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ABSTRACT
We present an open source package for performing evolutionary quantitative genetics analyses in the R environment
for statistical computing. Evolutionary theory shows that evolution depends critically on the available variation in a
given population. When dealing with many quantitative traits this variation is expressed in the form of a covariance
matrix, particularly the additive genetic covariance matrix or sometimes the phenotypic matrix, when the genetic matrix
is unavailable. Given this mathematical representation of available variation, the EvolQG package provides functions for
calculation of relevant evolutionary statistics, estimation of sampling error, corrections for this error, matrix comparison
via correlations and distances, and functions for testing evolutionary hypotheses on taxa diversification.
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Introduction

Quantitative genetics deals with the evolution and inheritance of
continuous traits, like body size, bone lengths, gene expressions
or any other inheritable characteristic that can be measured on a
continuous scale, or which can be transformed to a continuous
scale. This framework has been used in selective breeding and
in describing the different sources of variation in natural popu-
lations, as well as understanding the interaction of evolutionary
processes with this variation (Lynch and Walsh 1998). Quantita-
tive genetics has been successful in describing short term evo-
lution, and is also useful in understanding diversification at a
macroevolutionary level. The core development of modern evo-
lutionary quantitative genetics started with the generalization
of the univariate breeders equation to the multivariate response
to selection equation, derived by Lande and also referred to as
the Lande equation (Lande 1979; Roff 2003).

The Lande equation relates the evolutionary change in trait
means of a given population (∆z) to the interaction between the
additive genetic variation (G-matrix) of this population and the
directional selection (β) acting on this population. The additive
genetic variation of a population is represented by a symmetric
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square matrix called the G-matrix, which contains the additive
genetic variance of each trait on the diagonal and the additive
genetic covariance between traits on the off-diagonal elements.
From the Lande equation, ∆z = Gβ, we can see that different
populations may present markedly different responses (∆z) to
the same directional selection (β) simply because these pop-
ulations have distinct G-matrices. Other evolutionary forces
affecting populations are also influenced by available variation,
e.g., based on the G-matrix it is possible to test if morphological
differentiation of extant taxa is compatible with genetic drift or
stabilizing selection (e.g., Ackermann and Cheverud (2004); Mar-
roig and Cheverud (2004)). Thus, describing and understanding
changes in standing variation among populations (Cheverud
1982; Lofsvold 1986; Marroig and Cheverud 2001) as well as
understanding constraints imposed by populations standing
variation (e.g., Schluter (1996); Marroig and Cheverud (2010);
Hansen and Houle (2008); Porto et al. (2013)) are major elements
in evolutionary quantitative genetics.

In this article we describe the EvolQG package, developed
to deal with the evolutionary quantitative genetics questions ad-
dressed above in the R environment for statistical computing (R
Core Team 2014). Our goal was to provide a suite of tools in a
single consistent source, and to standardize and facilitate the
adoption of these tools.
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Measurement error estimation

Before estimating a G-matrix, it is important to evaluate the
influence of measurement error in data collection, since mea-
surement error can drastically bias further analyses (Falconer
and Mackay 1996). Measurement error can be estimated by mea-
suring each individual at least twice and estimating the amount
of variation associated with each individual, which is the mea-
surement error, in relation to total variation (i.e., the sum of
within and between individuals variation) using an analysis of
variance. The proportion of variance not associated with the
individuals is called the repeatability (Lessells and Boag 1987).
A repeatability of 1 means that no variation is associated with
measurement error. The function CalcRepeatability() performs
the calculation described in Lessells and Boag (1987) for a set of
multivariate traits measured at least twice for each individual.

Matrix estimation

In the rest of this article we assume that the covariance ma-
trix of interest has already been estimated by some procedure.
This can be a simple covariance of all the observed traits, or
an estimated parameter from a more complicated linear model.
The simplest case of a linear model approach would be using
a multivariate analysis of covariance (MANCOVA) to control
for differences in trait means that are not of immediate interest
in the analyses (e.g., sexual dimorphism, geographic variation,
etc.). The residual pooled within-group covariance matrix can
be used in subsequent analysis (Marroig and Cheverud 2001).
The EvolQG package function CalculateMatrix() uses R’s lm()
model object to calculate variance-covariance matrices adjust-
ing for the proper degrees of freedom in a simple fixed-effects
MANCOVA. Of course more complicated methods may be
used to obtain G-matrices, such as an animal model or a mixed
model (Lynch and Walsh 1998; Runcie and Mukherjee 2013).

Accurate G-matrix estimation can be hard to achieve, re-
quiring large sample sizes, many families and know genealo-
gies (Steppan et al. 2002). One alternative that is usually more
feasible is to use the phenotypic covariance matrix (the P-matrix)
as a proxy of the population’s G-matrix (Cheverud 1988; Roff
1995). Conditions on where this approximation is reasonable
depend on the structure of developmental and environmental
effects, and testing for similarity is an empirical question that
should be undertaken before using the P-matrix as a proxy for
the G-matrix, ideally by direct comparison (e.g., Garcia et al.
(2013)). As a general rule, high similarity between populations’
P-matrices is a good indicator of high similarity between P and
G, and of a stable shared G-matrix pattern, since the similarity
between populations must come from either a common genetic
structure, or the unlikely scenario of a different genetic structure
buffered by an exactly compensating environmental structure
in each population that leads to high similarity between pheno-
typic covariation.

Some of the methods described below are not applicable to
covariance matrices, only to correlation matrices. Correlations
are standardized measures of association that are bounded be-
tween [−1, 1], and, unlike covariances, can be directly compared
for pairs of traits with different scales. In most instances, correla-
tion matrices can be obtained directly from covariance matrices
by using the R function cov2cor().

Matrix error and repeatabilities

A G-matrix will always be estimated with error (Hill and Thomp-
son 1978; Meyer and Kirkpatrick 2008; Marroig et al. 2012), and
it is important to take this error into account in further analy-
ses. In some circumstances we want to compare two or more
G-matrices, calculating the matrices correlations (see section
Matrix Comparison). However, due to error in estimating these
matrices, their correlations will never be one, even if the ac-
tual population parameter values are identical (Cheverud 1988).
Thus, matrix repeatabilities are used to correct matrix correla-
tions by taking sampling error into account. The basic premise
of all the methods is that taking repeated samples from the same
population and comparing the resulting matrices would still give
correlations that are lower than 1. We estimate the maximum
correlation between matrices taken from the same population
and correct the observed correlation by this maximum value.
The corrected correlation between two observed matrices will be
given by the original correlation divided by the geometric mean
of their repeatabilities. If the repeatability of both matrices is one,
the observed correlation does not change under the correction,
and lower repeatabilities yield larger corrections. A number
of methods for repeatability estimation are provided, and their
results can be passed on to the functions that calculate matrix
correlations (section Matrix Comparison):

AlphaRep(): Cheverud (1988) describes an analytical expres-
sion for the repeatability of a correlation matrix. This expression
is asymptotically convergent, so it should be used only when
sample sizes are large, at least larger than the number of traits.

BootstrapRep(): We may estimate the repeatability of the
covariance (or correlation) structure of a given data set using
a bootstrap procedure, sampling individuals with replacement
from the data set and calculating a covariance (or correlation)
matrix from each sample. The mean value of the correlation
between the random sample matrix and the original estimated
matrix is an estimate of the repeatability. This method has the
advantage of not assuming any distribution on the data, but
does provide inflated estimates of repeatabilities for small data
sets. Even so, upwardly biased matrix repeatabilities are not
so problematic, since they lead to conservative corrections of
matrix correlations. However, users should be aware of this bias
and should not interpret a high repeatability obtained from a
small data set as indicating that the parameter is well estimated.

MonteCarloRep(): We can use the observed covariance (or
correlation) matrix as the Σ parameter in a multivariate normal
distribution, and produce samples from this distribution, using
a fixed sample size. The covariance (or correlation) matrix for
each sample is compared to the observed matrix, and the mean
of these comparisons is an estimate of the repeatability (Marroig
and Cheverud 2001). This method has the advantage of being
easy to apply to matrices coming from linear models with many
controlled effects, and not requiring the original data.

Sometimes the question we are trying to answer does not
involve matrix comparisons, so other methods of assessing and
correcting for error are needed.

Rarefaction(): Rarefaction consists of taking progressively
smaller samples with replacement from the original data set,
calculating some statistic on each data set and comparing this
with the full data set. This gives a general idea of how the
inferences would change if we had smaller sample sizes, and
how robust our data set is with respect to sampling. The default
operation is to calculate the covariance or correlation matrices
and compare them using any of the matrix comparison methods
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(see section Matrix Comparison).
ExtendMatrix(): Marroig et al. (2012) showed that sampling

error on covariance matrix estimation can have a dramatic effect
on the reconstruction of net selection gradients using the mul-
tivariate response to selection equation (Lande 1979). One way
to improve estimates is the simple procedure of "extending" the
eigenvalues of the covariance matrix, where all the eigenvalues
lower than a certain threshold are substituted by the smallest
eigenvalue above the threshold. This causes minimal changes in
the distribution of phenotypes, but improves dramatically the
estimates of net selection gradients. See Marroig et al. (2012) for
a thorough examination of the performance and consequences
of the extension method on simulated and real data sets.

Evolutionary statistics

Hansen and Houle (2008) provide a suite of statistics that have
fairly good biological interpretations for a given G- or P-matrix.
Marroig et al. (2009) is a comprehensive example of how these
statistics may be used for interpreting morphological data.

The function MeanMatrixStatistics() calculates most of these
statistics and their distributions, as shown below.

In the following, E[·]β represents the expected value over
many random β vectors with unit norm, < ·, · > represents the
dot product between two vectors, cos(·, ·) is the cosine between
two vectors, G is an arbitrary covariance matrix, G−1 is the
inverse G, tr(G) is the trace of G, and ‖ · ‖ the Euclidean norm
of a vector. MeanMatrixStatistics() calculates:

• Mean Squared Correlation (r2): Given a correlation matrix,
the elements below the diagonal are squared and averaged
resulting in a measure of integration, that is, overall asso-
ciation between traits (also see the section Modularity and
Integration and Pavlicev et al. (2009)).

• Coefficient of variation of eigenvalues (ICV): a measure
of integration that is suitable for covariance matrices, as
it takes the amount of variation into account. Notice that
at least for mammals, mean squared correlations and ICV
generally have very high correlation, but can lead to differ-
ent conclusions if the traits included in the analysis have
very different variances (due to scale, for example). If σλ is
the standard deviation of the eigenvalues of a covariance
matrix, and λ̄ is the mean of the eigenvalues, the ICV is:

ICV =
σλ

λ̄

• Percent of variation in first principal component. If λG
1 is

the leading eigenvalue of G, we calculate this percentage
as:

PC1% =
λG

1
tr(G)

• Evolvability (Fig. 1): The mean projection of the response to
random selection gradients with unit norm onto the selec-
tion gradient. This is a measure of a population’s available
variation in the direction of a particular selection gradient,
averaged across all directions (Hansen and Houle 2008).

ē = E[< Gβ, β >]β

• Flexibility (Fig. 1): The mean cosine of the angle be-
tween random selection gradients and the corresponding re-
sponses. Flexibility measures on average how the response

Figure 1 Graphical representation of evolvability (ē), respond-
ability (r̄) and flexibility ( f̄ ) for a single selection gradient (β)
and the corresponding response (∆z) in the two dimensions
defined by traits x and y.

to selection aligns with the selection gradient (Marroig et al.
2009).

f̄ = E[cos(Gβ, β)]β

• Respondability (Fig. 1): Mean norm of the response to ran-
dom selection gradients with unit norm. It also estimates
how fast the population mean will change under directional
selection (Hansen and Houle 2008; Marroig et al. 2009).

r̄ = E[‖Gβ‖]β
• Conditional Evolvability: Measures the mean response to

selection in the direction of a given β when other directions
are under stabilizing selection (Hansen and Houle 2008).

c̄ = E[(< G−1β, β >)−1]β

• Autonomy: Measures the proportion of variance in the di-
rection of a given β that is independent from variation in
other directions. Therefore, mean Autonomy can also be cal-
culated as the mean ratio between Conditional Evolvability
(c̄) and Evolvability (ē) (Hansen and Houle 2008).

ā = E[(< G−1β, β >)−1(< Gβ, β >)−1]β

• Constraints: The mean correlation between the response
vector to random selection gradients and the matrix’s first
principal component (Marroig et al. 2009). If ΛG

1 is the first
principal component of G, constraints are measured as:

E[cos(Gβ, ΛG
1 )]β

Matrix Comparison

A G-matrix describes how the variation in a particular popula-
tions is structured, but frequently the relevant question is how
similar or dissimilar two populations are with respect to this
standing variation. Since no two populations are identical, dif-
ferent patterns of variation are the norm. Depending on the
evolutionary question at hand, different methods of comparing
variation may be required. One possible application of matrix
comparisons is when we wish to apply the Lande equation to
micro and macroevolution, since this requires some additional
assumptions, such as a relative stability of the G-matrix over
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generations. Comparing extant covariance matrices is a test of
this required stability (e.g. Marroig and Cheverud (2001)). For a
thoughtful discussion on the biological relevance of statistical
significance in matrix comparisons, see the discussion in Haber
(2015).

Matrix correlations
One approach to estimate the similarity or dissimilarity between
matrices is to calculate the correlation between these matrices.
EvolQG provides several functions for pairwise matrix correla-
tion.

RandomSkewers(): The Random Skewers (RS) method
makes use of the Lande equation (Lande 1979), ∆z = Gβ, where
∆z represents the vector of response to selection, G the G-matrix
and β the directional selection vector, or selection gradient. In
the RS method, the two matrices being compared are multi-
plied by a large number of normalized random selection vectors,
and the resulting response vectors to the same selection vector
are compared via a vector correlation (the cosine between the
two vectors). The mean value of the correlation between the
responses to the same selective pressure is used as a simple
statistic of how often two populations respond similarly (in the
same direction) to the same selective pressure:

RS(A, B) = E[cos(Aβ, Bβ)]β (1)

Where E[·]β is the expected value over random selection vec-
tors β. Significance in the random skewers comparison can be
determined using a null expectation of correlation between ran-
dom vectors. If the observed correlation between two matrices
is above the 95% percentile of the distribution of correlations
between random vectors, we consider the correlation significant
and infer that there is evidence the two populations behave sim-
ilarly under directional selection. Other implementations of the
Random Skewers method sometimes resort to other forms of cal-
culating significance, such as generating random matrices and
creating a random distribution of correlations between matrices.
This is difficult to do because generating random matrices with
the properties of biological covariance structures is hard, see the
RandomMatrix() function for a quick discussion on this. The
Random Skewers values range between -1 (the matrices have the
opposite structure) and 1 (the matrices share the same structure),
and zero means the matrices have distinct structures.

MantelCor(): Correlation matrices can be compared using a
simple Pearson correlation between the corresponding elements.
Significance of this comparison must take the structure into
account, so it is calculated by a permutation scheme, in which
a null distribution is generated by permutation of rows and
columns in one of the matrices and repeating the element-by-
element correlation. The observed correlation is significant when
it is larger than the 95% quantile of the permuted distribution.
This method can not be used on covariance matrices because the
variances might be very different, leading to large differences
in the scale of the covariances. This scale difference can lead
to a massive inflation in the correlation between matrices. The
correlation between matrices range between -1 (the matrices
have the opposite structure) and 1 (the matrices share the same
structure), and zero means the matrices have distinct structures.

KzrCor(): The Krzanowski shared space, or Krzanowski cor-
relation, measures the degree to which the first principal compo-
nents (eigenvectors) span the same subspace (Krzanowski 1979;
Aguirre et al. 2014), and is suitable for covariance or correlation
matrices. If two n × n matrices are being compared, the first

k = n
2 − 1 principal components from one matrix are compared

to the first k principal components of the other matrix using the
square of the vector correlations, and the sum of the correlations
is a measure of how congruent the spanned subspaces are. We
can write the Krzanowski correlation in terms of the matrices’
principal components (ΛA

i being the ith principal component of
matrix A):

KrzCor(A, B) =
1
k

k

∑
i=1

k

∑
j=1

cos2(ΛA
i , ΛB

j ) (2)

The Krzanowski correlation values range between 0 (two
subspaces are dissimilar) and 1 (two subspaces are identical).

PCAsimilarity(): The Krzanowski correlation compares only
the subspace shared by roughly the first half of the principal
components, but does not consider the amount of variation
each population has in these directions of the morphological
space (Yang and Shahabi 2004). In order to take the variation
into account, we can add the eigenvalue associated with each
principal component into the calculation, effectively pondering
each correlation by the variance in the associated directions. If
λA

i is the ith eigenvalue of matrix A, we have:

PCAsimilarity(A, B) =
∑n

i=1 ∑n
j=1 λA

i λB
j cos2(ΛA

i , ΛB
j )

∑n
i=1 λA

i λB
i

(3)

Note the sum spans all the principal components, not just the
first k as in the Krzanowski correlation method. This method
gives correlations that are very similar to the Random Skewers
method, but is much faster. The PCA similarity values range
between 0 (the shared subspaces have no common variation)
and 1 (the shared subspaces have identical variation).

SRD(): The Random Skewers method can be extended to
give information into which traits contribute to differences in
terms of the pattern of correlated selection due to covariation
between traits in two populations (Marroig et al. 2011). The
Selection Response Decomposition does this by treating the
terms of correlated response in the Lande equation as separate
entities. Writing out the terms in the multivariate response to
selection equation:

Aβ =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...

An1 An2 · · · Ann




β1

β2
...

βn

 = (4)

=


A11β1 + A12β2 + · · ·+ A1nβn

A21β1 + A22β2 + · · ·+ A2nβn
...

An1β1 + An2β2 + · · ·+ Annβn

 = ∆z

Separating the terms in the sums of the right hand side:

(A11β1 A12β2 · · · A1nβn)

(A21β1 A22β2 · · · A2nβn)

...
...

. . .
...

(An1β1 An2β2 · · · Annβn)

(5)
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Each of these row vectors rAβ
i = (Aijβ j)j=1...n are the compo-

nents of the response to the selection gradient β on trait i. The
term Aiiβi represents the response to direct selection on trait i,
and the terms (Aijβ j)i 6=j represent the response to indirect selec-
tion due to correlation with the other traits. Given two matrices,
A and B, we can measure how similar they are in their pattern
of correlated selection on each trait by calculating the correlation
between the vectors ri for each trait for random selection vectors
of unit norm. The mean SRD score for trait i is then:

µSRD(A, B)i = E[cor(rAβ
i , rBβ

i )]β (6)

And the standard deviation of the correlations gives the vari-
ation in SRD scores:

σSRD(A, B)i =
√

E[(cor(rAβ
i , rBβ

i )− µSRDi)2]β (7)

When the same trait in different matrices share a correlated
response pattern, µSRD is high and σSRD is low; if the corre-
lated response pattern is different, µSRD is low and σSRD is
high. See (Marroig et al. 2011) for details and examples.

Matrix distances
Another approach to estimate the similarity or dissimilarity be-
tween matrices is to calculate the distance between a pair of ma-
trices. Matrices distances are different from correlations in that
correlations are limited to [−1,+1], while distances must only be
positive. Also, smaller values of distances mean more similarity.
Two distances are in use in the current evolutionary literature,
and are implemented in the function MatrixDistance().

• Overlap distance: Ovaskainen et al. (2008) proposed a dis-
tance based on probability distributions, where two covari-
ance matrices would have a distance proportional to how
distinguishable they are. This distance is natural if we think
of covariance matrices as describing the probability distri-
bution of phenotypes or additive values in the population.
The higher the probability of a random draw coming from
the distribution defined by one of the matrices being mis-
classified as coming from the distribution defined by the
other, the lower the distance. For two probability distri-
butions f and g , the probability of mis-classifying a draw
from f as coming from g is:

q( f , g) =
∫

Rn

g(x)
f (x) + g(x)

f (x)dx (8)

where n is the dimensionality of the space in which the dis-
tributions are defined. If the distributions are indistinguish-
able, q( f , g) = 1/2, if they are completely distinguishable
q( f , g) = 0. We can then define the distance as:

d( f , g) =
√

1− 2q( f , g) (9)

Since q( f , g) is symmetrical, d( f , g) is also symmetrical, and
the square root guaranties that d( f , g) satisfies the triangle
inequality (Ovaskainen et al. 2008). Calculation is straight
forward and can be done with a simple sampling Monte
Carlo scheme, see Ovaskainen et al. (2008) for details.

• Riemann distance: Mitteroecker and Bookstein (2009) use
a Riemannian metric in the space of positive definite ma-
trices (either covariance or correlation matrices), based on
exponential mapping (Moakher 2006) to quantify transi-
tion in the ontogenetic trajectory of phenotypic covariance
matrices. This metric is based on the eigenvalues of the

product of one matrix to the inverse of the other. If λi are
the eigenvalues of A−1B (or AB−1), we have:

‖A, B‖cov = ‖B, A‖cov =

√√√√ p

∑
i=1

[log(λi)]2 (10)

This distance has the advantage of being invariable under
changes in the base used to represent the matrices. See
Mitteroecker and Bookstein (2009) for a discussion on the
biological relevance of this distance.

Phylogenetic comparisons

AncestralStates(): Ancestral state reconstruction of continuous
traits using maximum likelihood can be performed in R (for ex-
ample, using ape or phytools), but most packages don’t provide
a simple interface for multivariate data. AncestralStates() is a
wrapper for fastAnc() in phytools (Revell 2012) that works on
multivariate data, reconstructing each character independently.

PhyloW(): Given a set of covariance matrices for the terminal
taxa in a phylogeny, we can estimate the covariance matrix for
internal nodes by taking means over sister taxa, weighted by
sample size. The mean matrix at the root node is the within-
group covariance matrix in a MANCOVA with the terminal
clades as the fixed effects. PhyloW() does this by taking a tree
and a set of measurements (covariance matrices) and returns
means for internal nodes. The implementation is generic, so
this function can also be used to calculate weighted means for
any numerical measurement with an addition operation imple-
mented in R.

While using the within-group covariance matrix is a reason-
able alternative as the estimator of an ancestral covariance ma-
trix, this ignores branch lengths, and so should be used carefully
when matrix differences are correlated to phylogenetic distance.
An alternative when matrix evolution depends of branch lengths
is to reconstruct every position of the covariance matrix inde-
pendently via maximum likelihood, but this method can result
in non positive-definite estimates.

PhyloCompare(): Sometimes it is not practical to pair-wise
compare every single population in a study, since for a large
number of populations these results can be difficult to inter-
pret. In these cases, comparing populations in a phylogeneticaly
structured way can be helpful in detecting major transitions or
differences between clades. PhyloCompare() takes estimates for
all the nodes in a tree and compares sister groups by any com-
parison method, providing comparison values for every inner
node.

Hypothesis testing

Modularity and integration
Modularity is a general concept in biology, and refers to a pattern
of organization that is widespread in many biological systems.
In modular systems, we find that some components of a given
structure are more related or interact more between themselves
than with other components. These highly related groups are
termed modules. The nature of this interaction will depend on
the components being considered, but may be of any kind, like
physical contact between proteins, joint participation of enzymes
in a given biochemical pathways, or high correlation between
quantitative traits in a population. This last kind of modularity
is called variational modularity, and is characterized by high
correlations between traits belonging to the same module and
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low correlation between traits in different modules (Wagner
et al. 2007). In the context of morphological traits, variational
modularity is associated with the concept of integration (Olson
and Miller 1958), that is, the tendency of morphological systems
to exhibit correlations due to common developmental factors
and functional demands (Cheverud 1996; Hallgrímsson et al.
2009).

Both modularity and integration may have important evolu-
tionary consequences, since sets of integrated traits will tend to
respond to directional selection in an orchestrated fashion due
to genetic correlations between them; if these sets are organized
in a modular fashion, they will also respond to selection inde-
pendently of one another (Marroig et al. 2009). At the same time,
selection can alter existing patterns of integration and modu-
larity, leading to traits becoming more or less correlated (Jones
et al. 2004; Melo and Marroig 2014). The pattern of correlation
between traits in a G-matrix then carries important informa-
tion on the expected response to selection and on the history of
evolutionary change of a given population.

TestModularity(): Variational modularity can be assessed by
comparing modularity hypothesis (derived from development
and functional considerations) with the observed correlation ma-
trix. If two traits are in the same variational module, we expect
the correlation between them to be higher than between traits
belonging to different modules. We test this by creating a modu-
larity hypothesis matrix and comparing it via Mantel correlation
with the observed correlation matrix. The modularity hypothe-
sis matrix consist of binary matrix where each row and column
corresponds to a trait. If the trait in row i is in the same module
of the trait in column j, position (i, j) in the modularity hypothe-
sis matrix is set to one, if these traits are not in the same module,
position (i, j) is set to zero. Significant correlation between the
hypothetical matrix representing a modularity hypothesis and
the observed correlation matrix represents evidence of the ex-
istence of this variational module in the population. We also
measure the ratio between correlations within a module (AVG+)
and outside the module (AVG-). This ratio (AVG+/AVG-) is
called the AVG Ratio, and measures the strength of the within-
module association compared to the overall association for traits
outside the module. The higher the AVG Ratio, the bigger the
correlations within a module in relation to all other traits associ-
ations in the matrix (e.g., Porto et al. (2009)). TestModularity()
also provides the Modularity Hypothesis Index, which is the
difference between AVG+ and AVG- divided by the coefficient
of variation of eigenvalues. Although the AVG Ratio is easier to
interpret (how many times grater the within-module correlation
is compared to the between-module correlation) than the Modu-
larity Hypothesis Index, the AVG Ratio cannot be used when the
observed correlation matrix presents correlations that differ in
sign, and this is usually the case for residual matrices after size
removal (for example with RemoveSize(), but see Jungers et al.
(1995) for other alternatives). In these cases, Modularity Hypoth-
esis Index is useful and allows comparing results between raw
and residual matrices (Porto et al. 2013).

LModularity(): If no empirical or theoretical information is
available for creating modularity hypothesis, such as functional
or developmental data, we can try to infer the modular partition
of a given population by looking only at the correlation matrix
and searching for the trait partition that minimizes some indica-
tor of modularity. Borrowing from network theory, we can treat
a correlation matrix as a fully connected weighted graph, and
define a Newman-like modularity index (Newman 2006). If A is

a correlation matrix we define L modularity as:

L = ∑
i 6=j

[
Aij −

kikj

2m

]
δ(gi, gj) (11)

The terms gi and gj represent the partition of traits, that is, in
what modules the traits i and j belong to. The function δ(·, ·) is
the Kronecker delta, where:

δ(x, y) =

 1 if x = y

0 if x 6= y
(12)

This means only traits in the same module contribute to the
value of L. The term ki represent the total amount of correlation
attributed to trait i, or the sum of the correlation with trait i:

ki = ∑
j 6=i

Aij (13)

And m is the sum of all k (m = ∑i ki). The term kik j
2m plays the

role of a null expectation for the correlation between the traits i
and j. This choice for the null expectation is natural when we im-
pose that it must depend on the values of ki and kj and must be
symmetrical (Newman 2006). So, traits in the same module with
correlations higher than the null expectation will contribute to
increase the value of L, while traits in the same module with cor-
relation less than the null expectation will contribute to decrease
L. With this definition of L, we use a Markov Chain Monte Carlo
annealing method to find the partition of traits (values of gi)
that maximizes L. This partition corresponds to the modularity
hypothesis inferred from the correlation matrix, and the value of
L is a measure of modularity comparable to the AVG Ratio. The
igraph package (Csardi and Nepusz 2006) provides a number of
similar community detection algorithms that can also be used in
correlation matrices.

RemoveSize(): If the first principal component of a covari-
ance or correlation matrix corresponds to a very large portion of
its variation, and all (or most) of the entries of the first principal
component are of the same sign (a size principal component, see
Marroig and Cheverud (2010)), it is useful to look at the structure
of modularity after removing this dominant integrating factor.
This is done using the method described in Bookstein (1985).
Porto et al. (2013) show that modularity is frequently more easily
detected in matrices where the first principal component vari-
ation was removed and provide biological interpretations for
these results.

Drift
Selection is frequently invoked to explain morphological diver-
sification, but the null hypothesis of drift being sufficient to
explain current observed patterns must always be entertained.
We can test the plausibility of drift for explaining multivariate
diversification by using the regression method described in Ack-
ermann and Cheverud (2002), or the correlation of principal
component scores (Marroig and Cheverud 2004). Since both
these tests use drift as a null hypothesis, failure to reject the null
hypothesis is not evidence that selection was not involved in
the observed pattern of diversification, only that the observed
pattern is compatible with drift.

DriftTest(): Under drift, we expect that the current between
group variance for many populations will be proportional to the
ancestral population’s covariance structure, which is approxi-
mated by the pooled within-group covariance matrix. Condi-
tions for the validity of these assumptions are reviewed in Prôa
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et al. (2013). Under these conditions, if B is the between group
covariance matrix, and W is the within group covariance matrix,
t is the time in number of generations and Ne is the effective
population size, we have:

B ∝ (t/Ne)W (14)

If we express all these matrices in terms of the eigenvectors
of W, so that W is diagonal, we can write B as the variance of
the scores of the means on these eigenvectors. The relationship
between B and W can be expressed as a log regression, where Bi
is the variance between groups in the projected means and λW

i
are the eigenvalues of W:

log(Bi) = log(t/Ne) + βlog(λW
i ) (15)

where β is the regression coefficient. Under drift we expect
β to be one. If β is significantly different from one, we have
evidence that drift is not sufficient to explain currently observed
diversification.

MultivDriftTest(): This drift test verifies the plausibility of
drift in a multivariate context when only two populations are
available, one ancestral (or reference) and one derived. Let z0
represent a vector of means from m traits in an ancestral popula-
tion. After t generations, the expected traits mean for n popula-
tions under drift would correspond to z0 with variance given by
B = (t/Ne)W, where B represents the expected between group
covariance matrix, W is the genetic covariance matrix from the
ancestral (or reference) population, and Ne is the effective popu-
lation size (Lande 1976, 1979; Hohenlohe and Arnold 2008). So,
given the ancestral population mean and G-matrix, we can use
this model to estimate the B-matrix expected under drift. We
can then use this B-matrix as the Σ parameter in a multivariate
normal distribution and sample n populations from this distri-
bution. Using this sample of random populations, we can assess
the amount of divergence expected by drift, estimated as the
norm of the difference vectors between ancestral (or reference)
and simulated population means. Then, we can compare the
observed amount of divergence between the ancestral and de-
rived populations, calculated as the norm of the difference vector
between them, taking into account the standard error of traits
means. An observed divergence higher than the expectations
under drift indicates that genetic drift is not sufficient to explain
currently observed divergence, suggesting a selective scenario.

PCScoreCorrelation(): This test of drift relies on the corre-
lation between principal component scores of different popu-
lations. Under drift, we expect the mean scores of different
populations in the principal components of the within-group
covariance matrix to be uncorrelated (Marroig and Cheverud
2004). Significant correlations between the scores of the means
on any two principal components is an indication of correlated
directional selection (Felsenstein 1988).

Random Matrices
RandomMatrix(): Generating realistic random covariance ma-
trices for null hypothesis testing is a challenging task, since
random matrices must adequately sample the space of biolog-
ically plausible evolutionary parameters, like integration and
flexibility. Most common covariance and correlation matrix
sampling schemes fail at this, producing matrices with unrealis-
tically low levels of integration, unless the level of integration
is supplied a priori (as in Haber (2011)). The method described
in Numpacharoen and Atsawarungruangkit (2012) provides
correlation matrices with a reasonable range of evolutionary

characteristics. However, the adequacy of the generated matri-
ces in hypothesis testing has not been well established, and we
recommend these random matrices be used only for informal
tests requiring an arbitrary covariance or correlation matrix.

Software availability

The most recent version of the EvolQG package can be installed
from github using the package devtools:

> l i b r a r y ( devtools )
> i n s t a l l _ github ( " lem−usp / evolqg " )

A less up-to-date version is also available from CRAN:

> i n s t a l l . packages ( " evolqg " )

Summary

We have described a suite of functions dedicated to analyzing
multivariate data sets within an evolutionary quantitative ge-
netics framework. These functions focus on the central role
that covariance and correlation matrices play in this framework;
therefore, we provide functions that perform both descriptive
statistics and hypothesis testing related to such matrices within
an evolutionary context.

We have intentionally neglected to include techniques like
phylogenetic regression or more extensive linear model func-
tionality. We also lack Bayesian implementations that would
be possible for some functions (i.e. Aguirre et al. (2013)). Our
reasons for this are twofold: the difficulty in transposing these
methods efficiently to multiple traits, especially with respect to
Bayesian implementations of existing functions, and the many
different robust packages for performing some of these analyses,
such as phytools, phylolm, pgls, nlme, MCMCglmm and others.

Some of the material implemented here is available in other
sources or through custom implementations. We have attempted
to create a single consistent source for these techniques. This
is by no means an exhaustive effort, and we hope to expand it
given demand from the community and further developments
in the field. We hope to contribute to standardization and wide
adoption of these tools, and, since we opted for an open source
implementation under R, this also allows the involvement of the
R community in using, debugging and complementing these
tools, in an effort to contribute to an open scientific environment
in which, for example, truly reproducible results are the norm
rather than the exception.
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