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Abstract

Embryonic development involves diffusion and proliferation of cells, as well as diffusion

and reaction of molecules, within growing tissues. Mathematical models of these

processes often involve reaction–diffusion equations on growing domains that have

been primarily studied using approximate numerical solutions. Recently, we have

shown how to obtain an exact solution to a single, uncoupled, linear reaction–diffusion

equation on a growing domain, 0 < x < L(t), where L(t) is the domain length. The

present work is an extension of our previous study, and we illustrate how to solve a

system of coupled reaction–diffusion equations on a growing domain. This system of

equations can be used to study the spatial and temporal distributions of different

generations of cells within a population that diffuses and proliferates within a growing

tissue. The exact solution is obtained by applying an uncoupling transformation, and

the uncoupled equations are solved separately before applying the inverse uncoupling

transformation to give the coupled solution. We present several example calculations

to illustrate different types of behaviour. The first example calculation corresponds to

a situation where the initially–confined population diffuses sufficiently slowly that it is
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unable to reach the moving boundary at x = L(t). In contrast, the second example

calculation corresponds to a situation where the initially–confined population is able

to overcome the domain growth and reach the moving boundary at x = L(t). In its

basic format, the uncoupling transformation at first appears to be restricted to deal

only with the case where each generation of cells has a distinct proliferation rate.

However, we also demonstrate how the uncoupling transformation can be used when

each generation has the same proliferation rate by evaluating the exact solutions as an

appropriate limit.
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Introduction 1

Several processes during embryonic development are associated with the migration 2

and proliferation of cells within growing tissues. A canonical example of such a process 3

is the development of the enteric nervous system (ENS) [1–5]. This involves a 4

population of precursor cells that is initially confined towards the oral end of the 5

developing gut tissue. Cells within the population undergo individual migration and 6

proliferation events, leading to a population–level front of cells that moves toward the 7

anal end of the gut [6]. The spatial distribution of the population of cells is also 8

affected by the growth of the underlying gut tissue [7, 8]. Normal development of the 9

ENS requires that the moving front reaches the anal end of the developing tissue. 10

Conversely, abnormal ENS development is thought to be associated with situations 11

where the front of cells fails to reach the anal end of the tissue [6, 7]. 12

Previous mathematical models of ENS development involve reaction–diffusion 13

equations on a growing domain [6, 9]. These partial differential equation models have 14

been solved numerically, and the numerical solutions used to investigate the 15

interaction between the rates of cell migration, cell proliferation and tissue growth. 16

The interaction between these processes is of interest as it has been shown that 17

altering the relative rates of cell migration, cell proliferation and tissue growth has an 18

important impact on whether the moving cell front can overcome the effects of tissue 19

growth and completely colonize the growing tissue [6, 9]. Previous analysis of these 20

types of models has shown that successful colonization requires that: (i) there is a 21

sufficiently large number of cells present at t = 0; (ii) the migration rate of cells is 22

sufficiently large; (iii) the proliferation rate of cells is sufficiently large; and (iv) the 23

rate of growth of the underlying tissue is sufficiently small [6, 9]. 24

All initial studies examining the solution of reaction–diffusion equations on growing 25

domains focused on interpreting numerical solutions of the governing 26

equations [6, 9–19]. More recently, we have shown how to obtain an exact analytical 27

solution of a single species, uncoupled, linear reaction–diffusion equation on a growing 28

domain [20,21]. The aim of the present study is to extend our previous analysis by 29

presenting a framework that can be used to construct the exact solution of a system of 30

coupled, multispecies, linear reaction–diffusion equations on a growing domain. This 31
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means that in the present study we consider a system of coupled partial differential 32

equations on a growing domain, and our approach is relevant to an arbitrary number 33

of coupled partial differential equations. The model we analyze can be used to study 34

the spatial and temporal distributions of different generation of cells within a motile 35

and proliferative cell population on a growing domain. To motivate our model, Figure 36

1(a) illustrates a cell lineage tree for a birth process in which the different generations 37

are identified. Traditional applications of reaction–diffusion models make no 38

distinction between cells of different generations [22–25] whereas more recent analysis 39

has sought to make a distinction between different generations on a nongrowing 40

domain [26]. The recent work by Cheeseman et al. [26] is novel because it involves 41

re–formulating a standard reaction–diffusion model of cell migration and cell 42

proliferation with the aim of studying the spatial and temporal distribution of different 43

generations of cells on a nongrowing domain. In the present study we use a system of 44

coupled linear reaction–diffusion equations to model the spatial and temporal 45

distribution of each generation on a growing domain. We denote the cell density of the 46

ith generation as Ci(x, t) for i = 1, 2, 3, . . ., and our aim is to find exact solutions of the 47

coupled model. This work is novel since exact solutions of coupled multispecies linear 48

reaction–diffusion equations on a growing domain have not been presented previously. 49

This manuscript is organized in the following way. First, we outline the 50

mathematical model and the solution strategy. Using the proposed solution method 51

we solve an example problem and present graphical results illustrating some key 52

features of the model, and we always compare the exact solutions with numerical 53

approximations. Although our solution strategy is naturally suited to the most general 54

case where the rate of proliferation of each generation is distinct, we also demonstrate 55

how our approach applies to some special cases in which some of the generations have 56

identical proliferation rates. Additional results relating to the choice of truncation are 57

also presented. Finally, we conclude by summarizing the key findings of our work, and 58

we discuss some other applications for which our analysis is relevant. 59
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Analysis 60

We begin by presenting a mathematical model describing the diffusion of a population 61

of cells on a growing domain, where the cells undergo a proliferation process that is 62

depicted schematically in Figure 1(a). This proliferation process means cells in the ith 63

generation proliferate to form twice the number of cells in the (i+ 1)st generation. 64

Assuming that each generation undergoes diffusive movement on a growing domain, 65

we describe the spatial and temporal evolution of the cell density profiles, for each 66

generation, using the following system of coupled linear partial differential equations, 67

∂C1

∂t
= D

∂2C1

∂x2
− ∂(vC1)

∂x
− k1C1, (1)

∂Ci
∂t

= D
∂2Ci
∂x2

− ∂(vCi)

∂x
+ 2ki−1Ci−1 − kiCi, ∀i = 2, 3, 4, . . . , (2)

on 0 < x < L(t). Here, D is the cell diffusivity, v is the advection velocity associated 68

with domain growth, and ki is the rate at which cells from the ith generation 69

proliferate to produce cells in the next, (i+ 1)st, generation. Note that the factor of 70

two in the production term for generation i ≥ 2 reflects the fact that cells from the ith 71

generation proliferate to produce twice the number of cells in the (i+ 1)st generation, 72

as depicted in Figure 1(a). 73

Our strategy for solving Equations (1)–(2) is valid for a range of initial conditions 74

and boundary conditions. Regardless of the choice of boundary conditions and initial 75

conditions, to solve Equations (1)–(2) we apply Sun and Clement’s uncoupling 76

transformation [27–33], which can be written as 77

ai = Ci +
i−1∑
j=1

i−1∏
l=j

2kl
kl − ki

Cj ∀i = 2, 3, 4, . . . , (3)

where, for the moment, we require that we have distinct proliferation rates to avoid 78

any singularity in the definition of ai(x, t). Later we will explain how to relax this 79

assumption. Applying the Sun and Clement transformation to Equations (1)–(2) leads 80

to a system of uncoupled partial differential equations, 81

∂ai
∂t

= D
∂2ai
∂x2

− ∂(vai)

∂x
− kiai, ∀i = 1, 2, 3, . . . , (4)
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on 0 < x < L(t), which, at this point, can be solved by using the methods outlined in 82

our previous work for single uncoupled reaction–diffusion equations on growing 83

domains [20,21]. We note that the solution of Equation (4) can be unbounded when 84

ki < 0. While we do not outline the entire details of the solution strategy, we will 85

briefly recall the salient features of how to solve Equation (4). 86

Domain growth 87

Domain growth is associated with a velocity field which causes a point at location x to 88

move to x+ v(x, t)τ during a small time interval duration τ . We can relate v(x, t) and 89

L(t) by considering the expansion of an element of initial width ∆x [6], 90

dL(t)

dt
=

∫ L(t)

0

∂v

∂x
dx. (5)

We consider uniform growth conditions where ∂v/∂x is independent of position, but 91

could depend on time, so that we have ∂v/∂x = σ(t) [6, 9–16]. Combining this with 92

Equation (5) gives: 93

∂v

∂x
= σ(t)

=
1

L(t)

dL(t)

dt
. (6)

Like previous studies [6, 9, 14], we assume that the domain elongates in the positive 94

x–direction with the origin fixed, giving v(0, t) = 0. Integrating Equation (6) gives 95

v(x, t) =
x

L(t)

dL(t)

dt
. (7)

This framework allows us to specify L(t), for example, by using experimental 96

observations [8], and to use Equation (7) to find the velocity, v(x, t). For example, 97

exponential growth, L(t) = L(0)eαt, corresponds to σ(t) = α and v(x, t) = αx. 98

Alternatively, linear growth, L(t) = L(0) + βt, corresponds to σ(t) = β/(L(0) + βt) 99

and v(x, t) = xβ/(L(0) + βt) [20,21]. 100
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Solution strategy 101

To solve Equation (4) we use a Lagrangian mapping, which in this context is also 102

known as a boundary fixing transformation, ξ = x/L(t), giving 103

∂ai
∂t

=
D

L2(t)

∂2ai
∂ξ2

− 1

L(t)

∂(vai)

∂ξ
− kiai +

ξ

L(t)

dL(t)

dt

∂ai
∂ξ

, ∀i = 1, 2, 3, . . . , (8)

on the fixed domain 0 < ξ < 1. Since v = ξdL(t)/dt, we have 104

∂ai
∂t

=
D

L2(t)

∂2ai
∂ξ2

− (ki + σ(t))ai, ∀i = 1, 2, 3, . . . . (9)

The net reaction term in Equation (9) is the sum of two terms that represent two 105

distinct processes. The first reaction term, −kiai, is a sink term that is proportional 106

to the rate at which the ith generation proliferates to form the (i+ 1)st generation. 107

The second reaction term, −σ(t)ai, is proportional to ∂v/∂x, and since ∂v/∂x > 0 this 108

is a sink term that represents a dilution effect caused by the domain growth. To 109

simplify Equation (9) we re–scale the time variable, T (t) =
∫ t
0
D/L2(s) ds [20], so that 110

the coefficient of the diffusive term is constant. This gives 111

∂ai
∂T

=
∂2ai
∂ξ2

+ f(T )ai, ∀i = 1, 2, 3, . . . , (10)

where f(T ) = −L2(T )(ki + σ(T ))/D. Equation (10) can be solved using separation of 112

variables. With zero diffusive flux conditions at both boundaries we have 113

ai(ξ, T ) =
∞∑
n=0

Ψi,n cos(nπξ)e−(nπ)
2T (t)e

∫ T
0
f(T∗) dT∗

, ∀i = 1, 2, 3 . . . , (11)

where we choose the Fourier coefficients, Ψi,n, so that ai(ξ, T ) matches the 114

appropriate initial condition for each component, i = 1, 2, 3, . . . . Once the Fourier 115

coefficients have been defined, the exact solution for each uncoupled component can be 116

rewritten in terms of the physical coordinate system, ai(x, t), and then re–expressed in 117

terms of the original coupled variables to give Ci(x, t) for i = 1, 2, 3, . . . . 118

At this point it is worthwhile pointing out how different boundary conditions and 119

initial conditions can be applied. Different initial conditions can be implemented 120

simply by choosing different Fourier coefficients [34]. Applying homogeneous or 121
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nonhomogeneous Dirichlet boundary conditions can be implemented by choosing 122

appropriate eigenfunctions in Equation (11) so that the solution satisfies those 123

boundary conditions [21]. The specific examples that we present here in the Results 124

section illustrate how homogeneous Neumann (zero flux) boundary conditions are 125

applied. We choose to focus our examples on using homogeneous Neumann boundary 126

conditions because previous studies have also used similar boundary conditions [6, 20]. 127

We note, however, that greater care is required when applying nonhomogeneous 128

Neumann (non–zero flux) boundary conditions (Supporting Information 1). 129

Results 130

Distinct reaction rates 131

Our approach for solving coupled linear reaction–diffusion equations on uniformly 132

growing domains is sufficiently general that it applies to: (i) various types of domain 133

growth functions, L(t) [20,21]; (ii) an arbitrary number of generations in the lineage 134

tree [27,28]; and (iii) arbitrary initial conditions. To demonstrate how our approach 135

applies to a particular problem we will present a suite of results focusing on 136

exponential domain growth, L(t) = L(0)eαt with α > 0, and, for simplicity, we keep 137

track of the first four generations only by solving 138

∂C1

∂t
= D

∂2C1

∂x2
− ∂(vC1)

∂x
− k1C1, (12)

∂C2

∂t
= D

∂2C2

∂x2
− ∂(vC2)

∂x
+ 2k1C1 − k2C2, (13)

∂C3

∂t
= D

∂2C3

∂x2
− ∂(vC3)

∂x
+ 2k2C2 − k3C3, (14)

∂C4

∂t
= D

∂2C4

∂x2
− ∂(vC4)

∂x
+ 2k3C3 − k4C4, (15)

on 0 < x < L(t). Although all the main results in this work are presented for four 139

generations only, our solution strategy can be adapted to deal with more generations 140

by extending this example in an obvious way. Setting k4 > 0 in this example implies 141

that C4(x, t) will always decay to zero in the long time limit since we have truncated 142

the number of generations to four and we do not explicitly consider the role of the 143

fifth generation. One way of dealing with this is to set k4 = 0 in the example 144
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calculations so that the fourth generation do not proliferate. Another way of dealing 145

with this is to increase the number of generations by including partial differential 146

equation models for C5(x, t), C6(x, t), and so on. However, since this is the first time 147

that these results have been presented we chose to truncate the system after just four 148

generations since we wish to present the results as clearly as possible by working with 149

a modest number of generations. Motivated by Landman’s previous numerical study 150

of ENS development [6], we consider the initial condition 151

C1(x, 0) = C(1−H(x− γ)), (16)

C2(x, 0) = 0, (17)

C3(x, 0) = 0, (18)

C4(x, 0) = 0, (19)

where H is the Heaviside function. This initial conditions states that we have some 152

region of the domain, 0 < x < γ, initially uniformly occupied by the first generation at 153

density C. The remaining portion of the domain, γ < x < L(0), is free from cells of the 154

first generation. All other generations are absent at t = 0. We apply the Sun and 155

Clement transformation [27,28], which in this case, can be written as 156

a1 = C1, (20)

a2 = C2 + C1

[
2k1

k1 − k2

]
, (21)

a3 = C3 + C2

[
2k2

k2 − k3

]
+ C1

[
2k1

k1 − k3
2k2

k2 − k3

]
, (22)

a4 = C4 + C3

[
2k3

k3 − k4

]
+ C2

[
2k2

k2 − k4
2k3

k3 − k4

]
+ C1

[
2k1

k1 − k4
2k2

k2 − k4
2k3

k3 − k4

]
, (23)

to give four uncoupled partial differential equations. Assuming we have zero diffusive 157

flux boundary conditions at both boundaries, the solutions of the uncoupled partial 158

differential equations can be written as 159

ai(x, t) =
∞∑
n=0

Ψi,n cos

(
nπx

L(t)

)
e−(nπ)

2T (t)e−t(α+ki), ∀i = 1, 2, 3, 4, (24)
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where L(t) = L(0)eαt and T (t) = D(1− e−2αt)/(2αL2(0)) [20,21]. To ensure that 160

ai(x, 0) matches the appropriate initial condition, we require 161

Ψ1,0 =
Cγ
L(0)

, (25)

Ψ1,n =
C2
nπ

sin

(
nπγ

L(0)

)
, (26)

Ψ2,0 = Ψ1,0

[
2k1

k1 − k2

]
, (27)

Ψ2,n = Ψ1,n

[
2k1

k1 − k2

]
, (28)

Ψ3,0 = Ψ1,0

[
2k1

k1 − k3
2k2

k2 − k3

]
, (29)

Ψ3,n = Ψ1,n

[
2k1

k1 − k3
2k2

k2 − k3

]
, (30)

Ψ4,0 = Ψ1,0

[
2k1

k1 − k4
2k2

k2 − k4
2k3

k3 − k4

]
, (31)

Ψ4,n = Ψ1,n

[
2k1

k1 − k4
2k2

k2 − k4
2k3

k3 − k4

]
, (32)

where n ∈ N+. Given the solutions in the uncoupled format, ai(x, t), i = 1, 2, 3, 4, we 162

then obtain the coupled solutions, Ci(x, t), i = 1, 2, 3, 4, using Equations (20)–(23). 163

Results in Figure 2 show the solutions of Equations (12)–(15) in the case where we 164

have distinct proliferation rates, k1 6= k2 6= k3 6= k4. The first row shows the initial 165

condition, given by Equations (16)–(19), while the second and third rows show the 166

spatial distribution of each generation and the total density, S(x, t) =
∑4
i=1 Ci(x, t), at 167

t = 10 and t = 20, respectively. Each subfigure contains a plot of the exact solution, 168

truncated after 1000 terms, superimposed on a plot of the numerical solution 169

(Supporting Information 1), and we see that the numerical and exact solutions are 170

visually indistinguishable. Comparing the solutions in Figure 2(a), (f) and (k) 171

indicates that the initial condition is entirely composed of the first generation, whereas 172

by t = 20 the first generation is almost absent due to proliferation. In contrast, 173

comparing the results in Figure 2(d), (i) and (n) shows that, initially, the fourth 174

generation is absent and that by t = 20 there is a significant population of the fourth 175

generation present on the growing domain. The temporal evolution of the total 176

density, shown in Figure 2(e), (j) and (o), confirms that the spreading cell density 177

profile fails to reach the moving boundary by t = 20 [20]. In particular, our exact 178

PLOS 10/36

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 7, 2015. ; https://doi.org/10.1101/026229doi: bioRxiv preprint 

https://doi.org/10.1101/026229


results indicate that we have S(L(20), 20) = 0.0000 (correct to four decimal places). 179

Furthermore, if we evaluate the solutions for larger values of t we observe that, for this 180

combination of parameters, domain growth dominates and, in effect, the spreading 181

density profile never reaches the moving boundary at x = L(t), and we have 182

S(L(t), t) ≈ 0 [20]. Previous numerical studies of ENS development have pointed out 183

that this kind of result, where the spreading cell density profile fails to reach the end 184

of the growing domain, is consistent with abnormal ENS development [6]. 185

We also present a second set of results, in Figure 3, that are the same as those in 186

Figure 2 with the exception that the diffusivity is increased. Similar to the results in 187

Figure 2 we see that the numerical and exact solutions are visually indistinguishable, 188

and that the density profile of the first generation is present at t = 0 and t = 10, but is 189

almost absent by t = 20. Similarly, the density profile of the fourth generation is 190

identically zero at t = 0 but the effects of proliferation mean that the fourth 191

generation is present, and dominates the total population, by t = 20. If we compare 192

the evolution of the total density profile, shown in Figure 3(e), (j) and (o), with the 193

evolution of the total density profile in the previous example with smaller D, shown in 194

Figure 2(e), (j) and (o), we see that the effect of increasing the diffusivity is that the 195

spreading cell density profile is able to overcome domain growth and colonize the 196

domain. In particular, the exact solutions give S(L(20), 20) = 0.0085 (correct to four 197

decimal places), which could be interpreted as indicating that the spreading cell 198

density profile has reached the moving boundary at x = L(t) by t = 20 [20]. Previous 199

numerical studies of ENS development have pointed out that this kind of result, where 200

the spreading cell population reaches the end of the growing domain, is consistent with 201

normal ENS development [6]. 202

All exact solutions presented in Figures 2 and 3 are generated using Maple 203

worksheets (Supporting Information 2–3). For all results presented we conservatively 204

truncate the infinite series by retaining the first 1000 terms. Using this approach we 205

find that the computational time required to generate the exact solutions is just a few 206

seconds on a single desktop processor. The numerical solutions of the systems of 207

coupled partial differential equations are generated using code written in FORTRAN 208

77 [35], and we find that the numerical solutions also requires just a few seconds of 209

computational time on a single desktop processor. Therefore, in summary, there is no 210
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particular advantage in terms of computational time requirements to evaluate either 211

the exact or numerical solutions for these problems. 212

Repeated reaction rates 213

As we pointed out in the Introduction, an apparent limitation of the Sun and Clement 214

transformation is that it appears to require distinct proliferation rates to avoid any 215

singularities [27,28]. We will now show, by example, that it is straightforward to deal 216

with this apparent complication. In particular, we will explain how to obtain exact 217

solutions to Equations (12)–(15) with identical proliferation rates, k1 = k2 = k3 = k4. 218

The potential issue in solving Equations (12)–(15) with equal proliferation rates is 219

illustrated by visually inspecting the exact solution for C2, 220

C2 =
2k1

k1 − k2

∞∑
n=0

Ψ1,n cos

(
nπx

L(t)

)
e−(nπ)

2T (t)e−αt
[
e−k2t − e−k1t

]
, (33)

which is indeterminate when k1 = k2. This issue can be resolved by evaluating C2 in 221

the limit as k2 → k1 using L’Hopital’s rule, which gives 222

C2 = 2k1t
∞∑
n=0

Ψ1,n cos

(
nπx

L(t)

)
e−(nπ)

2T (t)e−αte−k1t. (34)

Applying the same approach to the solution of Equations (12)–(15) with 223

k1 = k2 = k3 = k4 gives, 224

C1 =
∞∑
n=0

Ψ1,n cos

(
nπx

L(t)

)
e−(nπ)

2T (t)e−αte−k1t, (35)

C2 = 2k1tC1, (36)

C3 =
(2k1t)

2

2
C1, (37)

C4 =
(2k1t)

3

6
C1. (38)

Results in Figure 4 show the solutions of Equations (12)–(15) with k1 = k2 = k3 = k4. 225

We acknowledge that setting k1 = k2 = k3 = k4 > 0 in Equations (12)–(15) is not 226

biologically realistic since it implies that limt→∞ S(x, t) ≡ 0. However, this exercise of 227

comparing exact and numerical solutions of Equations (12)–(15) with 228
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k1 = k2 = k3 = k4 is mathematically insightful since we wish to illustrate that our 229

general framework for solving the coupled systems of reaction–diffusion equations on a 230

growing domain also applies when we have repeated proliferation rates. The results in 231

Figure 4 are presented in exactly the same format as those in Figures 2 and 3 except 232

that the proliferation rates are equal. As in Figures 2 and 3, the results in Figure 4 233

indicate that the numerical and exact solutions are visually indistinguishable. 234

The example presented in Figure 4 is relevant for the special case where all 235

proliferation rates are identical, with k1 = k2 = k3 = k4. A similar procedure can be 236

used to obtain the exact solutions in cases where some of the proliferation rates are 237

repeated and others are distinct. For example, the solution of Equations (12)–(15), 238

with k1 = k2 = k3 6= k4, can be written as 239

C1 =

∞∑
n=0

Ψ1,n cos

(
nπx

L(t)

)
e−(nπ)

2T (t)e−αte−k1t, (39)

C2 = 2k1tC1, (40)

C3 =
(2k1t)

2

2
C1, (41)

C4 =

[
2k1

k1 − k4

]3 ∞∑
n=0

Ψ1,n cos

(
nπx

L(t)

)
e−(nπ)

2T (t)e−αt
[
e−k4t − e−k1t

]
− 2k1t

[
2k1

k1 − k4

]2
C1 −

(2k1t)
2

2

[
2k1

k1 − k4

]
C1. (42)

We also compared plots of the numerical solution of Equations (12)–(15), for 240

k1 = k2 = k3 6= k4, with the exact solution, given by Equations (39)–(42), and we 241

observed an excellent match between the exact and numerical solutions (results not 242

shown). 243

Choice of truncation 244

All applications of the solution strategy presented in this work require the infinite 245

series to be truncated after a finite number of terms. For simplicity we always 246

truncate the series very conservatively by retaining the first 1000 terms. The Maple 247

worksheets used to calculate these exact solutions are provided as Supporting 248

Information and these worksheets can be very easily manipulated to explore the effect 249

of varying the level of truncation (Supporting Information 2–3). To demonstrate this, 250
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we present additional results in Figure 5(a) showing S(x, t) =
∑4
i=1 Ci(x, t) for the 251

same problem considered previously in Figure 3. The profiles in Figure 5(a) compare 252

the exact solution truncated after 1, 2, 5 and 1000 terms. Visual inspection of the 253

profiles indicate that the profile corresponding to 1000 terms is indistinguishable from 254

the profile corresponding to 5 terms. In contrast, the profiles corresponding to 1 and 2 255

terms in the truncated series are visually distinct. To quantify these trends we plot, in 256

Figure 5(b), |Sexact(x, t)− Struncated(x, t)|, at x = 0 and t = 20, where we suppose that 257

the exact solution is given by retaining 1000 terms in the truncated series. Results in 258

Figure 5(b) indicate that truncating after 1000 terms greatly exceeds what is required 259

to ensure that the truncation error is below machine precision since we are unable to 260

distinguish, beyond machine precision, any difference between retaining 10 terms, 100 261

terms or 1000 terms in the truncated solution. This implies that the truncation error 262

present in Figures 2–4, where we have evaluated the exact solution very conservatively 263

by retaining 1000 terms in the truncated series, is less than machine precision. 264

Instead of making any prescriptive recommendations about truncating the series, 265

we suggest that any particular application of the solution should involve evaluating 266

the exact solution for the problem of interest iteratively. In each iteration, additional 267

terms in the series should be retained, and the results compared between successive 268

iterations. This process will demonstrate how many terms are required to achieve a 269

desired accuracy. Implementing the exact solution in this way is both straightforward 270

and fast when using the supplied Maple worksheets (Supporting Information 2–3). 271

Discussion 272

In this work we have presented a framework that can be used to calculate the exact 273

solution of a system of coupled linear reaction–diffusion equations on a growing 274

domain. Our work has been motivated by previous numerical studies of ENS 275

development which have used numerical methods to examine the interplay between 276

cell diffusion, cell proliferation and tissue growth in determining whether a cell 277

population, initially confined towards one end of the growing tissue at x = 0, can 278

overcome domain growth and reach the other end of the growing tissue at 279

x = L(t) [6, 9]. Most standard models of collective cell spreading make no distinction 280
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between different generations of cells [22–25]. In contrast, Cheeseman et al. [26] 281

recently re–formulated a typical reaction–diffusion model of cell migration and cell 282

proliferation so that they could study the spatial and temporal distribution of different 283

generations of cells on a nongrowing domain. Here we use a linear model to make a 284

distinction between different generations of cells in the spreading cell profile and we 285

obtain an exact solution to corresponding system of coupled linear reaction–diffusion 286

equations on a growing domain. Our approach is sufficiently general that it applies to 287

an arbitrary number of generations, an arbitrary initial condition and many choices of 288

the domain growth function, L(t). This work is novel since we are unaware of any 289

previous work that has presented exact solutions of systems of reaction–diffusion 290

equations on growing domains. However, our approach is limited to dealing with 291

coupled linear reaction–diffusion equations on a one–dimensional growing domain and 292

we suggest that numerical approaches are more appropriate for solving 293

reaction–diffusion equations on two– and three–dimensional growing domains. 294

While we have motivated our mathematical model by considering a proliferative 295

cell population, our framework can also be adapted to deal with other coupled 296

biological processes on growing domains. For example, the cell lineage tree in Figure 297

1(b) depicts a cell differentiation process where cells of a particular type differentiate 298

into cells of another type. This kind of cell differentiation process has been 299

incorporated into previous nonlinear coupled multispecies reaction–diffusion models 300

for different types of applications including models of latter stages of ENS 301

development [36,37] and models of aerosolised skin grafts [38,39]. If we are interested 302

in applying our technique to solve a linear mathematical model describing cell 303

migration and cell differentiation on a growing domain, we could study a coupled 304

system of linear partial differential equations of the form, 305

∂C1

∂t
= D

∂2C1

∂x2
− ∂(vC1)

∂x
− k1C1, (43)

∂Ci
∂t

= D
∂2Ci
∂x2

− ∂(vCi)

∂x
+ ki−1Ci−1 − kiCi, ∀i = 2, 3, 4, . . . , (44)

on 0 < x < L(t). The key difference between Equations (1)–(2) and Equations 306

(43)–(44) is the factor of two in the source terms for i ≥ 2. This difference reflects the 307

fact that in the proliferation model cells of each generation proliferate to form twice 308
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the number of cells in the next generation whereas cells in the differentiation model 309

differentiate to produce the same number of cells of the next cell type in the cell 310

lineage tree. Applying the Sun and Clement [27,28] transformation to Equations 311

(43)–(44) proceeds by using a modified version of Equation (4) without the factor of 312

two in the numerator. 313

The key contribution of our work is to describe a new set of exact mathematical 314

solutions of coupled reaction–diffusion equations on growing domains that have not 315

been presented previously. This contribution is both mathematically and practically 316

relevant because the new exact solutions are motivated by certain problems, such as 317

describing the spatial and temporal distributions of different generations of cells on a 318

growing domain, that cannot be modelled using previous exact solutions [20,21]. 319

Furthermore, our work is significant because it is the first time, as far as we are aware, 320

that the Sun and Clement transformation [27,28] has been applied to a problem 321

outside of the porous media literature. Therefore, part of the motivation of this work 322

is to illustrate how the Sun and Clement transformation [27,28] is relevant to the 323

mathematical biology literature. 324

Although our comparison of the exact and numerical solutions of Equations (1)–(2) 325

in Figures 2–4 is excellent, our analysis is limited to the study of linear 326

reaction–diffusion equations since we rely on separation of variables and superposition. 327

While many studies of collective cell migration and cell proliferation involve nonlinear 328

partial differential equations [22–25], it is relevant for us consider studying linear 329

partial differential equation models, since they can be viewed as an approximation of 330

nonlinear partial differential equation models. For example, Swanson [40] studied a 331

linearized version of the Fisher-Kolmogorov equation to produce exact analytical 332

solutions that provide insight into the dynamics of tumor spreading. Such linearised 333

models match the solution of the corresponding nonlinear models in the low density 334

limit of the solution which means that the linear model provides a good approximation 335

to the position of the leading edge of the spreading cell population (Supporting 336

Information 1). The fact that the solution of the linear model matches the solution of 337

the nonlinear model at the low density leading edge is both mathematically convenient 338

as well as being of practical interest since many experimental observations of collective 339

cell spreading report results in terms of the position of the low density leading edge of 340
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the spreading cell profile [46–48]. We note that similar approximations, which amount 341

to studying nonlinear processes using linearised models, are routinely invoked in many 342

other areas of science and engineering. For example, many nonlinear problems in fluid 343

mechanics [41,42], civil engineering [43,44] and chemical engineering [45] are studied, 344

in an approximate sense, by analyzing linearised models. The rationale for studying 345

such linearised models is that they can be solved exactly, thereby providing more 346

general insight than knowledge gathered from repeated numerical simulations. 347
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Figure Captions
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Figure 1: Schematic illustration of two different lineage trees. (a) Lineage tree

for a cell proliferation process where each cell gives rise to two daughter cells in the

following generation. (b) Lineage tree for a cell differentiation process where each cell

undergoes a differentiation process to produce a single cell of a different type.
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Figure 2: Comparison of exact and numerical solutions of Equations

(12)–(15) with distinct reaction rates where colonization fails to occur by

t = 20. Profiles in (a)–(e), (f)–(j) and (k)–(o) show C1(x, t), C2(x, t), C3(x, t), C4(x, t)

and S(x, t) at t = 0, 10, and 20, respectively. Each subfigure shows the exact solution

(solid red) superimposed on the numerical solution (dashed blue). This example

corresponds to exponential domain growth with L(0) = 1, L(10) = e ≈ 2.78 and

L(20) = e2 ≈ 7.39, as indicated in each subfigure. The exact solutions are obtained by

truncating the infinite series after 1000 terms and the numerical solutions (Supporting

Information 1) correspond to δξ = δt = 1× 10−3. Other parameters are L(0) = 1,

α = 0.1, C = 1, γ = 0.2, D = 1× 10−5, k1 = 0.1, k2 = 0.2, k3 = 0.3 and k4 = 0.
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Figure 3: Comparison of exact and numerical solutions of Equations

(12)–(15) with distinct reaction rates where colonization occurs occur by

t = 20. Profiles in (a)–(e), (f)–(j) and (k)–(o) show C1(x, t), C2(x, t), C3(x, t), C4(x, t)

and S(x, t) at t = 0, 10, and 20, respectively. Each subfigure shows the exact solution

(solid red) superimposed on the numerical solution (dashed blue). This example

corresponds to exponential domain growth with L(0) = 1, L(10) = e ≈ 2.78 and

L(20) = e2 ≈ 7.39, as indicated in each subfigure. The exact solutions are obtained by

truncating the infinite series after 1000 terms and the numerical solutions (Supporting

Information 1) correspond to δξ = δt = 1× 10−3. Here we have L(0) = 1, α = 0.1,

C = 1, γ = 0.2, D = 1× 10−2, k1 = 0.1, k2 = 0.2, k3 = 0.3 and k4 = 0.
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Figure 4: Comparison of exact and numerical solutions of Equations

(12)–(15) with equal reaction rates. Profiles in (a)–(e), (f)–(j) and (k)–(o) show

C1(x, t), C2(x, t), C3(x, t), C4(x, t) and S(x, t) at t = 0, 10, and 20, respectively. Each

subfigure shows the exact solution (solid red) superimposed on the numerical solution

(dashed blue). This example corresponds to exponential domain growth with

L(0) = 1, L(10) = e ≈ 2.78 and L(20) = e2 ≈ 7.39, as indicated in each subfigure. The

exact solutions are obtained by truncating the infinite series after 1000 terms and the

numerical solutions (Supporting Information 1) correspond to δξ = δt = 1× 10−3.

Here we have L(0) = 1, α = 0.1, C = 1, γ = 0.2, D = 1× 10−2,

k1 = k2 = k3 = k4 = 0.1.
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Figure 5: Demonstration of truncation error. Profiles in (a) correspond to the

solution of Equations (12)–(15), written in terms of S(x, t), where

S(x, t) =
∑4
i=1 Ci(x, t). Parameters include L(0) = 1, α = 0.1, C = 1, γ = 0.2,

D = 1× 10−2, k1 = 0.1, k2 = 0.2, k3 = 0.3 and k4 = 0. Results in (a) illustrate the

influence of varying the level of truncation in the infinite series by superimposing

generated with 1000 terms (solid blue), 5 terms (dashed green), 2 terms (dotted red)

and 1 term (solid cyan). Results in (b) show the truncation error,

|Sexact(x, t)− Struncated(x, t)|, at x = 0 and t = 20, where the exact solution is taken to

be the solution generated by truncating after 1000 terms.
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Generation 1

Generation 2 Generation 2

Generation 3 Generation 3 Generation 3 Generation 3

Generation 4 Generation 4 Generation 4 Generation 4 Generation 4 Generation 4 Generation 4 Generation 4

(a) Cell lineage tree depicting proliferation,

Cell type 1

Cell type 2

Cell type 3

Cell type 4

(b) Cell lineage tree depicting differentiation.
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Supporting Information Captions
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S1 Supporting Information. Additional results and discussion.
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S2 Supporting Information. Maple worksheets to calculate exact solution with

distinct proliferation rates.
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S3 Supporting Information. Maple worksheets to calculate exact solution with

repeated proliferation rates.
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