
1 
 

HacDivSel: Two new methods (haplotype-based and outlier-based) for the detection of 1 

divergent selection in pairs of populations of non-model species. 2 

 A. Carvajal-Rodríguez 3 

Departamento de Bioquímica, Genética e Inmunología. Universidad de Vigo, 36310 Vigo, 4 

Spain. 5 

 6 

Keywords: haplotype allelic class, FST, GST, outlier test, divergent selection, genome scan, 7 

non-model species. 8 

*: A. Carvajal-Rodríguez. Departamento de Bioquímica, Genética e Inmunología. Universidad 9 

de Vigo, 36310 Vigo, Spain. Phone: +34 986813828  10 

email: acraaj@uvigo.es  11 

Running title: HacDivSel: detection of divergent selection 12 

 13 

  14 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 6, 2016. ; https://doi.org/10.1101/026369doi: bioRxiv preprint 

mailto:acraaj@uvigo.es
https://doi.org/10.1101/026369
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract 15 

The detection of genomic regions involved in local adaptation is an important topic in 16 

current population genetics. There are several detection strategies depending on the kind of 17 

genetic and demographic information at hand. A common drawback is the high risk of false 18 

positives. In this study, we introduce two complementary methods for the detection of 19 

divergent selection from populations connected by migration. Both methods have been 20 

developed with the aim of being robust to false positives. The first method combines 21 

haplotype information with inter-population differentiation (FST). Evidence of divergent 22 

selection is concluded only when both the haplotype pattern and the FST value support it. 23 

The second method is developed for independently segregating markers i.e. there is no 24 

haplotype information at hand. In this case, the power to detect selection is attained by 25 

developing a new outlier test based on detecting a bimodal distribution. The test computes 26 

the FST outliers and then assumes that those of interest would have a different mode which 27 

is detected by a clustering algorithm. The utility of the two methods is demonstrated 28 

through simulations and the analysis of real data. The simulation results show power ranging 29 

from 60-94% in several of the scenarios while the false positive rate is controlled below the 30 

nominal level in every scenario. The analysis of data from intertidal marine snail ecotypes 31 

confirms lower number of outliers than previously estimated, maybe as a result of previous 32 

false positives or, alternatively, due to our outlier method conservativeness. The software 33 

HacDivSel implements both methods. 34 

 35 

 36 
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Introduction 37 

Current population genetics has an important focus on the detection of the signature of 38 

natural selection at the molecular level. The detection of the selection effect in a given DNA 39 

region matters because it may connect such region with key functionality or with past or 40 

ongoing selective events and, in general, may give us a deeper understanding of 41 

evolutionary processes. More specifically, it may help to understand the evolutionary 42 

mechanisms allowing the species adaptation to local conditions. The study of local 43 

adaptation processes implies that some genetic variant is favored by the local environmental 44 

conditions. The positively selected locus increase in frequency and the pattern of variation 45 

around that locus will change through the process known as selective sweep (Smith and 46 

Haigh 1974; Nielsen et al. 2005).  47 

There are many tests designed to detect different kind of effects produced by selective 48 

sweeps. Such effects can involve skewed site frequency spectra, high linkage disequilibrium 49 

or high rates of genetic divergence (Crisci et al. 2013; Jensen, Foll, and Bernatchez 2016). The 50 

information required by those tests is different; they could need knowledge about candidate 51 

adaptive loci, the haplotypic phase, the recombination rates, or the ancestral/derived status 52 

at each segregating site. This kind of information is often available for model organisms and 53 

so, in previous years, most of the effort was focused in humans and other model organisms.  54 

In the case of non-model organisms, the most useful methods for studying local adaptation 55 

have been those based on measuring genetic differentiation between populations. The idea 56 

behind these methods is that the loci involved in local adaptation would be outliers, i.e. 57 

would have unusually large values of FST. From its original formulation (LK test, Lewontin and 58 
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Krakauer 1973), this technique has been improved in several ways depending on the 59 

summary statistic’s -the FST or any other differentiation index - expected neutral distribution. 60 

That is, in order to account for more realistic situations, the different methods change the 61 

assumptions of the null demographic model (reviewed in Whitlock and Lotterhos 2015).  62 

Even so, one of the main drawbacks of outlier-based methods is the difficulty of defining an 63 

accurate null model since there are several historical events and demographic scenarios, 64 

other than local selection, that can produce similar FST patterns. Still in the presence of local 65 

adaptation we can expect different FST patterns, since the populations involved may be more 66 

or less connected by migration, and this will influence the structure of the genetic variation 67 

both at intra and inter-population levels. Consequently, when using outlier methods based 68 

on the deviation over an expected demographic null model, we always face the risk of 69 

having an excess of false positives (Perez-Figueroa et al. 2010; Bierne, Roze, and Welch 2013; 70 

De Mita et al. 2013; Lotterhos and Whitlock 2014).  71 

Another problem concerning outlier-based methods is that they have low power when the 72 

overall FST is high as it can happen when the genetic basis of the adaptation is polygenic or 73 

when the populations under study are subspecies (De Villemereuil et al. 2014; Whitlock and 74 

Lotterhos 2015). Fortunately, in recent years, the amount of information on genomes of 75 

several species has increased (Ellegren 2014) and consequently new and more sophisticated 76 

methods can now be applied to detect local adaptation in non-model organisms. As 77 

mentioned above, the linkage disequilibrium (LD) is the basis for several computational 78 

methods aiming the detection of selective sweeps (reviewed in Crisci et al. 2012). Some LD-79 

based methods try to identify the region with maximized LD (Kim and Nielsen 2004; Pavlidis, 80 
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Jensen, and Stephan 2010) while others explore the pattern of LD decay from candidate 81 

SNPs (Voight et al. 2006; Sabeti et al. 2007). However, only few LD-based methods have 82 

considered structured populations as the evolutionary scenario of interest. Still, there are 83 

rather different scenarios that can be evaluated under structured populations (Vatsiou, 84 

Bazin, and Gaggiotti 2016). Therefore, although LD-based tests can be powerful and robust 85 

for detecting selective sweeps in isolated or simple structured population scenarios with low 86 

migration rate, they are not, under several other realistic scenarios (Crisci et al. 2012; Crisci 87 

et al. 2013; Rivas, Dominguez-Garcia, and Carvajal-Rodriguez 2015; Vatsiou, Bazin, and 88 

Gaggiotti 2016). 89 

Moreover, the possibility of observing local adaptation with gene flow depends on the 90 

demography and on the genetic basis of the traits involved (Yeaman and Otto 2011). This 91 

complicates the performance of the methods under moderate-to-high migration scenarios 92 

(Vatsiou, Bazin, and Gaggiotti 2016). Thus, even if haplotype phase information is at hand, 93 

specific methods should be developed to detect local adaptation under structured 94 

population scenarios using LD-like patterns (Rivas, Dominguez-Garcia, and Carvajal-95 

Rodriguez 2015).  96 

The aim of this paper is to present two complementary methods specialized to detect 97 

divergent selection in pairs of populations with gene flow. Both methods are adequate for 98 

working with non-model species although the first requires an approximate knowledge of 99 

the phase of the SNPs under study. If the SNPs under evaluation are not linked then the 100 

second method should be applied. Our working definition for non-model species involves 101 

those for which we could have information about the haplotypic phase but we do not have 102 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 6, 2016. ; https://doi.org/10.1101/026369doi: bioRxiv preprint 

https://doi.org/10.1101/026369
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

estimates of recombination rates neither we have information on potentially adaptive loci 103 

nor we know the ancestral/derived status at each segregating site. This definition also 104 

implies that we barely have good knowledge about the demography of the populations 105 

under study and so, we cannot use a simulated neutral distribution to assess significance. 106 

The first method combines haplotype-based information with a diversity-based FST measure. 107 

It is a sliding-window method that performs automatic decision-making to fix the adequate 108 

window size. The second method is not haplotype-based and performs a two step FST outlier 109 

test. The first step of the algorithm consists in a heuristic search for different outlier clusters, 110 

the second step is just a conditional LK test that will be performed only if more than one 111 

cluster was found and in this case the test is applied through the cluster with the higher FST 112 

values.  113 

The design of the work is as follows: We begin developing the model for the haplotype-114 

based method and then, to deal with the case of fully unlinked SNPs, we build up the 115 

algorithm for a, conservative, extreme outlier set test (EOS). In the results section we first 116 

compare in the ROC (receiving operating characteristic) space, the two new methods with an 117 

LD-based (Omegaplus, Alachiotis, Stamatakis, and Pavlidis 2012) and with an outlier-based 118 

method (Foll and Gaggiotti 2008). Finally, the EOS test is applied to a recently published real 119 

data set and the results are discussed. We will show that our methods are able of detecting 120 

divergent selection with migration while being robust to false positives. 121 

 122 

 123 
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The nvdFST model  124 

In this section we improve a previous haplotype-based method for detecting divergent 125 

selection (Hussin et al. 2010; Rivas, Dominguez-Garcia, and Carvajal-Rodriguez 2015). The 126 

new statistic is called nvdFST because it combines a normalized variance difference, nvd, with 127 

the FST index. The nvd part performs a sliding-window approach to identify sites with specific 128 

selective patterns. When combined with the FST, it allows assessing significance of the 129 

candidate sites without the need of simulating neutral demography scenarios. Before 130 

developing the nvd formula, we review some concepts related with haplotype allelic classes. 131 

 132 

Generalized HAC variance difference  133 

A major-allele-reference haplotype (MARH) is an haplotype that carries only major 134 

frequency alleles of its constituting SNPs (Hussin et al. 2010). Then, for a given sample of 135 

haplotypes, we can define the mutational distance between any haplotype and MARH as the 136 

number of sites (SNPs) carrying a non-major (i.e. minor) allele. Each group of haplotypes 137 

having the same mutational distance will constitute a haplotype allelic class. Therefore (with 138 

some abuse of notation) we call HAC to the value of the mutational distance corresponding 139 

to each haplotype allelic class. That is, every haplotype having the same number of minor 140 

alleles belongs to the same HAC class.  141 

Given the definitions above, consider a sample of n haplotypes of length L SNPs. For each 142 

evaluated SNP i (i[1,L]) we can perform a partition of the haplotypes (and their HAC 143 

classes) into P1, the subset carrying the most frequent (major) allele at the SNP i and P2 the 144 
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subset with the remaining haplotypes carrying the minor allele at i. That is, let '0' to be the 145 

major allele for the SNP i and '1' for the minor. Then, P1 includes every haplotype carrying 146 

the allele '0' for the SNP i and P2 the remaining haplotypes carrying '1' for that SNP. In P1 we 147 

have different HAC values depending on the distance of each haplotype from MARH and 148 

similarly in P2. Within each subset we can compute the variance of the HACs. Thus, in P1 we 149 

have the variance S2
1i and correspondingly variance S2

2i in P2 where i refer to the SNP for 150 

which we have performed the partition.  151 

The rationale of the HAC-based methods relies on the sweeping effect of the selectively 152 

favored alleles. Therefore, if the SNP i is under ongoing selection then the variance in the 153 

partition 1 (S2
1i) will tend to be zero because the allele at higher frequency (i.e. the allele of 154 

the SNP i in the partition 1) is being favored and the sweeping effect will make the HAC 155 

values in this partition to be lower (because of sweeping of other major frequency alleles) 156 

consequently provoking lower variance values (Hussin et al. 2010). The variance in the 157 

second partition (S2
2i) should not be affected by the sweeping effect because it does not 158 

carry the favored allele. So, the difference S2
2i - S

2
1i would be highly positive in the presence 159 

of selection and not so otherwise. For a window size of L SNPs, the variance difference 160 

between P2 and P1 can be computed to obtain a summary statistic called Svd (Hussin et al. 161 

2010) that can be generalized to 162 

         
   
     

 

 
         

   .  163 

Where fi is the frequency of the derived allele of the SNP i, and the parameters b and a 164 

permit to give different weights depending on if it is desired to detect higher frequencies (a 165 

= 0) or more intermediate ones (a > 0) of the derived allele. If a = 0 and b = 1 the statistic 166 
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corresponds to the original Svd and if a =1 and b = 4 it corresponds to the variant called 167 

SvdM (Rivas, Dominguez-Garcia, and Carvajal-Rodriguez 2015). Note that when taking a = 1 168 

it is not necessary to distinguish between ancestral and derived alleles because fi and 1- fi 169 

are interchangeable. 170 

A drawback in the gSvd statistic is its dependence on the window size as has already been 171 

reported for the original Svd (Hussin et al. 2010; Rivas, Dominguez-Garcia, and Carvajal-172 

Rodriguez 2015). Although gSvd is normalized by L, the effect of the window size on the 173 

computation of variances is quadratic (see Supplementary Appendix A-1 for details) which 174 

explains why the normalization is not effective in avoiding a systematic increase of the 175 

statistic under larger window sizes. This impact of the window size is important because the 176 

partitions P1 and P2 may experience different scaling effects, which would increase the noise 177 

in the estimation. The change in the scale due to the window size will also be dependent on 178 

the recombination and selection rates. Thus, it is desirable to develop a HAC-based statistic 179 

not dependent on the window size. In what follows, the between-partition variance 180 

difference is reworked in order to develop a new normalized HAC-based statistic, specially 181 

focused on detecting divergent selection in local adaptation scenarios with migration. 182 

 183 

Normalized variance difference (nvd) 184 

We have seen that for any haplotype sample of size n, we can compute the statistic gSvd 185 

which basically is a difference between the HAC variances of the partitions P1 and P2. 186 

Remarkably, the corresponding HAC means and variances at each partition are related via 187 

the general mean and variance in that sample. Consider, for any candidate SNP, the mean 188 
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HAC distance, m, of the sample, and m1 and m2, the means corresponding to the partitions 189 

P1 and P2, respectively. We have the following relationships for the mean m and sample 190 

variance S2 (the subscripts 1 or 2 identify each partition; see the Appendix A-2 for details) 191 

    
         

 
;         

 

   
  (1)  192 

With      
          

            
 

   
 ; n1 and n2 are the sample sizes at each partition (n1  n2 by 193 

definition) and   
    

         
 . 194 

Using the relationships in (1), it is possible to compute the variance difference as appears in 195 

gSvd. However, we can substitute the parameters b and a by a = 1 and b = 4 as these are the 196 

values that permit to ignore the allelic state while maximizing the frequency product. In 197 

addition, it is also possible to consider the difference between means term (delta) in order to 198 

engage it in the detection of selection (see details in the Appendix). Thus, we finally obtain a 199 

new statistic for the variance difference of the candidate SNP i  200 

                          
     

   (2) 201 

where        
  

    
           202 

Therefore, the effect of selection upon vdi is two-fold. The first term of the sum in (2) 203 

corresponds to the effect of the difference between means and the second between 204 

variances. Clearly, increasing S2i or decreasing S1i, as expected under selection, will increase 205 

the value of the statistic. If S1i and S2i are equal then the value of vdi is independent of the 206 

variances and just relies on the term vdi0 corresponding to the partitions’ mean (m1 and m2) 207 
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and the candidate SNP frequencies. Please note that vdi0 is also the value of vdi when both 208 

variances are 0.  209 

It is worth mentioning that, because the HAC values are bounded by 0 and L, the two parts 210 

of vdi are not independent. So that, if we have an extreme value for the HAC mean in the 211 

selective partition, say m1 = 0, this implies that S1
2 = 0 since every haplotype has to have a 212 

HAC of 0 to get that mean value. Note however that the opposite is not true, a value of S1
2 = 213 

0 does not imply necessarily that m1 = 0. 214 

Having said that, it can be shown (see Appendix A-2) that when the variance of the sample 215 

(without the partitions) is maximized, we get an upper bound (dmax) for vdi  216 

      
   

      
  so that, 217 

             (3) 218 

If we divide (2) by dmax we have a normalized variance difference  219 

        
                  

    
  

    
  (4) 220 

The quantity from (4) can be computed for each SNP in a sample of sequences of any given 221 

length L and the SNP yielding the maximum nvd may be considered as a candidate for 222 

selection. Furthermore, in a two population setting, it is possible to compute (4) for each 223 

population or to combine the two populations in a unique sample. The latter is better for our 224 

purpose of looking for divergent selection in populations undergoing gene flow. When 225 

pooling both populations, the frequencies tend to be intermediate in the divergent selective 226 

sites. Therefore, we merge the shared SNPs from the two population samples and then we 227 
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compute the normalized variance difference using (4). Note however, that the reference 228 

haplotype (MARH) is defined just from one of the populations (by default the population 1). 229 

Because (4) is normalized by dmax the problem of scaling on the window size has been solved. 230 

However, the problem of choosing an optimal window size remains. A possible solution is to 231 

automate the choice by selecting the size which gives the maximum value for the statistic 232 

(Rivas, Dominguez-Garcia, and Carvajal-Rodriguez 2015). Therefore, for every SNP and 233 

window size, we consider the SNP having maximum nvd as the candidate for divergent 234 

selection between the two populations. 235 

At this point we already have a HAC-based statistic, nvd, that is independent of the window 236 

size and that should produce higher positive values for pairs of populations undergoing 237 

divergent selection. However, even if there is no selection, the maximum nvd value could 238 

also be positive. Unfortunately, we ignore the distribution of the statistic and cannot decide 239 

if a given maximum is supporting the hypothesis of selection or not. As well, we might not 240 

have enough information on the species to simulate its evolution under a given neutral 241 

demography. Therefore, we still need to identify whether the value obtained for a given 242 

sample, is due to the effect of selection, especially because we desire to put great emphasis 243 

on avoiding false positives.  244 

Consequently, we will perform two more measures before giving a diagnostic about the 245 

presence of divergent selection. The first is a sign test based on the lower bound of nvd, the 246 

second is the comparison between the FST of the SNP having the maximum nvd and the 247 

overall FST. 248 

 249 
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Sign test 250 

In our definition of nvd the term vdi0 cannot be negative. For that reason, it could happen 251 

that with a negative difference in variances and a high mean HAC value in the first partition, 252 

as expected under neutrality, the value of nvd could still be positive. Therefore, we use a 253 

lower bound of nvd to derive the quantity called test selection sign (tss, see Appendix A-3 for 254 

details) that would have negative value when the HAC values in the first partition are high 255 

     
                 

 
 

   
 (5) 256 

Where hac1h are the HAC values measured at each haplotype h in the partition 1 and the 257 

sum is over the n1 sequences in that partition. A negative sign in (5) suggests that the value 258 

of nvd is not the result of divergent selection. Indeed, we require (5) to be positive to count 259 

a given candidate as significant.  260 

Now, even if we have a candidate position identified by its high nvd value and by the positive 261 

sign of tss, we still lack a method for obtaining p-values associated to the sites chosen by the 262 

nvd algorithm. We can solve this problem if we combine the information on the selective 263 

candidate SNP, as given by nvd, with the FST interpopulation differentiation index at that site. 264 

The joint use of these methods produces the combined measure nvdFST. 265 

 266 

Combined method: nvdFST 267 

First, it is important to note that, when computing nvd, we have considered only the SNPs 268 

shared between both populations in order to avoid low informative loci with high sampling 269 
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variance (Whitlock and Lotterhos 2015). Thus, we have an nvd value that may indicate the 270 

presence of divergent selection in a pair of populations connected by migration. The 271 

rationale of the nvdFST approach is that if divergent selection acts on a specific site then the 272 

FST at that site would be higher compared to the overall FST. Then, we proceed as follows, let 273 

i be the candidate site chosen because it has the maximum nvd value, then we calculate the 274 

index Ii =  FSTi – FST comparing the FST measured at the candidate site with the overall. The FST 275 

values were computed following the algorithm in Ferretti et al (Ferretti, Ramos-Onsins, and 276 

Pérez-Enciso 2013). To obtain the p-value we do not perform an LK test (Lewontin and 277 

Krakauer 1973) because first, the candidate was not chosen for being an outlier and second, 278 

we are considering linked rather than independent sites. 279 

To get the p-value for a given index Ii, the data is resampled several times (500 by default) to 280 

generate an empirical distribution. The expected frequency of each SNP is obtained as the  281 

mean frequency between populations as this is the expectation under the homogenizing 282 

effect of migration (Crow and Kimura 1970). Then, for each resampling iteration, the 283 

probability of a given allele at each population is obtained from a binomial B(p,n), where p is 284 

the mean allelic frequency at that site and n the local population sample size. The p-values 285 

correspond to the proportion of times that the resampled indexes were larger than Ii.   286 

For candidates with similar frequencies at both populations we expect low index Ii and 287 

correspondingly high p-values. When the pooled frequency is intermediate; two situations 288 

are possible, first, each population has similar intermediate frequencies which again imply 289 

high p-values; or alternatively, the frequencies can be extreme and opposite at each 290 

population. In the latter, Ii is high and its p-value low. Note that, for each site, the resampling 291 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 6, 2016. ; https://doi.org/10.1101/026369doi: bioRxiv preprint 

https://doi.org/10.1101/026369
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

procedure has variance p(1-p)n which is larger at intermediate pooled frequency values. 292 

Thus, the method has the desired property to be more conservative at intermediate pooled 293 

frequencies which minimize the possibility of false positives.  294 

 295 

Effective number of independent SNPs, significance and q-value estimation 296 

We have computed nvd and the FST index and got a candidate site with its p-value. Since nvd 297 

was obtained after testing a number of positions on a given window size, it is desirable to 298 

apply a multiple test correction for the number of independent SNPs in the window. To 299 

roughly estimate the number of independent SNPs, we calculate the linkage disequilibrium 300 

measure D' (Lewontin 1988; Devlin and Risch 1995) at each pair of consecutive sites and 301 

then store the quantity r' = 1 – |D'| for each pair. The effective number of independent SNPs 302 

(Meffs) between site wini and wend is then obtained as one plus the summation of the r' values 303 

in the interval [wini , wend). The Šidák correction (Sidak 1967; Cheverud 2001) can now be 304 

applied to get the adjusted significance level c = 1 – (1 - )1/Meffs with nominal  (= 0.05 by 305 

default). Thus, the algorithm nvdFST would finally suggest a candidate as significant only 306 

when the sign as computed in (5) was positive and the p-value (as obtained in the previous 307 

section) is lower than c. 308 

The q-values (Storey 2003) can be seen as a multiple testing analogs of p-values. They have 309 

been proposed as an useful approach for evaluating method performance in terms of false 310 

discoveries (De Villemereuil et al. 2014). Accordingly, we estimate the q-value (see Appendix 311 

A-4 for details on the calculation) corresponding to each significant p-value.  312 
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 313 

The extreme outlier set test (EOS) 314 

The nvdFST method assumes the existence of a dense map of linked genetic markers. If the 315 

data consists mostly in independent markers this would provoke the failure to detect 316 

selection because the HAC-based information does not exist. To deal with this situation, a 317 

second method was implemented consisting in a two-step heuristic procedure that performs 318 

a conservative test for identifying extreme outliers.  319 

As already mentioned, the variance of the FST distribution is quite unpredictable under a 320 

variety of scenarios. This provokes high rates of false positives associated with the FST outlier 321 

tests. Our heuristic strategy takes advantage of the fact that, independently of the 322 

demographic scenario, the involved regions under divergent selection may produce extreme 323 

outliers that would be clustered apart from the neutral ones. The subsequent LK test is 324 

performed only when this kind of outliers is detected. As FST estimator we use GST (Nei 1973). 325 

The rationale of the algorithm is as follows. The first step consists in computing the extreme 326 

positive outliers in the sense of Tukey i.e. those sites having a FST value higher than 3 times 327 

the interquartile range (Tukey 1977). The second step identifies different classes inside the 328 

extreme outlier set. This is done by a k-means algorithm (Vattani 2011; Schubert, Zimek, and 329 

Kriegel 2012). Here, a k-modal distribution is assumed and all the elements in the outlier set 330 

are classified in one of the k classes. The class with lower values is discarded and only the 331 

elements, if any, in the upper classes having values higher than a cutoff point are maintained 332 

in the set. By default k = 2 and two modes {0, FSTu} were used corresponding to lower (0) and 333 
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upper (FSTu) bounds for the FST estimator (see Appendix A-5). The cutoff point is defined as 334 

the overall FST + FSTu / 3, i.e. the mean plus the square root of the upper-bound for the FST 335 

variance under an asymmetric unimodal distribution (Dharmadhikari and Joag-Dev 1989). 336 

Finally, for each of the candidates remaining in the EOS after the cutoff, the LK test 337 

(Lewontin and Krakauer 1973) is performed to compute its p-value. The Šidák correction 338 

(Sidak 1967; Cheverud 2001) for the number of remaining outliers in the set is applied to get 339 

the significance level. 340 

  341 

Software description 342 

Both nvdFST and the EOS test have been implemented in the program HacDivSel.  Complete 343 

details of the software can be found in the accompanying manual. We here just mention 344 

that the input program files may be in MS (Hudson 2002) or Fasta formats for the haplotype-345 

based test or in Genepop (Rousset 2008) or BayeScan (Foll and Gaggiotti 2008) formats if the 346 

data do not include haplotype information. The latter two allow variable sample size. In any 347 

case, the data should contain sequence samples from two populations. A typical command 348 

line for calling the program in order to analyze a file named sel.txt containing 50 sequences 349 

from each population, would be  350 

HacDivSel -input sel.txt  -sample 50 -candidates 10 -SL 0.05 -output anyname -format ms 351 

Where the label, -candidates 10, indicates that the ten highest nvd values should be included 352 

in the output. The program would analyze the file and produce as output the highest 10 353 

values and its significance at the 0.05 level for different window sizes after the nvdFST test. It 354 
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also performs the EOS test and gives the candidate outliers, if any, and their significance. 355 

Only the SNPs shared by the two populations are considered. Which imply that there are at 356 

least 4 copies of each SNP in the metapopulation. 357 

 358 

Simulations 359 

The simulation setting consists in a two population scenario under divergent selection 360 

connected by migration. There are several examples of adaptation to divergent 361 

environments connected by migration such as the intertidal marine snail L. saxattilis (Rolan-362 

Alvarez 2007), some wild populations of S. salar (Bourret et al. 2013), lake whitefish species 363 

(Renaut et al. 2011) and so on. To perform simulations as realistic as possible, we use some 364 

relevant demographic information from L. saxatilis, such as migration rates and population 365 

size as estimated from field data (Rolan-Alvarez 2007). Concerning selection intensities,  we 366 

considered moderate selection pressures and few loci with large effects (Thibert-Plante and 367 

Gavrilets 2013). Therefore, a model resembling the most favorable conditions for the 368 

formation of ecotypes under local adaptation with migration was implemented. 369 

The selective scenario ( = 4Ns) is divergent so that the allele favored in one population is 370 

the deleterious in the other. This simulation model involves low and high mutation rate 371 

(=4Nµ) and different recombination rates (ρ = 4Nr  {0, 4, 12, 60, unlinked}) and extends 372 

previous work (Rivas, Dominguez-Garcia, and Carvajal-Rodriguez 2015) by adding new 373 

parameter values and demographic scenarios. The whole setting is fully explained in the 374 

Supplementary Appendix (Appendix A-6). The simulations were performed using the last 375 

version of the program GenomePop2 (Carvajal-Rodriguez 2008). 376 
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The simulated data is also utilized for the comparison of nvdFST with OmegaPlus (Alachiotis, 377 

Stamatakis, and Pavlidis 2012) and of the EOS test with BayeScan 2.1 (Foll and Gaggiotti 378 

2008). We chose OmegaPlus because of its good performance, compared with other 379 

haplotype-based methods, under non-equilibrium demographic conditions (Crisci et al. 380 

2013). Several combinations of the parameters for OmegaPlus were tested in (Rivas, 381 

Dominguez-Garcia, and Carvajal-Rodriguez 2015), here we selected the ones with the best 382 

performance. BayeScan was chosen because it is one of the main state-of-the-art outlier-383 

based programs. The parameters for BayeScan were the default ones as this is a 384 

conservative setting and we were interested in comparing the false positive rates. Only SNPs 385 

shared between populations and with a minimum allele frequency (maf) of 2 per population 386 

(4%) were considered. 387 

 388 

Results 389 

In what follows we present the results after applying the tests to simulated and real data. 390 

The power of a test (true positive rate) is measured as the % of runs in which selection was 391 

detected from simulated selective scenarios and the false positive rate (FPR) is measured as 392 

the % of runs in which selection was detected from simulated neutral scenarios. The q-value 393 

(Storey 2003) is an estimate from the results (see Appendix A-4). 394 

ROC curves 395 

The ROC curve is a useful way to explore the performance of any detection statistic because 396 

it plots, under different conditions, the true positive rate (TPR or power, y-axis) against the 397 
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false positive rate (FPR, x-axis). Obviously, the best detection method would have high 398 

power and low FPR, which corresponds to the points in the upper-left corner of the ROC 399 

space. On the contrary, values close to the diagonal or no-discrimination line (NDL) would be 400 

considered as poor performing methods. Recall that we have developed two methods 401 

especially intended to be robust to false positives so we expect them to occupy at least the 402 

left side of the ROC. 403 

 In the ROC space of the Figure 1 we can appreciate the performance of nvdFST, EOS, 404 

OmegaPlus and BayesCan methods through the  = 600 and Nm=10, simulated scenarios. 405 

These scenarios include different mutation and recombination rates (see also Table 1 and 406 

Appendix A-6). Detailed results for each method and simulation setting are given in the next 407 

sections but the main general picture can already be obtained from this ROC curve. 408 

 409 
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 410 

Figure 1. ROC curves for nvdFST, EOS, OmegaPlus (Omega) and BayeScan (Bayes factor 3: BSBF3 and Bayes 411 
factor 100: BSBF100). FPR: False Positive Rate. 412 

 413 

The method nvdFST is the best performing one since it occupies the upper-left corner. 414 

However, the scenario with independent (unlinked) markers is not visible in the nvdFST plot 415 

since it has a (0, 0) coordinate (see Table 1 and next section below). For the nvdFST plotted 416 

scenarios, the power ranges between 80-90% (y-axis) and FPR (x-axis) is below 5%.  On the 417 

contrary, OmegaPlus is too close to the NDL diagonal under the same divergent selection 418 

scenarios.  419 

The BayeScan and EOS methods are plotted only for the unlinked and the weak-linkage ( = 420 

60; 1.5 cM/Mb) marker scenarios. The method BayeScan with a Bayes factor above 3 421 
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(BSBF3) is positioned too much at the right side which indicates too high false positive rates 422 

for both the unlinked (upper point in BSBF3 line) and the weak-linkage (lower point in BSBF3 423 

line) scenarios. However, with a Bayes factor of 100, BayeScan works very well for the 424 

unlinked scenario (upper point in BSBF100 line) but fails when markers are even slightly 425 

linked (the lower point in BSBF100 line). The EOS test performance for the slightly linked and 426 

unlinked scenarios is not bad in terms of power, and very good in terms of FPR since it 427 

occupies the left side of the plot. 428 

In the following sections we detail these and other results for nvdFST and EOS under the 429 

different simulated scenarios.  430 

 431 

Combined Method (nvdFST) 432 

Under a single locus architecture with selection  = 4Ns = 600 and migration Nm=10, the 433 

power of nvdFST vary between 79-94% for both medium (60 SNPs/Mb) and high density (250 434 

SNPs/Mb) maps (Table 1 and Figure 1). These results can be compared with published 435 

analysis (Rivas, Dominguez-Garcia, and Carvajal-Rodriguez 2015) with the methods Svd, 436 

SvdM and OmegaPlus (Alachiotis, Stamatakis, and Pavlidis 2012) for which  similar best 437 

results were obtained by Svd and SvdM for the same cases with high mutation and 438 

recombination (Rivas, Dominguez-Garcia, and Carvajal-Rodriguez 2015). However, recall that 439 

the methods Svd, SvdM and OmegaPlus oblige the user to perform simulations of a neutral 440 

demography to obtain the p-values for the tests, and consequently, the results in the Rivas 441 

and coworkers study, were obtained having the exact neutral demography at hand.  As it can 442 

be appreciated from rows 1 to 6 in Table 1 —that matches the scenarios in (Rivas, 443 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 6, 2016. ; https://doi.org/10.1101/026369doi: bioRxiv preprint 

https://doi.org/10.1101/026369
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

Dominguez-Garcia, and Carvajal-Rodriguez 2015)—the nvdFST performs well without the 444 

need of performing additional neutral simulations. Also, the false positive rate and the q-445 

value are low in all the scenarios. The given results are for 10,000 generations; the cases 446 

with 5,000 generations were similar.  447 

Under the polygenic architecture (n = 5 in Table 1) at least one candidate is found 99% of the 448 

times and more than one, 80% of the time. However, the number of correctly identified sites 449 

is quite variable ranging between 1 and 3.  450 

The last row in Table 1 corresponds to the case when all SNPs segregate independently. In 451 

this case, the method fails to detect selection which is not surprising because the 452 

information from the haplotype allelic classes is absent under linkage equilibrium; the 453 

adequate patterns are not found which provokes both a negative in the sign test and a 454 

candidate with low FST index measure. 455 

 456 

  457 
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Table 1.  Performance of the combined method (nvdFST) with n = 1 selective site located at 458 
the center of the chromosome or n = 5 (see Appendix A-6). Selection was  = 4Ns = 600 and 459 
migration Nm = 10. Mean localization is given in distance kb from the real selective position. 460 

∑  ρ n %Power %FPR ( = 5%) q-value Localization (kb) 

        

65 12 0 1 87 2.1 0.0058 ±458 

63 12 4 1 94 2.7 0.0008 ±200 

60 12 12 1 90 1.0 0.0003 ±33 

251 60 0 1 79 1.8 0.0048 ±60 

232 60 4 1 84 6.2 0.0011 ±17 

249 60 60 1 86 2.4 0.0002 <±1 

282 60 60 5 99 2.4 0.0002 <±1 

318 60  1 0 0 - - 

∑: Mean number of shared SNPs per Mb. : Mutation rate. ρ: Recombination rate. FPR: false positive rate. q-461 
value: mean estimated q-value for the significant tests. : Independently segregating sites.  462 

 463 

Short-term Strong Selection and Long-term Weak Selection Scenarios 464 

The performance of nvdFST under the strong selection scenario (α = 6000) in the short-term 465 

(500 generations) varies between 44% for fully linked to 67% for weak linked markers (Table 466 

2). Not surprisingly, the number of segregating sites is considerably reduced. In fact the 467 
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minimum window size allowed by the program had to be shortened from 51 to 25 to 468 

perform the analyses. Notably the false positive rate (FPR) was 0.  469 

Concerning weak selection in long-term scenarios (Table 2, α = 140) the power varies 470 

between 49-52% with false positive rate between 2.2 and 5.7%. 471 

Table 2. Performance of the combined method (nvdFST) with a single selective site in the 472 
short-term strong ( = 6000) and the long-term weak ( = 140) selection scenarios. Nm was 473 
10. Mean localization is given in distance kb from the real selective position. 474 

∑  ρ  t %Power %FPR ( = 5%) q-value 
Localization 

(kb) 

         

112 60 0 6000 500 44 0 0 ±66 

32* 60 4 6000 500 63 0 0.0014 ±5 

62 60 60 6000 500 67 0 0.0008 ±93 

165 60 0 140 5,000 49 3.6 0.0280 ±33 

156 60 4 140 5,000 52 5.7 0.0219 ±14 

135 60 60 140 5,000 49 2.2 0.0054 ±6 

∑: mean number of shared SNPs per Mb. : Mutation rate. ρ: recombination rate. t: number of generations. 475 
FPR: false positive rate. q-value: mean estimated q-value for the significant tests. *: only 40 runs having a 476 
minimum of 25 SNPs. 477 

 478 

 479 
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Extreme Outlier Set Test (EOS) 480 

We applied the EOS test under the single locus architecture with selection  = 600 and 481 

migration Nm=10. As desired, the test is very conservative with false positive rates below the 482 

nominal 0.05 in every case (Table 3). Not surprisingly for an outlier-based method, the test 483 

has no power if the markers are strongly linked (ρ from 0 to 12) or under a polygenic setting 484 

(row with n = 5 in Table 3). However, in the case of independent SNPs but also in the case of 485 

maps with 250-300 SNPs/Mb under 1.5 cM/Mb the power rises up to 60%. Therefore, the 486 

EOS test is complementary to nvdFST having its maximum power when the latter has its 487 

minimum. 488 

  489 
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Table 3.  Performance of the extreme outlier test (EOS) with n = 1 selective site located at 490 
the center of the chromosome or n = 5 (see Simulations section above). Selection was  = 491 
600 and Nm = 10. Mean localization is given in distance kb from the real selective position. 492 

∑  ρ n %Power EOS %FPR ( = 5%) q’-value Localization (kb) 

        

65 12 0 1 0 0 - - 

63 12 4 1 0.2 0 0.46 ±3 

60 12 12 1 1.1 0 0.45 ±77 

251 60 0 1 0.7 0 0.10 0 

232 60 4 1 1.3 0 0.20 ±150 

249 60 60 1 58 0.4 0.5 <±1 

282 60 60 5 1.6 0.4 0.49 ±5 

318 60  1 61 1.2 3×10-6 ±7 

∑: mean number of shared SNPs per Mb. : mutation rate. ρ: recombination rate. FPR: false positive rate. q’-493 
value: mean corrected (see appendix A-4) estimated q-value in the significant tests. : independently 494 
segregating sites. 495 

 496 

Concerning false positives, note —in the last three rows of Table 3— the low false positive 497 

rate (FPR) values that are indicating the low percentage of outliers detected as selective in 498 

the corresponding neutral scenario (1.2% for independent and 0.4% for linked markers). 499 

Thus, the test worked correctly by avoiding false selective sites under the neutral setting. 500 

However, the q-value estimates varied a lot depending on the linkage between markers. 501 
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Recall that by q-value, we mean the minimum estimated false discovery rate (FDR) that can 502 

be committed when calling significant one test at a given threshold. It can be appreciated 503 

that the q-value is very low (3×10-6) for independently segregating sites but rise up to 0.5 for 504 

the same scenario when markers are linked. The explanation is that in the case of unlinked 505 

markers the EOS test is quite efficient and just detects the single true selective SNP. On the 506 

contrary, with linked markers, more outliers are detected, which, since there is only one true 507 

selective site, inflates the FDR and the corresponding q-values. 508 

 509 

Position Effect 510 

The ability to locate the position of the selective site increased with the marker density and 511 

the recombination rate (Table 1). The localization is given in kilobases away from the correct 512 

position. The values are averages through the runs. Standard errors are omitted since they 513 

were low (in the order of hundreds of bases or below 5 kb in the worst case of fully linked 514 

markers). The nvdFST method performs acceptably well when the target site is located at the 515 

centre of the studied region, the selection is not too strong (α  600)  and the overall 516 

recombination rate is at least 0.3 cM/Mb (ρ 12). In these cases, the selective location is 517 

estimated, at worst, within 33 kb of distance from the true location (Table 1). In the case 518 

with strong selection, the localization is bad still under high recombination (Table 2, α = 519 

6000). However, this could be due to the lower number of segregating sites (only 62 in Table 520 

2).  521 

Importantly, the localization is also dependent on where the selective site is placed within 522 

the chromosome. The farther from the center the worse the ability to correctly localize the 523 
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selective positions (Table 4). In this case, with recombination of 1.5 cM/Mb, the inferred 524 

location changes from an almost perfect localization (<1 kb from Table 1) to distances of 10-525 

122 kb as the target is shifted away from the center. This issue has already been shown for 526 

other HAC-based methods (Rivas, Dominguez-Garcia, and Carvajal-Rodriguez 2015).  527 

The problem is partially solved, when the recombination is high (1.5 cM/Mb), by using the 528 

EOS test. In such case, the test has high power (67-93%) and good localization of the 529 

selective position. In fact, the position of the selective site is almost perfectly estimated (few 530 

bases or kb) when the true position is not at the extremes. Even if the target sites are at the 531 

extremes the localization is within 40 kb (see cases with ρ = 60 in Table 4).  532 

In the case of independent markers with the selective site located at the center (Table 3) the 533 

localization by EOS was perfect in 98% of the replicates. However, in the table the average 534 

appears as ±7 kb because of two runs in which the localization failed by almost 400 kb. These 535 

two runs correspond to lower FST index values that were marginally considered given the 536 

cutoff for selecting the SNPs. Thus, we could count this two as false positives or 537 

alternatively, by making a bit more astringent the EOS classification in the upper class, we 538 

would have already discarded them. For example, if we change the cutoff from FST + FSTu / 3 539 

to FST + 1.2FSTu / 3 we decrease the power only from 61 to 59% while getting perfect 540 

localization of the selective SNPs in every run.  541 

 542 

  543 
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Table 4.  Performance of nvdFST and EOS with a single selective site located at different 544 
positions. Selection was  = 600 and Nm = 10. Mean localization is given in distance kb from 545 
the real selective position. FPRs are the same as in Table 1. q-value refers to the mean q-546 
value for the significant nvdFST tests. 547 

∑  ρ 
%Power 

nvdFST, EOS 

Position (kb) nvdFST q-value Localization (kb) 

nvdFST, EOS 

       

259 60 0 81, 1 0 0.0044 +483, +457 

255 60 0 81, 1.5 10 0.0049 +433, +496 

256 60 0 82, 0.9 100 0.0041 +350, +413 

255 60 0 78, 0.6 250 0.0039 ±194, ±185 

230 60 4 75, 2.5 0 0.0014 +324, +127 

226 60 4 77, 3.5 10 0.0016 +326, +142 

233 60 4 80, 1.8 100 0.0017 +227, +140 

229 60 4 83, 1.6 250 0.0009 ±123, ±20 

262 60 60 63, 93 0 0.0014 +122, +40 

261 60 60 68, 91 10 0.0014 +113, +34 

257 60 60 81, 84 100 0.0006 ±44, ±6 

252 60 60 87, 67 250 0.0004 ±10, ±0.06 

∑: Mean number of shared SNPs per Mb. : Mutation rate. ρ: Recombination rate. Position: real position of the 548 
selective site.  549 
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 550 

Bottleneck-expansion Scenarios 551 

Bottleneck-expansion scenarios are known to leave signatures that mimic the effect of 552 

positive selection. We tested the robustness of the tests by looking for false positives when 553 

applying the methods to a bottleneck and expansion scenario under a neutral setting. The 554 

bottleneck was simulated by a reduction of one of the populations to 1% of the original size 555 

(N from 1000 to 10). Afterwards, the population expansion was implemented by increasing 556 

the population size following a logistic growth model (see details in Appendix A-6). The 557 

methods performed well, the false positive rate is maintained below the nominal level with 558 

4.6% and 1% for nvdFST and EOS tests, respectively.  559 

 560 

High Migration Scenario 561 

For the short-term (500 generations) scenario with Nm = 50 (5%), nvdFST is still able to detect 562 

the effect of selection in spite of the homogenizing effect of migration. The detection power 563 

ranges between 34-59% with a false positive rate of 0-0.1% (Table 5). Concerning the EOS 564 

test, it works only under weak linkage and with a power of 16%. EOS committed no false 565 

positives under this setting. 566 

  567 
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Table 5. Performance of nvdFST in the short term (500 generations) with a single selective 568 
site. Selection was  = 600 and Nm = 50. Mean localization is given in distance kb from the 569 
real selective position. 570 

∑  ρ %Power %FPR ( = 5%) q-value Localization (kb) 

       

116 60 0 56 0 0.0098 ±152 

180 60 4 59 0 0.0042 ±123 

178 60 60 34 0.1 0.0096 ±4 

∑: Mean number of shared SNPs per Mb. : Mutation rate. ρ: Recombination rate. FPR: false positive rate. q-571 
value: mean estimated q-value for the significant tests. 572 

 573 

Empirical Data 574 

We applied the EOS test to analyze a recently published data set from Littorina saxatilis 575 

species, concretely the separate-island filtered loci from Ravinet et al. (2016). We have 576 

discarded the loci with null allele frequency equal or higher than 0.5. We also discarded 577 

those polymorphisms not shared between ecotypes from the same location. Additionally, 578 

we required a minimum frequency allele of 4 per metapopulation sample size. Thus, we 579 

have excluded about 10-20% of the original individual-island filtered loci. The results of the 580 

between ecotypes outlier analysis using EOS are shown in Table 6. We can appreciate that 581 

the number of outliers detected as significant is much less than in the original study since we 582 

find a total of 69 outliers in the three islands while the number originally found was 406 583 

(RAD loci in Table 2 of Ravinet et al. 2016). This is not surprising given the conservative 584 
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nature and low false positive rate of EOS. However, note that we find a 2.9% (2/69) of SNPs 585 

shared by all islands which is quite similar to the 2.2% (9/406) found in the original study. 586 

Considering the islands by pairs, Jutholmen and Ramsö share 2 outliers while Saltö has no 587 

outlier in common with Jutholmen and just 1 with Ramsö. 588 

Table 6. Outliers detected after EOS analysis of the individual-island filtered loci from 589 
Littorina saxatilis data. Numbers in parenthesis refer to the results in the original analysis 590 
(Ravinet et al. 2016). 591 

Island Unique Only with 
Jutholmen 

Only with 
Ramsö 

Only with 
Saltö 

Shared all Total 

       

Jutholmen 27 (59) __ 2 (13) 0 (16) 2 (9) 31 (97) 

Ramsö 24 (86) 2 (13) __ 1 (21) 2 (9) 29 (129) 

Saltö 6 (134) 0 (16) 1 (21) __ 2 (9) 9 (180) 

 592 

For the outliers in EOS, the FST between ecotypes ranges between 0.4-0.6 (Table 7). The q-593 

values are high (0.52 - 0.76) although we already know by the simulations that this may be 594 

indicating linkage between the markers more than an inflated false positive rate (see also De 595 

Villemereuil et al. 2014).  596 

  597 
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Table 7. Summary of EOS analysis for the between ecotypes Littorina saxatilis data (Ravinet 598 
et al. 2016). 599 

Island Nonoutliers Outliers not in 
EOS 

EOS FST FST_EOS pvalEOS qvalEOS 

        

Jutholmen 4564 91 31 0.045 0.40 0.004 0.52 

Ramsö 4602 82 29 0.064 0.53 0.005 0.63 

Saltö 4632 51 9 0.060 0.60 0.002 0.76 

FST: Mean FST for the analyzed loci.  FST_EOS:  Mean FST for the loci included in the extreme outlier set. pvalEOS:  600 
Mean p-values across the loci included in the extreme outlier set. qvalEOS:  Mean q-values across the loci 601 
included in the extreme outlier set.  602 

 603 

Discussion 604 

The goal in this work was to develop two methods, haplotype-based and outlier-based, for 605 

the detection of divergent selection in pairs of populations connected by migration. We also 606 

intended that the methods be robust to false positives. High rate of false positives is a 607 

known concern of outlier-based methods (De Mita et al. 2013; De Villemereuil et al. 2014; 608 

Lotterhos and Whitlock 2014) thus, EOS was especially designed to minimize the false 609 

positive rate. Additionally, both methods should be useful for non-model species and so, it 610 

should not be necessary to perform neutral simulations to obtain critical cut-off values for 611 

the candidates.  612 

For the nvdFST method, it has been shown that combining haplotype-based and FST 613 

differentiation information is a quite powerful strategy for detecting divergent selection. 614 

However, the nvdFST algorithm does not perform well when the whole set of markers is 615 

segregating independently. To deal with this latter case, a second method was proposed 616 
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based on the idea that the outliers caused by the effect of divergent selection would cluster 617 

apart from those caused by different demography issues. This extreme outlier set test, EOS, 618 

was intended to be conservative because the aforementioned tendency of outlier-based 619 

methods to produce false positives. Under the simulated scenarios, the EOS test behaves 620 

acceptably well when markers are independent or under weak linkage, reaching powers 621 

between 60-90% while maintaining false positive rate below the nominal level.  622 

 623 

Polygenic Architecture 624 

In general, the FST-based methods cannot detect selection in polygenic scenarios (Bierne, 625 

Roze, and Welch 2013; De Villemereuil et al. 2014) because those tests are specifically 626 

designed for finding larger than average FST values which are difficult to discover if the 627 

frequency differences are slight for the polygenic loci or if the overall FST is high. On the 628 

contrary, the nvdFST performs even better in this scenario. The explanation for this good 629 

performance is that the distributed selective signal facilitates the discovery of the 630 

corresponding patterns of divergent selection. These patterns imply high frequency at the 631 

target site in one population and low in another. Therefore, the FST index under the neutral 632 

expectation would be very low compared with the observed one and so, still under high 633 

overall FST, the test nvdFST maintains high power under the polygenic setting.   634 

 635 

  636 
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Position Effect 637 

Besides the detection of the signal of selection, we have also inferred the location of the 638 

selective site. It has been shown that under nvdFST the localization is better when the 639 

selective site is at the center of the chromosome. The EOS test is not so affected by the 640 

position of the selective site. The ability of localizing the selective position is still a pending 641 

issue for many of the selection detection methods. There is also plenty of room for 642 

improvement under the nvdFST and EOS methods in this regard. Trying, for example, to 643 

further explore the relationship between recombination and the window sizes that yield the 644 

highest scores. Indeed, the interplay among divergent selection, recombination, drift and 645 

migration should be considered for further improving the efficiency of the methods. 646 

 647 

High Migration Scenario 648 

Noteworthy, under high migration, nvdFST maintains reasonable power (60%). However, the 649 

power diminishes with the highest recombination rate. This may occur due to the combined 650 

effect of gene flow and recombination that generates intermediate HAC mean values m1 and 651 

m2 and similar variances. Indeed, for a given selection intensity, the higher the Nm requires 652 

tighter linkage for the establishment of divergent alleles (Yeaman and Whitlock 2011).  653 

In the case of the EOS test, there is an obvious tradeoff between the astringency of the 654 

cutoff point for the outlier set and the migration rate. Our cutoff depends on the FST upper-655 

bound which is a function of the number of populations, the sample sizes and the minimum 656 

allele frequency. However, with higher migration the upper bound of the FST should be lower 657 
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because as migration increases the number of populations becomes virtually one. Therefore, 658 

a possible solution to improve the efficiency of EOS under high migration would be to 659 

update the FST upper bound as a function of the migration rate. 660 

 661 

Empirical Data 662 

Local adaptation may occur, most likely due to alleles with large effect but also under a 663 

polygenic architecture (Whitlock 2015; Yeaman 2015). In addition, the geographic structure 664 

and the migration-selection balance can generate complex patterns of the distribution of 665 

genetic variation (Debarre, Yeaman, and Guillaume 2015). Thus, the natural systems where 666 

local adaptation occurs can be of great complexity (Whitlock 2015). The L. saxatilis ecotypes 667 

are an especially interesting system to study local adaptation in presence of gene flow 668 

(Johannesson 2015). This system has an exceptional level of replication at different extent, 669 

as country, localities within country, and the micro-geographical level of the ecotypes. In the 670 

case of the Swedish populations, the pattern of differentiation can be separated in factors 671 

such as, localities and habitat variation among islands —that may be caused by genetic 672 

drift— and variation between habitats within localities, that may be caused by divergent 673 

selection (Johannesson 2015). There are also different mechanisms by which parallel 674 

adaptation may occur, resulting in different predictions about the proportion of shared 675 

adaptive variation among localities.  676 

Regarding the shared genomic divergence of the L. saxatilis system in Swedish populations, 677 

it seems to be a small proportion of the total genomic divergence (Hollander, Galindo, and 678 

Butlin 2015; Johannesson 2015; Ravinet et al. 2016). That is, the majority of the genomic 679 
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variation linked to the evolution of ecotypes is not shared between the studied islands. The 680 

EOS analysis of the Ravinet et al. data seems to support this finding. At the same time, we 681 

identify far fewer outliers, with Saltö —which is closer to the mainland— having the lowest 682 

number. However, this is the opposite of the result in Ravinet’s study where Saltö had the 683 

highest number of outliers.  684 

In any case, the lower number of outliers that we found in Saltö, could also explain our 685 

results of reduced shared divergence between Saltö and the two other islands. We cannot 686 

rule out that our finding can be an artefact due to the conservativeness of EOS, but, 687 

alternatively, the previous results could be due to an excess of false positives, hiding the 688 

pattern of reduced shared divergence in Saltö. 689 

To conclude, it is worth mentioning that combination of multiple signals from different tests 690 

has been proposed as a way of improving power/false positive rate relationship for the 691 

selection detection methods (Zeng, Shi, and Wu 2007; Lin et al. 2011; Vatsiou, Bazin, and 692 

Gaggiotti 2016). Accordingly, the nvdFST test does just that. It combines haplotype and 693 

population differentiation information and may be a helpful tool to explore patterns of 694 

divergent selection when approximate knowledge of the haplotype phase is at hand. 695 

Alternatively, the EOS method is a conservative outlier test useful when the full set of SNPs 696 

is unlinked or under weak linkage. Both strategies can be applied without the need of 697 

performing neutral simulations and have low false positive rate.  698 

 699 

 700 
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