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Abstract

Context: The reconstruction of evolutionary scenarios for whole genomes in
terms of genome rearrangements is a fundamental problem in evolutionary and
comparative genomics. The DeCo algorithm, recently introduced by Bérard et al.,
computes parsimonious evolutionary scenarios for gene adjacencies, from pairs of
reconciled gene trees. However, as for many combinatorial optimization
algorithms, there can exist many co-optimal, or slightly sub-optimal, evolutionary
scenarios that deserve to be considered.

Contribution: We extend the DeCo algorithm to sample evolutionary scenarios
from the whole solution space under the Boltzmann distribution, and also to
compute Boltzmann probabilities for specific ancestral adjacencies.

Results: We apply our algorithms to a dataset of mammalian gene trees and
adjacencies, and observe a significant reduction of the number of syntenic
conflicts observed in the resulting ancestral gene adjacencies.

Keywords: Synteny; Parsimony; Gene adjacency; Dynamic programming;
Ensemble approach

Background
The reconstruction of the evolutionary history of genomic characters along a given

species tree is a long-standing problem in computational biology. This problem has

been well studied for several types of genomic characters, for which efficient al-

gorithms exist to compute parsimonious evolutionary scenarios; classical examples

include genes and genomes sequences [1], gene content [2], and gene family evolu-

tion [3, 4]. Recently, Bérard et al. [5] extended the corpus of such results to syntenic

characters. They introduced the notion of adjacency forest, that models the evolu-

tion of gene adjacencies within a phylogeny, motivated by the reconstruction of the

architecture of ancestral genomes, and described an efficient dynamic programming

(DP) algorithm, called DeCo, to compute parsimonious adjacency evolutionary his-

tories. So far, DeCo is the only existing tractable model that considers the evolution

of gene adjacencies within a general phylogenetic framework: other tractable mod-

els of genome rearrangements accounting for a given species phylogeny are either

limited to single-copy genes and ignore gene-specific events [6], assume restrictions

on the gene duplication events, such as considering only whole-genome duplication

(see [7] and references there), or require a dated species phylogeny [8].

From a methodological point of view, most existing algorithms to reconstruct evo-

lutionary scenarios along a species tree in a parsimony framework rely on dynamic-

programming along this tree, whose introduction can be traced back to Sankoff in
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the 1970s (see [9] for a recent retrospective on this topic). Recently, several works

considered more general approaches for such parsimony problems that either explore

a wider range of values for combinatorial parameters of parsimonious models [10] or

consider several alternate histories for a given instance, chosen for example from the

set of all possible co-optimal scenarios or from the whole solution space, including

suboptimal solutions (see [11, 12, 13] for examples of this approach for the gene

tree/species tree reconciliation problem).

The present work follows the later approach and extends the DeCo DP scheme

toward an exploration of the whole solution space of adjacency histories, under

the Boltzmann probability distribution, that assigns a probability to each solution

defined in terms of its parsimony score. This principle of exploring the solution

space of a combinatorial optimization problem under the Boltzmann probability

distribution is sometimes known as the “Boltzmann ensemble approach”. It was

initially introduced in the context of RNA folding, where the probability of any given

conformation at the thermodynamic equilibrium follows a Boltzmann distribution,

i.e. a conformation s is observed for a given RNA w with probability e−Ew,s/kT /Zw,

where Ew,s is the free-energy of conformation s over w, k is the Boltzmann constant,

T is the temperature, and Zw is the partition function of w. This latter quantity can

be seen as a renormalization factor, and is key in the study of RNA thermodynamics,

but its computation involves summing over an exponential number of conformations

compatible with the RNA sequence. A major paradigm shift occurred in RNA

research when McCaskill [14] showed in 1990 how an efficient algorithm for the

partition function could be adapted from a DP scheme for energy minimization

through a simple change of algebra. This seminal work also introduced a variant of

the inside-outside algorithm [15] for computing base-pairing probabilities.

While this Boltzmann ensemble approach has been used for a long time in RNA

structure analysis, to the best of our knowledge it is not the case in comparative

genomics, where exact probabilistic models have been favoured recently [16, 17].

However, probabilistic models still pose computational challenges for large datasets,

and so far a probabilistic model does not exist for gene adjacencies, which motivates

our work. In the specific case of the DeCo model, the ability to explore alternative

co-optimal or slightly sub-optimal solutions is crucial. Indeed, as DeCo models gene

adjacencies, each ancestral gene can only be adjacent to at most two other genes,

which is not considered in DeCo. However, the initial experiments using DeCo on

mammalian gene trees resulted in hundreds of ancestral genes were involved in

more than two ancestral gene adjacencies [5]. This raises the question of filtering

inferred ancestral adjacencies to reduce the level of syntenic conflict, which can

be done on the basis of their Boltzmann probabilities. We reason that some of

the erroneously-predicted adjacencies may result from combinatorial optimization

artifacts and that features of a gene adjacency parsimonious evolutionary scenario

that are not robust to considering alternative equivalent, or slightly worse, solutions

should be considered as dubious.

Methods
Models

A phylogeny is a rooted tree which represents the evolutionary relationships of a

set of elements represented by its nodes: internal nodes are ancestors, leaves are
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Figure 1 Example of an adjacency forest predicted from two reconciled gene trees. (Left)
Species tree S, with two extant species A and B and an ancestral species C. (Middle) Two
reconciled gene trees G1 and G2, with four extant genes in genome A, four extant genes in
genome B and three ancestral genes in genome C. The set of extant adjacencies is
(A1A3, B1B3, A2A4, B2B4) (Right) Parsimonious adjacency forest F composed of two adjacency
trees. Blue dots are speciation nodes. Leaves are extant (species, genes, adjacencies), except when
labelled with a red cross (gene loss). Green squares are (gene or adjacency) duplication nodes.
Gene labels refer to the species of nodes. Every node of the adjacency tree is labelled by a couple
of nodes from gene trees. Figure adapted from [5].

extant elements, and edges represent direct descents between parents and children.

We consider here three kinds of phylogenies (illustrated in Figure 1): species trees,

reconciled gene trees and adjacencies trees/forests. Trees we consider are always

rooted. For a tree T and a node x of T , we denote by T (x) the subtree rooted at

x. If x is an internal node, we assume it has either one child, denoted by ax, or two

children, denoted by ax and bx.

Species trees. A species tree S is a binary tree that describes the evolution of a

set of related species, from a common ancestor (the root of the tree), through the

mechanism of speciation. For our purpose, species are identified with genomes, and

genes are arranged linearly or circularly along chromosomes.

Reconciled gene trees. A reconciled gene tree is also a binary tree that describes

the evolution of a set of genes, called a gene family, through the evolutionary mech-

anisms of speciation, gene duplication and gene loss, within the given species tree

S. Therefore, each node of a gene tree G represents a gene loss, an extant gene or

an ancestral gene. Ancestral genes are represented by the internal nodes of G, while

gene losses and extant genes are represented by the leaves of G.

We denote by s(g) ∈ S the species of a gene g ∈ G, and by e(g) the evolutionary

event that leads to the creation of the two children ag and bg. If g is an internal node

of G, then e(g) is a speciation (denoted by Spec) if the species pair {s(ag), s(bg)}
equals the species pair {as(g), bs(g)}, or a gene duplication (GDup) if s(ag) = s(bg) =

s(g). Finally, if g is a leaf, then e(g) indicates either a gene loss (GLoss) or an extant

gene (Extant), in which case e(g) is not an evolutionary event.

Adjacency trees and forests. A gene adjacency is a pair of genes that appears

consecutively along a chromosome. An adjacency tree represents the evolution of an

ancestral adjacency through the evolutionary events of speciation, gene duplication,

gene loss (these events, as described above, occur at the gene level and are modelled

in the reconciled gene trees), and adjacency duplication (ADup), adjacency loss

(ALoss) and adjacency break (ABreak), that are adjacency-specific events.
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• The duplication of an adjacency {g1, g2} follows from the simultaneous dupli-

cation of both its genes g1 and g2 (with s(g1) = s(g2) and e(g1) = e(g2) =

GDup), resulting in the creation of two distinct adjacencies each belonging to

{ag1 , bg1} × {ag2 , bg2}.
• An adjacency may disappear due to several events, such as the loss of exactly

one (gene loss) or both (adjacency loss) of its genes, or a genome rearrange-

ment that breaks the contiguity between the two genes (adjacency break).

Finally, to model the complement of an adjacency break, i.e. the creation of ad-

jacencies through a genome rearrangement, adjacency gain (AGain) events are also

considered, and result in the creation of a new adjacency tree. It follows that the evo-

lution of the adjacency between two genes can be described by a forest of adjacency

trees, called an adjacency forest. In this forest, each node v belongs to a species de-

noted by s(v), and is associated to an evolutionary event e(v) ∈ {Spec,GDup,ADup}
if g is an internal node, or {Extant,GLoss,ALoss,ABreak} if v is a leaf. Finally, adja-

cency gain events are associated to the roots of the trees of the adjacency forest. So

in the same way that a gene tree G evolves within the species S, an adjacency forest

F describing the evolution of the adjacency between two gene families G1 and G2

evolves within S, G1 and G2. We refer the reader to Fig. 1 for an illustration.

Parsimony scores and the Boltzmann distribution. When considered in a parsimo-

nious framework, the score of an adjacency forest F is the number of adjacency

gains and breaks; other events are not considered as they are the by-products of

evolutionary events already accounted for in the score of the reconciled gene trees

G1 and G2. We denote by sa(F ) the parsimony score of an adjacency forest F .

Let F(G1, G2) be the set of all adjacency forests for G1 and G2, including both

optimal and sub-optimal ones, where we assume that at least one extant adjacency

is composed of extant genes from G1 and G2.

We define the Boltzmann factor of an adjacency forest F as

B(F ) = e−
sa(F )
kT . (1)

The partition function associated to two trees G1 and G2 is obtained as

Z(G1, G2) =
∑

F∈F(G1,G2)

e−
sa(F )
kT (2)

where kT is an arbitrary constant. The partition function implicitly defines a Boltz-

mann probability distribution over F(G1, G2), where the probability of an adjacency

forest F is defined by:

P (F ) =
e
−sa(F )

kT

Z(G1, G2)
. (3)

By exponentially favouring adjacency forests with lower parsimony scores, the

Boltzmann distribution provides an alternative way to probe the search space, which

is heavily influenced by the choice of kT . Indeed, decreasing kT values will skew the

Boltzmann distribution towards more parsimonious adjacency forests. Its limiting
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distributions are uniform over the whole search space (kT → +∞) or over the set

of co-optimal forests (kT → 0) (see Fig. 3 for an illustration).

A Boltzmann probability distribution on the set of all adjacency forests for a given

instance also implies a well defined notion of probability for features of adjacency

forests. For example, one can associate a probability to a specific potential ancestral

adjacency (i.e. adjacency between two genes from a given ancestral species) as

the ratio of the sum of the probabilities of the adjacency forests that contain this

adjacency with the partition function.

Algorithms

DeCo, the algorithm described in [5] to compute a parsimonious adjacency forest, is

a DP scheme constrained by S, G1 and G2. We first present this algorithm, then

describe how to extend it into an Boltzmann ensemble algorithm.

The DeCo DP scheme. Let G1 and G2 be two reconciled gene trees and g1 and

g2 be two nodes, respectively of G1 and G2, such that s(g1) = s(g2). The DeCo

algorithm computes, for every such pair of nodes g1 and g2, two quantities denoted

by c1(g1, g2) and c0(g1, g2), that correspond respectively to the most parsimonious

score of a parsimonious adjacency forest for the pairs of subtrees G(g1) and G(g2),

under the hypothesis of a presence (c1) or absence (c0) of an ancestral adjacency

between g1 and g2. As usual in DP along a species tree, the score of a parsimonious

adjacency forest for G1 and G2 is given by min(c1(r1, r2), c0(r1, r2)) where r1 is the

root of G1 and r2 the root of G2.

So, c1(g1, g2) and c0(g1, g2) can be computed as the minimum of a sum of the

scores of adjacency gains or breaks and, more importantly, of terms of the form

c1(x, y) and c0(x, y) with (x, y) ∈ {g1, ag1 , bg1} × {g2, ag2 , bg2} − (g1, g2), using the

two combinatorial operator min and +.

(Un)-ambiguity of the DeCo DP scheme. As defined in [18], the ambiguity of a

DP algorithm can be defined as follows: a DP explores a combinatorial solution

space (here for DeCo, the space of all possible adjacency forests, including possible

suboptimal solutions), that can be explicitly generated by replacing in the equations

min by d (the set-theoretic union operator) and + by the Cartesian product ×
between combinatorial sets. A DP algorithm is then unambiguous if the unions are

disjoint, i.e. the sets provided as its arguments do not overlap.

We claim that the DeCo dynamic programming scheme is unambiguous. Indeed,

computing c1(g1, g2) and c0(g1, g2) branches on disjoint subcases that each involve

a different set of terms c1(x, y) and c0(x, y). The only case that deserves a closer

attention is the case where e(g1) = e(g2) = GDup, as a simultaneous duplication can

be obtained by two successive duplications. But in this case, the number of AGain

events is different (see Fig. 2), which ensures the pairwise difference of solutions.

Stochastic backtrack algorithm through algebraic substitutions. As mentioned

in [18], any unambiguous dynamic programming scheme can be adapted through

algebraic changes to exhaustively generate the set of all adjacency forests, and also

compute the corresponding partition function. To that purpose one simply needs
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1. e(g1) = Extant and e(g2) = Extant:

c1(g1, g2) =

{
α if g1g2 is an adjacency

0 otherwise

c0(g1, g2) =

{
α if g1g2 is not an adjacency

0 otherwise

2. e(g1) = GLoss and e(g2) ∈ {Extant,Spec,GDup}:
c1(g1, g2) = c0(g1, g2) = α#NonGDup(g2)

3. e(g1) ∈ {Extant,Spec,GDup} and e(g2) = GLoss:

c1(g1, g2) = c0(g1, g2) = α#NonGDup(g1)

4. e(g1) = GLoss and e(g2) = GLoss:

c1(g1, g2) = c0(g1, g2) = α

5. e(g1) ∈ {Extant,Spec} and e(g2) = GDup:

c1(g1, g2) =
∑{

c1(g1, bg2 )× c0(g1, ag2 ), c0(g1, bg2 )× c1(g1, ag2 ),
c1(g1, bg2 )× c1(g1, ag2 )× e

−AG
kT , c0(g1, bg2 )× c0(g1, ag2 )× e

−AB
kT

c0(g1, g2) =
∑{

c0(g1, bg2 )× c0(g1, ag2 ), c0(g1, bg2 )× c1(g1, ag2 )× e
−AG
kT ,

c1(g1, bg2 )× c0(g1, ag2 )× e
−AG
kT , c1(g1, bg2 )× c1(g1, ag2 )× e

−2AG
kT

6. e(g1) = GDup and e(g2) ∈ {Extant,Spec}:

c1(g1, g2) =
∑{

c1(ag1 , g2)× c0(bg1 , g2), c0(ag1 , g2)× c1(bg1 , g2),
c1(ag1 , g2)× c1(bg1 , g2)× e

−AG
kT , c0(ag1 , g2)× c0(bg1 , g2)× e

−AB
kT

c0(g1, g2) =
∑{

c0(ag1 , g2)× c0(bg1 , g2), c0(ag1 , g2)× c1(bg1 , g2)× e
−AG
kT ,

c1(ag1 , g2)× c0(bg1 , g2)× e
−AG
kT , c1(ag1 , g2)× c1(bg1 , g2)× e

−2AG
kT ,

7. e(g1) = Spec and e(g2) = Spec:

c1(g1, g2) =
∑


c1(ag1 , bg2 )× c1(bg1 , ag2 )× α, c1(ag1 , bg2 )× c0(bg1 , ag2 )× e

−AB
kT × α,

c0(ag1 , bg2 )× c1(bg1 , ag2 )× e
−AB
kT × α, c0(ag1 , bg2 )× c0(bg1 , ag2 )× e

−2AB
kT × α,

c1(ag1 , ag2 )× c1(bg1 , bg2 )× α, c1(ag1 , ag2 )× c0(bg1 , bg2 )× e
−AB
kT × α,

c0(ag1 , ag2 )× c1(bg1 , bg2 )× e
−AB
kT × α, c0(ag1 , ag2 )× c0(bg1 , bg2 )× e

−2AB
kT × α

c0(g1, g2) =
∑


c0(ag1 , bg2 )× c0(bg1 , ag2 )× α, c1(ag1 , bg2 )× c0(bg1 , ag2 )× e

−AG
kT × α,

c0(ag1 , bg2 )× c1(bg1 , ag2 )× e
−AG
kT × α, c1(ag1 , bg2 )× c1(bg1 , ag2 )× e

−2AG
kT × α,

c0(ag1 , ag2 )× c0(bg1 , bg2 )× α, c1(ag1 , ag2 )× c0(bg1 , bg2 )× e
−AG
kT × α,

c0(ag1 , ag2 )× c1(bg1 , bg2 )× e
−AG
kT × α, c1(ag1 , ag2 )× c1(bg1 , bg2 )× e

−2AG
kT × α,

8. e(g1) = GDup and e(g2) = GDup:

c1(g1, g2) =
∑



c1(ag1 , g2)× c0(bg1 , g2), c0(ag1 , g2)× c1(bg1 , g2),
c1(ag1 , g2)× c1(bg1 , g2)× e

−AG
kT , c0(ag1 , g2)× c0(bg1 , g2)× e

−AB
kT ,

c1(g1, ag2 )× c0(g1, bg2 ), c0(g1, ag2 )× c1(g1, bg2 ),
c1(g1, ag2 )× c1(g1, bg2 )× e

−AG
kT , c0(g1, ag2 )× c0(g1, bg2 )× e

−AB
kT ,

c1(ag1 , ag2 )× c1(bg1 , bg2 )× c0(ag1 , bg2 )× c0(bg1 , ag2 ),
c1(ag1 , ag2 )× c1(bg1 , bg2 )× c0(ag1 , bg2 )× c1(bg1 , ag2 )× e

−AG
kT ,

c1(ag1 , ag2 )× c1(bg1 , bg2 )× c1(ag1 , bg2 )× c0(bg1 , ag2 )× e
−AG
kT ,

c1(ag1 , ag2 )× c1(bg1 , bg2 )× c1(ag1 , bg2 )× c1(bg1 , ag2 )× e
−2AG
kT ,

c1(ag1 , ag2 )× c0(bg1 , bg2 )× c0(ag1 , bg2 )× c0(bg1 , ag2 )× e
−AB
kT ,

c1(ag1 , ag2 )× c0(bg1 , bg2 )× c0(ag1 , bg2 )× c1(bg1 , ag2 )× e
−AG+AB

kT ,

c1(ag1 , ag2 )× c0(bg1 , bg2 )× c1(ag1 , bg2 )× c0(bg1 , ag2 )× e
−AG+AB

kT ,

c0(ag1 , ag2 )× c1(bg1 , bg2 )× c0(ag1 , bg2 )× c0(bg1 , ag2 )× e
−AB
kT ,

c0(ag1 , ag2 )× c1(bg1 , bg2 )× c0(ag1 , bg2 )× c1(bg1 , ag2 )× e
−AG+AB

kT ,

c0(ag1 , ag2 )× c1(bg1 , bg2 )× c1(ag1 , bg2 )× c0(bg1 , ag2 )× e
−AG+AB

kT ,

c0(ag1 , ag2 )× c0(bg1 , bg2 )× c1(ag1 , bg2 )× c1(bg1 , ag2 ),
c0(ag1 , ag2 )× c1(bg1 , bg2 )× c1(ag1 , bg2 )× c1(bg1 , ag2 )× e

−AG
kT ,

c1(ag1 , ag2 )× c0(bg1 , bg2 )× c1(ag1 , bg2 )× c1(bg1 , ag2 )× e
−AG
kT ,

c0(ag1 , ag2 )× c0(bg1 , bg2 )× c1(ag1 , bg2 )× c0(bg1 , ag2 )× e
−AB
kT ,

c0(ag1 , ag2 )× c0(bg1 , bg2 )× c0(ag1 , bg2 )× c1(bg1 , ag2 )× e
−AB
kT ,

c0(ag1 , ag2 )× c0(bg1 , bg2 )× c0(ag1 , bg2 )× c0(bg1 , ag2 )× e
−2AB
kT ,

c0(g1, g2) =
∑


c0(ag1 , g2)× c0(bg1 , g2), c0(ag1 , g2)× c1(bg1 , g2)× e

−AG
kT ,

c1(ag1 , g2)× c0(bg1 , g2)× e
−AG
kT , c1(ag1 , g2)× c1(bg1 , g2)× e

−2AG
kT ,

c0(g1, ag2 )× c0(g1, bg2 ), c0(g1, ag2 )× c1(g1, bg2 )× e
−AG
kT ,

c1(g1, ag2 )× c0(g1, bg2 )× e
−AG
kT , c1(g1, ag2 )× c1(g1, bg2 )× e

−2AG
kT .

Figure 2 Partition function version of the DeCo dynamic programming scheme. This system of
recurrences computes the α-rescaled partition function for two reconciled gene trees g1 and g2,
using penalties AG and AB respectively for adjacency gains and breaks.
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to replace the arithmetic operators (min,+) with (
∑
,×), and to exponentiate any

atomic cost C ∈ R into a (partial) Boltzmann factor e−C/kT (see Fig. 2).

This precomputation allows us to sample adjacency forests under the Boltzmann

distribution, by changing the deterministic backtrack used for maximum parsimony

into a stochastic operation. Indeed, assume that the partition function version of

the DeCo equation computes c1(g1, g2) (resp. c0(g1, g2)) as
∑
i∈[1,k1] ti, where the

ti denote the contribution to the partition function of one of the local alternatives

within the DP scheme. The latter are typically computed recursively as combina-

tions of atomic adjacency gain/break costs, and recursive terms of the form c1(x, y)

and c0(x, y) with (x, y) ∈ {g1, ag1 , bg1} × {g2, ag2 , bg2} − {(g1, g2)}.
Then a (possibly non-parsimonious) random solution can be generated recursively

for c1(g1, g2) (resp. c0(g1, g2)), by branching on some ti with probability ti/c1(g1, g2)

(resp. ti/c0(g1, g2)), and proceed recursively on each occurrence of a recursive term

within the alternative ti. The correctness of the algorithm, i.e. the fact that the ran-

dom process generates each adjacency forests with Boltzmann probability, follows

immediately from general considerations on unambiguous DP schemes [18].

The stochastic nature of the backtrack does not affect its worst-case complexity.

This Boltzmann sampling algorithm, for an instance composed of two gene trees

G1 and G2 of respective sizes (number of leaves) n1 and n2, has time complexity of

O(n1 × n2) for each backtrack.

Rescaling to avoid numerical overflows. The partition function values Z(g1, g2),

handled during the computation, typically grow exponentially in the total number

of nodes in G1 and G2, and may end up overflowing the floating point data type

used within the DP tables. Following practice in RNA folding prediction [19], we

address this issue by iteratively applying an homogeneous rescaling of these values

during the computation, to keep the values found in the DP table asymptotically

close to 1, while still allowing for analysis of the Boltzmann distribution.

To that purpose, one introduces a rescaling factor α which is applied, as a mul-

tiplicative term, to some of the DP rules. A rescaling is homogeneous for a pair

of (sub)trees (G1(g1), G2(g2)) (abridged into (g1, g2) from now) when the number

of occurrences of α, encountered during the generation of a given solution F , only

depends on (g1, g2) and not on specific features of F . Let us denote by κg1,g2 the

number of occurrences of α for (g1, g2), then the rescaled contribution of a given

solution F is now e−
sa(F )
kT ×ακg1,g2 , while the rescaled partition function, computed

by the modified DP scheme, is given by

Zα(g1, g2) =
∑

F∈F(g1,g2)

e−
sa(F )
kT × ακg1,g2 . (4)

A direct execution of the stochastic backtrack algorithm then returns each forest F

with probability

e−
sa(F )
kT × ακg1,g2

Zα(g1, g2)
=

e−
sa(F )
kT

Z(g1, g2)
= P (F ) (5)

In other words, the introduction of the rescaling does not induce any bias in the

stochastic sampling, i.e. the sampling still follows a Boltzmann distribution.
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Figure 3 Temperature dependency of the adjacency matrix. Each value of the (pseudo)
temperature parameter kT induces different Boltzmann probabilities for ancestral and extant
adjacencies, allowing to probe the continuum between a parsimonious model (kT → 0) and the
uniform distribution kt→∞.

On the other hand, α can be used to constrain the values Zα(G1, G2) to

avoid numerical overflows. For instance, setting α? = Z(G1, G2)1/κg1,g2 yields

Zα?(G1, G2) = 1. Furthermore, if the rescaling terms are regularly distributed dur-

ing the execution of the DP scheme, then the intermediate values c0|1(g1, g2) also

typically remain close to 1, thereby avoiding numerical over/underflows. In prac-

tice, Z(G1, G2) is the end product of the computation, and thus cannot be used to

determine a suitable value for α. However, any value that avoids numerical over/un-

derflow can be used, so DeClone accepts as input a prescribed value for α. Note

also that α can also be typically inferred from a partial computation, based on the

first occurrence of an under/overflow in the DP matrices. To apply these concepts

in the context of the DeCo DP scheme, we are left to find an homogeneous rescaling.

Fortunately, we observe that the number of recursive calls c0|1(g′1, g
′
2), where

e(g′1) 6= GDup and e(g′2) 6= GDup, is provably constant[1] within the solutions gener-

ated from any call c0|1(g1, g2). From this observation that can be tediously verified

by induction, we adapt the DP scheme as illustrated by Fig. 2.

Inside-Outside algorithm While the sampling algorithm described above provides

a flexible, easy to implement, approach to analyze the Boltzmann distribution, it

only allows for the computation of estimates for properties of interest (for example

the occurrence of a specific ancestral adjacency in evolutionary scenarios), whose

accuracy may critically depend on the number of samples, the – a priori unknown

– variance of the underlying distribution, or other factors. However, whenever the

property of interest, in conjunction with the DP scheme, fulfills certain technical

conditions [18], it is possible to compute its expectation exactly in polynomial time,

by transforming the DP scheme using a variant of the inside-outside algorithm.

More precisely, our objective is to compute the probabilities associated with each

of the O(n1 × n2) left-hand-side (LHS) to right-hand-side (RHS) transitions in the

DP recurrence. Let us denote by l→ r an LHS/RHS transition, such that

l ∈ {0, 1} ×G1 ×G2 and r ∈ R+ × ({0, 1} ×G1 ×G2)
∗
, (6)

[1]For the sake of simplicity, we assume here that calls of the form c0|1(g1, g2), where

e(g1) = GLoss (resp. e(g2) = GLoss), are expanded into calls c0|1(g1, ag2 ) and c0|1(g1, bg2 )

(resp. c0|1(ag1 , g2) and c0|1(bg1 , g2)), unless g2 (resp. g1) is also a leaf.
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and by Fl→r the set of forests whose production borrows the l→ r transition. The

Boltzmann probability of (l→ r) is then defined as

P (l→ r) :=
∑

F∈Fl→r

P (F ) ≡
∑
F∈Fl→r

e−
sa(F )
kT

Z(G1, G2)
. (7)

Since Z(G1, G2) is known, it is sufficient to compute the numerator of the above

fraction, i.e. the total Boltzmann factor of the forests Fl→r that feature (l → r).

On the other hand, the number of forests in Fl→r typically grows exponentially on

n1 + n2, so one must find an efficient strategy for computing this summation.

The principle of the inside-outside algorithm [15] is to decompose each of the

executions, associated with a forest in Fl→r, into: a) an inside part, generated from

the recursive calls in the RHS r; and b) an outside part, which denotes the context

in which the LHS l appears, i.e. an execution of the DP scheme which features a

recursive call to l, and is truncated at that point. Let us remark that the inside and

outside parts are independent, i. e. any inside part can be combined with any outside

part to form a valid execution of the DP scheme, and the score of the associated

forest is simply obtained by summing the scores of its two parts. Thus, the total

Boltzmann factor of the forests Fl→r, l := (xl, gl, g
′
l), can be decomposed as

∑
F∈Fl→r

e−
sa(F )
kT ≡ e−Cr

kT ×
∏

(x,g,g′)∈r

cx(g, g′)

︸ ︷︷ ︸
Inside contribution

× dxl
(gl, g

′
l),︸ ︷︷ ︸

Outside contribution

(8)

where Cr denotes the constant score increment in the RHS, and dxl
(gl, g

′
l) is the

outside partition function, i.e. the total Boltzmann factor of all outside parts that

are truncated at l. This term can be computed in O(n1 × n2) by inverting the DP

scheme of Fig. 2 in a purely generic, yet quite technical, fashion [18]. To limit the

risk of mistakes in the derivation/implementation of DP equations for d0|1(g1, g2),

we implemented an ad hoc parser, based on the inversion principle described by

Ponty and Saule [18].

Once the probabilities P (l→ r) are known, it is possible to determine the proba-

bility of an (ancestral) adjacency (g1, g2) by simply summing over the probabilities

of transitions that infer such an adjacency, i. e. that feature a recursive call of the

form c1(g1, g2) within their RHS. Iterating this over all (g1, g2) pairs, one obtains

an adjacency matrix, as shown in Fig. 3.

Results and discussion
Data. We re-analyzed a dataset described in [5] composed of 5, 039 reconciled

gene trees and 50, 389 extant gene adjacencies, forming 6, 074 DeCo instances, with

genes taken from 36 mammalian genomes from the Ensembl database in 2012.

In [5], these data were analyzed using the DeCo algorithm that computed a single

parsimonious adjacency forest per instance. All together, these adjacency forests

defined 112, 188 (resp. 96, 482) ancestral and extant genes (resp. adjacencies) [2],

[2]By “ancestral adjacency”, we mean adjacency that involves two genes g1 and g2

whose descendants in their respective gene trees satisfy that they do not belong to
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and, more important, lead to 5, 817 ancestral genes participating to three or more

ancestral adjacencies, which represent a significant level of syntenic conflict (close

to 5%), as a gene can only be adjacent to at most two neighboring genes along a

chromosome.

DeCo scores, solution space. Unlike reconciled gene trees, whose mutation cost can

be high, most adjacency forests have a relatively low cost, with only 32 instances

leading to forest of score 5 or above, while the average number of parsimonious syn-

tenic events (adjacency gain and break) is 1.25. This illustrates the fact that syn-

tenic events, that are due to genome rearrangements, are rare evolutionary events,

which suggests that parsimony is a relevant criterion for such characters, and that

robustness of syntenic characters with respect to the whole solution space should

be assessed in terms of optimal or slightly suboptimal evolutionary scenarios.

Boltzmann sampling and exact Boltzmann probabilities. For each instance, we sam-

pled 1, 000 adjacency forests under the Boltzmann distribution, for three values of

kT , 0.001, 0.1, 0.5, and recorded the frequency of all observed ancestral adjacen-

cies. Then for the same values of kT , we computed the exact Boltzmann probability

of all potential ancestral adjacencies using the inside-outside algorithm. The result

observed were very similar whether sampling or exact probabilities were considered.

However, the time required to compute exact Boltzmann probabilities is polynomial,

so the exact Boltzmann approach based on the inside-outside algorithm should nat-

urally be favoured in applications. In consequence, we discuss only the case of exact

Boltzmann probabilities below.

The main difference between the three values of kT is that, with kT = 0.5, non-

optimal adjacency forests have a higher Boltzmann probability in the Boltzmann

distribution, while kT = 0.1 skews the distribution toward optimal adjacency forests

and slightly suboptimal ones, and kT = 0.01 ensures that the probability of sub-

optimal adjacency forests is extremely low and almost does not contribute to the

partition function. We then looked at the numbers of ancestral adjacencies, genes

and syntenic conflicts from ancestral adjacencies in terms of Boltzmann probability.

Table 1 below summarizes the obtained results.

The difference observed between the results with different values of kT supports

that parsimony is an appropriate criterion for looking at gene adjacency evolution.

Indeed, in the results obtained with kT = 0.5, that gives a higher probability to

non-optimal adjacency forests, it appears that the number of conserved ancestral

adjacencies drops sharply after probability 0.6, showing that very few ancestral

adjacencies appear with high probability. However, with kT = 0.1 and kT = 0.01,

by taking a high probability threshold (starting at a threshold of 0.6), we reduce

significantly the number of syntenic conflicts while maintaining a relatively similar

number of ancestral genes than the experiments described in [5]; this observation

illustrates the potential of the ensemble approach compared to the classical dynamic

approach that relies on a single arbitrary optimal solution. Next, the experiment

the same species s(g1) (equal to s(g2)), i.e. g1 and g2 are pre-speciation genes, that

were not duplicated within their species. This choice is motivated by the fact that

the reconstruction of ancestral genomes considers pre-speciation genomes.
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Table 1 Characteristics of ancestral genes and adjacencies from observed ancestral adjacencies
filtered by Boltzmann probability (leftmost column), with different kT values.

Proba.
Ancestral genes Ancestral adjacencies Syntenic conflicts

kT=0.5 kT=0.1 kT=0.01 kT=0.5 kT=0.1 kT=0.01 kT=0.5 kT=0.1 kT=0.01

≥ 0.1 122,593 120,495 120,531 137,133 116,671 116,873 31,415 14,655 14,863

≥ 0.2 121,896 119,792 119,864 130,928 113,835 114,109 26,415 12,631 12,871

≥ 0.3 120,869 118,871 118,913 122,073 110,472 110,676 19,729 10,259 10,471

≥ 0.4 118,240 117,883 117,990 111,224 107,492 107,845 11,569 8,439 8,738

≥ 0.5 113,023 116,476 116,810 100,265 103,963 105,015 5,658 6,578 7,373

≥ 0.6 104,970 114,699 114,902 88,943 100,064 100,511 3,044 5,081 5,387

≥ 0.7 92,647 112,834 112,924 75,063 96,546 96,789 1,363 4,104 4,301

≥ 0.8 75,408 110,272 110,503 58,665 92,181 92,621 492 3,290 3,496

≥ 0.9 45,753 107,769 107,863 34,005 88,132 88,373 65 2,717 2,886

= 1 13 16,470 106,903 7 10,798 87,048 0 0 2,690

with kT = 0.01 that considers only co-optimal scenarios (the probability of non-

optimal scenarios falls under the numerical precision) shows that, despite conserving

only ancestral adjacencies with maximal support in terms of Boltzmann probability,

a significant number of syntenic conflicts remains. We conjecture that this is due

to errors in the considered reconciled gene trees, and it would be interesting to see

if the information about highly supported conflicting adjacencies can be used to

correct reconciled gene tree.

Conclusions
The main contribution of our work is an extension of the DeCo dynamic program-

ming scheme to consider adjacency forests in a probabilistic framework, under the

Boltzmann distribution. The application of our algorithms on a mammalian genes

dataset, together with a simple threshold-based, approach to filter ancestral adjacen-

cies, proved to be effective to reduce significantly the number of syntenic conflicts,

illustrating the interest of the ensemble approach. This preliminary work raises sev-

eral questions and can be extended along several lines. Among them, we can cite

two of immediate interest. First, given the Boltzmann probabilities of the adjacency

gains and breaks associated to ancestral adjacencies, we could use them to compute

a Maximum Expected Accuracy adjacency forest, which is a parsimonious adjacency

forest in a scoring model where each event is weighted by Boltzmann probability

(see [20] for an example of this approach for RNA secondary structures). This would

provide a unique evolutionary scenario per instance. Next, we considered here an

evolutionary model based on speciation, duplication and loss. A natural extension

would be to include the event of lateral gene transfer in the model. Efficient recon-

ciliation algorithms exist for several variants of this model [3, 4], together with an

extension of DeCo, called DeCoLT [21]. DeCoLT is also based on dynamic program-

ming, and it is likely that the techniques we developed in the present work also

apply to this algorithm.
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21. Patterson, M., Szöllosi, G.J., Daubin, V., Tannier, E.: Lateral gene transfer, rearrangement, reconciliation.

BMC Bioinformatics 14(S-15), 4 (2013). doi:10.1186/1471-2105-14-S15-S4

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2015. ; https://doi.org/10.1101/026310doi: bioRxiv preprint 

https://doi.org/10.1101/026310
http://creativecommons.org/licenses/by-nc/4.0/

