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Abstract

Transcranial magnetic stimulation (TMS) has been used for more than
20 years to investigate brain function by perturbing and observing the con-
sequent behavioral, pathophysiological and electrophysiological modula-
tions. These latter, mainly measured by high-density electroencephalog-
raphy (hd-EEG), revealed signatures of the functional organization in a
brain network. In order to unveil the nature and the underlying mecha-
nism of these signatures, we here mapped TMS-induced hd-EEG changes
onto changes in information flow and brain structural architecture, us-
ing multimodal modeling of source reconstructed TMS/hd-EEG record-
ings and diffusion magnetic resonance imaging (dMRI) tractography in
a cohort of awake healthy volunteers. We observed that the relationship
between information flow and structural connections depend on the stim-
ulation site and on the frequency of the TMS-induced brain rhythms.
These findings highlight the importance of taking into account the dy-
namics of different local oscillations when investigating the mechanisms
for integration and segregation of information in the human brain. Our
whole-brain analysis sheds light on the function-structure organization of
the brain network after TMS, and on the huge variety of information con-
tained in it. TMS/EEG dMRI directed functional connectivity structural
connectivity structure-function brain information flow

Introduction

Transcranial magnetic stimulation (TMS) has been used for more than 20 years
to investigate connectivity and plasticity in the human cortex. By combining
TMS with high-density electroencephalography (hd-EEG), one can stimulate
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any cortical area and measure the effects produced by this perturbation in the
rest of the cerebral cortex (Ilmoniemi et al., 1997; Komssi and Kähkönen, 2006).
It has been shown that cortical potentials elicited by TMS stimulation (TMS-
evoked potentials, i.e. TEPs) last for up to 600 ms in normal wakefulness, during
their spread from the area of stimulation to remote interconnected brain areas
(Bonato et al., 2006; Lioumis et al., 2009). To date, TMS/EEG recordings have
provided new insights on the whole brain cortical excitability with reasonable
spatial and excellent temporal resolution (Rogasch and Fitzgerald, 2013).

The amount of information contained in the hd-EEG response to TMS has
appeared to contain inner signatures of the functional organization in a brain
network. A recent study (Rosanova et al., 2009) in healthy awake subjects
showed that TMS can also induce EEG oscillations at different frequencies.
The TMS pulse gives rise to different connected cortical regions in the brain,
generating a complex EEG pattern composed of strong fluctuations at the “reso-
nant”(natural) frequency of the stimulated area. These oscillations are thought
to reflect neurophysiological activity that is transiently elicited by the TMS
pulse and possibly engaged through brain connections (Rosanova et al., 2009).

The study of TEPs has increased our understanding of cortical process-
ing both in health (Massimini et al., 2005; Ferrarelli et al., 2010) and disease
(Rosanova et al., 2012; Ragazzoni et al., 2013; George et al., 2000; Gosseries
et al., 2015). For instance, from compressing the information given by TMS,
Casali et al. defined an empirical measure of brain complexity, i.e. the perturba-
tional complexity index (PCI). They demonstrated that this index can reliably
discriminate between different physiological, pharmacological, and pathological
levels of consciousness (Casali et al., 2013).

Recently, researchers have started to investigate how the TMS/hd-EEG per-
turbation might be constrained and shaped by brain structure, either by explor-
ing the correlation between TMS-induced interhemispheric signal propagation
and neuroanatomy (Groppa et al., 2013; Voineskos et al., 2010), or by improving
the modeling of the TMS-induced electric field using realistic neural geometry
(De Geeter et al., 2015; Bortoletto et al., 2015). Besides, it has lately been shown
that cortical networks derived from source EEG connectivity partially reflects
both direct and indirect underlying white matter connectivity in a broad range
of frequencies (Chu et al., 2014).

In this respect, the development of diffusion magnetic resonance imaging
(dMRI) (Basser, 1995) might add information on the structural architecture
of the brain (Catani et al., 2002). The application of deterministic and prob-
abilistic tractography methods allows for the spatial topography of the white
matter, which represents bundles coherently organized and myelinated axons
(Song et al., 2002). The output of tractography algorithms permits anatomi-
cally plausible visualization of white matter pathways (Hofer and Frahm, 2006)
and has led to reliable quantification (Voineskos et al., 2009) of structural con-
nections between brain regions (i.e. the brain connectome (Sporns et al., 2005;
Bullmore and Sporns, 2009)).

The purpose of this paper is to investigate EEG changes of information flow
in the brain induced by TMS from both a functional and structural perspective,
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using multimodal modeling of source reconstructed TMS/hd-EEG recordings
and dMRI tractography. The study of information transfer after the pertur-
bation can possibly help in understanding the structure-function modulation
caused by TMS (i.e. the extent to which TMS-induced EEG dynamics is con-
strained by white matter pathways) and the specific frequency bands of the
involved brain regions. Functional and structural connectivity in the brain are
known to be closely correlated (Bullmore and Sporns, 2009; Honey et al., 2009;
Chu et al., 2014), but their interactions remain only poorly understood (Honey
et al., 2010).

Taking the aforementioned recent findings as a starting point, we here aim
to assess: 1) if the extent to which information transfer changes in a cortical
region, as a consequence of the induced perturbation, is related to the number
of fiber pathways passing through it (Chu et al., 2014); 2) whether the tem-
poral variability of the response to TMS has specific spectral EEG signatures
(Rosanova et al., 2009); 3) the role of these “natural frequencies” in the flow
spread during TMS and in the structure-function interactions (Massimini et al.,
2005; Casali et al., 2013; Rosanova et al., 2009).

We will first present the processing pipelines for TMS-EEG and dMRI data.
Second, the mathematical methodology for the evaluation of the information
flow between brain regions and its correlation with the structural connectome
will be presented. Finally, results obtained in a cohort of healthy volunteers
(n = 14) will be presented and discussed.

Materials and Methods

TMS/hd-EEG recordings

Acquisition and preprocessing TMS/hd-EEG data were acquired in 14
healthy awake adults (6 males and 8 females, age range 23-37 years) as published
elsewhere (Casali et al., 2013; Rosanova et al., 2012). In brief, subjects were
lying with eyes open looking at a fixation point on a screen. All participants
gave written informed consent and underwent clinical examinations to rule out
any potential adverse effect of TMS. The TMS/hd-EEG experimental procedure,
approved by the Local Ethical Committee of University of Liège, was performed
using a figure-of-eight coil driven by a mobile unit (eXimia TMS Stimulator,
Nexstim Ltd., Finland), targeting two cortical areas (left precuneus and left
premotor) for at least 200 trials. These areas were selected for the following
reasons: (i) they are easily accessible and far from major head or facial muscles
whose activation may affect EEG recordings and (ii) previous TMS/EEG studies
have been successfully performed in these areas during wakefulness (Rosanova
et al., 2009).

The left precuneus and left premotor targets were identified on the sub-
jects 3D T1 brain scan and reached through the neuronavigation system (NBS,
Nexstim Ltd, Finland) using stereoscopic infrared tracking camera and reflec-
tive sensors on the subject’s head and the stimulating coil. A stimulation target
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was chosen in the middle of the area, and we modified slightly its position, as
well as the stimulation parameters (intensity, angle, direction) in order to avoid
artifacts and get the best response (i.e. the higher signal to noise ratio). Sta-
bility of the coil position was assured by using an aiming device allowing the
stimulation only when the deviation from the target was less than 2 mm. The
intensity was chosen in order to assure an induced electrical field at the cortical
level between 100 and 140 V/m. The location of the maximum electric field
induced by TMS on the cortical surface was always kept on the convexity of the
targeted gyrus with the induced current perpendicular to its main axis. Stimu-
lation was delivered with an interstimulus interval jittering randomly between
2000 and 2300 ms (0.4–0.5Hz).

Stimulation coordinates were recorded and the electrodes positions were dig-
itized. Trigeminal stimulation and muscle artefacts were minimized by placing
the coil on a scalp area close to the midline, far away from facial or tempo-
ral muscles and nerve endings. To prevent contamination of TMS-evoked EEG
potentials by the auditory response to the coil’s click, subjects wore earphones
through which a noise masking, reproducing the time-varying frequency com-
ponents of the TMS click, was played throughout each TMS/hd-EEG session.
Our EEG amplifier (60 channels, 2 additional electrooculograms) uses a sample-
and-hold mechanism to avoid the TMS induced artefact. In combination with
the flat open ring carbon electrode design and the low impedance, it allows to
recover a usable EEG signal 8 to 10 ms after the pulse.

In this study we did not perform a sham condition, as it was performed in
previous studies using exactly the same setup as we used in our experiments,
as well as in two other studies using a different setup. These studies showed
that the TMS evoked potentials were absent in the sham condition, and that
they were not confounded by auditory evoked potentials (Massimini et al., 2005;
Rosanova et al., 2009, 2012; Ragazzoni et al., 2013).

Out of the initial 14 subjects, we excluded 5 of them for the precuneus and
2 for premotor, because of a low signal-to-noise ratio of TMS/EEG-evoked re-
sponses. TMS trials containing noise, muscle activity, or eye movements were
detected and rejected (Rosanova et al., 2012). EEG data were average refer-
enced, downsampled at half of the original sampling rate (from 725 Hz to 362
Hz), and bandpass filtered (2 to 80 Hz).

Source reconstruction was performed as in (Casali et al., 2013). Conductive
head volume was modeled according to the 3-spheres BERG method (Berg and
Scherg, 1994) as implemented in the Brainstorm software package (freely avail-
able at: http://neuroimage.usc.edu/brainstorm) and included three concentric
spheres with different homogeneous conductivity, representing the best-fitting
spheres of inner skull, outer skull and scalp compartments extracted from in-
dividual MRIs. The solution space was constrained to the cerebral cortex that
was modeled as a three-dimensional grid of 3004 fixed dipoles oriented normally
to cortical surface. This model was adapted to the anatomy of each subject
using the Statistical Parametric Mapping software package (SPM8, freely avail-
able at: http://www.fil.ion.bpmf.ac.uk/spm) as follows: binary masks of skull
and scalp obtained from individual MRIs were warped to the corresponding
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canonical meshes of the Montreal Neurological Institute (MNI) atlas. Then, the
inverse transformation was applied to the MNI canonical mesh of the cortex for
approximating to real anatomy.

Finally, EEG sensors and individual meshes were co-registered by rigid ro-
tations and translations of digitized landmarks (nasion, left and right tragus).
The single trial distribution of electrical sources in the brain was estimated by
applying the empirical Bayesian approach as described in (Phillips et al., 2005;
Mattout et al., 2006).

In order to summarize significant functional measures over anatomically
and/or functionally identifiable brain regions, the time courses of the 3004 recon-
structed sources were then averaged into the specific 90 cortical and subcortical
areas of the Automated Anatomical Labeling (AAL) (Tzourio-Mazoyer et al.,
2002) parcellation (Fig.1), according to their position on the cortical mesh.

dMRI data

Acquisition and preprocessing A series of diffusion-weighted magnetic res-
onance images (dwi) of brain anatomy were acquired in each participant using
a Siemens Trio Magnetom 3 Tesla system (Siemens Trio, University Hospital of
Liege, Belgium). Diffusion-weighted images were acquired at a b-value of 1000
s/mm2 using 64 encoding gradients that were uniformly distributed in space by
an electrostatic repulsion approach (Jones et al., 1999). Voxels had dimensions
of 1.8 x 1.8 x 3.3 mm3 and volumes were acquired in 45 transverse slices using a
128 x 128 voxel matrix. A single T1-weighted 3D magnetization-prepared rapid
gradient echo sequence (MPRAGE) image, with isotropic resolution of 1 mm3,
was also acquired for each subject.

Diffusion volumes were analysed using typical preprocessing steps in dMRI
(Zalesky et al., 2014; Caeyenberghs et al., 2012). Eddy current correction for
each participant was achieved using FDT, v2.0, the diffusion toolkit within
FSL 5.0 (FMRIBs Software Library; http://www.fmrib.ox.ac.uk/fsl). The eddy
current correction step minimized distortions induced by eddy currents and also
aligned each diffusion weighted volume to the first non-diffusion weighted volume
to correct for simple intra-acquisition head movement. Rotations applied to
the diffusion-weighted volumes were also applied to the corresponding gradient
directions (Leemans and Jones, 2009). A fractional anisotropy (FA) image was
estimated using weighted linear least squares fitted to the log-transformed data
for each subject.

Registration of the anatomical image and atlas parcellation We seg-
mented each subject’s T1-weighted image into whole-brain white matter (WM),
gray matter (GM), and cerebrospinal fluid (CSF) masks using FAST, part of
FSL (FMRIB Software Library v 5.0). The corresponding white matter mask
image was registered without resampling to the relevant dwi series (target image
= thresholded FA image (FA > 0.2)) using FLIRT, v5.5, 12 degrees of freedom,
nearest neighbour interpolation, mutual information cost function (Smith et al.,
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2004). The registration was performed without resampling in order to maintain
the high spatial resolution of the structural image in the diffusion space.

As previously stated, the 90 cortical and subcortical nodes comprising the
automated anatomical labeling (AAL) template (Tzourio-Mazoyer et al. 2002)
were used as candidate atlas. The atlas was first registered to the T1 space using
linear (FSL flirt) and non-linear warping (FSL FNIRT) in order to achieve the
best registration into each subject’s space. Then, the single subject AAL tem-
plate was finally registered without resampling to the dwi space using the affine
transform resulting from the WM registration. This transformation matrix was
also applied to the T1-derived GM mask which was used as termination mask
for the tractography analysis.

Tractography and connectome construction The fiber response model
was estimated for each subject from the high b-value (b = 1000 s/mm2)
diffusion-weighted images. A mask of single fiber voxels was extracted from
the thresholded and eroded FA images. Only strongly anisotropic (FA > 0.7)
voxels were used to estimate the spherical-harmonic coefficients of the response
function (Tournier et al., 2004, 2008). Using non-negativity constrained spheri-
cal deconvolution, fiber orientation distribution (FOD) functions were obtained
at each voxel using the MRTRIX3 package (J-D Tournier, Brain Research Insti-
tute, Melbourne, Australia, https://github.com/jdtournier/mrtrix3) (Tournier
et al., 2012). For both the response estimation and spherical deconvolution
steps we chose a maximum harmonic order lmax of 6.

Probabilistic tractography was performed using randomly placed seeds
within subject-specific white matter masks, registered as mentioned in the lat-
ter. Fiber tracking settings were as follows: number of tracks = 10 million,
FOD magnitude cutoff for terminating tracks = 0.1, minimum track length =
5 mm, maximum track length = 200 mm, minimum radius of curvature = 1
mm, tracking algorithm step size = 0.5 mm. Streamlines were terminated when
they extended out of the WM-GM mask interface, or could not progress along a
direction with an FOD magnitude or curvature radius higher than the minimum
cutoffs.

The streamlines obtained were mapped to the relevant nodes defined by
the AAL parcellation registered in the subject’s dwi space, using MRTRIX3
(Tournier et al., 2012). Each streamline termination was assigned to the nearest
gray matter parcel within a 2 mm search radius. The resulting connectome
was finally examined by determining the connection density (number of fiber
connections per unit surface) between any two regions of the AAL template, as
in (Caeyenberghs et al., 2012) (see also Fig.1). This correction was needed to
account for the variable size of the cortical ROIs of the AAL template (Hagmann
et al., 2008).

TMS/hd-EEG directed functional connectivity estimation

Spectrum-weighted adaptive directed transfer function Since we were
interested in studying information transfer in the frequency domain, we eval-
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Figure 1: Flow chart of TMS/EEG-dMRI modeling. Up: the time courses
of the 3004 reconstructed dipoles were averaged into the parcels of the Auto-
mated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002), con-
sisting of 90 unique brain regions (cerebellar regions were excluded from the
analysis). The 90 time courses obtained were modeled using spectrum-weighted
adaptive directed transfer function (swADTF)(Van Mierlo et al., 2011, 2013).
swADTF returns the causal interactions between the cortical regions (90x90
time varying directed functional connectivity matrices) at a specific frequency
interval (f1,f2). Bottom: for each dMRI dataset whole-brain probabilistic trac-
tography was performed using a combination of FSL and MRTRIX (see Ma-
terials and methods). The AAL atlas was then used to segment the fiber
bundles between each pair of ROIs. Next, we determined the percentage of
tracts between each pair of regions of the AAL template, resulting in a 90x90
structural connectivity matrix.
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uated directed functional connectivity using a multivariate model of spectral
coefficients, i.e. the directed transfer function (DTF) (Kaminski and Blinowska,
1991; Kamiński et al., 2001; Babiloni et al., 2005). In order to cope with the
non-stationary nature of the signals under study, we used the adaptive directed
transfer function (ADTF) (Astolfi et al., 2008; Wilke et al., 2008). Specifi-
cally, we adopted the spectrum-weighted adaptive directed transfer function
(swADTF)(Van Mierlo et al., 2013), which has been successfully used for con-
nectivity modeling of epileptic intracranial EEG data (Van Mierlo et al., 2011,
2013).

A time-variant multivariate autoregressive (TVAR) model is built from the
TMS/hd-EEG sources by using the Kalman filtering algorithm (Arnold et al.,
1998; Schlögl et al., 2000; Van Mierlo et al., 2011). The time-variant connectivity
measure, the swADTF, is calculated from the coefficients of the TVAR model
as follows:

swADTFij(t) =
∑f2

f=f1
|Hij(f,t)|2

∑K
k=1 |Hjk(f,t)|2∑K

l=1

∑f2
f′=f1

|Hil(f ′,t)2
∑K

s=1 |Hls(f ′,t)|2
(1)

where Hij(f, t) in eq. 1 is the time-variant transfer matrix of the system
describing the information flow from signal j to i at frequency f at time t, for
each of the K signals. Each term Hij(f, t) is weighted by the autospectrum of
the sending (in this case j) signal.

The swADTF allows us to investigate the causal relation between all the sig-
nals at a predefined frequency band over time. The measure weighs all outgoing
information flow present in the terms Hij(f, t) by the power spectrum of the
sending signal j. Each swADTF value corresponds to the directed time-variant
strength of the information flow between two nodes. This dynamic interaction
between nodes can also be represented as a series of time-varying directed ma-
trices (see also Fig.1). The swADTF is normalized so that the sum of incoming
information flow into a channel at each time point is equal to 1:

K∑
k=1

swADTFik(t) = 1 (2)

TMS/EEG-dMRI multimodal integration

Outdegree computation and statistical assessment We computed di-
rected functional connectivity (swADTF) on the brain network defined by the
anatomical atlas (AAL) reconstructed sources for each subject. Two parameters
are needed for the swADTF calculation: the model order (p) and the update
coefficient (UC). The model order defines how many previous time points are
taken into account to update the dynamic interaction between nodes. The
update coefficient defines how quickly the model will adapt to changes in the
dataset. In this paper we set p = 5 and UC = 0.001. A detailed discussion on
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the implementation and the setup of the parameters can be found in (Van Mierlo
et al., 2011).

The swADTF was calculated in 3 frequency bands: α (8-12 Hz), β (13-20
Hz), β2/γ (21-50 Hz). This choice followed the evidence that TMS on healthy
awake subjects consistently evoked dominant EEG oscillations in different corti-
cal areas (Rosanova et al., 2009). In particular, precuneus was shown to respond
to TMS in the β band, the premotor area in the β2/γ and the occipital in α.
These findings suggest that different brain areas might be normally tuned to
oscillate at a characteristic rate (i.e. natural frequency)(Rosanova et al., 2009).

In order to track modulations of information flow due to TMS, we considered
2 different non-overlapping windows of 300 ms: a “baseline”, pre TMS stimulus,
extended from 500 ms to 200 ms before the TMS pulse; a “post stimulus”,
directly after TMS, which captures the dynamics from 20 to 300 ms after the
pulse (the first 20 ms were discarded to minimize the effect of possible artifacts
occurring at the time of stimulation, (Rogasch et al., 2013; Rosanova et al.,
2009)).

We obtained the mean global outgoing flow from a region j before and after
the stimulation by averaging the swADTF time courses in each of the two time
windows and by summing the average amount of information transferred from j
to each node of the network. In network terms, this quantity is called Outdegree.
In our case, for each frequency band and window (i.e. baseline or post stimulus):

Outdegreej =

K∑
k=1

Cjk, ∀ k, j = 1...K, (3)

where K = 90 in our case (i.e. the number of AAL regions), and C is the
connectivity matrix constructed by averaging the swADTF time courses within
each window. All self-edges were set to 0. By using this procedure we aimed to
obtain an illustrative snapshot of the total information flow from a region j at
a specific stage of the TMS process (i.e. baseline or post stimulus).

In order to detect significant group changes in the Outdegree before and after
the stimulation, a two-sample t-test of the post stimulus Outdegree against the
correspondent baseline Outdegree was performed in each region. The choice
of this statistical test over others was dictated by the fact that swADTF time
courses are computed using a Kalman filtering algorithm, which assumes that
error terms and noise are normally distributed (Van Mierlo et al., 2011; Arnold
et al., 1998). Post stimulus Outdegree values were considered significant at
p ≤ 0.05, False Discovery Rate (FDR) corrected for multiple comparisons (i.e.
for K = 90 independent tests).

For each subject, the structural Outdegree of a node j (OutSC) was sim-
ply calculated from the structural connectivity matrix S by summing over its
columns.

OutSCj =
K∑

k=1

Sjk, ∀ j = 1...K, (4)
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Figure 2: Time-varying spatial correlation between directed functional
connectivity and structural connectivity. Each plot shows the average
over subjects of the dynamic spatial correlation between the directed functional
connectivity (swADTF) matrices and the structural connectivity (SC) in func-
tion of time (blue line, standard error in shaded blue), for the three different
frequency bands (α, β, β2/γ, (Rosanova et al., 2009)). The red line indicates
the mean baseline value, the dashed lines represent 95% confidence interval of
the empirical baseline distribution (see Materials and Methods). Note the
TMS-induced decrease in the observed structure-function correlation, for both
stimulation sites and in each frequency band.
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Structure-function correlations and statistical assessment The dy-
namic interaction between regions modeled by swADTF can be represented
as a series of time-varying directed connectivity matrices (see also Fig.1). In
each frequency band, dynamic spatial correlation was defined as the mean row-
by-row Pearson’s correlation at each time point between each subject’s directed
functional connectivity matrix and the correspondent structural connectivity
matrix.

The confidence intervals for the Pearson’s correlation distribution at the
baseline were calculated by using a non-parametric bootstrap procedure (Efron
and Tibshirani, 1986). The correlation coefficient was recomputed n = 100
times on the resampled data obtained by n random permutations of the values
in the directed functional connectivity matrices at each time point of the base-
line, while leaving the structural connectivity matrix unchanged. The empirical
distribution of the resampled dynamic spatial correlation values at the baseline
was used to approximate the sampling distribution of the statistic. A 95% con-
fidence interval for the baseline was then defined as the interval spanning from
the 2.5th to the 97.5th percentile of the obtained distribution. Values in dy-
namic spatial correlation that were falling outside this interval were considered
significantly different from the baseline correlation.

To test for local structure-function interactions, we computed group-wise
Spearman’s correlation between the cortical regions where the post stimulus
Outdegree was significantly different from baseline and their correspondent
OutSC value. Correlation was considered significant at p ≤ 0.05, where Spear-
man’s p-values were calculated using the exact permutation distributions for
small sample sizes (Best and Roberts, 1975).

Following the hypothesis that TMS pulse gives rise to different connected
cortical regions in the brain at different natural frequencies depending on the
stimulated area (Rosanova et al., 2009), we evaluated structure-function corre-
lation between flow information at the natural frequency and structural con-
nectivity in three regions-of-interest (ROIs), previously defined and validated
in (Rosanova et al., 2009) (i.e. occipital, precuneal and premotor area; Broad-
mann area 19, 7 and 6 respectively, see also Table 3 for a detailed list of the
AAL regions included).

Dynamic spatial correlation was here evaluated by concatenating the
swADTF time courses of each AAL region in the ROIs at its own natural fre-
quency band (i.e. α for the occipital area, β for precuneus, β2/γ for premotor, as
specified in (Rosanova et al., 2009)) and the corresponding fiber densities from
the structural connectivity matrix. The confidence intervals were again calcu-
lated from the empirical baseline distribution using a non-parametric bootstrap
procedure (Efron and Tibshirani, 1986), as formerly explained.

Results

The dynamic spatial correlation between the directed functional connectivity
(swADTF) and the connectome, for the two different sites of stimulation (i.e.
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Figure 3: Information flow across cortical regions after TMS. Snapshot
of differences between baseline and post TMS stimulus information transfer (i.e.
Outdegree) at p < 0.05, FDR corrected (see Materials and Methods) across
cortical regions, for the three predefined frequency bands (α, β, β2/γ (Rosanova
et al., 2009)), obtained by averaging the swADTF time courses from 20 to 300
ms after the pulse. The red circles represent the stimulation site. Note that the
precuneus area has a maximum of information flow in the β band in proximity
of the stimulation site, whereas the premotor has a maxima in the β2/γ band,
more spread towards the hemisphere controlateral to the stimulation site. These
brain images were obtained using BrainNet Viewer (Xia et al., 2013).
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Figure 4: Local correlation between information flow and structural
connectivity after TMS. Snapshot of the multi-subject Spearman’s corre-
lation across cortical regions, for the three predefined frequency bands (α, β,
β2/γ (Rosanova et al., 2009)), obtained by correlating regions with significant
post stimulus Outdegree with their correspondent OutSC (see Materials and
Methods). The red circles represent the stimulation site. These brain images
were obtained using BrainNet Viewer (Xia et al., 2013).
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left precuneus and left premotor) and for each of the three chosen frequency
bands (i.e. α, β, β2/γ) deviates from baseline directly after the TMS pulse
(Fig.2). This global network behavior does not depend on the subject or the
stimulation site. The stable baseline configuration is then recovered after 200-
300 ms, depending on the frequency band. Specifically, this temporary mod-
ification generated by TMS over the brain network is more pronounced (i.e.
higher deviation from the baseline correlation) and faster in the β2/γ and β
bands, while the return to baseline seems slower and less peaked in the α band.

The significant differences (Table 1) in information flow across cortical re-
gions after TMS perturbation are illustrated by projecting the OutDegree onto
the anatomical template (Fig.3, see also the movies in Supplementary Ma-
terial). The two sites of stimulation have peaks in information transfer at
different frequency bands. In particular, the precuneus area has a maximum of
information flow in the β band in proximity of the stimulation site, whereas the
premotor has a maxima in the β2/γ band, more spread towards the hemisphere
controlateral to the stimulation site.

Inter-subject Spearman’s correlation between the significant Outdegree val-
ues and their correspondent OutSC values also shows significant local peaks
(Table 2) in proximity of the stimulation site (Fig.4), in the same frequency
bands (i.e. β for precuneus and β2/γ for premotor). These results are in line
with a previous study (Rosanova et al., 2009), where the authors showed that
TMS on healthy awake subjects consistently evokes dominant oscillation in sev-
eral cortical areas, particularly in 3 specific ROIs (i.e. occipital, precuneal and
premotor area; Broadmann area 19, 7 and 6 respectively, see also Table 3). The
evidence that each different brain area can be normally tuned by TMS to os-
cillate at a characteristic rate (i.e. natural frequency) might also explain the
drop in structure-function correlation depicted in Fig.2. In fact, assuming that
each of the 90 AAL cortical regions respond to TMS by oscillating at its pecu-
liar natural frequency, the emergence of this complex between-band interaction
might generate a consequent deflection in the within-band structure-function
correlation (Fig.2). To further investigate this hypothesis, the dynamic spa-
tial correlation between the directed functional connectivity (swADTF) of the 3
ROIs previously validated in (Rosanova et al., 2009) (see also Table 3) and the
connectome, for both sites of stimulation, was calculated (Fig.5). As opposed
to Fig.2, here for each ROI we evaluated the swADTF time course at its own
natural frequency band (i.e. α for the occipital area, β for precuneus, β2/γ for
premotor). The structure-function correlation significantly increases from the
baseline, for both sites of stimulation (Fig.5). Notably, the increase is significant
when the natural frequency bands of each ROIs are taken into consideration.
On the other hand, this effect is not reproduced when considering frequency
bands other than the natural ones for each ROI (Fig. S1 in Supplementary
Material).
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Figure 5: Time-varying spatial correlation at the natural frequency.
Each plot shows the average over subjects of the dynamic spatial correlation
(blue line, standard error in shaded blue) between the directed functional con-
nectivity (swADTF) and structural connectivity (SC) for the ROIs defined in
(Rosanova et al., 2009) (i.e. occipital, precuneus and premotor, see also Table
3), at their correspondent natural frequency bands (i.e. α, β, β2/γ respectively
(Rosanova et al., 2009) ), for both sites of stimulation. The continuous red line
indicates the mean baseline value, the dashed lines represent 95% confidence
interval of the empirical baseline distribution (see Materials and Methods).
Note the increase in structure–function correlation for both sites of stimulation
after TMS, when taking into account natural frequencies. This effect is not
reproduced when considering frequency bands other than the natural ones for
each ROI (Fig. S1 in Supplementary Material).
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Discussion

The relationship between structure and functional properties of brain networks
at the macroscopic scale is a timely and challenging topic, currently investigated
by means of different neuroimaging techniques (EEG, fMRI, dMRI) (Honey
et al., 2010). In this work we studied the interplay between directed functional
connectivity computed from TMS reconstructed EEG sources and the connec-
tome extracted from whole-brain dMRI tractography. This is an unprecedented
study of the relationship between brain structure (dMRI) and EEG dynamics
using TMS as a probe of causal interaction.

It is known that stimulating peripheral receptors of different sensory systems
results in evoked potentials with specific latencies, waveforms, and spectral com-
ponents (Neidermeyer, 1999). TMS is also known to evoke electrical activations
not only at the stimulated site but also in distant cortical regions (Ilmoniemi
et al., 1997; Massimini et al., 2005). A previous study by Rosanova and col-
leagues revealed that distant areas, when activated by TMS, responded with
oscillations closer to their own “natural” frequency (Rosanova et al., 2009).
Nevertheless, the link between functional response to TMS and structural prop-
erties of the brain is still far from being clearly assessed.

As a first step, we compared structural and directed functional connectivity
at the whole network level for different EEG bands (α, β, β2/γ). We observed a
temporary decrease in the correlation between directed connectivity and struc-
tural connectivity after TMS. The extent and the duration of this deviation
depended on the response of the brain network to the perturbation, involving
different connected population of neural oscillators, each one with a character-
istic operating frequency. In particular, we showed that, after stimulation, pre-
cuneus sends out information mostly in the β band, whereas premotor has peaks
of information flow in the β2/γ band (Fig 3, Table 1). Assuming that the brain
reacts to the perturbation with a complex pattern at mixed frequencies, then
our findings suggest that the within-band deviation in the structure-function
interplay after TMS might be caused by the rising between-band interactions
in the whole brain network (Fig.2).

Our analysis on peaks of significant changes in information flow and local
structure-function interactions at different frequency bands corroborated the
hypothesis that TMS evokes dominant oscillation in different cortical areas at
a characteristic rate (Rosanova et al., 2009). Each stimulated area appeared
to mainly respond to the stimulation by sending the maximum amount infor-
mation to the rest of the network in specific “natural” frequency bands, i.e.
β for precuneus and β2/γ for premotor (Fig. 3, Table 1). Furthermore, the
information sent from the stimulated region after the stimulation highly corre-
lates with its structural connectivity (Fig. 4, Table 2), suggesting that the flow
of information generated by cortical oscillations at different natural frequencies
might be shaped and constrained by the structural architecture of the brain
network. These empirical findings are in line with previous results in the field
of theoretical brain network modeling (Marinazzo et al., 2012, 2014), where the
authors showed that the maximum outgoing flow achievable for a brain region
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Table 1: Percentage increase before/after stimulation for the AAL areas illus-
trated in Fig. 3 where information flow after TMS was significantly higher than
baseline (p < 0.05, FDR corrected, see Materials and Methods), for the two
sites of stimulation (left precuneus and left premotor) and the three different fre-
quency band (F.B., i.e. α, β, β2/γ). Top increment for each site of stimulation
is highlighted in bold.

TMS SITE: LEFT PRECUNEUS TMS SITE: LEFT PREMOTOR

AAL REGION INCREASE
(%)

F.B. AAL REGION INCREASE
(%)

F.B.

PrecentralL 120 α Supp Motor AreaL 210 α
Frontal MidL 133 α Supp Motor AreaR 190 α
Frontal Inf OperL 70 α Cingulum PostR 60 α
Rolandic OperL 60 α CuneusL 120 α
Supp Motor AreaL 40 α Occipital SupL 90 α
Cingulum PostR 53 α SupraMarginalR 50 α

PrecuneusL 80 α
Paracentral LobuleR 110 α

PrecentralL 150 β Frontal SupL 185 β
Frontal MidR 70 β Frontal MidL 150 β
Rolandic OperL 50 β Supp Motor AreaL 220 β
Supp Motor AreaL 90 β Supp Motor AreaR 260 β
Parietal InfL 167 β InsulaL 50 β
PrecuneusL 280 β Cingulum MidR 52 β

Cingulum PostR 35 β
CuneusR 30 β
Cingulum MidR 45 β

PrecentralL 233 β2/γ PrecentralL 118 β2/γ
Frontal SupL 152 β2/γ Frontal SupL 363 β2/γ
Supp Motor AreaL 126 β2/γ Frontal MidL 203 β2/γ
Supp Motor AreaR 130 β2/γ Frontal Mid OrbL 153 β2/γ
Cingulum MidL 100 β2/γ Supp Motor AreaL 330 β2/γ
Parietal InfL 110 β2/γ Supp Motor AreaR432 β2/γ
PrecuneusL 150 β2/γ Frontal Sup MedialR 65 β2/γ

InsulaL 33 β2/γ
Cingulum MidR 110 β2/γ
ThalamusL 33 β2/γ
Temporal MidL 53 β2/γ
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Table 2: List of local correlations (see Materials and Methods) after TMS
for the AAL areas illustrated in Fig. 4, for the two sites of stimulation (left
precuneus and left premotor) and the three different frequency band (F.B., i.e.
α, β, β2/γ). The highest correlation values for each site of stimulation are
highlighted in bold.

TMS SITE: LEFT PRECUNEUS TMS SITE: LEFT PREMOTOR

AAL REGION ρ F.B. AAL REGION ρ F.B.

PrecentralL −0.60 α Supp Motor AreaL +0.40 α
Frontal MidL +0.41 α Supp Motor AreaR +0.31 α
Frontal Inf OperL −0.34 α Cingulum PostR +0.33 α
Rolandic OperL +0.54 α CuneusL −0.60 α
Supp Motor AreaL +0.32 α Occipital SupL −0.32 α
OlfactoryR +0.60 α PrecuneusL −0.55 α
Cingulum AntR −0.44 α Paracentral LobuleR +0.40 α
Cingulum PostR +0.51 α ThalamusL −0.53 α
Temporal Pole MidL −0.36 α

PrecentralL +0.44 β PrecentralL −0.41 β
Frontal Inf OrbR +0.36 β Frontal SupL −0.34 β
Rolandic OperR -0.52 β Frontal MidL −0.39 β
Supp Motor AreaL +0.35 β Supp Motor AreaL −0.38 β
Supp Motor AreaR +0.38 β Supp Motor AreaR +0.41 β
InsulaR +0.45 β InsulaL +0.40 β
Cingulum MidL −0.49 β CuneusR +0.60 β
Parietal InfL +0.35 β Occipital SupR +0.41 β
PrecuneusL +0.65 β Occipital MidR +0.50 β
Paracentral LobuleL +0.41 β Occipital InfL +0.54 β
Temporal SupR −0.41 β Occipital InfR −0.56 β
Temporal MidL +0.33 β Temporal SupL +0.37 β

Temporal MidL −0.32 β
Temporal InfL +0.54 β

PrecentralL −0.60 β2/γ Frontal SupL +0.35 β2/γ
Supp Motor AreaL −0.60 β2/γ Supp Motor AreaL +0.45 β2/γ
LingualR +0.56 β2/γ Supp Motor AreaR +0.64 β2/γ
Parietal InfL +0.40 β2/γ ParaHippocampalL +0.37 β2/γ
ThalamusR +0.51 β2/γ CalcarineR +0.49 β2/γ
Temporal SupR −0.49 β2/γ CuneusR -0.42 β2/γ

β2/γ OccipitalSupL -0.30 β2/γ
ThalamusL −0.40 β2/γ
ThalamusR −0.34 β2/γ
Temporal MidR +0.37 β2/γ

depends on its structural boundary.
These findings brought us to explore the link between the “natural” fre-

quency response of some specific cortical areas and their structural architecture.
We investigated the dynamic correlation between structure and function for the
previously defined and validated ROIs in (Rosanova et al., 2009) (i.e. occipi-
tal, precuneal and premotor area; Broadmann area 19, 7 and 6 respectively, see
also Table 3). Interestingly, the correlation between transfer of information at
the natural frequency and structural connections increases after the stimulation
and reveals a long-lasting effect over the selected ROIs (Fig.5). Moreover, this
effect is not replicable when considering frequency bands other than the natural
ones for each ROI (Fig. S1 in Supplementary Material). This might suggest
that the interplay between cortical oscillators at specific resonant frequencies
is directed and driven by their structural coupling (i.e. the amount of tracts
connecting them).

These results lead to three main considerations. First, this work confirms the
hypothesis that different rhythms in the brain emerge after TMS, and that this
modulation is influenced by the structural connectivity among regions. This
dynamic interaction at different natural frequencies seems to reflect intrinsic
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properties of cortical regions, and the way those are interconnected (Rosanova
et al., 2009; Cona et al., 2011).

Secondly, our analysis permitted to evaluate the dynamic interactions be-
tween directed functional connectivity and anatomical connectivity, before and
after TMS. The interplay between flow of information and structural connec-
tivity at baseline is in line with findings reported in recent fMRI-dMRI studies
(Barttfeld et al., 2015; Honey et al., 2009), where the rich repertoire of brain
states do not necessarily correlate with the structural pattern. Here, our di-
rected connectivity approach also allowed the investigation of the causal effects
of systematic TMS-induced perturbations of the system, extending the insight
on the relationship between structure and function. We showed that the in-
formation flow following the pulse is more connected to the structural pattern,
when looking at natural frequencies (Fig. 5). This effect is not reproduced when
considering frequency bands other than the natural ones for each ROI (Fig. S1
in Supplementary Material).

Thirdly, our multimodal whole-brain approach gives new insight on how
TMS causally interferes with the brain network in healthy controls. More specif-
ically, our study points out the importance of taking into account the major role
played by different cortical oscillations when investigating the mechanisms for
integration and segregation of information in the human brain (Balduzzi and
Tononi, 2008; Casali et al., 2013). An interesting follow up of this study would
indeed be to look at differences in structure-function interactions either when
the cognitive function is pharmacologically modulated (i.e. anesthesia), or fol-
lowing pathology, damage or disruption in structural connections (i.e. coma and
disorder of consciousness)(Fornito et al., 2015).

Limitations

Given the intrinsic limitations of the EEG in terms of spatial resolution, it is
important to stress that the patterns of connectivity detected by TMS/hd-EEG
are necessarily coarse. Even though TEPs are characterized by a good test-
retest reproducibility (Lioumis et al., 2009), the inter–individual reproducibility
of the outgoing flow of information could be improved by a better computation
of the electric field induced by TMS. More advanced models (boundary, or finite,
element models) could improve the accuracy of the source localization (Wagner
et al., 2009).

We focused on TMS propagation through deep white matter pathways. It
has been shown that TMS enhances the gray matter field around the site of
stimulation (Opitz et al., 2011; Thielscher et al., 2011), and that certain su-
perficial white matter systems pose challenges for measuring long-range cortical
connections (Reveley et al., 2015). Future studies should also take into account
the effect of the propagation electrical field through gray matter and superficial
white matter fibers.

Another limitation of our study concerns the relatively small sample size and
the inter-subject variability at the tractography level. In addition, it has been
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Table 3: List of the AAL cortical areas included in the 3 regions-of-interest
(i.e. occipital, precuneal and premotor area; Brodmann area (BA) 19, 7 and 6
respectively, see (Rosanova et al., 2009)) and corresponding natural frequency
(N.F., (Rosanova et al., 2009)) selected for the analysis presented in Fig. 5.

AAL REGION ROI BA N.F.

Occipital Sup L Occipital 19 α
Occipital Sup R Occipital 19 α
Occipital Mid L Occipital 19 α
Occipital Mid R Occipital 19 α
Occipital Inf L Occipital 19 α
Occipital Inf R Occipital 19 α
Cingulum Post L Precuneus 7 β
Cingulum Post R Precuneus 7 β
Precuneus L Precuneus 7 β
Precuneus R Precuneus 7 β
Supp Motor Area L Premotor 6 β2/γ
Supp Motor Area R Premotor 6 β2/γ
Frontal Mid L Premotor 6 β2/γ
Frontal Mid R Premotor 6 β2/γ

shown that there are many brain regions with complex fiber architecture, also
referred to as crossing fibers (Jeurissen et al., 2011; Tournier et al., 2012). In
this context, tractography approaches based on more advanced diffusion models
(Jeurissen et al., 2011), or on more refined anatomical constraints (Smith et al.,
2012) may provide more accurate anatomical connectivity patterns of brain net-
works. Therefore, our approach works best for studying large scale interactions
than fine scale, local dynamics.

Finally, a b-value of 1000 s/mm2 is lower than the optimal one for performing
CSD, about 2500-3000 s/mm2 (Tournier et al., 2013). However, despite of a
low b-value, with a sufficient amount of directions crossing fibers can be reliably
modeled with CSD and the result is still significantly better than with a simple
DTI-based model, e.g. see (Roine et al., 2015) for a successful application.

Conclusions

This work showed that different rhythms in the brain are evoked by TMS, and
that this modulation is influenced by the structural connectivity among re-
gions. We assessed that EEG directed functional connectivity induced by TMS
is related to the underlying brain structure and to the frequency at which in-
formation is transferred. Crucially, in three specific cortical regions (precuneus,
premotor, occipital), these frequencies coincide with the local predominant fre-
quencies of TMS-induced activity. Our multimodal whole-brain analysis might
offer new insights on how TMS causally interferes with the brain network in
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healthy controls, highlighting the importance of taking into account the dy-
namics of different local oscillations when investigating the mechanisms for in-
tegration and segregation of information in the human brain.
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tahaka, P. Tani, A. Leemans, M. Sams, Constrained spherical deconvolution-
based tractography and tract-based spatial statistics show abnormal mi-
crostructural organization in asperger syndrome. Molecular autism 6(1), 1–12
(2015)

M. Rosanova, A. Casali, V. Bellina, F. Resta, M. Mariotti, M. Massimini, Natu-
ral frequencies of human corticothalamic circuits. The Journal of Neuroscience
29(24), 7679–7685 (2009)

M. Rosanova, O. Gosseries, S. Casarotto, M. Boly, A.G. Casali, M.-A. Bruno,
M. Mariotti, P. Boveroux, G. Tononi, S. Laureys, et al., Recovery of cortical
effective connectivity and recovery of consciousness in vegetative patients.
Brain, 340 (2012)
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