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Abstract

With the increasing availability of functional genomic data (Consortium et al., 2012,

Kundaje et al., 2015, Ardlie et al., 2015), incorporating genomic annotations into QTL map-

ping has become a standard analytical procedure. However, the existing analysis methods

often lack rigor and/or computational efficiency. We present a novel algorithm to perform

integrative multi-SNP QTL mapping in a probabilistic hierarchical model framework that

enables accurate and efficient joint enrichment analysis and the identification of multiple

causal variants.

Integrating genomic annotations into QTL mapping provides at least two unique advantages: it

improves the power of QTL discoveries by prioritizing functional variants, and it helps link the

observed association signals with the underlying molecular mechanisms. A Bayesian hierarchical

model that accounts for multiple QTL associations has recently been proposed for this purpose

(Wen et al., 2015). A distinctive feature of the model is its usage of prior specification to

quantitatively connect the association status of a candidate SNP with its genomic annotations

through a set of regression coefficients known as enrichment parameters. The model has been

successfully applied in mapping expression quantitative trait loci (eQTLs) across multiple tissues

(Ardlie et al., 2015) and across multiple populations (Wen et al., 2015), and it shows great

advantages over the existing standard single-SNP analysis approaches.
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To fit the Bayesian hierarchical model, an Expectation-Maximization (EM) algorithm (Wen

et al., 2015) is first applied to find the maximum likelihood estimates (MLEs) of the enrichment

parameters. Given the MLEs, an empirical Bayes approach is then utilized to perform the

multi-SNP mapping of the QTLs. Particularly in the E-step of the EM algorithm, the marginal

posterior probability of association (which we will refer to as the Posterior Inclusion Probability,

or PIP, henceforth) for each candidate SNP is computed given the current estimates of the

enrichment parameters. This step remains a major computational bottleneck because of its

requirement of extensive explorations of multi-SNP combinations for the QTL association model

(for p candidate SNPs, the model space contains 2p different combinations). Currently, the only

feasible approach for the E-step is via a Markov Chain Monte Carlo (MCMC) algorithm (Wen

et al., 2015). However, the repeated execution of the MCMC algorithm in every single E-step

significantly slows the model fitting, and the EM algorithm becomes computationally impractical

for accommodating QTL data at the genome-wide scale. Furthermore, the inherent stochastic

variation in the MCMC algorithm may affect the performance and reproducibility of the EM

algorithm.

Here, we present an alternative algorithm to perform deterministic approximation of posteriors

(DAP) and efficiently compute PIPs for all candidate SNPs given the point estimates of the

enrichment parameters. This algorithm is mainly based on two observations. First, in almost

all genetic applications, the convincing QTLs discovered from the association data are highly

sparse compared with the number of candidate SNPs. This sparseness implies that the vast

majority of the posterior probability mass in the space of all possible combinations of SNPs

must be concentrated in a much lower-dimensional subspace. That is, only association models

containing few SNPs are likely to have non-negligible posterior probabilities. Second, noteworthy

QTL SNPs, as reflected by their non-negligible PIP values, are thought to typically show modest

to strong marginal association signals in either single-SNP or conditional analysis. Based on

the above observations, we designed the DAP algorithm to adaptively select a small subset

of noteworthy candidate QTL SNPs and thoroughly explore the low-dimensional model space

composed by these SNPs. In addition, the DAP algorithm applies a combinatorial approximation

to estimate the posterior probability mass from the unexplored model space. Unlike the MCMC,

the DAP algorithm is highly parallelizable, and our implementation takes full advantage of this

property.

The DAP algorithm is directly applicable to QTL mapping in targeted genomic regions of limited

length, e.g., the mapping of cis-eQTLs. For genome-wide QTL mapping, we further approximate

the posterior probability of each complete association model by a product of “regional” posterior
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probabilities, with each region corresponding to a relatively independent LD block (Berisa and

Pickrell, 2015). The DAP can then be applied to each LD block independently. This approach

is similar to the strategies adopted by some commonly applied procedures (Pickrell, 2014), and

we provide a rigorous mathematical argument to justify the factorization in Appendix B.

Instead of adaptively selecting a subset of high-priority SNPs, the DAP algorithm can also be

applied by pre-fixing the maximum model size (namely, K) while allowing the exploration of all

possible SNP combinations under the restriction. We refer to this variant of the algorithm as

the DAP-K algorithm. In the special case of K = 1 (DAP-1), the algorithm essentially assumes

that at most one causal QTL exists in the region of interest. Although this very assumption has

been successfully applied by many other approaches (Pickrell, 2014, Servin and Stephens, 2007,

Veyrieras et al., 2008, Flutre et al., 2013), it has always been formulated as an explicit prior

assumption and hence requires a somewhat non-natural parameterization that also complicates

the maximization step when used in the EM algorithm for enrichment analysis (Appendix D).

The DAP-1 algorithm has the advantage of considerably faster computation, even compared to

the adaptive version of the DAP algorithm. More importantly, it can be applied using only

summary statistics from single-SNP association analysis (in the form of the marginal estimate

of the genetic effect and its standard error for each SNP). This feature is particularly attractive,

especially when the individual-level genotype and phenotype information is difficult to access.

We perform numerical experiments to investigate the accuracy of the adaptive DAP procedure.

Specifically, we select the genotype data from a random region of 15 SNPs from the GEUVADIS

project (Lappalainen et al., 2013) across five population groups. We randomly assign 1 to 5

causal QTLs and simulate a quantitative phenotype based on a linear model. Using the pre-fixed

hyper-parameters, we perform the exact Bayesian computation by enumerating all 215 different

association models and compare the results to the outcome of the DAP algorithm. Our simulation

results indicate that the DAP algorithm yields a highly accurate approximation at only a small

fraction of the computational cost (Supplementary Figs. A1 and A2 and Supplementary Tables

A1 and A2).

Next, we compare the performance of the DAP and MCMC algorithms in fine-mapping multiple

QTLs using a simulated multiple population eQTL data set (Wen et al., 2015). Specifically, we

assess their abilities to correctly identify multiple genomic regions that harbor causal eQTLs. Our

results (Fig. 1, Supplementary Fig. A3, Supplementary Table A3) show that the DAP algorithm

presents a significant improvement in performance compared with the MCMC algorithm with a

remarkable reduction in computational time (Appendix F.3) and that both methods outperform

the traditional QTL mapping approaches. In addition, Figure 1 also indicates that with prolonged

3

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 9, 2015. ; https://doi.org/10.1101/026450doi: bioRxiv preprint 

https://doi.org/10.1101/026450


sampling steps, the MCMC outputs seemingly “converges” to the DAP results.
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Figure 1: (a) Performance comparisons for multi-SNP QTL mapping. We apply different analyt-
ical approaches to a simulated data set reported in Wen et al. (2015) to evaluate their abilities to
identify multiple independent LD blocks harboring true QTLs. The methods compared include
a single-SNP analysis approach (navy blue line), a forward selection-based conditional analysis
approach, the MCMC algorithm described in Wen et al. (2015), and the DAP algorithm. Each
plotted point represents the number of true positive findings (of LD blocks) versus the false
positives obtained by a given method at a specific threshold. The MCMC algorithm and the
DAP algorithm are based on the Bayesian hierarchical model and clearly outperform the other
two commonly applied approaches. Most importantly, the DAP algorithm presents a significant
performance improvement compared with the MCMC in both accuracy and computational effi-
ciency. (c) - (e) Comparison of PIP values estimated by adaptive DAP and MCMC with various
running lengths. We randomly select 10 simulated data sets and run MCMC with 4 different
lengths of sampling steps, ranging from 15,000 to 1 million (the results shown in panel (a) are
based on 75,000 sampling steps for each data set). With the prolonged MCMC runs, the MCMC
outcomes seemingly “converge” to the DAP results.

The integration of DAP into the EM algorithm enables the integrative analysis of large-scale

QTL data sets. To investigate its performance, we simulate a modest-scale eQTL data set to

mimic the genome-wide investigation of cis-eQTLs. We apply the proposed EM algorithm to

estimate the enrichment parameter and assess the precision of the estimate. Overall, we conclude

that both adaptive DAP and the DAP-1-embedded EM algorithm yield accurate estimates in
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our simulation setting. Although the adaptive DAP algorithm generally yields more accurate

point estimates and narrower confidence intervals (Supplementary Figs. A4 and A5), the DAP-

1 algorithm achieves significant savings in computational time (Appendix F.3). In comparison,

the commonly applied naive enrichment analysis method severely underestimates the enrichment

parameter.

Finally, we apply the new integrative QTL mapping approach to re-analyze the cross-population

eQTL data set generated from the GEUVADIS project (Lappalainen et al., 2013). By applying

the DAP-1-embedded EM algorithm, we simultaneously examine two types of genomic annota-

tions that are known to impact the enrichment of eQTLs: the SNP distance to the transcription

start site (TSS) of the target gene and the annotations assessing the SNP’s ability to disrupt

transcription factor (TF) bindings. Our results (Fig. 2, Supplementary Figs. A6) indicate that

SNPs that are computationally predicted to strongly disrupt TF binding are more likely to alter

gene expression as eQTLs (fold change of 2.57 with a 95% CI of [2.314, 2.855]) compared with

the SNPs that are simply located within a DNase I footprint region (fold change of 1.707 with

a 95% CI of [1.486, 1.962]). Using the enrichment parameter estimates, we then fine-map the

eQTLs of each gene using the adaptive DAP algorithm. In many cases, we observe that the

quantitative annotations allow prioritizing functional SNPs that are otherwise indistinguishable

because of LD. We show one such example in Fig. 2.

In summary, the DAP algorithm provides an elegant and computationally efficient tool to per-

form multi-SNP QTL mapping while incorporating genomic annotations and accounting for

LD. It exhibits superior statistical power over the traditional single-SNP analysis-based ap-

proaches and is substantially more efficient and accurate than the MCMC-based multi-SNP

analysis methods. The algorithm has been implemented in C++ and is freely available at

http://github.com/xqwen/dap/.
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Figure 2: (a) - (b) Traceplots of estimates of the enrichment parameters for binding variants and
footprint SNPs during the DAP-1-embedded EM iterations in analyzing the GEUVADIS data.
Both estimates are stabilized after about 8 iterations. (c) - (d) Comparison of multi-SNP cis-
eQTL mapping with and without incorporating functional annotations. We plot the multi-SNP
QTL mapping results of gene LY86 (Ensembl ID: ENSG00000112799) using the GEUVADIS
data. Panel (c) shows the results assuming that all SNPs are equally likely to be associated a
priori, i.e., no functional annotation is used. Panel (d) shows the results using the functional
annotations with enrichment parameters estimated by the DAP-1-embedded EM algorithm. In
both cases, we use the adaptive DAP algorithm to perform the multi-SNP QTL mapping and plot
the SNPs with PIP > 0.02 with respect to their positions to the transcription start site. SNPs in
high LD are plotted with the same color, and the filled circle indicates that a SNP is annotated
as disrupting TF binding. It is clear that three independent cis-eQTLs exist because in both
panels, the sums of the PIPs from the SNPs with the same color all → 1. When incorporating
functional annotation to perform integrative QTL mapping, the binding variants show much
greater PIP values and are prioritized over the non-annotated SNPs in high LD.
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Methods

Model and Notation. Without loss of generality, we model the associations between p SNPs

and a quantitative trait of interest using the following multiple linear regression model

y = µ1 +

p∑
i=1

βigi + e, e ∼ N(0, τ−1I),

where the vectors y and gi denote the phenotype measurements and genotypes of SNP i from

n unrelated individuals, e denotes the residual errors with variance τ−1, and the parameters µ

and βi’s represent the intercept and genetic effects of each SNP, respectively. For each SNP,

we represent the latent association status by a binary indicator γi := 1{βi 6= 0}. In mapping

QTLs, we are interested in making joint inferences with respect to the p-vector γ := (γ1, . . . , γp).

Specifically, we define the size of the association model, ||γ||, as the number of associated SNPs,

i.e., ||γ|| =
∑p

i=1 γi. We assign an independent logistic prior for each SNP i to link its association

status with its genomic annotations. Specifically,

log

[
Pr(γi = 1)

Pr(γi = 0)

]
= α0 +

q∑
k=1

αkdik,

where di := (di1, . . . , diq) denotes q genomic annotations that are specific to SNP i, and α1, ..., αq

are referred to as the enrichment parameters: the positive αk value implies that as the annotation

value of feature k increases, the odds of the SNP being a causal QTL increase or, equivalently,

the feature k is enriched in QTLs. Finally, we denote α := (α0, ..., αq) and G := (g1, ..., gp). We

are interested in making inferences regarding α and γ.

Statistical Inference. A key component of our inference procedure is the previous results

(Wen, 2014) of computing the marginal likelihood of the regression model in the form of a Bayes

factor, namely, BF(γ) =
P(y |γ ,G)

P(y |G,γ≡0)
. In computing this quantity, the nuisance parameters µ, τ

and βi’s are all integrated out. Given the hyper-parameter α, it follows from the Bayes rule that

Pr(γ | y,G,α) =
Pr(γ | α) BF(γ)∑
γ ′ Pr(γ ′ | α) BF(γ ′)

. (1)

Based on these results, an EM algorithm (Wen et al., 2015) can be derived to find the MLE of

α, denoted by α̂, by treating γ as missing data. We provide the details of the EM algorithm

7

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 9, 2015. ; https://doi.org/10.1101/026450doi: bioRxiv preprint 

https://doi.org/10.1101/026450


in Appendix A. Briefly, in the E-step, given the current estimate of α, we compute the PIP for

each candidate SNP by marginalizing the probabilities obtained from (1); in the M-step, we fit

a logistic regression model using the current PIP value of each SNP as the response to update

the estimate of α̂. Upon convergence of the EM algorithm, we plug in α̂ and apply (1) again to

obtain the final inference result for each candidate SNP k, i.e., the PIP Pr(γk | y,G, α̂).

Deterministic Approximations of Posteriors. Evaluating equation (1) is critical for the

EM algorithm and the final inference of PIPs. Unfortunately, exact computation is practically

impossible for large numbers of SNPs because the summation in the denominator requires ex-

ploring an enormous model space. Previously, the MCMC algorithm has been proposed to

circumvent this difficulty, but the computational cost is still too high to run the EM algorithm

for large-scale data sets. The proposed DAP algorithm approximates the normalizing constant

C =
∑
γ ′ Pr(γ ′ | α) BF(γ ′) by

C∗ =
∑
γ ′∈Ω

Pr(γ ′ | α) BF(γ ′) + ε, (2)

where Ω denotes a subset of the most plausible models, and ε is an estimate of the approximation

error C − C∗.

The adaptive version of DAP applies two levels of approximations. First, for larger size par-

titions of the model space {γ}, it approximates Cs =
∑
||γ ||=s Pr(γ | α) BF(γ) by C∗s =∑

γ∈Ω, ||γ ||=s Pr(γ | α) BF(γ), whose computation may only involve a small subset of SNPs.

(Note that for the null model (s = 0) and single QTL models (s = 1), the DAP algorithm per-

forms exact calculations, i.e., C∗0 = C0 and C∗1 = C1.) For s ≥ 2, the DAP algorithm only focuses

on a subset of adaptively selected high-priority SNPs and enumerates all possible combinations

within the subset. The adaptive selection of the high-priority SNPs is similar to a Bayesian

version of conditional analysis (Flutre et al., 2013) that naturally accounts for LD. More specifi-

cally, suppose that a “best” model with the maximum posterior probability for ||γ|| = s− 1 has

been identified. The SNP selection procedure then goes through all candidate SNPs, adding a

single SNP at a time to the existing best model, and evaluates their posterior probabilities of

being the sole additional QTL signal (see details in Appendix C.1). Note that this procedure

is similar to single-SNP analysis and is computationally trivial. The candidate SNPs whose

posterior probabilities in the conditional analysis are greater than a pre-defined threshold λ (by

default, λ = 0.01) are then added to the existing subset of high-priority SNPs. Finally, the DAP

algorithm enumerates the updated subset of priority SNPs for all combinations of ||γ|| = s to
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compute C∗s and, in the process, records the “best” posterior model with the increased model

size. At the second level of approximation, the DAP algorithm only extensively explores the

relatively small model spaces. Suppose that there are truly K QTLs in p candidate SNPs. It

should be clear that {Cs} becomes a (sharply) decreasing sequence as s > K and that the behav-

ior of this decreasing sequence is mathematically predictable (Supplementary Figure A2). This

behavior occurs because the marginal likelihood becomes saturated as the model size exceeds the

number of true associations and because the additional prior term imposes a hefty penalty on

the overall product. Utilizing this fact, we derive an approximate recursive relationship between

Cs and Cs+1 as s ≥ K (Appendix C.2). Based on this relationship, the stopping rule of explicit

exploration is determined, and we estimate ε by

ε =

p∑
s=t+1

R∗s with R∗s+1 =
p− s
s+ 1

ωR∗s for s = t+ 1, ..., p, (3)

where t is the stopping point of extensive exploration, ω = 1
p

∑p
i=1 exp (α0 +

∑q
l=1 αldil) repre-

sents the average prior odds ratio across SNPs and R∗t = C∗t . This estimation essentially assumes

that the marginal likelihood is completely saturated for the partitions with s > t, and the overall

contribution to the normalizing constant from each size partition can be roughly estimated by

re-calibrating the prior changes (see details in Appendix C.2).

Jointly applying the two approximation strategies significantly reduces the computational bur-

den and yields a highly accurate approximation of the normalizing constant. It should also be

noted that if the tuning parameter λ is set to 0, all SNPs are included in the analysis and the

approximation from the adaptive DAP becomes almost exact; in contrast, when λ is set to rela-

tively large values, the DAP behaves similarly to conditional analysis, and only a very few very

high-probability models are explored.

The version of the DAP algorithm that pre-fixes the maximum model size at K represents a

much simpler approximation procedure, i.e.,

C =
∑
||γ ||≤K

Pr(γ | α) BF(γ) + ε,

where ε is assumed to be negligible. For K = 1, the PIP of SNP i can be analytically computed

by

Pr(γi = 1 | y,G,α) =

∑p
k=1 e

α0+
∑q

l=1 αldkl BFk

1 +
∑p

k=1 e
α0+

∑q
l=1 αldkl BFk

· e
∑q

l=1 αldil BFi∑p
k=1 e

∑q
l=1 αldkl BFk

, (4)
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where BFi represents the single SNP Bayes factor for SNP i and can be analytically computed

using only summary-level statistics from single-SNP analysis (see details in Appendix D).

Factorization of Posteriors. In practice, we find that DAP works extremely well if the

candidate SNP in γ spans a genomic region up to 2 Mb. For genome-wide applications, we apply

an additional factorization to approximate Pr(γ | y,G,α) as

Pr(γ | y,G,α) ≈
L∏
k=1

Pr(γ [k] | y,G,α), (5)

where {γ [k] : k = 1, ..., L} represents a partition of γ according to the LD patterns (or the relevant

recombination map). This factorization is justified by the previous theoretical results (Wen and

Stephens, 2010), and we provide complete details in Appendix B. Briefly, it can be shown that

BF(γ) ≈
∏L

k=1 BF(γ [k]). This result, along with the fact that our priors are independent across

SNPs, naturally leads to the approximate factorization of the posterior probability.

Details of Simulation and Data Analysis. We provide technical details, including descrip-

tions of the simulation schemes and analytical methods, running time benchmarks and additional

analytical results, in the appendices.
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Appendix A EM Algorithm for Estimating Enrichment

Parameters

The EM algorithm for fitting the hierarchical model is a special case of what is described in Wen

et al. (2015). Specifically, by treating the vector of joint association status, γ, as the missing

data, the complete data likelihood can be written as

P (y,γ | G,α) = Pr(γ | α)P (y | G,γ),

where

Pr(γ | α) =

p∏
i=1

[(
exp(α′di)

1 + exp(α′di)

)γi ( 1

1 + exp(α′di)

)1−γi
]
.

Therefore, the complete data log-likelihood is given by

log Pr(y,γ | G,α) =

p∑
i=1

γi(α
′di)−

p∑
i=1

log[1 + exp(α′di)] + logP (y | γ,G).

It is important to note that only the first two terms on the RHS contain α, the parameter of

interest.

The EM algorithm is initiated by assigning α to an arbitrary starting value, namely α(1). In the

E-step of the t-th iteration, we compute

E
[
log Pr(γ | α) | y, g,α(t)

]
=

p∑
i=1

Pr(γi = 1 | y, g,α(t))(α′di)

−
p∑
i=1

log[1 + exp(α′di)]

+ E
(
logP (y | γ,G) | y,G,α(t)

)
.

In the M-step, we find

α(t+1) = arg max
α

(
p∑
i=1

Pr(γi = 1 | y, g,α(t))(α′di)−
p∑
i=1

log[1 + exp(α′di)]

)
.

Note that
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1. the only quantities that are required from the E-step are the PIPs of all candidate SNPs.

2. the functional form of the objective function is the same as the log likelihood function of a

logistic regression model with the binary response variable replaced by the corresponding

PIP, Pr(γi = 1 | y, g,α(t)). Therefore, the algorithm for finding the MLEs of a logistic

regression model can be directly applied in the maximization step.

Appendix B Factorization of Pr(γ | y,G,α) by LD blocks

For genome-wide QTL mapping applications, we recommend the factorization, Pr(γ | y,G,α) ≈∑L
k=1 Pr(γ [k] | y,G,α), before applying the DAP in each genomic region independently. In this

section, we provide the necessary mathematical justification for the proposed factorization.

It is sufficient to show that

Pr(γ | α) BF(γ) ≈
L∏
k=1

Pr(γ [k] | α) ·
L∏
k=1

BF(γ [k]).

Recall that {γ [k] : k = 1, 2, 3...} are non-overlapping segments of the vector γ. Because the prior

probabilities are assumed to be independent across SNPs, it follows trivially that Pr(γ | α) =∏L
k=1 Pr(γ [k] | α).

To show that

BF(γ) ≈
L∏
k=1

BF(γ [k]),

we note the result from Wen (2014),

BF(γ) =

∫
P (β | γ) BF(β) dβ,

where the probability P (β | γ) defines the prior effect size given association status γ. Further-

more, note the relationship on prior effect sizes across SNPs,

P (β | γ) =

p∏
i=1

P (βi | γi).

If γi = 1, βi is assigned a normal prior; whereas if γi = 0, βi = 0 with probability 1 (or represented
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by a degenerated normal distribution, βi ∼ N(0, 0)). Equivalently, we write

β | γ ∼ N(0,W ),

where W is a diagonal prior variance-covariance matrix, and for γ 6= 1, W is singular.

Without loss of generality, we assume that both the phenotype vector y and the genotype vectors

g1, ..., gp are centered, i.e., the intercept term in the association model is exactly 0. Furthermore,

at the moment, we also assume the residual error variance parameter τ is known. It then follows

from the result of Wen (2014) that

BF(β;W ) = |I + τG′GW |−
1
2 · exp

(
1

2
y′G

[
W (I + τG′GW )−1

]
G′y

)
. (B.1)

This expression provides the theoretical basis for the factorization. In particular, the p×p sample

covariance matrix 1
n
G′G is an estimate of Var(G). In other words, G′G can be viewed as a

noisy observation of nVar(G). Using population genetic theory, Wen and Stephens (2010) show

that Var(G) is extremely banded. Based on this result, Berisa and Pickrell (2015) provide an

algorithm to segment the genome into L non-overlapping loci utilizing the population parameter

of recombination rate, i.e.,

G = (G[1], . . . ,G[L]),

and approximate G′G by a block diagonal matrix

Ĝ′G = G′[1]G[1] ⊕ · · · ⊕G′[L]G[L], (B.2)

where “⊕” denotes the direct sum of the matrices. It is important to note that (B.2) should

be viewed as a de-noised version of G′G with non-zero entries outside the LD blocks shrunk to

exactly 0. By plugging (B.2) into (B.1), it follows that

BF(β;W ) =
L∏
k=1

BF[k], (B.3)

where

BF[k] = |I + τG′[k]G[k]W [k]|−
1
2 · exp

(
1

2
y′G[k]

[
W [k](I + τG′[k]G[k]W [k])

−1
]
G′[k]y

)
. (B.4)
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In particular, (W [1], . . . ,W [[L]) is a decomposition of the diagonal matrix W compatible to the

decomposition of G.

Finally following Wen (2014), we integrate out the residual error variance parameter τ for each

BF[k] by applying the Laplace approximation. This step results in plugging in an point estimate

of τ (e.g., based on y and G[k] for each block k) into the expression (B.4). Taken together, we

have shown that

BF(γ) ≈
L∏
k=1

∫
P (β[k] | γ [k]) BF[k] dβ[k],

and consequently,

Pr(γ | y,G,α) ≈
L∏
k=1

Pr(γ [k] | y,G,α).

Appendix C Details of Adaptive DAP Algorithm

C.1 Adaptive Selection of Priority SNPs

Here we give a detailed account on the Bayesian conditional analysis procedure for selecting high

priority SNPs in the DAP algorithm. The procedure starts with model size partition s = 1. Let

γ∗ denote the model with the highest posterior probability in the size partition s− 1, i.e.,

γ∗ = argmax{||γ ||=s−1} Pr(γ)BF(γ).

For each SNP i that is not included in the current best model, we compute a Bayes factor for

the expanded model , γ†i = γ∗ ∪ {γi = 1}. Assuming there is exactly one additional QTL

and each candidate SNP i is equally likely to be the additional causal association a priori, the

corresponding conditional posterior probability for SNP i can be computed by

PIP∗i =
BF(γ†i )/BF(γ∗)∑
j BF(γ†j)/BF(γ∗)

=
BF(γ†i )∑
j BF(γ†j)

. (C.1)

The resulting quantity is a well defined posterior probability and solely determined by the relative

likelihood values of the expanded models. Particular, it should be noted that (C.1) fully accounts

for LD between SNPs: e.g., if two SNPs are in perfect LD, they would possess identical values
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which correctly reflect the uncertainty (i.e., they are indistinguishable). The procedure requires

p − s evaluations of Bayes factors which are computationally trivial for small s values. Given

the pre-defined threshold λ, we add the SNP i into the existing set of high priority SNPs if it is

not already in the set and PIP∗i ≥ λ. For s ≥ 2, we then enumerate all s-combinations from the

resulting set of priority SNPs to compute C∗s . Also during this enumerating process, we record

the new γ∗ for the increased model size.

Intuitively, the threshold parameter λ relates to the precision of the approximate PIPs. In a

way, the selection procedure roughly estimates the probability, Pr(γi = 1 | y,G,α, ||γ|| = s),

for SNP i. Note the relationship

Pr(γk = 1 | y,G,α) =

p∑
s=1

Ci
C
· Pr(γk = 1 | y,G,α, ||γ|| = s).

It can be concluded that

1. If Pr(γi = 1 | y,G,α, ||γ|| = s) < λ for a given SNP at all s values, it must be the case

that the overall PIP < λ.

2. The loss of precision for the PIP of SNP i due to the selection screening in a particular size

partition must be < λ.

In our simulation studies, we observe that λ represents an upper bound for the average precision

(measured by RMSE) of the approximate PIPs (see Tab. A1).

C.2 Stopping Rule for Explicit Exploration and Estimation of Ap-

proximation Error

When a non-associated SNP is added into an existing association model, the marginal likelihood

of the model is typically non-increasing. In fact, the marginal likelihood measured by the corre-

sponding Bayes factor usually decreases slightly due to the effect of Occam’s razor built into the

Bayes factor computation (Berger and Pericchi, 1996). We utilize this property to reduce the

computation of DAP by eliminating the unnecessary explicit explorations of the model partitions

once the sizes of the models considered exceed the number of the detectable association signals.

To achieve this goal, the DAP starts the exploration with model size partition s = 1 for increas-

ing s values until a stopping rule is met. The contribution from the unexplored size partitions

(i.e., the approximation error) is estimated by an analytic combinatorial approximation.
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To explain the stopping rule and the combinatorial approximation, we assume that there are K

detectable true QTLs. In each model size partition where s > K, we can classify all models into

(K+1) mutually exclusive categories according to the number of true QTLs (0 to K) included in

each association model. In the category including exactly m true QTLs, each member association

model also includes (s−m) non-associated SNPs, and the total number of the association models

in the category is given by
(
p−K
s−m

)(
K
m

)
. We estimate the contribution to

∑
Pr(γ; ||γ|| = s)BF(γ)

from this particular category by the equation(
p−K
s−m

)(
K

m

)
P̃r(γ; ||γ|| = s) BF{m},

where P̃r(γ; ||γ|| = s) represents the average prior value within the category, and BF{m} is the

average Bayes factor across models including m out of K detectable QTLs. The use of BF{m}

is mainly based on the assumption that including non-associated SNPs in an association model

does not, on average, increases the marginal likelihood/Bayes factor. Hence, we obtain

Cs ≈
K∑
m=0

(
p−K
s−m

)(
K

m

)
P̃r(γ; ||γ|| = s) BF{m}

To relate Cs+1 to Cs, we note that

Cs+1 ≈
K∑
m=0

(
p−K

s+ 1−m

)(
K

m

)
P̃r(γ; ||γ|| = s+ 1) BF{m}

=
K∑
m=0

p−K +m− s
s+ 1−m

(
p−K
s−m

)(
K

m

)
P̃r(γ; ||γ|| = s+ 1) BF{m}

≤ p− s
s+ 1−K

K∑
m=0

[(
p−K
s−m

)(
K

m

)
P̃r(γ; ||γ|| = s) BF{m}

]
P̃r(γ; ||γ|| = s+ 1)

P̃r(γ; ||γ|| = s)

≈ p− s
s−K + 1

ω Cs

(C.2)

In the last step, we approximate the quantities
P̃r(γ ;||γ ||=s+1)

P̃r(γ ;||γ ||=s) in all K + 1 categories by the

average prior odds ω = 1
p

∑p
i=1 exp (α0 +

∑q
l=1 αldil). Similarly, we can derive an approximate

lower bound for Cs+1 as

p− s−K
s+ 1

ω Cs. (C.3)
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Thus, we have shown

p− s
s−K + 1

ω Cs & Cs+1 &
p− s−K
s+ 1

ω Cs. (C.4)

Because K is unknown, we estimate Cs+1 from Cs by the following approximation

Cs+1 ≈
p− s
s+ 1

ω Cs, (C.5)

which does not depend on K and lies in the interval
(
p−s−K
s+1

ω Cs,
p−s

s−K+1
ω Cs

)
. Our numerical

experiment shows that the this approximation is surprisingly accurate (Fig. A2).

Our stopping rule is built upon the upper-bound specified by the inequality (C.4). Specially, the

adaptive DAP stops explicit exploration at partition size s = t if

C∗t ≤ (p− t+ 1)ω C∗t−1. (C.6)

The inequality essentially tests K ≥ t − 1. In addition to utilizing the combinatorial approxi-

mation, the DAP further monitors the increment of the partial sum Sk =
∑k

i C
∗
i . To ensure the

high accuracy of the approximation, we also add an optional criteria into the stopping rule on

top of (C.6), i.e.,

log10

[
St
St−1

]
< κ, κ > 0,

or equivalently,

C∗t∑t−1
i C∗i

< 10κ − 1,

By default, we set κ = 0.01, which further ensures that the subsequent model size partitions

have no substantial contributions to the normalizing constant. This additional criteria provides

practical flexibility in running the DAP: as κ → 0, it enforces the DAP explore all the model

size partitions; whereas when κ is large, only the stopping rule (C.6) is effective.

Once the stopping rule is invoked, we estimate ε by

ε =

p∑
s=t+1

R∗s,
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where we define R∗t = C∗t and

R∗s+1 =
p− s
s+ 1

ωR∗s, for s = t, ..., p.

Appendix D Derivation of DAP-1 Algorithm

In this section, we give a detailed derivation for DAP-1 algorithm. It should be noted that the

derivation can be generalized to DAP-K algorithm with K > 1.

The key assumption of the DAP-1 is that posterior probabilities of single QTL association models

dominate the posterior probability space of {γ}, i.e.,

C −
∑
||γ ||≤1

Pr(γ)BF(γ)→ 0. (D.1)

Consequently, it follows that

Pr(γ | y,G,α) ≈

{
Pr(γ |α)BF(γ)∑
||γ ||≤1 Pr(γ)BF(γ)

if ||γ|| ≤ 1

0 otherwise

The model space of {γ : ||γ|| ≤ 1} contains only the null model, γ = 0, and all single-SNP

association models. For the null model, it is clear that BF(γ = 0) = 1, and we denote

π0 := Pr(γ = 0 | α) =

p∏
i=1

(1 + exp(α′di))
−1
.

We use γ◦j to denote the single-SNP association model where the j-th SNP is the assumed QTL.

Clearly,

Pr(γ◦j | α) = exp(α′dj)

p∏
i=1

(1 + exp(α′di))
−1

= π0 · exp(α′dj),

and

BF(γ◦j) = BFj,

and recall that BFj denotes the Bayes factor based on the single-SNP analysis of SNP j. The
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computation of BFj has been detailed by many authors (Servin and Stephens, 2007, Wakefield,

2009, Wen et al., 2014). It typically requires only summary level statistics, e.g., estimated

genetic effect of the target SNP and its standard error (Wakefield, 2009, Wen et al., 2014), and

is computationally trivial. Finally, we note that given the restrained model space, the PIP of

SNP j, Pr(γj | y,G,α), coincides with Pr(γ◦j | α). Given all of the above, it follows from the

simple algebra that

Pr(γi = 1 | y,G,α) =

∑p
k=1 e

α0+
∑q

l=1 αldkl BFk

1 +
∑p

k=1 e
α0+

∑q
l=1 αldkl BFk

· e
∑q

l=1 αldil BFi∑p
k=1 e

∑q
l=1 αldkl BFk

=
[
1− Pr(γ = 0 | y,G,α)

]
· e

∑q
l=1 αldil BFi∑p

k=1 e
∑q

l=1 αldkl BFk
,

(D.2)

where the first term assess the probability that the p-SNP locus contains a QTL and the second

term is the conditional probability that the i-th SNP is the sole QTL. The expression (D.2)

bears the great similarity to the Bayesian approaches used in Veyrieras et al. (2008), Flutre et al.

(2013), Pickrell (2014), which also impose the “single QTL per locus” assumption. However,

all the aforementioned approaches formulate it as a prior assumption which results in a very

different parametrization. More specifically, they use a locus-level quantity, π0, to denote the

probability that a locus contains no QTLs. Conditioning on the case that the locus does contain

a QTL, the prior for SNP i being the causal SNP is assigned

Pr(γi = 1 | γ 6= 0, δ) =
e
∑q

l=1 δldil∑p
k=1 e

∑q
l=1 δldkl

, (D.3)

where the parameter δ is similar to our enrichment parameter. As a result, this parametrization

yields a similar expression for the PIP of SNP i,

Pr(γi = 1 | y,G, π0, δ) =
[
1− Pr(γ = 0 | y,G, π0)

]
· e

∑q
l=1 δldil BFi∑p

k=1 e
∑q

l=1 δldkl BFk
. (D.4)

Albeit the algebraic similarity, the parameters (π0 and δ) in (D.4) are not so straightforwardly

interpreted as α in our logistic priors, partly due to the conditional nature of the prior specifica-

tion (D.3). Furthermore in enrichment analysis, the M-step of the EM algorithm becomes much

more involved for optimizing the objective function jointly with respect to (π0, δ). In compari-

son, we have shown that under the parametrization of DAP-1, the maximization in the M-step

is equivalent to fitting a logistic regression model for which the solutions are well-known.
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Appendix E Accuracy of PIP Approximation by DAP

The DAP algorithm is designed to accurately approximate the normalizing constant C: as C∗

precisely approximates C, the resulting Pr(γ | y,G,α) will be accurate, hence the marginalized

PIP values. Nevertheless, as we have observed in the numerical experiments (Fig. A1) , even

if the approximation of C∗ is less accurate (as λ is less stringent), the approximate PIPs are

still, on average, practically precise. In addition, we have also observed that DAP-1 embedded

EM algorithm consistently performs well for estimating enrichment parameters in our simulation

studies. In this section, we offer some theoretical discussions regarding to the precision of the PIP

approximation by DAP with a focus on the performance of DAP-1 algorithm in the enrichment

analysis.

First, in genetic applications, the associations are normally sparse. As a consequence, the DAP-1

assumption likely holds for the majority of the loci interrogated. Here we use the general term

“locus” to refer to the genomic region where an independent DAP is applied: in genome-wide

QTL mapping applications, the loci are non-overlapping LD blocks discussed in section B; in

cis-eQTL mapping, a locus represents the cis-region of a given gene. Therefore, for most of loci,

the C∗ estimated by DAP-1 are indeed accurate, so are the resulting PIPs within these regions.

Second, for loci that contain more than one causal QTLs, it is clear that C∗ is under-estimated

by DAP-1. However, it can be argued that the approximate PIPs of the SNPs within those loci

can still be, on average, accurate. To see this, we write

Pr(γk = 1 | y,G,α) =

p∑
s=1

Ci
C
· Pr(γk = 1 | y,G,α, ||γ|| = s). (E.1)

In DAP-1, we essentially estimate Pr(γk = 1 | y,G,α) by Pr(γk = 1 | y,G,α, ||γ|| = 1). Note

that the vast majority of SNPs have overall PIPs → 0, and it must be the case (in the context

of genetic associations) that for such SNP k,

Pr(γk = 1 | y,G,α, ||γ|| = s)→ 0, for all s.

Thus, even when C1

C
6→ 1, the DAP-1 still provides reasonable accurate PIP estimations for the

majority of SNPs that are not QTLs. The same argument can be also applied to very strong

QTLs, especially the “primary” association signals whose strengths of associations measured by

the single-SNP Bayes factors are orders of magnitude higher than the remaining QTLs within

the same locus. Therefore, the only SNPs whose PIPs are poorly estimated by DAP-1 are those
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secondary QTL signals, but in most cases, it can be assured that such SNPs are in very small

minority. This may explain the reason that, on average, DAP-1 is sufficient for PIP estimation

in the EM algorithm. The above arguments can also be generalized to the case of the adaptive

DAP algorithm where C∗ is approximated less accurately.

It is worth pointing out that we would not recommend use of DAP-1 algorithm to perform the final

multi-SNP QTL analysis, as it may omit strong secondary signals within a locus. In comparison,

the adaptive DAP, even with relatively liberal λ, threshold generally yields satisfactory results

in such setting.

Appendix F Simulation Details

F.1 Accuracy Evaluation of Adaptive DAP

In this numerical experiment, we compare the performance of the adaptive DAP algorithm to

the exact Bayesian computation, in particular, we are interested in evaluating the accuracy of

approximate Pr(γ | y,G,α) and corresponding PIP values from the adaptive DAP. To be able

to carry out the exact Bayesian computation with reasonable computational cost, we have to

limit the number of candidate QTL SNPs in our simulation. In this experiment, we decided to

set p = 15 and let the exact Bayesian calculation evaluates all 215 = 32, 768 association models

for each simulated data set.

Specifically, in each simulation, we randomly select genotypes of 15 neighboring cis-SNPs of a

gene from the GEUVADIS data set. Keeping the population structures intact, we uniformly

select 1 to 5 consistent causal QTLs and generate the phenotype measurements within each

population using the linear model,

y = µ1 +
15∑
i=1

βigi + e, e ∼ N(0, I), (F.1)

where we sample µ ∼ uniform(−2, 2) and set the β values of non-QTL SNPs to 0. The overall

effect size of a QTL SNP is simulated by

β̄i ∼ N(0, 0.62),
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and in each population group, we obtain

βi ∼ N(β̄i , 0.01× β̄2
i )

to allow limited effect size heterogeneity across populations. Note, the details of effect size

simulation is less relevant to this particular experiment, however, we consistently adopt this

simulation scheme for our other simulations in this paper.

We apply both the adaptive DAP algorithm and the exact Bayesian posterior computation on a

total of 1,250 simulated data sets using the same prior specification. For the DAP algorithm, we

vary the threshold value in selecting high priority candidate SNPs, λ, from 0.01 to 0.05. First, we

compare the true normalizing constant C with the estimated value C∗ from the DAP algorithm

by computing the ratio C∗/C in each simulated data set. Utilizing all SNPs of all the simulated

data sets, we also calculate root-mean-square error (RMSE) to characterize the precision of PIP

approximations. The result indicates that for stringent λ value, the DAP can indeed estimate the

normalizing constant in very high accuracy (Tab. A1, Fig. A1), which ensures the high precision

of the estimated PIPs. As the λ threshold is relaxed, the approximation of C becomes less

accurate, nevertheless we observe the overall precision level of approximate PIPs is still suitable

for QTL mapping applications.

Table A1: Numerical comparison between the exact calculation and the adaptive DAP algorithm
at different threshold values.

λ Mean of C∗/C RMSE of approximate PIP

0.01 0.994 2.36× 10−3

0.02 0.986 5.32× 10−3

0.03 0.963 9.83× 10−3

0.04 0.921 1.40× 10−2

0.05 0.854 2.42× 10−2
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Figure A1: Assessment of accuracy of the adaptive DAP algorithm at different threshold values.
In the top panel, the individual PIP approximations by the DAP are compared to the exact
calculations. In the bottom panel, the distribution of C∗/C is plotted. The simulation results
are obtained for threshold values λ = 0.01, 0.02, 0.05 for the DAP algorithm.

Using the simulated data set, we also benchmark the average computational time of each simu-

lation/analysis setting and show the results in Tab. A2. All runs are performed with 10 parallel

threads using the OpenMP library. For the exact calculation, the average time remains constant

regardless of the number of true QTLs. The DAP algorithm represents a much reduced compu-

tational time comparing to the exact calculation. The general trend of the DAP running time is

also clear (albeit few small deviations): with increasing number of true QTLs, the running time

increases, and with more relaxed λ values, the running time decreases.
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Table A2: Benchmark of average computational time by the DAP and exact computation. The
running time is measured in second by UNIX utility program “time”. In each cell, we show
the actual running time (“real” time) which is greatly reduced by parallel processing with 10
threads; in the parenthesis, the “user” time is reported, which objectively reflects the actual
computational cost, i.e., this measurement is not reduced by the parallelization.

Running Time (seconds)

Number of True QTLs

Method 1 2 3 4 5

DAP (λ = 0.01) 0.097 (0.234) 0.275 (1.180) 0.733 (3.704) 1.276 (7.140) 2.527 (13.181)

DAP (λ = 0.02) 0.093 (0.268) 0.208 (0.776) 0.663 (3.128) 1.275 (6.816) 2.368 (12.965)

DAP (λ = 0.03) 0.087 (0.238) 0.133 (0.408) 0.252 (1.060) 0.844 (4.644) 1.422 (7.876)

DAP (λ = 0.04) 0.063 (0.116) 0.122 (0.312) 0.230 (0.732) 0.615 (3.064) 0.571 (2.596)

DAP (λ = 0.05) 0.050 (0.072) 0.120 (0.280) 0.139 (0.320) 0.184 (0.448) 0.180 (0.276)

Exact 19.8 (121.4)

Finally, we use the simulated data set to examine the approximate recursive relationship derived

in (C.5). Specifically, based on the results from the exact computation, we compute

C#
s =

p− s+ 1

s
ω Cs−1,

and calculate log10

[
C#

s

Cs

]
for s = 1, 2, ..., 14. Fig. A2 shows the results for 4 randomly generated

data sets containing K = 1 to 4 strong QTLs, respectively. We observe that as the model

size partition is less than the size of the saturated model, expression (C.5) always severely

under-estimates Cs as expected. However starting from s = K + 1, the estimate becomes very

accurate, and the stopping rule (C.6) for halting explicit exploration works extremely well for

these simulations.
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Figure A2: Examination of the recursive approximation of Cs by equation (C.5) in the simulated
data sets. Each panel represents a simulated data set containing K true QTLs. The ratio of
estimated value C#

s (computed using the true value of Cs−1) over the true value Cs is plotted
at log 10 scale for all model size partitions. The red vertical line indicates the size of the true
association model, and the blue dotted line represents the actual stopping point that the adaptive
DAP halts explicit exploration. As the model size s exceeds K, the estimation by C#

s becomes
very accurate in all settings.

F.2 Comparison of Adaptive DAP and MCMC

In this numerical experiment, we compare the performance of the adaptive DAP algorithm with

the MCMC algorithm in multi-SNP fine mapping applications. To this end, we use the simulated
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data set generated in Wen et al. (2015) and apply the adaptive DAP algorithm using the same

prior specification as the MCMC run. The details of the simulating scheme have been documented

in Wen et al. (2015), here we only provide a brief description.

The simulation is designed to evaluate various multi-SNP analysis approaches in correctly iden-

tifying multiple independent causal QTLs using cross-population samples. We select 2,500 SNPs

from the cis-regions of 100 random genes (i.e., 25 neighboring SNPs per region) and use their

genotype data from the GEUVADIS data. As a result, the assembled genomic region consists

of 100 relatively independent LD blocks with modest to high LD within each block. In each

simulation, we randomly assign 1 to 4 causal QTLs and simulate a quantitative trait using the

scheme described in section F.1. In total, we simulate 1,500 QTL data sets.

We applied four different types of analysis approaches to perform multi-SNP QTL mapping for

each simulated data set with the goal of identifying the LD blocks that harbor the true QTLs.

Those approaches are

1. a single-SNP analysis analysis which performs single-SNP meta-analysis across five popu-

lation groups. A block is identified if the minimum single-SNP p-value within the block is

more significant than the pre-defined threshold.

2. a conditional meta-analysis approach using the forward selection procedure. The procedure

also utilizes a p-value threshold to determine if the “best” association model has been

achieved. A block is identified if one of its member SNPs is included in the final “best”

model.

3. an MCMC algorithm based on the hierarchical model with α0 = log( 1
p−1

) and αk = 0

for k > 0. Equivalently, the model assumes each SNP is equally likely to be the causal

QTL with the probability 1
p
, i.e., the prior expected number of causal SNP is set to 1. We

compute a block level posterior inclusion probability by simply summing over the PIPs

of each member SNP. A block is identified if the block-level PIP exceeds the pre-defined

threshold.

4. the adaptive DAP algorithms based on the same hierarchical model as in the MCMC with

λ set to 0.01 and 0.05, respectively. Same as in the MCMC analysis, we also use the

block-level PIPs to identify the blocks harboring causal QTLs.

For each method, we vary the corresponding threshold for QTL calling in a wide range, from

very stringent to very liberal, and record the true versus false positives at each threshold value.
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We run the adaptive DAP with two different settings: λ = 0.05 and λ = 0.01, and in the main

text, we present the results obtained with λ = 0.01, the comparison results between the two

versions of the DAP algorithm and the MCMC are shown in Fig. A3.
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Figure A3: Additional comparisons for multi-SNP QTL mapping. Here we show the additional
simulation result by running the adaptive DAP with λ = 0.05, which is most similar to the DAP
outcome with the default setting (λ = 0.01), and for the most part, still outperforms the MCMC
algoirthm.

It is worth emphasizing that both the MCMC and the DAP are based on the exact same Bayesian

model, the difference in the outcomes reflects the performance difference of the two fitting proce-

dures. To further investigate, we randomly select 10 data sets out of 1,500 simulations, and repeat

MCMC runs with 15,000, 75,000, 250,000 and 1,000,000 sampling steps, respectively. (Note, the

analysis comparing true versus false positive findings is carried out with 75,000 MCMC repeats.)

We benchmark the MCMC running times and compare the resulting PIPs with the adaptive

DAP (λ = 0.01) output. The results, summarized in Fig A3, Tab. A3 and Fig. 1 in the main
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text, indicate that adaptive DAP is more accurate and much more computationally efficient.

More importantly, with the prolonged sampling steps, the MCMC results seemingly converge to

the results by the DAP.

Table A3: Average running time and PIP comparison by MCMC runs with varying sampling
steps. The actual running time reported from the UNIX “time” command is shown for each
experiment. The DAP algorithm runs with 10 parallel threads, the average user time (i.e.,
approximate running time without parallelization) is 1 minute and 8.66 seconds.

MCMC (reps) DAP

15K 75K 250K 1M λ = 0.01

Running Time (real) 4m 2.79s 10m 28.37s 28m 50.00s 107m 46.75s 28.44s

RMSE of PIP (w.r.t DAP) 0.080 0.052 0.034 0.030 −

F.3 Evaluation of Enrichment Analysis

We perform simulation studies to evaluate the performance of DAP-embedded EM algorithm

in enrichment analysis. Our simulation setting mimics the genome-wide cis-eQTL mapping

application, however at a reduced scale. Specifically, we select a subset of 1,500 random genes

from the GEUVADIS data. For each gene, 50 cis-SNPs are used in the simulation and we annotate

20% of the SNPs with a binary feature. For each SNP, the association status is determined by

a Bernoulli trail with the success (i.e. associated) probability given by

p =
exp(−4 + α1d)

1 + exp(−4 + α1d)
,

where d is the SNP specific binary annotation value, and α1 is the true enrichment parameter.

Given the true QTLs of each gene, we then apply the scheme described in section F.1 to simulate

the effect sizes of the QTLs and the expression levels across multiple population groups. We set

α1 = 0.00, 0.25, 0.50, 0.75, 1.00, and for each α1 value, we simulate 100 data sets. To analyze the

simulated data set, we use two different implementations of the EM algorithm with the E-step

approximated by the DAP-1 and the adaptive DAP with λ = 0.05, respectively. For comparison,

we also estimate α1 using a logistic regression with the true association status as the outcome

variable and the annotations as the predictor. This analysis represents a theoretical best case

scenario, and its results should be regarded as the optimal bound for the analyses that infer
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the latent association status from the genotype-phenotype data. In addition, we apply a naive

two-stage enrichment analysis method, which first performs single-SNP association tests and

classifies the association status of each SNP based on its false discovery rate (FDR, computed

by Storey’s q-value method) with the significance cutoff 0.01. Based on the classification result,

the enrichment parameter is estimated by a 2 × 2 contingency table (which is equivalent to a

simple logistic model regressing the association status on the binary annotation). We include

this method because of its similarity to some commonly applied enrichment analysis strategy.

Fig. A4 plots the point estimates of α1 ± the standard errors for each analysis method in each

simulation setting across 100 simulated data sets. The estimates from the adaptive DAP and

DAP-1 are seemingly unbiased. As expected, the variability of their point estimates is higher

than the “best case” method because of the uncertainty in determining the true association

status of each SNP. In comparison, the naive two-stage method consistently and severely under-

estimate the enrichment parameters, for which we offer an theoretical explanation at the end of

the subsection. Although the results indicate that the adaptive DAP generate more accurate

estimate in average, the performance of DAP-1 is very much comparable and completely suitable

for practical applications. In addition, DAP-1 presents a great advantage in computational

efficiency: the average running time for the DAP-1 embedded EM algorithm (with 10 parallel

threads in E-step) is 65.05 seconds; in comparison, the adaptive DAP embedded EM runs 387.30

seconds in average (which is a combination of slightly longer iteration and longer running time

per iteration). Finally, we note that both the adaptive DAP and DAP-1 under-estimate the α0

parameter: in average, DAP-1 estimates α̂0 = −4.62 and the adaptive DAP yields α̂0 = −4.32

(recall, the truth is α0 = −4.00. This is expected, because not all QTLs are detectable from

the observed association data with limited sample sizes. Therefore, the priors constructed in

the final QTL analysis using the point estimates from the EM algorithm are in general slightly

conservative, which is mostly welcomed in practice (Lappalainen et al., 2013, Fairfax et al., 2014).

Fig. A5 highlights the comparisons of individual estimates along with their 95% confidence

intervals from 10 randomly selected simulated data sets for each setting. We omit the naive

method in this comparison because of its poor performance. The plots display a similar pattern

as we observed in Fig. A4 (which focuses on the variability of the point estimates). Overall,

the 95% confidence intervals generated by DAP-1 and the adaptive DAP methods both display

excellent coverage probability. The figure also indicates that there is considerable uncertainty in

the enrichment analysis.
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Figure A4: Point estimates of the enrichment parameter by various analysis methods in different
simulation settings. The point estimate of α1 ± standard error (obtained from 100 simulated
data sets) for each method is plotted for each simulation setting. The “best case” method uses
the true association status and represents the optimal performance for any enrichment analysis
method. Both adaptive DAP and DAP-1 methods yield unbiased estimates in all settings with
the adaptive DAP being generally more accurate. The naive two-stage method consistently and
severely under-estimates the enrichment parameter.
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Figure A5: Comparison of individual estimates of enrichment parameter and their uncertainty
quantification. Each panel represents a different simulation setting. We plot the point estimates
of α1 along with their 95% confidence intervals for each method using 10 randomly selected
simulated data sets. In all settings, all methods compared (“best case”, EM with adaptive
DAP and EM with DAP-1) show desired coverage probability. The figure also highlights the
considerable uncertainty in enrichment analysis.

Finally, we offer a brief discussion on the drawbacks of the naive two-stage analysis method.

Although intuitively sensible, the hypothesis testing based classification is largely problematic.

It should be noted that the accuracy of the enrichment analysis is greatly impacted by the

overall errors of classifying the binary association status according to the single-SNP testing

results. Unfortunately, the hypothesis testing approaches generally emphasize less on type II

errors which are highly critical for overall classification errors. In fact, the common practice of

hypothesis testing tends to impose very stringent controls over type I errors which can lead to

an elevated level of type II errors. Furthermore, the single-SNP association based test does not

account for LD, which also complicates the classification procedure. With poor classification,

the estimation from the second stage becomes unwarranted. In comparison, the hierarchical

model based approaches completely abandon the classification step, instead, they carry over

the uncertainty of individual SNP association status (accounting for LD) into the enrichment

analysis. In the theory of missing data analysis, this presents a superior statistical approach.
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Appendix G Re-analysis of GEUVADIS Data

We apply the improved integrative multi-SNP QTL mapping algorithms to re-analyze the eQTL

data from the GEUVADIS project. The data set contains RNA-seq data on lymphoblastoid

cell line (LCL) sample from five populations: the Yoruba (YRI), CEPH (CEU), Toscani (TSI),

British (GBR) and Finns (FIN). In our analysis, 420 samples who are densely genotyped in

the 1000 Genomes Phase I data release are selected for eQTL mapping. The genotype and

expression data are directly downloaded from the GEUVADIS project website, and we perform

the additional quality control steps to remove the potential confounding factors in the RNA-seq

data and re-normalize the expression levels for each gene within each population (details are

described in Wen et al. (2015)). In total, 11,838 protein coding and lincRNA genes are included

in our analysis.

Applying the DAP algorithm, we aim to perform the integrative analysis of cis-eQTLs and

genomic annotations, including SNP distance to transcription start site (TSS) of the target gene

and transcription factor (TF) binding site annotations produced by the CENTIPEDE model

(Pique-Regi et al., 2011). We are particularly interested in quantifying the difference in eQTL

enrichment levels for the following two categories of SNPs while controlling for the SNP distance

to respective TSS:

1. SNPs that are predicted to disrupt TF binding in a sequence motif, i.e., binding SNPs

2. SNPs that simply reside in a DNase I footprint region but are otherwise predicted to have

weak effects on TF binding, i.e., footprint SNPs

Because the SNP distance to TSS is known to have a strong non-linear effect on enrichment level

of cis-eQTLs Veyrieras et al. (2008), Wen et al. (2015), we group the SNPs into non-overlapping

1Kb bins and treat the belonging bin as a categorical annotation for each SNP.

The same analysis has been attempted by Wen et al. (2015) using the MCMC algorithm to per-

form E-step (EM-MCMC) in enrichment analysis. However due to the computational restraints,

they were only able to run a single iteration of the EM algorithm. Although the hypothesis testing

results all remain valid, i.e., both footprint and binding SNPs are indeed enriched in cis-eQTLs

with quite distinct significance measures, the enrichment levels are likely to be under-estimated.

We run the complete DAP-1 embedded EM algorithm (EM-DAP1, available at https://github.

com/xqwen/dap/tree/master/EM_dap1) to re-analyze the same data set. The full EM algorithm
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runs 25 iterations to meet our convergence criteria that requires increment of log-likelihood≤ 0.01

between the two consecutive iterations (Fig. A6). The complete EM run takes about less than

a hour on a Linux box with a single 8-core Intel Xeon 2.13GHz CPU and 96G of memory. In

comparison, using the MCMC algorithm, a single round of E-step execution costs about 84 hours

of computational time to fully process all 11,838 genes on the same computing system. We then

perform the final round of fine mapping using the adaptive DAP algorithm with λ = 0.01.

First, we compare the estimates of the enrichment parameters by the EM-MCMC with the EM-

DAP1 after a single iteration, and we find that they are remarkably similar (Table A4), which is

also consistent with what we have observed in our simulation studies for the enrichment analysis.

Also as expected, the final estimates from the EM-DAP1 are much greater than the estimates

from a single iteration of EM. The final multi-SNP eQTL mapping results are also quantitatively

different comparing to the previous results (Wen et al., 2015), which is mostly attributed to the

combination of the better enrichment estimates and the better multi-SNP mapping algorithm

(i.e., adaptive DAP).

Table A4: Comparison of enrichment estimates by EM-DAP1 and EM-MCMC after a single
iteration.

Footprint SNPs Binding Variants

Method α 95% C.I. α 95% C.I.

EM-MCMC 0.140 (0.039, 0.239) 0.392 (0.322, 0.489)

EM-DAP1 0.119 (−0.007, 0.245) 0.406 (0.303, 0.509)
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Figure A6: Traceplots of the marginal likelihood (in Bayes factor at log scale) during the DAP-1
embedded EM run in analyzing the GEUVADIS data.
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