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Abstract.—. Phylogenetic trees are central to many areas of biology, ranging from
population genetics and epidemiology to microbiology, ecology, and macroevolution. The
ability to summarize properties of trees, compare different trees, and identify distinct
modes of division within trees is essential to all these research areas. But despite
wide-ranging applications, there currently exists no common, comprehensive framework for
such analyses. Here we present a graph-theoretical approach that provides such a
framework. We show how to construct the spectral density profiles of phylogenetic trees
from their Laplacian graphs. Using ultrametric simulated trees as well as non-ultrametric
empirical trees, we demonstrate that the spectral density successfully identifies various
properties of the trees and clusters them into meaningful groups. Finally, we illustrate how
the eigengap can identify modes of division within a given tree. As phylogenetic data
continue to accumulate and to be integrated into various areas of the life sciences, we
expect that this spectral graph-theoretical framework to phylogenetics will have powerful
and long-lasting applications.
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Phylogenies are essential to many areas of the life sciences. In population genetics

and phylogeography, they are used to infer past demography and historical migration

events (1). In epidemiology, they are key to understanding how best to control the spread

of infectious disease (2). In microbiology, they provide one of the most natural and

powerful measures of diversity (3). Phylogenies are also increasingly effective in ecology,

where they can inform our understanding of community assembly (4), interspecific

interactions (5), and species responses to environmental change (6), as well as guide

conservation efforts (7; 8). Finally, phylogenies are essential to comparative phylogenetics

(9) and comparative genomics (10) and therefore to our understanding of diversification

(11), trait evolution (12), and the genetic underpinnings of both (e.g., (13; 14)).

Despite the importance of phylogenetics in the life sciences, the current techniques

aimed at extracting information from phylogenies are limited. One of these techniques is

built on summary statistics. In microbiology, ecology, and conservation biology, summary

statistics based on measures of phylogenetic diversity, such as total phylogenetic branch

length, (7; 15) are often used. In diversification analyses, traditional summary statistics

quantify either the stem-to-tip (e.g. γ (16) and Lineage-Through-Time plots (17)) or

lineage-to-lineage (e.g. β and Colless’ index (18)) distribution of branching events across

trees. These summary statistics disregard much of the data – and therefore the biological

information – encoded in trees: they are simply too crude to precisely capture the

complexity of events recorded in empirical trees. Recent computational and conceptual

advances based on maximum-likelihood techniques have been able to take better advantage

of the full sweep of information provided by empirical trees. Accordingly, they have become

the yardstick for determining how clades and traits behave over evolutionary time

(9; 11; 19), the selection pressures acting on different genes (20), and changes in rates of

infection as a function of time (21). However, all such model-based approaches rely on the

a priori formulation of a model, which can be problematic, because we cannot exhaustively
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model the many dynamics potentially generating all empirical trees. Finally, both the

summary-statistics and model-based approaches mentioned above are limited to the

analysis of ultrametric trees, therefore limiting their domain of applicability. In this paper,

we introduce an approach to phylogenetics that does not require any a priori assumption

about how the phylogeny behaves and can be applied to ultrametric as well as

non-ultrametric trees.

We develop an approach based on graph theory that allows a systematic

characterization and comparison of the entirety of information encoded in phylogenetic

trees. In various configurations, graph theory has been successful in understanding the

organizing principles behind biological phenomena at every scale, including the regulation

of gene-expression (22), protein-protein interactions (23), metabolic networks (24) and

ecological food webs (25). Graph theory and associated spectral analyses have also been

useful in phylogenetics, particularly in developing approaches for tree inference (26) or for

comparing the phylogenetic composition of microbial samples (27). Metrics like the

Robinson-Foulds distance (28) and nearest neighbour interchange (29), too, for example,

are used to compare different trees representing the same set of organisms, by counting the

number of steps needed to transform one into the other (or both into a third); while others

take a geometric approach to define polytopic contours around a reconstructed tree in

order to define ‘confidence regions’ in the tree (30). Typically, such distance metrics have

been used to identify outliers among or discordance between gene trees, in order to derive a

consensus tree or define the ‘space’ that a set of gene trees occupy (31). They are not,

however, built (nor adapted) to function as comparative metrics between species trees

representing different sets of organisms. Hence, despite the utility of characterizing and

comparing phylogenies sampled from different species trees for understanding general

principles in the evolution of biological systems, there exists no graph-theoretical approach

designed to do so.
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The approach we develop here also provides a way to identify distinct modes of

division within a tree, which may, for example, reflect distinct modes and/or rates of

diversification. Previous attempts in this direction have focused on identifying shifts in

diversification rates under a presumed model of diversification. These can, among other

things, examine distributions in species richness across the tips of a tree or use other types

of imbalance measures (32; 33). More recently, methods such as MEDUSA (34) and

BAMM (35) have been developed to detect the location(s) of rate shifts on phylogenies in a

likelihood or Bayesian framework, while non-parametric comparisons, based on

non-parametric comparisons of branch-length distributions between subclades, identify

shifts in rates as well as modes of diversification (36). This latter approach, however, has

been implemented only for pairwise comparisons and is therefore not suited for exploring

multiple possible modes of division in trees. Furthermore, all above mentioned approaches

are limited to the analysis of ultrametric trees.

In the current work, we describe how to construct the spectral density of

phylogenetic trees and demonstrate how to interpret this density in terms of specific

properties of the trees. We show how to compute the distance between trees based on their

spectral densities and how to identify distinct modes of division within individual trees.

We use simulations to demonstrate that spectral densities cluster phylogenetic trees into

meaningful classes and can identify meaningful modes of division within trees. We

illustrate the unique utility of this approach for testing hypotheses on non-ultrametric trees

by analyzing different Influenza strains as well as an archaeal tree. Finally, we discuss

potential extensions of the approach with implications for the study of community ecology,

macroevolution, microbiology, and epidemiology.
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Materials and Methods

Implementation

Throughout, we use the term phylogenetic tree to mean unranked phylogenetic tree shape.

Below, we describe how to construct the spectral density profile of a phylogenetic tree, how

to compute the spectral distance between trees, and how to cluster trees based on this

distance. We also describe how to identify modalities within a given phylogenetic tree and

to compute associated support values. We implemented these functionalities in the R

package RPANDA freely available on CRAN (37).

Construction of the Spectral Density

Our goal is to provide a common, comprehensive framework for characterising phylogenetic

trees, comparing them, and identifying particular branching patterns within trees. We

consider a phylogenetic tree as a particular kind of graph, G = (N,E,w), comprised of

nodes (N) representing extant and ancestral species, edges (E) delineating the relationships

between nodes, and a weight function (w) defining the phylogenetic distances between

nodes. We consider fully resolved (i.e., bifurcating) trees throughout for illustrative

purposes, but our framework is equally applicable to unresolved trees (i.e., displaying

polytomies). We consider trees with explicit branch lengths, but trees with knowledge on

only topology could be analyzed using a weight function of 1 for each edge. The framework

is equally applicable to ultrametric and non-ultrametric trees, as illustrated below in our

empirical applications.

We begin by constructing the modified graph Laplacian (MGL) of a phylogenetic

tree, defined as the difference between its degree matrix (the diagonal matrix where
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diagonal element i is the sum of the branch lengths from node i to all the other nodes in

the phylogeny) and its distance matrix (where element (i, j) is the branch length between

nodes i and j) (Fig. 1, Supplemental Fig. 1). Each row and column therefore sums to zero.

For a tree with n tips, there are N = 2n− 1 nodes, and the MGL is a N x N matrix. The

graph Laplacian is said to be ‘modified’ insofar as it takes a distance matrix, rather than

an adjacency matrix, as its subtrahend. We also consider a normalized version of the MGL

(nMGL), defined as the MGL divided by its degree matrix. The nMGL emphasizes

phylogeny shape at the expense of size, which can be useful for comparing phylogenies on

considerably different time-scales.

We then construct the spectral density by convolving the spectrum of eigenvalues,

λ, of the MGL (or nMGL) with a smoothing function. Here, we use a Gaussian kernel,

f(x) =
N∑
i=1

1√
2πσ2

exp (−|x− λi|
2

2σ2
) (1)

where N is the number of λ and σ = 0.1. The choice of kernel does not considerably

change the distribution (38) and the value of σ is selected for the degree of desired

resolution (i.e., smaller values will highlight finer details at the expense of global ones).

The spectral density of a tree is then plotted as a function of ln(λ) as f ∗(x) = f(x)∫
f(y)dy

.

Throughout, spectral densities constructed from the MGL and nMGL are referred to as

standard and normalized spectral densities, respectively.

The spectral density can in principle be constructed for trees of any size. However,

spectral density profiles of trees with fewer than ∼20 tips can be erratic and difficult to

compare to larger ones. We therefore discard any trees with fewer than 20 tips.

Interpreting Spectral Density Profiles

The global distribution of λ from a MGL is indicative of the total structure of the tree.
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Each eigenvector vi describes a branching event in the tree, and the eigenvalue λi

associated with vi describes the inverse diffusion time of the branching event between two

nodes (39). Because the diffusion time between two nodes operates principally as a

function of the number of branching events between them (40), large λ represent short

diffusion times characteristic of branching events in speciation-poor regions of the tree

(sparse nodes separated by long branches), and small λ represent long diffusion times

characteristic of speciation-rich regions (dense nodes separated by short branches).

In order to confirm algebraic interpretations of various characteristics of spectral

density profiles, we analyzed different spectral properties directly on simulated trees. We

simulated birth-death trees with constant speciation (0.2) and extinction (0.05) rates, with

20 time units each, using the R package TESS (41). Trees were pruned of extinct lineages

and discarded if fewer than 20 lineages survived to the present. A total of 530 trees

remained. We constructed the MGL and nMGL and corresponding spectral densities of

each tree. The corresponding skewness and kurtosis were computed as µ4
µ22

and µ3

µ
3/2
2

,

respectively, where µi is the ordinary ith moment of the distribution. Negative and positive

skewness reflect a relative abundance of large and small λ, respectively. Lower and higher

kurtosis reflect an even and uneven distribution of λ values, respectively. We compared the

principal λ, skewness, and kurtosis of spectral density profiles of each simulated tree to 4

classical measures on these trees: species richness, phylogenetic diversity, the γ statistic

(16), and Colless’ index (32). Phylogenetic diversity was measured as the sum of

phylogenetic branch length (7) using the R package picante (42). γ is a popular summary

statistic reflecting the stem-to-tip structure of a tree: negative γ values characterize

stemmy trees while positive values characterize tippy trees (16). Colless’ index is a measure

of the lineage-to-lineage structure of a tree: smaller Colless’ indices characterize balanced

trees, while larger indices characterize imbalanced trees (32). The γ statistic and Colless’

index were calculated using the R packages ape and apTreeshape, respectively.
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Measuring the Distance Between Spectral Densities

To measure the distance between two phylogenies Λ1 and Λ2, we begin by computing their

spectral densities f ∗
1 and f ∗

2 , and then use a probability distribution distance metric, the

Jensen-Shannon distance, defined as:

D(Λ1,Λ2) =

√
1

2
KL(f ∗

1 , f
∗) +

1

2
KL(f ∗

2 , f
∗) (2)

where D(Λ1,Λ2) = D(Λ2,Λ1), D(Λ1,Λ2) = 0 iff Λ1 = Λ2, f
∗ = 1

2
(f ∗

1 + f ∗
2 ), and KL is the

Kullback-Leibler divergence measure for the probability distribution, where

KL(f ∗
2 , f

∗
1 ) =

∫
f ∗
1 (x) ln

f ∗
1 (x)

f ∗
2 (x)

. (3)

Clustering Phylogenies from their Spectral Density Profiles

To cluster a given a set of phylogenies, we begin by constructing their respective spectral

densities. Next, we compute the Jensen-Shannon distance for each pair. Finally, we cluster

the results with energy-based hierarchical and k-medoids clustering, defining the optimal

number of clusters by both an expectation-maximization based on the Bayesian

Information Criterion (BIC) and medoid partitioning. Energy-based hierarchical

clustering is a particularly powerful tool for maximizing among-cluster means and

minimizing within-cluster means (43) and can show partitioning at different levels of

resolution. K-medoids clustering, on the other hand, makes no soft assignments, so each

spectral density profile is assigned to a single cluster, and each assignment is given a

support estimate based on silhouette width (44).

In order to check the performance of clustering phylogenies based on their spectral

density profiles, we implemented the method on a set of trees simulated under different
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diversification processes using the R package TESS. We simulated trees according to six

models of diversification, simulating 100 trees under each model, for a total of 600 trees,

during 50 time units each. All models had a constant background extinction rate held at µ

= 0.05. The models had either a (i) constant speciation rate, (ii) decreasing speciation

rate, (iii) decreasing speciation rate dipping below µ, (iv) increasing speciation rate, or

constant speciation rate with an (v) ancient or (vi) recent mass extinction. Speciation rates

as a function of time corresponding to each of the four first models and the timing of

mass-extinction events corresponding to the last two models are presented in Supplemental

Figure 2. Trees were pruned of extinct lineages and any tree with fewer than 20 tips

surviving to the present was discarded. We then tested the efficacy of clustering in three

ways: using the spectral density profile, using summary statistics of the spectral density

profile (principal λ, skewness, and kurtosis), and using traditional phylogenetic summary

statistics (species richness, phylogenetic diversity, Colless’ index, γ, mean branch length,

and branch length standard deviation). Spectral density profiles were clustered as

described above; summary statistics were normalized and then clustered using hierarchical

and k-medoids clustering on principal components.

Assessing the Sensitivity of Spectral Density Profiles to Undersampling

To assess the effect of undersampling on spectral density profiles, we picked three trees

from the simulations detailed above (a constant speciation rate tree, an increasing

speciation rate tree, and an ancient mass-extinction tree) and jackknifed (i.e., sampled

without replacement) each of them at 90%, 80%, 70%, 60%, 50%, and 40%. One hundred

replicate trees were used for each sampling value. We then compared the spectral densities

of the complete and undersampled trees, using the Jensen-Shannon distance and spectral

properties.
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Identifying Modalities Within a Phylogenetic Tree

To identify modes of division (or modalities) within a phylogenetic tree, we first compute

the λ from the MGL of the tree and rank them in descending order of magnitude. In graph

theory, the ranked λ reflect the connectivity of the graph. If there are i ideal clusters in the

graph (i.e., high among-cluster and low within-cluster variation), then each of the i largest

λ represents a separation between clustered points in the graph. Furthermore, there will be

a uniquely large gap between λi and λi+1, where λ>i << λ≤i (45). For this reason, the

eigengap, identified as the largest difference between two consecutive λ, is an indicator of

the number of clusters in the graph (40). Transposing this heuristic to a phylogenetic tree,

if the eigengap is between λi and λi+1, then there are i clusters, or modes of division, in the

tree, and these modalities can be identified using k-medoids clustering on the graph by

setting k = i (46). These clusters need not represent monophyletic regions of the tree,

because the λ≤i describe branching events distributed anywhere in the tree. A cluster

could, in principle, be comprised of non-adjacent branches sampled from across the tree.

Once an indication of the number of modalities, i, in a tree of interest has been

obtained from the eigengap, it is possible to get a confidence measure for i. This can be

done by comparing BIC values for detecting i modalities in the distance matrix of the tree

of interest (BICtest) and in randomly bifurcating trees parameterized on that tree

(BICrandom) (47). Here, BIC = D + log(N) ∗m ∗ q, where D is the total within-cluster

sum of squares based on posterior probability estimates from k-medoids clustering of the

nodes of the matrix, N is the total number of nodes in the matrix, and m and q are the

dimensions of the clusters of nodes in the x,y-plane, respectively. The random trees can be

ultrametric or not. In the former case, tips are randomly coalesced with the same branch

length distribution and number of tips as the tree of interest; similarly in the latter case,

except the branches are randomly split from the stem. The number of modalities is then

considered significant if BICrandom/BICtest ≥ 4 for at least 95% of the random trees. This
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provides a conservative test of the significance of the modalities. Random trees were

constructed using the R package ape.

To test this approach, we investigated the ability of the eigengap heuristic to recover

simulated shifts in ultrametric trees. We started by simulating a 100-tip pure-birth tree

with speciation rate 0.15. A given shift on that tree was simulated by randomly choosing a

node located in the middle of the tree (i.e., excluding the first and last quartile of tree

length), pruning all branches descending from that node, and grafting onto that node a

new tree with proper length simulated under either a pure-birth model with a different

speciation rate (ranging from 0.05–0.5) or a different diversification model (randomly

chosen among the set of models represented in Supplemental Fig. 2). In a single tree, we

simulated up to 10 shifts iteratively, all shifts being comprised of either shifts in speciation

rate or diversification pattern (never both). Trees were pruned and grafted using our own

code with functions from the R package phytools (48). In total, 200 trees with 0–10 shifts

in speciation rate and 200 trees with 0–10 shifts in diversification patterns were simulated.

The recovery reliability of the eigengap heuristic was compared to MEDUSA (34) and

BAMM (35), the most commonly used methods for identifying rate shifts. We ran

MEDUSA using the medusa function from the R package geiger (v2.0.3) with the initial

speciation rate set to 0.15 and extinction rate constrained to 0. We ran BAMM after

setting priors for each simulated tree with the R package BAMMtools (35). We did not

compare our results to the non-parametric rate comparison (PRC) of (36), because the

approach is implemented only for pairwise comparisons and becomes prohibitively

computationally expensive when iterated.

Empirical applications

To illustrate our approach, we used two empirical datasets: the first one,

representing Influenza A strains spanning two animal hosts and 25 countries, was used to
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illustrate the usefulness of the clustering on the spectral density profile; the second one,

composed of 350 16s rRNA archaeal sequences collected from the sediment of Lake Dagow

(49), was used to illustrate the identification of modalities within trees. We purposely

chose applications on non-ultrametric trees, as analysis of these are not typically available

to current techniques.

To put together the viral dataset, we collected trees for a range of Influenza A virus

strains from the NCBI Flu Virus Resource

(http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html). Protein-coding sequences for

haemagglutinin (HA), matrix protein 1 (M1), neuraminidase (NA), nucleoprotein (NP),

non-structural protein 1 (NS1), polymerase acid protein (PA), and polymerase basic

protein 2 (PB2) were obtained for strains from avian and human hosts originating from 25

different countries. Neighbor-joining trees were constructed for each protein separately

from multiple sequence alignments in MUSCLE (50). Identical sequences were collapsed.

Trees with fewer than 25 or more than 1000 tips were not considered (in a few instances, to

meet this criterion, a particular subtype of the strain was selected). In total, 324 trees were

constructed. We clustered the standard and normalized spectral density profiles of these

trees and compared them with spectral density summary statistics, using peak height as a

measure of evenness. (Peak height, defined as the largest y-axis value of the spectral

density profile, is a measure of evenness that we found to be better behaved than kurtosis

on non-ultrametric trees.) We tested the effect of country of origin on the clustering by

randomly assigning strains to clusters and comparing the actual versus randomized

distribution of strains for 500 randomizations.

The archaeal phylogenetic tree was simply taken from (49). We removed the four

out-groups from the original tree, applied the eigengap heuristic described above to the

resulting tree, and characterized each of the identified clusters with their respective

spectral density profiles.
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Results

Constructing the Spectral Density of a Phylogenetic Tree

We construct the MGL of a phylogenetic tree as described above (see Construction of the

Spectral Density ). There is a wealth of knowledge on the graph Laplacian that we may

draw from the physical sciences (51). In particular, the graph Laplacian is a positive

semidefinite matrix, meaning that it has N non-negative eigenvalues,

λ1 ≥ λ2 ≥ ... ≥ λN−1 ≥ λN ≥ 0. Each of these λ is associated with a given node and

reflects the connectivity of the tree – in terms of both density of nodes and weights – in the

vicinity of that node (39). Large λ are characteristic of sparse neighborhoods (few nodes)

typical of deep branching events, while small λ are characteristic of dense neighborhoods

(many nodes) typical of shallow branching events (52).

The entire organisation of the tree is best represented as a density profile of the

spectrum of λ (Fig. 1, Supplemental Figure 1), the so-called spectral density profile (53),

obtained by convoluting λ with a smoothing function (see Construction of the spectral

density). Importantly, there are heuristic arguments and evidence (although not a formal

proof) that it is possible to reconstruct a graph from its spectral density (54), meaning

that the spectral density does not lose any of the information contained in the shape of a

phylogenetic tree; the only ‘lost‘ information is the labeling of the tree. In the physical

sciences, spectral density analyses have been successful in differentiating graphs from

different domains (55), uncovering network modularity (56), and characterizing

synchronization dynamics (57). We therefore hypothesized that the spectral densities of

phylogenetic trees would provide powerful tools for characterizing and comparing

phylogenies, as well as identifying modules within them.
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Interpreting the Spectral Density of a Phylogenetic Tree

Different aspects of the shape of spectral density profiles may be interpreted in terms of the

underlying shape of the phylogeny. In particular, the shift (right bound), asymmetry

(skewness), peakedness (kurtosis or peak height), and number of peaks (modalities) of the

spectral density profile are illustrative of specific interpretable patterns in the phylogenetic

tree. Figure 2 illustrates intuitive interpretations of these four aspects of spectral density

profiles. Supplemental Figure 3 demonstrates the validity of these interpretations using

trees simulated under a birth-death model with constant speciation and extinction rates

(see Interpreting spectral density profiles). It also demonstrates that spectral density profile

summary statistics and traditional phylogenetic summary statistics are not perfectly

correlated, meaning that spectral density profile summary statistics potentially capture

different aspects of tree shape.

The shift corresponds to the principal (or largest) λ, which is related to the largest

phylogenetic distance between tip species and may be an indicator of species richness and

phylogenetic diversity (Fig. 2A; Supplemental Fig. 3A,B). For the normalized spectral

density profile, the principal λ is not significantly correlated to species richness and

negatively correlated with phylogenetic diversity (Supplemental Fig. 3A,B), demonstrating

that the nMGL effectively removes the effect of tree size.

The asymmetry of the density profile, which can be quantified by its skewness (a

measure based on the 3rd and 2nd moments), is primarily indicative of the stem-to-tip

structure of the tree (Fig. 2B; Supplemental Fig. 3C). Intuitively, a positive skewness

indicates a relative abundance of small λ corresponding to shallow branching events, and

therefore characterizes tippy phylogenies, while a negative skewness indicates a relative

abundance of large λ corresponding to deep branching events, and therefore characterizes

stemmy phylogenies.

The peakedness of a spectral density profile, which can be quantified by its kurtosis
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(a measure based on the 4th and 2nd moments), is primarily indicative of the

lineage-to-lineage structure of the tree (Fig. 2C; Supplemental Fig. 3D). Intuitively, a flat

peak indicates that there is an even distribution of λ values, meaning that branch lengths

are homogeneously distributed in the tree and so the tree is balanced – while a steep peak,

on the other hand, means the tree is imbalanced. Another way to measure this peakedness

is by directly measuring peak height. We found that peak height is better behaved than

kurtosis on non-ultrametric trees.

The number of peaks in the density plot is indicative of the different number of

modalities within the tree (Fig. 2D). For example, if clade A is comprised of tippy

branching events and its sister clade B is comprised of stemmy branching events, then the

spectral density profile of the tree encompassing clades A and B has two peaks, one at

small λ representing clade A and one at large λ representing clade B.

Comparing and Clustering Phylogenies Using Spectral Density Profiles

Many analyses involving phylogenetics require measuring the distance between

phylogenetic trees (an inverse measure of their similarity) and clustering them according to

their similarity. Once phylogenies have been transformed into their spectral density

profiles, the distance between them can easily be computed using any probability

distribution distance metric, and clustered using any traditional clustering algorithm. We

used the popular Jensen-Shannon distance metric (58) as our distance metric (see

Measuring the distance between spectral densities). This metric quantifies the square-root

of the total divergence to the average probability distribution; it has the advantage of being

symmetric and finite. We used this metric to cluster phylogenies with energy-based divisive

clustering, which is a bottom-up hierarchical approach that provides resolution within

clusters, and k-medoids clustering, which does not, although it is possible to get support

values for cluster assignment using the silhouette width of each data point. Both clustering
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methods deal well with high-dimensional data (see Clustering phylogenies from their

spectral density profiles).

In order to investigate the power to identify different types of phylogenetic trees

from their spectral density profiles, and to compare this performance to that obtained from

traditional summary statistics, we simulated trees under six different models of

diversification and checked whether their spectral density profiles clustered into distinct

classes of trees. The six models mimicked constant speciation and extinction rates,

decreasing or increasing speciation rates (with speciation remaining above or decreasing

below extinction rates), and ancient or recent mass-extinction events (Supplemental Fig. 2)

(see Clustering phylogenies from their spectral density profiles). We found that the spectral

density profiles were optimally clustered into six groups with hierarchical clustering

(bootstrap probability > 0.95) and k-medoids clustering (P < 0.05), suggesting that

spectral density profiles provide an efficient way to distinguish and cluster different types of

phylogenies. All models clustered separately with the least and most within-cluster

variation in the constant speciation-rate model and the ancient mass-extinction model,

respectively (Fig. 3A). A follow-up principal component analysis on summary statistics for

the spectral density profile showed comparable influence from principal λ (38% of total

explained variance), skewness (34%), and kurtosis (28%). Specifically, each acts on a

different dimension, with skewness acting orthogonally to principal λ (Fig. 3A). Inspection

of spectral density profiles representative of each cluster reveals local and global differences

between clusters in their distributions of λ (Fig. 3B). By comparison, clustering on

traditional phylogenetic summary statistics retrieved only three modes of diversification

(Supplemental Fig. 4A), which explained 79% of the variance among trees, compared to

93% for spectral density summary statistics. The principal components derived from

traditional phylogenetic summary statistics were unable to distinguish between the two

decreasing speciation-rate models or between the constant speciation-rate and recent and
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ancient mass-extinction models (Supplemental Fig. 4B).

In order to further test whether phylogeny size was primarily responsible for

clustering together the different models, we clustered the same trees using spectral density

profiles computed from their nMGLs. We found that these spectral density profiles also

clustered by model (Supplemental Fig. 5A), suggesting that trees under a magnitude

size-difference are not clustered on size alone. K-medoids clustering on principal

components derived from summary statistics calculated on the nMGL, however, retrieved

only four clusters, showing an inability to distinguish between the two decreasing

speciation-rate models or the constant speciation-rate and recent mass-extinction models

(Supplemental Fig. 5B).

Testing the effect of undersampling on the spectral density profile

Because trees are often incomplete, undersampling is a common issue to consider in

phylogenetic analyses. We tested the extent to which (and how) undersampling modifies

the shape of spectral density profiles by jackknifing simulated trees (see Assessing the

sensitivity of spectral density profiles to undersampling). As expected, the spectral density

of a tree is sensitive to undersampling and begins to become visually misrepresentative of

the complete tree at ∼80% complete, although many features of the plot may persist until

∼40% (Supplemental Fig. 6A-C). The spectral distance between original and jackknifed

trees increased linearly with the level of undersampling. As the trees became less complete,

the skewness decreased in constant speciation-rate (1.11 → 0.52±0.10), increasing

speciation-rate (0.84 → 0.46±0.09), and recent mass-extinction (1.87 → 1.31±0.14) trees;

as did kurtosis, for constant speciation-rate (-0.04→ -1.28±0.12) and recent mass-extinction

(2.03 → 0.94±0.14), but not increasing speciation-rate (-0.70 → -0.78±0.21) trees, which

showed a sharp increase in kurtosis in some samples at ≤ 50% complete (Supplemental Fig.
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8D,E). So, according to their spectral density profiles, undersampled trees are increasingly

stemmy, as expected, and, in general, increasingly balanced.

Identifying Modalities Within Phylogenies

The visual identification of modalities within a phylogeny in the form of peaks in its

spectral density profile is only qualitative and not always obvious. A more quantitative

approach for identifying such modalities consists in identifying the eigengap, defined as the

position of the largest difference between successive λ (see Identifying modalities within a

phylogenetic tree). If the eigengap is between λi and λi+1, then we expect i modes of

division within the tree. The clusters need not be monophyletic (i.e., there can be clusters

within clusters). In some cases, it might be useful to assess the significance of these clusters

in comparison to clusters arising by pure stochasticity. This may be done by comparing

BIC values for finding i clusters in the distance matrix of the tree of interest and

randomly bifurcating trees (see Identifying modalities within a phylogenetic tree).

To assess the ability of the eigengap to recover shifts in diversification, we generated

trees with simulated shifts in modes and rates of diversification. We then applied the

eigengap heuristic (which includes the post-hoc BIC analysis), MEDUSA, and BAMM to

those trees and compared the number of recovered versus simulated shifts. The eigengap

heuristic did not artificially detect shifts when there were none (Supplemental Fig. 7A).

The eigengap heuristic and MEDUSA performed comparably well on trees with shifts in

only speciation rate (Supplemental Fig. 7A), with both methods routinely underestimating

the number of shifts, something previously reported for MEDUSA (35). For trees with

shifts in diversification patterns, however, the eigengap heuristic consistently outperformed

MEDUSA (Supplemental Fig. 7B). MEDUSA commonly underestimated the number of

shifts, while the eigengap heuristic was on average within ±1 the number of shifts. Using
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the priors estimated from BAMMtools, BAMM was not sensitive enough to detect more

than three shifts in any tree.

Empirical Applications

Traditional phylogenetic approaches are typically incapable of dealing with

non-ultrametric trees. The ability of our approach to deal with such trees opens up the

possibility to analyze the diversification of groups that are rarely studied in

macroevolutionary terms. For example, little is known about the diversification patterns of

viruses, despite the significance of their evolution for epidemiology (but see (21; 59)). We

compared the spectral density profiles of 324 Influenza A trees constructed independently

for six proteins, 25 countries, and two animal hosts (see Empirical Applications). Results

from profiles constructed using the MGL and nMGL showed consistent differences (and

similarities) in diversification dynamics across phylogenies derived from different protein

segments, originating in different countries, and hosted in different animals. While

qualitatively consistent, results from the nMGL were quantitatively more emphatic than

those from the MGL, suggesting that phylogenetic shape (not size) was the main effector of

differences in diversification. Both showed considerably different profiles for HA and NA

compared to the other proteins. Specifically, diversification patterns in HA and NA, in

both avian and human hosts, were more expansionary, tippy, and imbalanced than those in

the five other protein segments (Supplemental Fig. 8). These differences are demonstrated

by a pairwise comparison between HA and PB2 (Fig. 4A-C). We furthermore found, using

k-medoids clustering on profiles computed from the MGL and nMGL, six and four (P <

0.05) clusters, respectively, across countries and hosts. Strains from the same country of

origin were more likely to fall into the same cluster than expected by chance for avian (D ≥

0.584, P < 0.001) and human (D ≥ 0.399, P < 0.001) hosts, although this effect decreased

when analyzed across hosts (D ≤ 0.185, P ≥ 0.044) (Supplemental Fig. 9). Finally, we
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found significant differences between hosts for individual strains and across all strains (Fig.

4D-F, Supplemental Fig. 8). We have demonstrated, therefore, how our approach based on

the graph Laplacian makes it possible to test macroevolutionary hypotheses on life forms

heretofore largely unavailable to diversification analyses; and additionally exemplified how

the MGL and nMGL may be used to corroborate different aspects of those tests.

To further illustrate the empirical applicability of our approach, we examined the

spectral density of an archaeal phylogenetic tree of microbial species (see Empirical

Applications). Using the described framework for finding modes of division within trees, we

identified the eigengap to be between λ6 and λ7, indicative of six modalities (Fig. 5), which

was supported by post-hoc analysis (BICrandom/BICarchaeal ≥ 7.39). Spectral density

profiles for the six clusters of nodes (corresponding to the six modalities), as well as where

they appear on the archaeal tree, are shown in Figure 5B,C. These results suggest that the

archaeal community from Lake Dagow is made of six groups of sequences with distinctive

evolutionary histories. The spectral density profile is therefore useful, not only in finding

clusters of nodes within trees, but also for assessing what makes these clusters distinct.
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Discussion

We have introduced an approach based on the spectrum of the graph Laplacian for

reducing phylogenetic trees to their constituent properties. We have shown how to

compute the spectral density profiles of phylogenies, and how to use these profiles to

characterize, compare, and cluster trees, as well as to find distinct modes of division within

them. This provides a comprehensive framework for 1) summarizing the information

contained in phylogenies, 2) identifying similarities and dissimilarities between trees, and 3)

picking out distinctive branching patterns within individual trees, without making any a

priori assumptions about underlying behavior. The ability of this approach to analyze

non-ultrametric trees, in particular, fills a largely empty gap in the field of diversification

dynamics.

Approaches for summarizing phylogenetic information are required across multiple

domains of the life sciences. They are necessary for studying phylogenetic diversity in both

the macro- and microbial worlds (3; 7), for measuring how closely related species are within

community assemblies (4), for understanding how diversification varies in time and across

lineages (11), and for tracking genealogical diversity of infectious diseases through time

(21). Such approaches are also particularly useful in modeling approaches, where they

allow us to evaluate how closely a specific ecological, epidemiological, or macroevolutionary

model reproduces empirical trees. The ability provided by approaches summarizing

phylogenetic information to quantify the distance between trees allows us to measure the

distance between trees simulated under a specific model and empirical trees, which is

crucial to fitting approaches such as Approximate Bayesian Computation (60) or posterior

predictive simulations (61).

Given the importance of summarizing the information contained in phylogenetic

trees, our study is not the first attempt at doing so. However, our approach is
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unprecedented insofar as spectral densities account for the entirety of phylogenetic

structure, meaning that no shape or size information is lost when expressing a phylogeny as

its spectral density. It is therefore superior to previously proposed summary statistics that

limit themselves to certain properties of the tree summarized by a single statistic. When

reduced to its constituent properties (i.e., principal λ, skewness, and kurtosis), the spectral

density profile still manages to better identify diversification types among trees than a

combination of the most widely used traditional summary statistics. An additional

advantage of spectral density profiles compared to many traditional summary statistics is

that they can be computed irrespective of whether the tree is dated, ultrametric, or fully

resolved.

There are many potential applications of our approach. For example, assuming that

co-evolution and co-diversification lead to similarities in branching patterns, clades

undergoing co-diversification could be identified based on similarities in their spectral

density profiles without any a priori information about their interaction. This could be

particularly useful in the case of microbes and viruses, for which interactions and

co-evolution cannot directly be observed in nature. In viruses, especially, similarities in

spectral density profiles can be used to identify convergence across lineages, where

diversification may be driven by, for example, an ecological parameter, trait adaptation, or

even site-specific substitution. In this respect, our analyses for the various diversification

patterns in Influenza A strains – although they are meant here only for illustrative

purposes and should be taken with caution – are of some interest.

We find differential effects of protein segment, host, and country of origin on the

diversification of Influenza A. For most segments of the virus, diversification patterns are

similar, although there are marked differences between both HA and NA and other

segments. These two segments show significantly higher mean values for principal λ and

peak height, indicative of highly expanded, imbalanced diversification, which corroborates
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previous observations of especially high substitution rates in these proteins (62). Contrary

to previous work, however, we do not find similarities in the spectral density profiles of HA

and M1, which have been suggested to have comparable phylogenetic histories due to their

interaction during viral assembly (63). While these segments may be mechanically

interdependent, the considerable variation between their diversification patterns suggests

that their strategies of co-evolution, while compatible, are not equivalent. Finally, the

exceptional differences between HA and PB2, in particular, with the former exemplifying

disproportionately more expansive, imbalanced, and stemmy trees than those constructed

with the latter, evinces distinctive evolutionary trajectories for two proteins in a single

virus, as well as strong constraints on those trajectories across distant phylogenetic hosts.

We furthermore see a significant influence of country of origin on patterns of diversification

within each host, where strains from the same country diversify more similarly than

expected by chance. However, for both the standard and normalized spectral density

profiles, the single strongest impact on the shape of virus diversification is the animal host.

These results illustrate the utility of our approach to deal with non-ultrametric trees and

to explore the diversification behavior of many organisms previously unavailable to

macroevolutionary hypotheses.

Finding shifts in diversification processes is a major interest in macroevolution.

Methods for identifying rate shifts in trees (e.g., (34; 35; 36)) have been invaluable in

establishing, for example, adaptive radiations in large clades (34; 64). We introduce the

eigengap heuristic, an approach for finding different modes of diversification within a single

tree. Our approach shows considerable – albeit imperfect – success in recovering rate shifts

in simulated trees, comparable (or superior) to the most widely used methods. But it is

important to emphasize that the analytic difference in this approach bespeaks a conceptual

difference as well: the eigengap heuristic does not strictly identify rate shifts in the tree,

but identifies branches of similar diversification processes. So it is not surprising that it
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underperforms, if only slightly, an existing method in identifying shifts in diversification

rate, but outperforms the same method in identifying shifts in diversification pattern. The

eigengap heuristic, therefore, distinguishes itself by its power to recognize modes of

diversification patterns present in a tree. Our illustration of this approach with an archaeal

tree demonstrates how the eigengap heuristic may be used to pinpoint disparately evolving

populations of microbial species in a single environment (in this case, Lake Dagow).

Specifically, it reveals subtrees with considerably different diversification patterns, which do

not vary by phylogenetic relatedness.

Most previous graph-theoretical work in phylogenetics has focused on developing

methods to estimate the ‘tree space’ that different hypotheses for the same phylogenetic

tree occupy (31; 65; 66). These methods have been very successful and we think that, by

assessing the congruence of spectral densities for different gene-based trees for the same

species tree, our approach may also be useful for estimating confidence intervals for trees.

Similarly, it may be possible to investigate the co-evolution of traits (and genes) based on

the (dis)similarities between the spectral density profiles of trait-trees (and gene-trees)

sampled from the same species. Generally, comparing spectral density profiles for many

phylogenies, whether or not they are sampled from the same species tree, is useful for

identifying characteristic patterns of diversification as well as natural limits to those

patterns.

There are also many potential variations on our approach. We illustrated the

approach on bifurcating trees, yet the degree matrix can take any form, such that

reticulated trees (i.e., phylogenetic networks) can also be analysed. Reticulated trees have

so far been largely unnavigable by conventional phylogenetic techniques and, as a result,

studies of microbial phylogenies have typically assumed the trees to be bifurcating (67),

which is often not accurate given the level of lateral gene transfer in the microbial world.

Given that microbes constitute the majority of biodiversity on the planet, it is crucial to
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develop such approaches.

Finally, there are many potential extensions of our approach. For example, graph

Laplacians are used in synchronization dynamics (57) to analyze if and how a given part of

a network affects the dynamics of other parts of that network. Applied to phylogenies, this

could allow for analysing the interaction effects of some clades on others. There are also

techniques from differential geometry, based on the so-called trace formula (68), that could

be used to analyze the behavior of suites of spectral densities, such as the spectral densities

measured for a tree at different times from its origin. Such analyses could inform us about

the evolution of a clade. A third potential extension would be to use signed graphs, where

a signed matrix maps data onto the edges of the graph Laplacian (69) to analyze how

certain information not encoded in the molecular phylogeny (e.g., geographic or phenotypic

distance) affects local structures in the tree.

We have developed an approach, implemented in user-friendly software, which will

likely become an essential accessory to existing phylogenetic methods by giving researchers

access to questions underserved by current phylogenetic techniques.
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Figure 1: Pipeline for constructing the spectral density of a phylogenetic tree.
Graphical depictions (column 1), equations (column 2), and brief descriptions (column 3)
for each step in constructing the spectral density are shown. Given a phylogenetic tree with
numbered tips and nodes (top left), the Modified Graph Laplacian Λ is computed as the
difference between its diagonal degree matrix (where diagonal element i is the sum of the
branch lengths wi,j from node i to all the other nodes j in the phylogeny) and its distance
matrix (where element (i, j) is defined as the branch length (i.e., the ‘weight‘) between nodes i
and j). Next, the eigenvalues λ and eigenvectors v of Λ are computed (middle row). Finally,
the spectral density is obtained by convolving the eigenvalues with a smoothing function
(bottom row). See Supplemental Figure 1 for a toy example.
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Figure 2: Global properties of the spectral density are indicative of specific
patterns in the phylogenetic tree. (A) Trees with high (blue) and low (grey) species
richness are characterized by large (blue) and small (grey) principal λ, respectively. (B)
Stemmy (blue) and tippy (grey) trees are characterized by negative (blue) and positive
(grey) skewness. (C) Imbalanced (blue) and balanced (grey) trees are characterized by high
(blue) and low (grey) kurtosis. (D) Different modalities within a tree, such as one with
stemmy (blue) and one with tippy (grey) branching events, appear as peaks in the spectral
density (here at large and small λ, respectively).
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Figure 3: Clustering of spectral density profiles identifies distinct modes of di-
versification in simulated trees. (A) Hierarchical clustering on the MGL based on the
Jensen-Shannon distances between spectral density profiles of trees simulated under differ-
ent diversification models. Both hierarchical and k-medoids clustering techniques identify
six clusters of trees from 600 trees (P < 0.05), each corresponding to a distinct underly-
ing diversification model, whose property in terms of speciation-extinction rate variation is
summarized in the left column. Partitions in the hierarchical cluster are collapsed below a
threshold height of 2, so that less variation between individual trees is represented as fewer
partitions in the hierarchical cluster and fewer cells in the heatmap. (A, inset) K-medoids
clustering on principal components derived from spectral density profile summary statistics:
ln principal λ, skewness, and kurtosis. Shapes correspond to the cluster assignment of trees
based on highest silhouette width; tree colors correspond to diversification type. Ellipsoids
represent confidence intervals for each cluster, such that each tree could, based on silhouette
width support, be assigned to any cluster whose ellipsoid encompasses it. Trees have been
assigned to the cluster for which it has the most support. The inset shows the relative con-
tribution of each statistic in the dimensionality of the principal component analysis. (B) A
representative spectral density profile for each cluster, defined as the median spectral den-
sity profile according to the Jensen-Shannon distance, against a normal distribution (dashed
lines) with the same mean and variance, but a fixed height (2.5) to emphasize differences
between spectral density profiles, is shown for the six groups. Note the different x- and y-axis
ranges.
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Figure 5: Identifying modes of diversification within a single tree. (A) λ calculated
from the MGL for the archaeal tree are ranked in descending order and the eigengap is
identified between λ6 and λ7, suggestive of six modes of division. (A, inset) The ratio of
BIC values for finding 6 modes in the distance matrices of 100 randomly bifurcating trees and
the distance matrix of the archaeal tree. The BIC ratio significance cutoff is indicated (grey
dashed line). Error bars are drawn from BIC ratios against 100 random trees. (B) Spectral
density profiles for the original species tree (black) and for each of the modality-trees. (C)
Lineages in the archaeal tree showing different modes of division as identified by the eigengap
heuristic, with each mode of diversification shown by a different color corresponding to (B).
The dashed branches have been shortened for presentation.
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Supplemental Figure 1: Toy example illustrating the construction of the spectral
density for a hypothetical phylogeny. Top: example phylogeny. Middle: computation
of the MGL. Each non-diagonal element (i, j) in the MGL Λ is equal to the negative of
the branch length between nodes i and j. Each diagonal element i is computed as the sum
of branch lengths between node i and all other nodes j. Bottom: the spectral density is
obtained by convolving the λ calculated from Λ with a smoothing function.
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Supplemental Figure 2: Speciation values for diversification models. Birth-death
trees were constructed according to one of six diversification models: increasing specia-
tion, decreasing speciation, decreasing speciation below extinction; and constant speciation-
extinction with (i) ancient mass-extinction (0.1 survival probability), (ii) recent mass-
extinction (0.1 survival probability), or (iii) no mass-extinction. For all models, µ = 0.05.
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Supplemental Figure 3: Interpreting spectral density profiles. For trees simulated
under a constant birth-death model (open circle), the principal λ for the MGL is a good
predictor of species richness (A) and phylogenetic diversity (B); there is a significant pos-
itive relationship between skewness and the γ statistic (C) and no significant relationship
between kurtosis and Colless’ index (D). The principal λ for the nMGL shows no significant
relationship with species richness (A, inset) and a significantly negative relationship with
phylogenetic diversity (B, inset). Trees simulated under decreasing (closed circle) and in-
creasing (square) speciation rates, skewness (E,F) and kurtosis (G,H) show different scaling
relationships with species richness, phylogenetic diversity, and γ. Only significant slopes are
shown.
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Supplemental Figure 5: Clustering on principal components and spectral density
profiles from the nMGL. (A) Hierarchical clustering on spectral density profiles and (B)
k-medoids clustering on principal components are computed as in Figure 3, except based
on the nMGL. In (A), hierarchical clustering on the spectral density profile identified six
clusters of trees (bootstrap probability > 0.95), each corresponding to a distinct underly-
ing diversification model, whose property in terms of speciation-extinction rate variation is
summarized in the left column. In (B), only four significant clusters were identified (P <
0.05).
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Supplemental Figure 6: Undersampling affects spectral density profiles. The
spectral densities of 3 (out of 100) trees (solid line) simulated under (A) constant birth-death,
(B) increasing speciation-rate, and (C) recent mass-extinction models and their jackknifed
trees (dashed lines) at 90%, 80%, 70%, 60%, 50%, and 40% are plotted. As the tree moves
further from complete, the density plot shifts left, as a result of a declining principal λ, and
the shape of the spectral density becomes increasingly different from the original, notably
by decreasing skewness. The mean and standard deviation of the Jensen-Shannon distance
between each tree and its 100 jackknifed trees are shown in a barplot. The distance between
trees increases linearly with incompleteness.
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Supplemental Figure 8: Spectral density profile summary statistics across vi-
ral strains and hosts. Boxplot of avian (red) and human (gold) strains calculated from
standard (A) and normalized (B) graph Laplacians. Grey bars indicate across-host means;
asterisks denote significant differences at P < 0.05. (C) Mean differences between hosts
across all strains calculated from standard graph Laplacians.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 9, 2015. ; https://doi.org/10.1101/026476doi: bioRxiv preprint 

https://doi.org/10.1101/026476
http://creativecommons.org/licenses/by-nc-nd/4.0/


Australia

Israel
Iran

IndonesiaIndiaHong Kong

GermanyEgypt

ChinaCanada
Bangladesh Cambodia

Italy Japan

RussiaPeru
PakistanNigeria

Netherlands

Mexico

Sweden
Taiwan Thailand United 

Kingdom

USA

A

DC

B

Supplemental Figure 9: The cluster assignments for strains by country of origin.
Six clusters were found based on k-medoid clustering on the standard spectral density profiles
of all strains (P < 0.05). The distribution across those clusters for strains sampled from 25
countries are shown for avian (A) and human (B) hosts. Four clusters were found using the
normalized profiles (P < 0.05) and the distributions are shown for each country for avian
(C) and human (D) hosts. Only countries with all seven strains sampled are represented.
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