2(1− β)2CV 2

T2

) 1

〈x〉
. (109)
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E.4 Noise in protein count level contributed from stochastic production

In order to calculate the noise caused by stochastic birth of protein, we use the model introduced in
Section C.1. For this model, moments dynamics of 〈x2〉, 〈x2sij〉, and 〈x2gij〉 can be written as

d〈x2〉
dt

= kx〈B2〉(2− β) + 2kx〈B〉

(
〈x〉+

〈
n2∑
i=1

i∑
j=1

xgij

〉)
+

1

4
αk2

〈
n2∑
j=1

xgjj

〉
− 3k2

4

〈
n2∑
j=1

x2gjj

〉
, (110a)

d〈x2si1〉
dt

=
kx〈B2〉βp′i

i
+ 2kx〈B〉〈xsi1〉+

k2
4
p′i

〈
n2∑
j=1

x2gjj

〉
+

1

4
αk2p

′
i

〈
n2∑
j=1

xgjj

〉
− k1〈x2si1〉, (110b)

d〈x2sij〉
dt

=
kx〈B2〉βp′i

i
+ 2kx〈B〉〈xsij〉 − k1〈x2sij〉+ k1〈x2s(i−1)j〉, j = {2, . . . , i} , (110c)

d〈x2gi1〉
dt

=
2kx〈B2〉(1− β)pi

i
+ 4kx〈B〉〈xgi1〉+ k1pi

〈
n1∑
j=1

x2sjj

〉
− k2〈x2gi1〉, , (110d)

d〈x2gij〉
dt

=
2kx〈B2〉(1− β)pi

i
+ 4kx〈B〉〈xgij〉 − k2〈x2gij〉+ k2〈x2g(i−1)j〉, j = {2, . . . , i} . (110e)

The same as before we start by expressing the term 〈
∑n2

j=1 x
2gjj〉, this term is calculated by analyzing

equation (110a) in steady-state〈
n2∑
j=1

x2gjj

〉
=

4k2x〈B〉2〈T1〉
(
(4− β) + βCV 2

T1

)
3k2

+
2αkx〈B〉(2− β)

3k2

+
16k2x〈B〉2〈T2〉

(
(3− β) + (1− β)CV 2

T1

)
3k2

+
4kx(2− β)〈B2〉

3k2
.

(111)

Substituting this term in equations (110b) and (110c) results in

〈x2sij〉 =
k2x〈B〉2〈T1〉

(
(4− β) + βCV 2

T1

)
3k1

p′i +
4k2x〈B〉2〈T2〉

(
(3− β) + (1− β)CV 2

T2

)
3k1

p′i

+
2k2x〈B〉2

k1
p′i

(
βj2 + (2− β)j

i

)
+

2αkx(2− β)〈B〉
3k1

p′i

+
kx〈B2〉
k1

(
2− β

3
+ β

j

i

)
p′i, i = {1, . . . , n1}, j = {1, . . . , i}.

(112)

Similar to previous section, solving equations (110d) and (110e) gives the 〈x2gij〉

〈x2gij〉 =
4k2x〈B〉2〈〈T1〉

(
(4− β) + βCV 2

T1

)
3k2

pi +
4k2x〈B〉2〈T2〉

(
(3− β) + (1− β)CV 2

T2

)
3k2

pi

+
8k2x〈B〉2

k2
pi

(
(1− β)j2 + j

i

)
+

2αkx〈B〉(2− β)

3k2
pi

+
2kx〈B2〉
k2

(
1 + β

3
+ (1− β)

j

i

)
pi, i = {1, . . . , n2}, j = {1, . . . , i}.

(113)
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Finally summing all the moments 〈x2sij〉, and 〈x2gij〉 results in 〈x2〉 as

〈x2〉 =
4〈T 3

1 〉+ 16〈T 3
2 〉+ 2〈T 〉3(3a(−(β + 1)βCV 2

T1
+ a− 4) + 8CV 2

T + 12)

3〈T 〉

+
2αkx〈B〉(2− a)〈T 〉

3
+ kx〈B2〉

(
2− β

3
+ β

(
1 + CV 2

T1

2

))
〈T1〉

+ 2kx〈B2〉
(

1 + β

3
+ (1− β)

(
1 + CV 2

T2

2

))
〈T2〉.

(114)

Steady-state analysis gives the noise from stochastic birth, random partitioning, and cell-cycle time
variations. Subtracting noise of cell-cycle time and partitioning in equations (100) and (109) results in
noise caused by stochastic production of protein

CV 2
P =

(10− 8β + 3β2) + 6(1− β)2CV 2
T2

+ 3β2CV 2
T1

3
(
(β2 − 4β + 6) + β2CV 2

T1
+ 2(1− β)2CV 2

T2

) 〈B2〉
〈B〉

1

〈x〉
. (115)
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E.5 Effect of gene-duplication time in intrinsic noise

We investigate how the noise contributions from random partitioning and stochastic expression (CV 2
R

and CV 2
P terms in equation (34) of the main text) change as β is varied between 0 and 1. Results show

that CV 2
R and CV 2

P follow the same qualitative shapes as reported in Fig. 6. There exists a β∗

β∗ =
−
√

2(2CV 4
T1

+ 5CV 2
T1
CV 2

T2
+ 3CV 2

T1
+ 2CV 4

T2
+ 3CV 2

T2
+ 1) + 2CV 2

T1
+ 4CV 2

T2
+ 2

CV 2
T1

+ 2CV 2
T2

+ 1
, (116)

such that CV 2
P is minimized and CV 2

R is maximized when β = β∗. Note that when CV 2
T1

= CV 2
T2

= 0,

β∗ = 2−
√

2 as reported in the main text. The minimum value of CV 2
P and the maximum value of CV 2

R
are given by

CV 2
P =

CV 2
T1

(3CV 2
T2

+ 7)−
√

2(2CV 2
T1

+ CV 2
T2

+ 1)(CV 2
T1

+ 2CV 2
T2

+ 1) + 7CV 2
T2

+ 3

3(CV 2
T1

(CV 2
T2

+ 3) + 3CV 2
T2

+ 1)

〈B2〉
〈B〉

1

〈x〉
, (117)

CV 2
R =

√
2α

3
√

(2CV 2
T1

+ CV 2
T2

+ 1)(CV 2
T1

+ 2CV 2
T2

+ 1)− 3
√
2CV 2

T1
− 3
√
2CV 2

T2

, (118)

respectively. Plots of β∗ and optimal value of CV 2
R and CV 2

P as a function of CV 2
T1

are shown in Fig.
S4. Note that if noise in T1 is high and T2 is deterministic then β∗ shifts towards zero. Similarly, if noise
in T2 is high and T1 is deterministic then β∗ shifts towards one.

F Noise level in unstable protein

Consider an unstable protein with sufficiently high degradation rate γx such that the protein level reaches
steady-state instantaneously compared to the cell-cycle time (Fig. S4). Let τ denote the time from the
last division event, then

〈x|τ < T1〉 =
kx〈B〉
γx

,

〈x|τ > T1〉 =
2kx〈B〉
γx

,

(119)

where T1 is the time in which duplication happens. The mean level of an unstable protein can be
calculated as

〈x〉 = 〈x|τ < T1〉p(τ < T1) + 〈x|τ > T1〉p(τ > T1), (120)
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Figure S3: Effect of gene-duplication on intrinsic noise level. Left : Value of β where CV 2
P is

minimized and CV 2
R is maximized as a function of CV 2
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, noise levels always reach

their extrema at β = 2 −
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R as a functions of
CV 2

T1
. Noise levels are normalized by their values at β = 0.
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where p(τ < T1) and p(τ > T1) denote the probability of being in the time interval before and after
gene-duplication. Using

p(τ < T1) = β, p(τ > T1) = (1− β), (121)

we obtain

〈x〉 =
kx〈B〉(2− β)

γx
. (122)

To compute the extrinsic noise component we consider deterministic protein production and decay.
The second-order moment of x(t) is given by

〈x2|τ < T1〉 =
(
kx〈B〉
γx

)2
〈x2|τ > T1〉 =

(
2kx〈B〉
γx

)2 ⇒ 〈x2〉 =

(
kx〈B〉
γx

)2

β +

(
2kx〈B〉
γx

)2

(1− β). (123)

By using definition of CV 2, extrinsic noise is

CV 2
E =

(1− β)β

(2− β)2
, (124)

which is zero at β = 0, 1 and reaches its maximum at β = 2/3 (Fig. S4).
Next we compute the intrinsic noise component. If the protein decay is sufficiently high, the noise

contribution from partitioning errors will be negligible because any errors will be instantaneously corrected
due to rapid protein turnover. Noise raised from stochastic gene expression can be investigated by
considering a model containing stochastic bursty production and stochastic degradation of proteins,
where after gene-duplication the burst frequency doubles. Again assuming large enough γx, 〈x2|τ < T1〉
is equal to the steady-state second-order moment of a stochastic model with burst frequency kx (analyzed
in [64])

〈x2|τ < T1〉 =

(
kx〈B〉
γx

)2

+
kx〈B2〉

2γ2x
+
kx〈B〉
2γx

. (125)

In comparison with equation (123), there are two extra terms at the right hand side of 〈x2|τ < T1〉.
The first extra term is due to production of protein in random bursts and the second one is due to
stochastic degradation of protein molecules. Further for the same reasons (large degradation rate and
rapid equilibration of the distribution), 〈x2|τ > T1〉 is equal to the second-order moment of a model
containing stochastic bursty production of proteins with burst frequency 2kx which is

〈x2|τ > T1〉 =

(
2kx〈B〉
γx

)2

+
kx〈B2〉
γ2x

+
kx〈B〉
γx

. (126)

Thus the second order moment of an unstable protein can be written as

〈x2〉 =

(
kx〈B〉
γx

)2

β +
kx〈B2〉

2γ2x
β +

kx〈B〉
2γx

β

+

(
2kx〈B〉
γx

)2

(1− β) +
kx〈B2〉
γ2x

(1− β) +
kx〈B〉
γx

(1− β).

(127)

Using definition of CV 2 and subtracting extrinsic noise we obtain the following noise contribution from
stochastic expression and decay

CV 2
P =

1

2

(
〈B2〉
〈B〉

+ 1

)
1

〈x〉
. (128)
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Figure S4: Contribution of gene duplication to noise levels of an unstable protein. left : For a
stable protein, copy numbers accumulate in a bilinear fashion. In contrast, an unstable protein reaches
equilibrium rapidly and its level changes in steps. Right : Extrinsic and intrinsic noise predicted for an
unstable protein as a function of β. Solid lines are predictions from (124) and (128), which agree with
estimates from 20, 000 Monte Carlo simulations. Parameters taken as γx = 10hr−1, and a geometric
burst with 〈B〉 = 6. Burst frequency is changed to have a constant mean protein level of 100 molecules
for different values of β. 95% confidence intervals are calculated via bootstrapping.
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