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Abstract

The social network structure of animal populations has major implications
for survival, reproductive success, sexual selection, and pathogen transmis-
sion of individuals. But as of yet, no general theory of social network struc-
ture exists that can explain the diversity of social networks observed in nature,
and serve as a null model for detecting species and population-specific factors.
Here we propose a simple and generally applicable model of social network
structure. We consider the emergence of network structure as a result of social
inheritance, in which newborns are likely to bond with maternal contacts, and
via forming bonds randomly. We compare model output to data from several
species, showing that it can generate networks with properties such as those
observed in real social systems. Our model demonstrates that important ob-
served properties of social networks, including heritability of network position
or assortative associations, can be understood as consequences of social inher-
itance.

The transition to sociality is one of the major shifts in evolution, and social struc-
ture is an important and ever-present selective factor, affecting both reproductive
success1 and survival2,3. Sociality affects individual health, ecological dynamics,
and evolutionary fitness via multiple mechanisms in humans and other animals,
such as pathogen transmission e.g.4,5 and promoting or hindering of particular so-
cial behaviors6,7,8. The social structure of a population summarizes the social bonds
of its members9. Hence, understanding the processes generating variation in so-
cial structure across populations and species is crucial to uncovering the impacts
of sociality.

Recent years have seen a surge in the study of the causes and consequences of
social structure in human and animal societies, based on theoretical and computa-
tional advances in social network analysis (SNA)10,11,12,13,14,15,16. The new interdisci-
plinary network science provides many tools to construct, visualize, quantify and
compare social structures, facilitating advanced understanding of social phenom-
ena. Researchers studying a variety of species, from insects to humans, have used
these tools to gain insights into the factors determining social structure17,18,19,13. Us-
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ing SNA provided evidence for the effects of social structure on a range of phenom-
ena, such as sexual selection20 and cultural transmission21,22.

At the same time, most applications of SNA to non-human animals have been
at a descriptive level, using various computational methods to quantify features
of social structure and individuals’ position in it. These methods, combined with
increasingly detailed data “reality mining”23 about social interactions in nature,
provided valuable insights about the complex effects of social interaction on indi-
vidual behaviors and fitness outcomes. Yet, we still lack a comprehensive theory
that can explain the generation and diversity of social structures observed within
and between species. There have been only a few efforts to model animal social net-
work structure. Notably, Seyfarth24 used a generative model of grooming networks
based on individual preferences for giving and receiving grooming, and showed
that a few simple rules can account for complex social structure. This model and
related approaches e.g.,25 have been very influential in the study of social structure
and continue to drive empirical research. At the same time, they mostly focused on
primates and were geared towards specific questions such as the effects of related-
ness, social ranks, or ecological factors in determining social structure.

Independently, a large body of theoretical work in network science aims to ex-
plain the general properties of human social networks through simple models of
how networks form. Yet these models tend to focus either on networks with a fixed
set of agents26, or on boundlessly growing networks27, with few exceptions28,29.
These network formation models therefore have limited applicability to animal
(and many human) social groups where individuals both join (through birth of
immigration) and leave (through death or emigration) the network. Furthermore,
most work in network science concentrates on the distribution of number of con-
nections individuals have (the degree distribution). Models that fit the degree dis-
tribution of real-world networks tend to be a poor fit to other important properties,
notably the tendency of social connections to be clustered30,27, i.e., two individuals
to be connected with each other if they are both connected to a third individual.
Real-world human and animal networks exhibit significantly more clustering than
random or preferential attachment models predict.
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Simple generative models of complex systems have been highly useful in other
fields, such as metabolic networks31 and food webs32, but there has been little effort
to build such models applicable to animal social networks. In this paper, we pro-
vide a widely applicable network formation model based on simple demographic
and social processes. Our model assumes a simple neutral demography and fo-
cuses on a central social process that is in operation in many social species: the
“inheritance” of social connections from parents. This central component of our
model is based on the observation that in many species with stable social groups,
individuals interact with the social circle of their parents. This is essentially the case
in all mammals, where newborns stay close to their mothers until weaning, but also
found in many other taxa, such as birds33, fish34, and arthropods35. After positively
interacting with the parents’ social contacts, young individuals are likely to form
social bonds with these conspecifics, as was found in African elephants, Loxodonta
africana36.

We demonstrate that this simple social inheritance process can result in net-
works that match both the degree and local clustering distributions of real-world
animal social networks, as well as their modularity (which measures the strength
of division of a network into modules, or subgroups). We also show that social
heritability of connections can result in the appearance of genetic heritability of
individual social network traits, as well as assortativity in the absence of explicit
preference for homophily. Our approach highlights commonalities among groups,
populations, and species, and uncovers a general process that underlies variation
in social structure.

Results

Our departure point is the model by Jackson and Rogers27, in which “role models”
in a network introduce their new contact to their other contacts. This model can
reproduce many attributes of large-scale human social networks. Similar models
reconstruct the structure of other systems, such as protein interaction networks37,
and the World Wide Web38. However, Jackson and Rogers’ model (like most other
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Figure 1: Graphical illustration of the model. A newborn individual is connected
to its parent with probability pb, to its parent’s connections with probability pn, and
to individuals not directly connected to its parent with probability pr.
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models in this family) is based on a constantly growing network with no death or
emigration of agents and their results hold asymptotically for very large networks.
Since we are interested in small-scale animal networks that do not grow unbound-
edly, we model a population where existing individuals die and get replaced at
an equal rate with newborn individuals28 (see SI 8 for results for slowly growing
and shrinking networks). We model binary and undirected networks, so implic-
itly assume social bonds are neutral or cooperative, but our model can be extended
to weighted networks that describe the strength of each social bond, and directed
ones, such as agonistic networks.

Consider a social group of size N . Suppose that each time step, an individual
is born to a random mother, and one individual is selected to die at random. With
probability pb, the newborn will meet and connect to its mother (generally, pb will be
close to one, but can be low or zero in species such as some insects, where individu-
als might not meet their mothers). A crucial component of our model is the general
assumption that the likelihood of a newborn A connecting with another individual
B depends on the relationship between A’s mother and B: the probability A will
connect to B is given by pn if A’s mother is connected to B, and pr if not (Figure 1).
Hence, pn is the probability an offspring “inherits” a given connection of its parent.
If pn > pr, the population exhibits a tendency for clustering, a well-established and
general phenomenon in social networks39,13. In the Supporting Information section
we present an extension of this basic model to account for two sexes, where only
females reproduce. We show that if newborns are likely to copy only their mothers,
the resulting social network is similar.

We simulated social network dynamics to test how social inheritance and stochas-
tic social bonding affect network structure, heritability, and assortativity (see Meth-
ods for simulation details). We also provide analytical expressions for the degree
distribution, and approximations for mean degree and mean local clustering coef-
ficient in the Methods section and in the Supplementary Information (SI; section SI
1). For all of our numerical results, we assume pb = 1. As expected, the network
density (the number of edges out of all possible edges) depends on pn and pr. The
mean clustering coefficient, a measure of the extent to which nodes tend to cluster
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together, also depends on these parameters, but not monotonically; high levels of
clustering were observed in simulations with low or high pr, but not at intermedi-
ate levels (Fig. 2). We also tested how changes in network size, caused by increased
or decreased probabilities of death during the simulations, affected its properties.
These tests did not provide a general conclusion, but suggested that the network
structure might be moderately influenced by whether the network is growing or
not (see SI 8).

We then compared the output of our model with observed animal social net-
works of four different species, namely spotted hyena (Crocuta crocuta13), rock hyrax
(Procavia capensis40), bottlenose dolphin (Tursiops spp.41), and sleepy lizard (Tiliqua
rugosa42). We used two independent ways to estimate model parameters using data
from each of the four species: a computational dimensionality reduction approach
(partial least squares regression, PLS) and analytical approximations for the mean
degree and local clustering coefficients (see Methods). When we run our model
using pn and pr estimated from the data using either method, we recapture the dis-
tributions of degree and local clustering coefficient, as well as the network modular-
ity. Figure 3 illustrates that our model of social inheritance can produce networks
with realistic social structure (see SI 4 for fitting the two-sex model to observed net-
works). Our model’s good match of local clustering distributions distinguishes it
from other network growth models, based on assortative or generalized social pref-
erences, as well as the preferential attachment models that are popular in network
science27 (see also SI 6 and SI 7). Furthermore, our model generated networks with
realistic modularity values (see SI, figure S5). The values we found suggest that so-
cial inheritance is stronger in hyena and hyrax than in dolphins and sleepy lizards
(Table 1).

Next, we tested if social inheritance can result in heritability of indirect network
traits in social networks. Direct network traits (individual network traits that de-
pend only on direct association with others, i.e. on the immediate social environ-
ment), such as degree, will by definition be heritable when pn is high and pr low. To
see if this also holds for indirect network traits (traits that may depend also on asso-
ciations between other individuals), we measured the correlation between parent
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Figure 2: Mean degree and clustering coefficient as a function of model parame-
ters. The dependency of mean degree (top row) and clustering coefficient (bottom
row) on social inheritance, pn (left column), and probability of random bonding, pr
(right column). In each panel, the black curves depict our analytical approximation
while the blue dots with error bars are mean and standard deviation of 50 replicate
runs. For the two panels on the left, the curves correspond to, from top to bottom,
pr = 0.5, 0.3 and 0.1; for the two panels on the right, from top to bottom, pn = 0.9,
0.6 and 0.3. For all panels, network size N = 100; the simulations were initiated
with random networks and run for 2000 time steps.
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Figure 3: Social inheritance captures essential properties of animal social net-
works in the wild. This figure shows that our model can account for the degree
and clustering coefficient distributions of observed networks in four species. Up-
per row: observed networks. Middle row: Cumulative degree distributions of ob-
served and simulated networks. Lower row: Cumulative local clustering coefficient
distributions of observed and simulated networks. Black circles represent observed
values. Blue squares in the middle row depict mean-field estimation for the degree
distribution. The red curve denotes mean distribution for 500 simulated networks
(2000 simulation steps) with the species-specific pn and pr values estimated using
partial least squares regression (values given in Table 1; see Methods for more on
the estimation procedure), whereas light red area depicts 95% confidence intervals.

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 3, 2016. ; https://doi.org/10.1101/026120doi: bioRxiv preprint 

https://doi.org/10.1101/026120
http://creativecommons.org/licenses/by/4.0/


PLS analytical
Species pn pr pn pr
Spotted hyena13 0.85 0.017 0.83 0.018
Rock hyrax40 0.75 0.007 0.66 0.026
Bottlenose dolphin39 0.50 0.028 0.43 0.036
Sleepy lizard42 0.51 0.007 0.38 0.012

Table 1: Fitted parameter values. Predicted parameter values used in the simu-
lations for each species (predicted by partial least squares (PLS) regression; and
predicted using analytical approximation of the mean degree and clustering coef-
ficients). PLS values are used in Figure 3. SI Figure S2 plots the same using the
estimates from the analytical approximations. A more detailed description of the
PLS regression procedure and analytic approximation is in the Methods.

and offspring betweenness centrality (which quantifies the number of times a node
acts as a bridge along the shortest path between two other nodes; see Methods) for
a set of social inheritance (pn) values. As Fig. 4 shows, high probabilities of social
inheritance results in a pattern of heritability. In other words, when individuals are
likely to copy their parents in forming social associations, the resulting network will
exhibit heritability of centrality traits, although the only heritability programmed
into the model is that of social inheritance and stochastic bonding. Similar patterns
obtain for local clustering coefficient and eigenvalue centrality (Figures S7 and S8).

Finally, we tested the effect of social inheritance on assortativity, i.e. the prefer-
ence of individuals to bond with others with similar traits. We simulated networks
where each individual had one trait with an arbitrary value between 0 and 1. New-
borns inherited their mother’s trait with probability 1−µ, whereµ is the rate of large
mutations. If a large mutation happened, the newborn had a random uniformly
distributed trait value; otherwise, its trait was randomly picked from a Gaussian
distribution around the mother’s trait, with variance σ2. Individuals followed the
same rules of the basic model when forming social bonds. Hence, individuals did
not explicitly prefer to bond with others with the same trait value. Nevertheless,
the assortativity coefficient was significantly higher than in random networks, in
which the trait values were re-assigned randomly (Figure 5).
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Figure 4: Social inheritance leads to the appearance of genetic heritability of
network traits. The regression of betweenness centrality among parents and their
offspring as a function of the strength of social inheritance (pn). The bottom and top
of the box mark the first and third quartiles. The upper whisker extends from the
hinge to the highest value that is within 1.5*IQR of the hinge, where IQR is the inter-
quartile range, or distance between the first and third quartiles. The lower whisker
extends from the hinge to the lowest value within 1.5*IQR of the hinge. Data be-
yond the end of the whiskers are outliers and plotted as points. Ten replications
were run for each pn value. Parameter values: simulation steps=2000, N = 100,
pr = 0.01.

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 3, 2016. ; https://doi.org/10.1101/026120doi: bioRxiv preprint 

https://doi.org/10.1101/026120
http://creativecommons.org/licenses/by/4.0/


As an alternative model generating assortativity, we considered an explicit as-
sortativity model, in which newborns explicitly prefer bonding with those with
similar traits. Although this model unsurprisingly generated networks with high
assortativity (mean assortativity coefficient±SEM: 0.53±0.006 compared to -0.01±0.002
in networks with randomly shuffled trait values), it failed to recover the high clus-
tering and modularity observed in networks generated by social inheritance and in
the data (Supporting Information, figures S9 and S10). This result further suggests
that assortativity in many cases might be a byproduct of social inheritance rather
than a driving force of social network structure. A more generalized preferential
attachment model, described in section SI 7, shows the converse is not true, i.e.,
that network patterns generated by social inheritance do not arise as a byproduct
of genetically inherited traits and association preferences (see Discussion for more).

Discussion

Our model provides a step towards a general theory of social structure in animals
that is grounded in social and demographic processes. Our approach is to use dy-
namic generative models based on simple processes to predict network-scale pat-
terns that those processes are expected to produce, and compare them to observed
networks. Such an approach has been widely and productively used in network
theory and social sciences43,44,27, as well as other subfields of ecology31,32 but not in
animal social networks. Our work addresses this gap. Our main result is that the
combination of neutral demography and social inheritance can replicate important
properties of animal social networks in the wild.

In particular, we show that our model can capture essential features of social
networks of four different species in the wild, including not just the degree distri-
bution and modularity, but also the clustering coefficient distribution, in contrast
to most studies of social network formation. Clustering is an important feature of
social networks, distinguishing them from other types of networks, such as trans-
portation networks and the internet30. Theory predicts that clustered networks are
more conducive to cooperation45, and empirical studies document a tendency to
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Figure 5: Assortativity as a consequence of social inheritance. Illustration of as-
sortativity without explicit assortative preference. Dots and notches note assorta-
tivity coefficients and standard errors, respectively, for model networks (red), and
shuffled networks, where trait values were reassigned randomly. Inset networks
illustrate examples from the two groups. Circle colors represent arbitrary contin-
uous trait values. Lines represent social bonds between individuals. Parameter
values are the same as in Figure 4, with mutation probability µ = 0.05
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close triads40,13, suggesting that it might be a generally adaptive feature of social
structure. Nevertheless, many previous models of sociality and network formation
fail to account for the high clustering observed. For example, whereas preferen-
tial attachment can reconstruct the degree distribution of social networks, it fails
to capture their high degree of clustering27. The social inheritance process is cru-
cial to the formation of cohesive clusters in social networks because it biases newly
formed connections to those that close triads of relationships.

Social inheritance requires a behavioral mechanism that facilitates introduction
of newborns to their mother’s social partners. As in many species young individu-
als tend to follow their mothers, it is easy to think about such a passive mechanism:
young individuals are introduced to other individuals by spending time with their
mother’s partners. This process is consistent with the long-held view that mother-
offspring units are fundamental to social structure46. Direct evidence for social
inheritance comes from Goldenberg et al.36, who documented the tendency of fe-
male African elephants to “inherit” the social bonds of their mothers, driving net-
work resilience. Moreover, in many species group members show active interest in
newborns47, promoting the initiation of a social bond between newborns and their
mother’s partners. Further work can test if initial interest in newborns later trans-
lates to stronger social bonds with individuals reaching adulthood. We note that
social inheritance does not necessarily require an active process of “introductions”
but can also happen passively, for example as a result of spatial fidelity among
group members. Our model is agnostic with regard to the mechanism of social in-
heritance. That being said, the fitted model parameters for the four networks vary
in ways that are suggestive for socio-ecological factors: for hyenas and hyraxes, we
find high pn values, which may reflect the strong philopatry in these societies. In
contrast, the relatively low fitted value of pn in dolphins may reflect their multi-level
society featuring mother-son avoidance48.

We make a number of simplifying assumptions, such as no individual hetero-
geneity, or age- or stage-structure in our demography. Models of this type have a
long and distinguished history in ecology and evolution49, and in the same spirit,
we do not believe that nature is actually as simple as we model it. Nonetheless, the
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fact that this very simple model (but not other simple models, e.g., see SI 6, SI 7) can
reproduce important aspects of real networks suggests that the social inheritance
of connections is likely to be important in structuring social networks. Even though
the details will no doubt vary across species and contexts, this simple, quantifiable
process can explain observed variation in social networks. For example, our model
does not treat sex-specific dispersal, a mechanism that results in different social
environments for the two sexes. Nevertheless, there is evidence for social bonding
with familiar individuals after dispersal50. This suggests that even after dispersal,
individuals may “inherit” the social bonds of certain conspecifics serving as role
models. Another use of simple models such as ours is to serve as a base model
to test the effect of additional factors. For instance, after fitting the model to an
observed social network, one could test whether personality can explain the vari-
ance not explained by social inheritance and stochasticity. This can be attained by
adding personality to the agent-based model as a factor that influences individual
bonding decisions.

Our model has implications for how the inheritance of positions in social net-
works, which has important implications for social dynamics, is to be interpreted.
For example, Fowler et al.51 found that in humans, network traits such as degree
and transitivity were heritable. In rhesus macaques, Brent et al.52 found that indi-
rect network traits such as betweenness are more heritable than direct ones. In con-
trast, a study of yellow-bellied marmots, Marmota flaviventris, presented evidence
for heritability of social network measures based on direct interactions53, but not
indirect interactions. Taken together, these studies show that network position can
be heritable, but have not been able to elucidate the mechanism of inheritance. It
is not unlikely that some social network traits are genetically inherited; for exam-
ple, individuals might genetically inherit social preferences from their parents that
lead them to connect to the same individuals. In SI 7 we show that such a mech-
anism is unlikely to account for the observed levels of clustering. Therefore, our
work suggests that at least some of the heritability of network traits might be social
(as opposed to genetic), from individuals copying their parents. This prediction is
borne out by recent studies in elephants36. Importantly, while these previous stud-
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ies attempt to control for effects of the social environment at the group or lineage
level using quantitative genetics methods e.g.54, they were not designed to distin-
guish social inheritance at the individual level from genetic inheritance. Studying
the dynamics of social bond acquisition can be a way to separate genetic and social
inheritance.

Another robust finding in network science and animal behavior is that individ-
uals tend to connect to others with traits similar to themselves (e.g.,55,56,57). This
assortativity is crucial for social evolutionary theory, as the costs and benefits of
social interactions depend on partner phenotypes. Recent work has found that as-
sortative mating can arise without assortative preferences, as a result of dynamic
processes in a closed system58. Our results show that social inheritance can lead
to high assortativity in the absence of explicitly assortative preferences for social
bonding. Indeed, an alternative model based on explicit assortativity failed to re-
construct topological features of observed networks. Empirically, our results call for
a careful assessment of networks with apparent phenotypic assortment, and con-
trolling for social inheritance. This will be difficult to do with only static network
data, but will be feasible for species with long-term data on the network dynamics.

Our work points to several interesting avenues to be explored in future research.
First, we used binary networks to describe the strength of social bonds that are
inherently on a continuous scale11,59. Weighted networks that can describe the
delicate differences in the strength of social bonds between individuals would be
more relevant in some cases. Future generative models can consider varying bond
strength by coupling a weighted network model with a model of behavioral dynam-
ics of social bond formation at the dyadic level. Second, even though our model
is extremely simplistic, most of its mathematical properties (including probability
distributions over network measures such as the degree distribution) are analyti-
cally intractable, which makes model-fitting a challenge. Methods such as approxi-
mate bayesian computation60, coupled with dimensionality reduction techniques61

can be used to develop algorithms for estimating parameters of the model and also
incorporate more information about individual variation and environmental effects
(See SI 2 for more). Additionally, long-term datasets on social network dynamics
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can allow estimation of the social inheritance and random bonding parameters pn
and pr directly. Lastly, our model does not consider changes in social bonds after
these were established. Although this assumption is supported by empirical find-
ings concerning bond stability in some species13,12, future models in which this
assumption is relaxed should be developed. We also assume a single type of bond
between individuals, whereas in nature, different social networks exist for different
kinds of interactions (e.g., affiliative, agonistic, etc.). Such “multilayer networks”62

represent an important future direction.
In conclusion, the theory we present here is based on the idea that social net-

works should be regarded and analyzed as the result of a dynamic process63 that
depend on environmental, individual, and structural effects13. Our work repre-
sents a first step in developing a theory for the structure of social networks and
highlights the potential of generative models of social and demographic processes
in reaching this goal.

Methods

Expected mean degree and clustering coefficient

In this section and the next, we characterize some important aspects of our model
analytically. First, we can write a simple approximation of the expected mean de-
gree, d̄, of a network changing according to our model at stationarity. To do that,
we note that at stationarity, killing an individual at random is expected to remove
d̄ connections from the network. After this individual is removed, the average de-
gree of the network becomes: d̄′ = (d̄N−2d̄)/(N−1) = d̄N−2

N−1
. The expected degree

of the connections made by the newborn is then: pb + d̄′pn + (N − 2 − d̄′)pr. At
stationarity, the links destroyed and added need to be the same on average, so we
can write:

d̄ = pb + d̄′pn + (N − 2− d̄′)pr ,

17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 3, 2016. ; https://doi.org/10.1101/026120doi: bioRxiv preprint 

https://doi.org/10.1101/026120
http://creativecommons.org/licenses/by/4.0/


and solve for d̄ to obtain:

d̄ =
(N − pb)(1 + (N − 2)pr)

N − pb − (N − 2)(pn − pr)
. (1)

This approximation gives an excellent fit to simulated networks across all ranges of
mean degree (Figure 2).

We can also approximate the expected mean clustering coefficient of a network
at stationarity using a similar stationarity argument (see SI 1 for the derivation).
Our simulations (Figure 2) show this approximation is very good except for the
combination of very low pr and low to moderate pn, where it significantly overpre-
dicts clustering.

Using the approximations for the mean degree and clustering coefficients, as-
suming pb = 1, and taking N to be the observed network size, we can estimate the
pn and pr values for an observed network. In simulated networks, this approach
generally yields accurate predictions except for the combinations of high pn and
high pr (where it underestimates pr) and low pn and very low pr (where it overes-
timates pr). Our estimates of pn and pr for the four empirical networks from the
analytical approximation are given in Table 1.

Expected degree distribution

Finally, we characterize the expected degree distribution in our networks using a
mean-field model. Consider a focal individual that has degree d at time period t.
In period t+1, the probability that this individual increases its degree by one, p+d ,
is:

p+d =
(N − 1− d)

N

dpn + (N − d− 2)pr + pb
N − 1

. (2)

The first fraction in (2) is the probability that the individual selected to die is not
connected to the focal individual, while the second fraction is the average proba-
bility that the newborn individual becomes connected to the focal individual.

The probability of a focal individual’s degree d (> 0) going down by one, p−d , is
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likewise given by

p−d =
d

N

(d− 1)(1− pn) + (N − d)(1− pr) + (1− pb)

N − 1
, (3)

which is simply the probability that the individual selected to die is connected to
the focal individual, multiplied by the probability that the newborn individual does
not connect to the focal individual.

Denoting by ϕd
1 the probability that a randomly selected individual in the pop-

ulation has degree d, we can write the following rate equation for the mean-field
dynamics of the degree distribution28:

N
dϕd

dt
= bd(ϕ) + p+d−1Nϕd−1 + p−d+1Nϕd+1 − (p+d + p−d )Nϕd − ϕd , (4)

where bd(ϕ) is the probability that a newborn is born with d connections (itself a
function of the degree distribution ϕ), and the last term in (4) is the probability that
a degree d individual dies, reflecting our assumption that death occurs randomly
with respect to degree. If we assume pb = 1, so that the newborn always connects
to its parent, then bd(ϕ) is given by (for d ≥ 1; b0 = 0 in that case):

bd(ϕ) =
N−1∑
l=0

ϕl

Min(l,d−1)∑
i=0

(
l

i

)
pin(1− pn)

l−i

(
N − 2− l

d− 1− i

)
pd−1−i
r (1− pr)

N−1−l−d+i

(5)

where the inner sum is the probability that an offspring of a parent of degree l is
born with degree d, and the outer sum takes the expectation over the degree distri-
bution. Setting equation (4) equal to zero for all d and solving the resulting N equa-
tions, we can obtain the stationary degree distribution. We were unable to obtain
closed-form solutions to the stationary distribution, but numerical solutions dis-
play excellent agreement with simulation results (see Figure 3). It is worth noting

1for 0 ≤ d ≤ N − 1, with the convention that p+−1 = p−0 = 0
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that although the p+k and p−k terms are similar to models of preferential attachment
with constant network size e.g.28, these models assume that each new addition to
the network has exactly the same degree, whereas in our model, the number of links
of a newborn is distributed according to equation (5). Furthermore, the degree dis-
tribution does not capture the clustering behavior of preferential attachment mod-
els, which generate much less clustering than our model for a similar mean degree
(results not shown), consistent with results in growing networks27.

Simulation process

We initialized networks as random graphs, and ran them long enough to converge
to steady state, which we evaluated by the mean degree distribution of ensembles
matching the expected degree distribution, mean degree and clustering values de-
rived analytically. The time to convergence to steady state depends on the network
size, pn, and pr: we found as a rule of thumb that 10 times the network size (i.e.,
on average 10 complete population turnovers) is enough for networks to come to
stationarity, hence our choosing of 2000 steps for network size of 100. The only ex-
ception is with pn close to 1 (and to a lesser extent, pr very close to zero), where we
find that convergence can take significantly longer.

Fitting models to observed networks

To obtain estimates of parameter values pn and pr from observed networks, we used
two methods: (i) a computational approach using dimensionality reduction on the
degree and local clustering distributions of simulated networks, and (ii) an analyt-
ical approach using approximations of the mean degree and local clustering coeffi-
cients. In this subsection, we describe the dimensionality reduction approach. For
each empirically observed network, we ran the model with 10000 random values
of pn and pr between 0 and 1, and the network size was set to match the observed
network. We then used partial least squares regression, using the R package pls
(version 2.4-3), to obtain a regression of the network degree and clustering coeffi-
cient distributions on pn and pr. Based on the regression formula, we predicted the
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values of pn and pr. The values predicted by the regression were sufficient to simu-
late networks that were close in their degree and clustering coefficient distributions
to the observed networks. The values given in Table 1 are the result of the PLS fit.
They are meant to demonstrate the ability of the model to generate realistic looking
networks. In the SI, we provide a verification of the method’s ability to obtain the
values of pn and pr.

Data

We compared the output of our model with observed animal social networks of
four different species. For this analysis we used data from published studies of
spotted hyena (Crocuta crocuta13), rock hyrax (Procavia capensis40), bottlenose dol-
phin (Tursiops spp.41), and sleepy lizard (Tiliqua rugosa42).

The hyena social network was obtained from one of the binary networks ana-
lyzed by13, where details on social network construction can be found. Briefly, the
network is derived from association indexes based on social proximity in a spot-
ted hyena clan in Maasai Mara Natural Reserve, Kenya, over one full year (1997).
The binary network was created using a threshold retaining only the upper quar-
tile of the association index values. Similarly, the hyrax network was described
by40, and is based on affiliative interactions in a rock hyrax population in the Ein
Gedi Nature Reserve, Israel, during a five-months field season (2009). The same
upper quartile threshold on the association indices was used to generate a binary
network. The dolphin network was published in41, and is based on spatial proxim-
ity of bottlenose dolphins observed over 12 months in Doubtful Sound, Fiordland,
New Zealand. “Preferred companionships” in the dolphin network represent asso-
ciations that were more likely than by chance, after comparing the observed associ-
ation index to that in 20000 permutations. The lizard social network was published
by42, and is also based on spatial proximity, measured using GPS collars. To get a
binary network, we filtered this network to retain only social bonds with association
index above the 75% quartile.
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Network measures

To study the networks produced by our model and compare them to observed net-
works, we used a number of commonly used network measures. Network density
is defined as D = 2T

N(N−1)
where T is the number of ties (edges) and N the number

of nodes. The global clustering coefficient is based on triplets of nodes. A triplet
includes three nodes that are connected by either two (open triplet) or three (closed
triplet) undirected ties. Measuring the clustering in the whole network, the global
clustering coefficient is defined as

C =
closed triplets

triplets (6)

The local clustering coefficient measures the clustering of each node:

Ci =
number of edges among node i’s contacts

number of possible ties among node i’s contacts (7)

The betweenness centrality of a node v is given by

g(v) =

2
∑

s ̸=v ̸=t

σst(v)
σst

(N − 1)(N − 2)
(8)

where σst is the total number of shortest paths from node s to node t and σst(v) is
the number of those paths that pass through v.

We detected network modules (also known as communities or groups) using the
walktrap community detection method64. We used the maximal network modular-
ity across all partitions for a given network. The modularity measures the strength
of a division of the network into modules. The modularity of a given partition to c

modules in an undirected network is
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Q =
c∑

i=1

(eii − a2i ) (9)

where eii is the fraction of edges connecting nodes inside module i, and a2i is the
fraction of edges with at least one edge in module i.

Finally, we used the assortativity coefficient to measure how likely are individu-
als to be connected to those with a similar trait value65. For an undirected network,
this coefficient is given by:

r =

∑
xy

xy(exy − axay)

σ2
a

(10)

where exy is the fraction of all edges in the network that connect nodes with traits
x and y, ax is defined as

∑
y

exy, and σ2
a is the variance of the distribution ax.
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Supplementary Information
For “Social inheritance can explain the structure of animal social net-
works”
Amiyaal Ilany and Erol Akçay

SI 1 Approximation for mean local clustering coeffi-
cient

Similar to the mean degree, we use a stationarity argument to calculate an approx-
imation for the mean local clustering degree of a network by equating the expected
clustering coefficient of a randomly killed individual with the expected change in
the clustering coefficients of all remaining individuals with the birth of the new-
born plus the expected clustering of the newborn itself:

E(CC of the dead) = E(Change in CC of remaining individuals) + E(CC of the newborn)
(SI–1)

The expected clustering coefficient of an individual randomly selected to die is
equal to c̄, the mean clustering coefficient. When an individual is killed, the clus-
tering coefficient of its connections will in principle change, but one can show that
the “typical” connection (i.e., one with degree d̄ and clustering c̄) will not experi-
ence a change in its clustering coefficient. This can be seen by calculating the new
clustering coefficient after death,

c̄d̄(d̄− 1)/2− c̄(d̄− 1)

(d̄− 1)(d̄− 2)/2
= c̄ ,

where the first term in the numerator is the expected number of closed triangles a
typical connection of the dead individual had before, the second term the number
of triangles that were removed by death, and the denominator is the number of all
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potential triangles after death.
The birth of a new individual changes the total of the clustering coefficients in

two ways: (i) by changing the clustering coefficients of individuals connected to the
newborn, and (ii) by adding the newborn with the newborn’s clustering coefficient.
Let us calculate the first effect: the clustering coefficient of an individual with ini-
tial degree d and clustering coefficient c that becomes connected to the newborn is
going to change as follows:

∆c =
cd(d− 1)/2 + ct

d(d+ 1)/2
− c =

2(ct − cd)

d(d+ 1)
, (SI–2)

where the first term in the numerator of the middle part is the number of closed
triangles amongst the focal individual’s connections before getting connected to
the newborn, and ct is the expected number of closed triangles amongst the focal
individual’s connections established by the newborn. The denominator is the total
number of triangles after the focal individual gets connected to the newborn. To
calculate ct, we need to consider the three kinds of connections of the newborns
separately: its parent (with probability pb), its parent’s connections (with probabil-
ity pn), and individuals not connected to its parent (with probability pr).

For the parent, the expected number of closed triangles generated by the new-
born is simply

ct,P (dp) = dppn , (SI–3)

where dp is the degree of the parent. For a parent’s connection, each has on aver-
age cp(dp − 1) connections to other connections of the parent, which in turn have a
probability of pn of getting connected to the newborn. Further, on average parent’s
connections will have d̄′/(N − 1)(N −dp− 2) connections to non-connections of the
parent (where d̄′ = d̄N−2

N−1
, the expected degree of individuals after a death occurs),

each of which have probability pr of getting connected to the newborn. Thus, for

2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 3, 2016. ; https://doi.org/10.1101/026120doi: bioRxiv preprint 

https://doi.org/10.1101/026120
http://creativecommons.org/licenses/by/4.0/


parent’s connections, we have

ct,PC(dp, cp) = pb + cp(dp − 1)pn + θ(N − dp − 2)pr , (SI–4)

where θ = (d̄′−cb(dp−1)−1)/(N−dp−2) is the probability a given non-connection
of the parent is connected to a parent’s connection.

By a similar argument, one can write for non-connections of the parent:

ct,NPC(dp) = θdppn +
(
d̄′ − dpθ

)
pr (SI–5)

Thus, substituting ct,P , ct,PC , and ct,NPC into equation (SI–2), we can write for the
expected total change in the clustering coefficient of existing individuals with the
birth of the newborn, when the parent has degree dp:

∆ctotal(dp, cp) = pb∆cP (dp) + pndp∆cPC(dp, cp) + pr(N − dp − 2)∆cNPC(dp) (SI–6)

Next we need to calculate the expected clustering coefficient of the newborn,
given the parent’s degree dp and clustering coefficient cp: E(cNB|dp, cp). This num-
ber is the ratio of two random variables: Tc, the number of closed triangles that
have the newborn as a vertex and Tt, the total number of pairs connected to the
newborn, i.e.,

Tc =xPxPC + cp
xPC(xPC − 1)

2
+ θxPCxNPC +

d̄′ − dpθ

N − dp − 3

xNPC(xNPC − 1)

2
, (SI–7)

Tt =
(xP + xPC + xNPC)(xP + xPC + xNPC − 1)

2
. (SI–8)

Here, x• denotes the number of connections of the newborn to each class of indi-
vidual (P for parent, PC for parent’s connections, and NPC for individuals not
connected to the parent). Thus, xP is distributed according to a Bernoulli distri-
bution with probability pb, xPC a binomial with parameters dp and pn, and xNPC a
binomial with parameters N − dp − 2 and pr. The fractions in the third and fourth
term in Tc give the expected density of connections between a parent’s connection
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and non-connection, and amongst the non-connections, respectively. The expecta-
tion of the ratio of two random variables Tc and Tt can be approximated by their
moments as follows:

E(cNB|dp, cp) = E

(
Tc

Tt

)
≈ E(Tc)

E(Tt)
− cov(Tc, Tt)

E(Tt)2
+

E(Tc)var(Tt)

E(Tt)3
. (SI–9)

Using the distributions of Tc and Tt, computing (SI–9) is a straightforward if tedious
calculation.

For the final step in our computation, we assume that the parent is chosen at
random from the population, so has expected degree dp = d̄′, and clustering coef-
ficient cp = c̄. Thus, our stationarity condition can be written as:

c̄ = ∆ctotal(d̄
′, c̄) + E(cNB|d̄′, c̄) , (SI–10)

which can be solved for c̄ analytically and d̄ substituted from equation (1) to obtain
an expression for c̄ as a function of model parameters. We carried out our calcu-
lations in Mathematica 10 (Wolfram Research, Inc.). As Figure 2 in the main text
shows, our approximations for the mean degree and clustering give an excellent fit
to simulated networks, except for the mean clustering of networks with low pn and
very low pr.

We can also use the equations (1) and (SI–10) to estimate the parameters pn and
pr (assuming pb = 1) from the mean degree and clustering coefficient of a given
network. In simulated networks, this method works well to estimate parameters
(Figure S1) except for high pn and moderately high pr values, where it tends to
underestimate especially the pr values, and for low pn and very low pr, where it
overestimates pr. Three of the four real-life networks we apply our model to fall
comfortably in the region where the method yields reasonable accurate estimates
(with pr values of the order of 0.01), with only the sleepy lizard network seemingly
in a region where our estimate of pr somewhat inflated. Table 1 gives the values cal-
culated for the four species, which produce networks that are similar to observed
ones (Figure S2) for hyenas, hyraxes and dolphins, but somewhat underpredicts
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SI Figure 1: Estimation of model parameters using the analytical approximation.
The analytical approximations for the mean degree and clustering coefficient allow
us to estimate network parameters with good accuracy. The two panels show for
1000 simulated networks (N = 100) the actual pn (left) and pr (right) values plotted
against the values estimated from our analytical approximation. In each panel, the
red line depicts the 1:1 relationship. For each simulation, the pn and pr values were
drawn randomly from a uniform distribution on [0, 0.95] and [0, 0.2], respectively.
We initialized each simulation with a random network and ran it for 2000 steps.
We calculated the mean degree and local clustering coefficients for the resulting
network. We used these values to numerically solve equations (1) and (SI–10) for
pn and pr, to obtain the estimates.

clustering coefficients for the sleepy lizard network relative to the PLS method. The
difference between the estimates for pr obtained from PLS and analytical approxi-
mation is consistent with the bias in the analytical estimators in simulated networks
for low pn and pr.
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SI Figure 2: Fitting model to data using the analytical approximation. This fig-
ure compares networks generated using parameters estimated from the analytical
approximation to the data from four species. Upper row: Cumulative degree dis-
tributions of observed and simulated networks. Lower row: Cumulative clustering
coefficient distributions of observed and simulated networks. Black circles repre-
sent observed values. Blue squares in the upper row depict mean-field estimation
for the degree distribution. Red line notes mean values for 500 simulated networks
(2000 simulation steps) with the same species-specific pn and pr values (given in
Table 1), whereas light red area depicts 95% confidence intervals.
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SI 2 Fitting the model to data: partial least square re-
gression

Figure 3 shows that an objective procedure using partial least squares (PLS) regres-
sion can statistically identify values of pn and pr that will generate networks similar
to the observed networks.

To verify the usage of PLS regression to fit our model to observed networks, we
simulated networks using known parameter values and tested the predictions of
PLS regression. Specifically, we simulated 10,000 networks from our basic model
over 2000 time steps, using random pn and pr values. We then used PLS regression
to fit the degrees and clustering coefficients to parameter values. We then simulated
sets of 100 networks each using a given set of parameter values (pn = 0.6 to 0.9,
pr = 0.014) and checked whether the PLS regression fit could predict those values.
For example, in SI Figure 3 we plot the distribution of predicted pn and pr values
compared to the real values used to simulate the networks. SI Figure 4 shows the
distribution of predictions for ten different values of pn, whereas pr was fixed at
0.014.

SI 3 Modularity of model networks

Social networks feature higher modularity than random networks. That is, social
networks can usually be partitioned into subgroups of individuals (communities in
network jargon), more densely connected within than between those subgroups. To
test another aspect of our model, we calculated the modularity of simulated net-
works after identifying the community (subgroup) structure. Modularity measures
the strength of division into communities, where high modularity indicates dense
connection between individuals within communities and sparse connections be-
tween individuals across communities. We used the Walktrap community finding
algorithm, based on the idea that short random walks on a network tend to stay in
the same community64. In all four tested networks (see main text), the modularity
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SI Figure 3: Example of PLS estimation using simulated network. The distribu-
tions of predicted pn (left) and pr (right) values for 500 networks simulated using
pn = 0.82, pr = 0.014 are plotted, along with the real values (red dashed line).
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SI Figure 4: The PLS method estimates parameters with reasonable accu-
racy.Distributions of predicted pn values (box plot), compared to simulated values
(red line). The predictions were generated after fitting a PLS regression to degrees
and clustering coefficients of simulated networks. Thus, it is possible to predict the
model parameter values when given an observed network.
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SI Figure 5: Modularity of networks with fitted model parameters. The net-
work modularity of simulated networks from our model (distribution), compared
to modularity of observed networks (red line). Modularity was calculated after
partitioning the network to communities using the Walktrap algorithm. In all four
species, the observed modularity could be generated by the model, i.e. was not an
outlier.

of the observed network was not an outlier in the distribution of modularity val-
ues of simulated networks. Thus, we could not reject the null hypothesis that the
observed network belongs to the family of simulated networks, when considering
their modularity (Figure S5).

SI 4 Two sex models

In the main text we presented the simplest model, in which the population was
asexual. The basic model allows a newborn to choose any present individual as a
role model to copy social associations. Here we show a version of the basic model
for a sexual population. At birth, newborns are uniformly assigned a sex, and only
females reproduce. Newborns copy only their mother’s associations. Thus males
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Species pn pr
Spotted hyena 0.86 0.021
Rock hyrax 0.76 0.01
Bottlenose dolphin 0.50 0.033
Sleepy lizard 0.53 0.003

SI Table 1: Parameter values used in the simulations of the two-sex model for each
species in Figure S6.

may form social associations when they are born, and also if a newborn connects to
them, but they are not being copied by any newborn in terms of social associations.

Fitting the two-sex model to data shows similar results to the basic model 1.
This suggests that sexual reproduction is theoretically not a major determinant of
social structure. Note that this does not mean that males and females play similar
social roles in a population, but rather that if newborns tend to copy only one sex
the resulting social structure is not very different.

We then tested two more models with sexual populations, in which the new-
born may copy both parents with probability pn. In the first of these models, a
newborn would copy any randomly chosen male and female as parents. In the sec-
ond model, a newborn can be born only to connected pairs. Thus, in each iteration
a pair of connected male-female was chosen as parents. Both these models gener-
ated networks that were not clustered, and could not be fit to observed data. This
suggests that in natural populations individuals follow one role model, leading to
the observed high levels of clustering. Theoretically, it is easy to see that if an in-
dividual follows multiple role models that is more similar to random connectivity,
deviating from the structured observed networks of natural populations.

SI 5 Heritability of social network traits

SI Figure 7 represents the parent-offspring regression for local clustering coefficient
with varying pn. SI Figure 8 depicts the same for eigenvector centrality.
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SI Figure 6: Comparing the two sex model output to networks of four species.
Upper row: Cumulative degree distributions of observed and simulated networks.
Lower row: Cumulative clustering coefficient distributions of observed and simu-
lated networks. Black circles represent observed values. Red line notes mean values
for 500 simulated networks (2000 simulation steps) with the same species-specific
pn and pr values (given in Table 1), whereas light red area depicts 95% confidence
intervals.
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SI Figure 7: The heritability of local clustering coefficients. The figure depicts the
regression of clustering coefficients among parents and their offspring as a function
of the strength of social inheritance (pn). The bottom and top of the box mark the
first and third quartiles. The upper whisker extends from the hinge to the highest
value that is within 1.5*IQR of the hinge, where IQR is the inter-quartile range,
or distance between the first and third quartiles. The lower whisker extends from
the hinge to the lowest value within 1.5*IQR of the hinge. Data beyond the end
of the whiskers are outliers and plotted as points. Ten replicate simulations were
run for each pn value. Parameter values: simulation steps=2000 (parent-offspring
regression calculated for the last 100 offspring born), N = 100, pr = 0.01.
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SI Figure 8: The heritability of eigenvector centrality. The figure depicts regres-
sion of eigenvector centrality among parents and their offspring as a function of the
strength of social inheritance (pn). The bottom and top of the box mark the first and
third quartiles. The upper whisker extends from the hinge to the highest value that
is within 1.5*IQR of the hinge, where IQR is the inter-quartile range, or distance be-
tween the first and third quartiles. The lower whisker extends from the hinge to the
lowest value within 1.5*IQR of the hinge. Data beyond the end of the whiskers are
outliers and plotted as points. Ten replications were run for each pn value. Param-
eter values: simulation steps=2000 (parent-offspring regression calculated for the
last 100 offspring born), N = 100, pr = 0.01.
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SI 6 An alternative assortativity model

We constructed an alternative model of social network dynamics, focused on pref-
erence to form social bonds with other individuals with similar traits. The purpose
of this model is to test the notion that explicit assortativity is the main factor de-
termining network structure, as suggested empirically in various species. In this
alternative model, newborns still bond their mother with probability pb, but then
form bonds with all others with probability proportional to the similarity of an ar-
bitrary trait value. The trait is inherited from the mother in the same manner as in
the main model (see main text). Specifically, the probability of a newborn to connect
with any other individual was defined as ex−e−1

3
, where x is the absolute difference

in trait values of the newborn and a candidate individual. This term ensures the
connection probability to be in a realistic range, resulting in networks with similar
density to the mean density of the four observed networks (0.123, see main text).

Unsurprisingly, simulations of the explicit assortativity model (2000 time steps,
100 individuals, 500 replications) resulted in networks with high assortativity (Fig-
ure S9). However, the resulting networks failed to reconstruct other important topo-
logical features of the observed networks, namely the global clustering coefficient
and modularity (Figure S10). The only exception was the spotted hyena, where
modularity values, but not global clustering coefficient, matched modularity levels
of the explicit assortativity model.

To conclude, a model of social structure where individuals base their social
bonding almost exclusively on assortativity fails to reconstruct the topological fea-
tures of observed networks in the tested species.

SI 7 A generalized association preference model

A potential alternative interpretation of social inheritance is that it might arise as
an epiphenomenon from genetically inherited association preferences (that may or
may not be assortative): if individuals inherit their preferences for associating with
certain types of individuals from their parents, they would be expected to be to
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SI Figure 9: Example network generated with the assortative attachment model.
An example of a social network resulting from the explicit assortativity model, in
which newborns are more likely to connect with similar individuals. Colors repre-
sent the values of an arbitrary trait, considered when forming bonds. See text for
model definition and simulation parameters.
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SI Figure 10: Clustering and modularity in the assortative attachment model.
A comparison of the global clustering coefficient and modularity of 500 networks
resulting from the explicit assortativity model (see text for details) to the values
of observed networks of four species. Distributions show value of network mea-
sures for model networks. Red line show values for observed networks. The global
clustering coefficient of all model networks is much lower than that of observed
networks. Similarly, the modularity of model networks is lower than observed net-
works, except for the spotted hyena.
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associated with their parents’ connections more than unconnected individuals.
In this section we address this possibility by constructing a model to explore

whether a more generalized model of co-inherited association preferences and traits
might mimic the process of social inheritance. To generalize the assortative pref-
erences model, we now assume each individual carries two traits, one describing
a real-valued attribute (as in the assortment model above; we call this the “display
trait”), and the other the preference for that trait (the “preference trait”). For exam-
ple, if a focal individual has display and preference trait values (0.1, 0.5), it is being
preferred most by others with preference trait 0.1 but the focal individual prefers
to associate with those having trait value 0.5. We assume both trait values are on a
circle and normalize them to be between 0 and 1. We let both traits to be inherited
from the parent when an individual is born, with (independent) deviations in each
trait from parental values distributed according to N(0, σ). When an offspring j

is born, it makes a connection to each existing individual i in the population with
probability e−kdij , where k is a positive constant and dij is the shortest distance on
the circle between the offspring j’s preference trait and the individual i’s display
trait. Individuals are selected to die and give birth at random as in the basic model.

Figure S11 illustrates the results from this alternative model. It shows that al-
though model parameters exist that generate realistic looking degree distributions,
these generate networks that are far less clustered than the real-life networks. The
reason is that when individuals connect to others purely based on their inherited
display and preference traits, they tend to connect to both partners of their parents
as well as other with similar traits that are not connected to their parents. The latter
connections do not close triads, and hence the resulting network is much less clus-
tered. Thus, purely genetic inheritance of association preferences (independent of
parental connections) is insufficient to generate the process of social inheritance as
a byproduct.
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SI Figure 11: Generalized preference model does not produce enough clustering.
Degree (left) and local clustering (right) distributions obtained from the general-
ized preference model described in section SI 7, compared with the spotted hyena
network from 1997 (red open circles). The brown solid line gives the mean of the
preferential association model with N = 58, k = 12 and σ = 0.05, and the shaded
region the 10th and 90th percentiles in each panel.

SI 8 The effect of varying network size

Population size might influence social structure in unknown ways. To test how
changes in population size affect the resulting network, we simulated networks
that grow or shrink in size. We then compared measures of the networks to those
of stable networks, where the network size was kept constant. In a shrinking net-
work model, we started the simulation with 200 individuals and ran it for the first
1000 time steps as a constant size network (one born and one dead at each time
step). After 1000 steps we set the probability of each individual to die at any time
step at 0.05, corresponding to an expected mortality of 10 individuals per time step
initially. We kept the number of individuals born at each time step at one. We kept
running the simulation until population size fell to 100 individuals, and compared
network characteristics to a parallel simulation where the population size started
out with N = 100 and held constant throughout. Similarly, in a growth model we
started with 100 individuals for the first 1000 steps, and then changed the probabil-
ity of each individual to die at a given time step to 0.001 (instead of 0.01 in a stable
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SI Figure 12: Density of growing and shrinking networks. The difference in net-
work density of simulated networks from our model between stable and shrinking
(left) or growing (right) networks. Points and lines represent the mean difference
and standard error, respectively

network size). We stopped the simulation when the network size increased to 200.
Again, we compared these networks to networks that started out with N = 200

were kept constant throughout. We present results for a series of 15 parameter sets,
where pn varied between 0.5 and 0.9 (5 values) and pr was one of 0.01, 0.05, and 0.1.
For each parameter set, we ran 100 replicate pairs of shrinking (or growing) and
constant size networks. Figures S12 ,S13, and S14 compare the network measures
of stable to shrinking and growing networks, for the tested parameter sets.

The effect of shrinking the network size was not consistent for all parameter
sets. Nevertheless, shrinking networks tended to be denser in ties and less modular
than networks of constant size for low pr. In a similar fashion, the effect of growing
network size was not consistent for all parameter sets.

We conclude that the effect of changes in population size on network structure
is unpredictable, and depends on the bonding probabilities. Future work should
explore many interesting questions about the interaction of population size and
social structure.
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SI Figure 13: Clustering coefficients of growing and shrinking networks. The
difference in global clustering coefficient of simulated networks from our model
between stable and shrinking (left) or growing (right) networks. Points and lines
represent the mean difference and standard error, respectively.
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SI Figure 14: Modularity of growing and shrinking networks. The difference
in network modularity of simulated networks from our model between stable and
shrinking (left) or growing (right) networks. Points and lines represent the mean
difference and standard error, respectively.
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