
Rahul Reddy  rahulbr@alumni.upenn.edu | September 2nd, 2015 

1 
 

A Comparison of Methods: Normalizing 
High-Throughput RNA Sequencing Data 

ABSTRACT 

As RNA-Seq and other high-throughput sequencing grow in use and remain critical for gene expression 
studies, technical variability in counts data impedes studies of differential expression studies, data 
across samples and experiments, or reproducing results. Studies like Dillies et al. (2013) compare several 
between-lane normalization methods involving scaling factors, while Hansen et al. (2012) and Risso et 
al. (2014) propose methods that correct for sample-specific bias or use sets of control genes to isolate 
and remove technical variability. This paper evaluates four normalization methods in terms of reducing 
intra-group, technical variability and facilitating differential expression analysis or other research where 
the biological, inter-group variability is of interest. To this end, the four methods were evaluated in 
differential expression analysis between data from Pickrell et al. (2010) and Montgomery et al. (2010) 
and between simulated data modeled on these two datasets. Though the between-lane scaling factor 
methods perform worse on real data sets, they are much stronger for simulated data. We cannot reject 
the recommendation of Dillies et al. to use TMM and DESeq normalization, but further study of power 
to detect effects of different size under each normalization method is merited.  

 

INTRODUCTION 

RNA-Seq and other high-throughput sequencing technologies are key to the study of gene expression 

and especially important for differential expression analysis. However, technical variability in RNA-Seq 

data is an impediment to studying differential expression, reproducing results of experiments, and 

comparing raw count data between samples. For differential expression analysis in particular, our 

interest is in the biological variability between groups, rather than intra-group, technical variability that 

may arise during sequencing. Though comparative evaluations have been done using real data by 

Hansen et al. (2012), and Dillies et al. (2013) have used both real and simulated data, it remains unclear 

which RNA-Seq normalization method(s) scientists should use for data analysis. More recently, Risso et 

al. (2014) proposed using factor analysis on sets of control genes, which also merits consideration. By 

comparing such recommended methods with real and simulated data, this paper seeks to help scientists 

choose the best normalization method for their own RNA-Seq analysis. 

 

Objective 

This study will evaluate 4 normalization methods recommended for differential expression analysis in 

recent literature: Trimmed Mean of M-Values (TMM), Relative Log Expression (RLE, the default method 

in the DESeq package), Conditional Quantile Regression (CQN), and Remove Unwanted Variation (RUV). 

Using real and simulated data, these methods will be compared with respect to removing technical 

variability and differential expression analysis.  
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METHODS 

This section describes the normalization methods, real datasets, simulation, and criteria for comparison 

used in this study. In the following pages, terminology and abbreviations are used which are specific to 

Genomics, Statistics, the R statistical computing software, and the Bioconductor suite of R packages. For 

example, by technical variability we speak of variation within a group or condition, as opposed to the 

biological variation between groups or conditions that is of research interest. Differential expression 

refers to genes being up-regulated or down-regulated between different conditions. The condition may 

be that samples are from different individuals, populations, or species, different organ tissues or cell 

types for the same individuals, different time periods for the same individual and tissue, or any 

combination thereof. Typically, Bioconductor packages EdgeR or DESeq  are the backbone of a 

differential expression study, as outlined by Anders et al. (2013). This study uses the EdgeR package in a 

reference workflow provided by Susan Holmes (Stanford University, 2015), and implementing each 

method per its vignette.  

 

Normalization Methods 

Most RNA-Seq datasets are obtained using Illumina sequencers that eight independent sequencing 

areas, or "lanes." Libraries of cDNAs, representative of RNA from a cell or tissue sample, are deposited 

on these lanes. The normalization methods compared in this study address different sources of variation 

in the resulting count data, with the first two addressing differences in library size (i.e. sequencing 

depth). Library size, or number of mapped short reads obtained in sequencing a given library, can be 

normalized between samples by scaling raw read counts in each lane according to a single, lane-specific 

factor. Trimmed Mean of M-Values (TMM) and DESeq (Relative Log Expression, or RLE) are two different 

methods based on calculating such scaling factors. Conditional Quantile Normalization (CQN) corrects 

for within-sample, gene-specific effects (gene length, GC-content, etc.), while Remove Unwanted 

Variation (RUV) removes technical variability through factor analysis on sets of control genes or samples.  

Trimmed Mean of M-Values (TMM) 

TMM normalization is the EdgeR package's default normalization method and assumes that most genes 

are not differentially expressed. It calculates a normalization factor for each gene, though this correction 

factor is applied to library size (i.e. sequencing depth) rather than not raw counts. Moreover, to 

compute the TMM factor, one lane is considered a reference sample and the others test samples, with 

TMM being the weighted mean of log ratios between test and reference, after excluding the most 

expressed genes and the genes with the largest log ratios. According to Dillies et al. (2013), the DESeq 

method and TMM outperformed Median Count, Upper Quantile, Mean of Total Count, and RPKM 

(Reads per Kilobase per Million) normalization methods, as well as Quantile Normalization. 

Relative Log Expression (DESeq) 

For DESeq's default normalization method, the RLE (Relative Log Expression) normalization method was 

used in EdgeR as it is equivalent. Starting with the hypothesis that most genes are not DE, scaling factors 
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are calculated for each lane as median of the ratio, for each gene, of its read count of its geometric 

mean across all lanes. This way, non-differentially expressed genes will have similar read counts across 

samples, with a ratio of 1, and the median of the ratio for a given lane serves as a correction factor to 

apply to all read counts. Along with TMM, Dillies et al. (2013) recommended DESeq normalization. 

Conditional Quantile Normalization (CQN) 

Proposed by Hansen et al. (2012), CQN operates on the assumption that RNA-Seq data is greatly 

affected by bias and systemic errors, with a sample effect that is not common for all genes. The authors 

focused on sample-specific GC-content bias, which resulted in confounding of GC-content and log fold 

change values. To remove such technical variability, they removed this GC-content effect and also used 

quantile normalization. However, they improved upon prior efforts to remove sample-specific GC bias 

by assuming that the distribution of true expression values does not depend on GC-content, and felt 

that strong GC-content effects across different parts of the same gene support this assumption. The 

authors also published a Bioconductor package, cqn, which we use to implement this normalization and 

create offsets that can be used in EdgeR's GLM test (Likelihood Ratio Test) for differential expression.    

Remove Unwanted Variation (RUV) 

RUV is a normalization method that uses factor analysis of suitable sets of control genes (or samples) to 

remove technical variability, thus obtaining more accurate estimates of differential expression. Risso et 

al. (2014) used the External RNA Control Consortium's spike-in controls as control genes and developed 

three algorithms. RUVg assumes a set of "negative" control genes that are not affected by biological 

covariates of interest (e.g. housekeeping genes or spike-ins), but are affected by unwanted technical 

variability like any other genes. RUVr makes no such assumption, and all control genes may be used to 

normalize the data while RUVs is a middle option that requires negative control genes exactly as in 

RUVg, but is less sensitive to these genes. Given housekeeping genes in our dataset that could serve as 

negative control genes, we implemented RUVg using the authors' RUVSeq package.  

 

Real Data 

Dataset Descriptions 

Through the tweeDESeqCountData package by Gonzalez (2010) based on the study by Esnaola et al. 

(2013), we obtained the datasets of Pickrell et al. (2010) and Montgomery et al. (2010). These studies of 

lymphoblastoid cell gene expression gathered RNA-Seq data from 69 individuals from Nigeria of Yoruba 

ancestry (Pickrell, HapMap YRI) and 60 from Utah of European ancestry (Montgomery, HapMap CEU).  

Pickrell included 29 men and 40 women, Montgomery 27 men and 33 women, and both datasets 

included GC-content and length data. No genes were known to be differentially expressed between 

populations, housekeeping genes were also included. 

Comparison Procedures 
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The four methods were compared based on variation in normalized data results of differential 

expression analysis. After filtering out genes with low read counts, only 6855 genes were ultimately 

considered. Bar plots of the Biological Coefficient of Variance (BCV, square root of dispersion), violin 

plots of intra-group variation, and RLE (Relative Log Expression) Plots were made to see how each 

method reduced technical variability. Differential expression of genes between the two populations was 

determined using EdgeR's GLM Likelihood Ratio Test, generating lists of genes obtained under each 

normalization method. These lists were then compared through a Venn Diagram and tables.  

 

Simulation 

In addition to working with real data, we created a simulated dataset based on 6855 genes and 129 

samples from the Pickrell and Montgomery data used in analysis. The SimSeq package allowed us to 

model RNA-Seq data, with read counts having a negative binomial distribution, generating count data 

for 6850 genes across 30 samples (15 per group) with 4000 of the genes differentially expressed. For this 

simulated dataset, we repeated the same analyses as with real data, and were also able to evaluate 

each method based on its false positive and false negative rates (or true positive and true negative 

rates). Having specified a priori that 4000 genes be randomly set as differentially expressed, we could 

measure each normalization method's performance in finding these genes to be differentially expressed. 

 

RESULTS 

Our interest in comparing normalization methods was to reduce technical, intra-group variability, and 

make biological, inter-group variability of research interest more apparent. For this, we considered real 

and simulated data. Looking at bar plots of the Biological Coefficient of Variation (BCV), TMM and DESeq 

hardly reduce the total variability (sum of intra- and inter-group) versus Raw Counts, though CQN and 

RUV seem to do so. We see this same pattern when considering only housekeeping genes, which have 

constant expression levels in most settings, though we cannot make any statements about significance. 
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Though including CQN and RUV was not possible in the violin plots below, we see that TMM and DESeq 
again reduce variation (within each group, i.e. population) to only a limited degree. 

Intra-Group Variation: Pickrell

 

Intra-Group Variation: Montgomery

 

Looking at Relative Log Expression (RLE) plots for the full dataset, RUV clearly reduces much of the intra-
group variation. Its use of housekeeping genes as negative controls may explain reduced intra-group 
variation in particular, as housekeeping genes should not change expression levels across conditions.  

RLE Plot: Before Normalization

 

RLE Plot: After RUV

 

(Pickrell's 69 samples are on the left side of the RLE plots in red, Montgomery's 60 samples are on right in green) 

Furthermore, in differential expression results, 

RUV and CQN yielded the largest counts (4384 

and 4371 respectively), while TMM and DESeq 

yielded fewer (4207 and 4194 respectively), 

with 3240 found under all four methods. CQN 

also led to 911 genes listed as differentially 

expressed that were not found under any other 

method. The following table and Venn Diagram 

show counts of differentially expressed genes 

and those found in common for each method.   

Differentially Expressed Genes by Method 

 TMM DESeq CQN RUV Raw 

TMM 4207 4075 3339 4165 3872 

DESeq - 4194 3292 4087 3989 

CQN - - 4371 3410 3192 

RUV - - - 4384 3911 

Raw - - - - 4154 
(6855 genes analyzed for differential expression, 

after filtering out the 45725 genes that did not have 

at least 3 or more samples with at least 10 reads
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Venn Diagram: Differentially expressed genes found in common for each normalization method 

 
Making further claims is difficult though, as no genes are known to be differentially expressed across our 

two populations, in the manner of housekeeping genes' constant expression across cells and conditions.

Simulation 

Simulation helped assess out-of-sample effect on technical, intra-group variability and measure error 

rates in detecting differential expression for each method. Variability is again barely affected by our 

normalization methods, save for RUV:  

  

Considering the RLE plots for simulated data, RUV again visibly reduces intra-group variance, though this 

is a smaller sample size (30 individuals, 15 per group) due to the nature of the SimSeq package. 
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RLE Plot: Before Normalization

 

RLE Plot: After RUV

 

Differentially Expressed Genes by Method 

 TMM DESe
q 

CQN RUV Raw 

TMM 1327 1318 870 726 1327 
DESe

q 

- 1337 874 723 1318 

CQN - - 1098 647 870 

RUV - - - 864 726 

Raw - - - - 1327 
 

Differential expression results were much smaller in 
counts, but also notable for CQN and RUV having the 
smallest counts, whereas they had the most for the 
real data. simulation also allowed us to compare the 
four methods by their false positive rate in differential 
expression analysis. 

Of 6850 simulated genes, 4000 were set 

at random to be differentially expressed. 

After filtering, 6183 genes remained for 

our analysis. The Venn Diagram on the 

right gives a breakdown of differential 

expression by method, while the accuracy 

of each normalization method is given in 

the following confusion matrices. The 

error rate is given for each method, with 

(in clockwise order from top left) True 

Positive, False Negative, True Negative, 

and False Positive counts.  

 

 DE genes found in common for each method

 

TM M
 

M
 

 

41% 

Error 

DE Analysis 

DE Not DE 

R
ea

l DE 1219 2427 

Not DE 108 2429 

  

 

D
ES

eq
 41% 

Error 

DE Analysis 

DE Not DE 

R
ea

l DE 1224 2422 

Not DE 113 2424 
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C
Q

N
 43.09% 

Error 

DE Analysis 

DE Not DE 
R

ea
l DE 1040 2606 

Not DE 58 2479 

 

  

R
U

V
 46.06% 

Error 

DE Analysis 

DE Not DE 

R
ea

l DE 831 2815 

Not DE 33 2504 

 

R
aw

 

C
o

u
n

t 
 41% 

Error 

DE Analysis 

DE Not DE 

R
ea

l DE 1219 2427 

Not DE 108 2429 

 

From the simulated data, it's clear that even 

though RUV seemed best in reducing intra-

group variance with real data, it has a high false 

negative rate (2805 genes classified as Not DE, 

when in fact they were DE) and did worst of all 

the methods in differential expression analysis. 

 

 

DISCUSSION 

In considering four methods to reduce technical, intra-group variability and thus improve differential 

expression analysis, there was not one method that dominated. In reducing intra-group, technical 

variability TMM and DESeq had no significant effect as compared to the Raw Count data, whereas CQN 

and RUV may have had an effect. However, CQN and RUV are only useful in particular circumstances. 

CQN can correct for GC-content, read lengths, or similar sample-specific bias, which is why Dillies et al. 

(2013) did not evaluate it against TMM and DESeq, the methods they found to perform best. RUV 

requires a set of negative control genes or samples, such as housekeeping genes, which are not always 

known. For the Pickrell and Montgomery datasets, CQN and RUV reduced variation more and resulted in 

a higher count of differentially expressed genes as well. 

 

However, simulation suggests that these advantages of CQN and RUV may have been specific to our 

choice of datasets, and that much more can be done to assess how each normalization method affects 

the power of tests for differential expression. The Pickrell and Montgomery datasets would be expected 

to have non-trivial GC-content, as they were used by Hansen et al. (2012) to introduce CQN. They also 

had housekeeping genes, ready to use as controls for RUV. For differential expression as well, simulation 

results were the opposite of those with real data, as RUV and CQN had the lowest gene counts. 

Moreover, their error rates (46.09% and 43.03%) were higher as well, with very high false negative 

rates. Though our scope did not include the effect of each normalization method on power (i.e. 

minimizing false negatives), RUV's high rate of false negatives and the ability with simulation to test 

power by varying the number of differential expressed genes make this worth future study.   
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Conclusion 

Though this study found CQN and RUV promising in their ability to reduce technical, intra-group 

variability, it cannot reject the recommendation of Dillies et al. (2013) to use DESeq and TMM 

normalization for differential expression analysis. Indeed, these two methods were the most accurate 

for simulated data and had similar differential expression results to CQN and RUV using real data. What 

remains of interest are the conditions under which CQN and RUV may be best applied, especially if 

certain levels of GC-content bias meriting use of CQN or specific control genes best suited to RUV could 

be identified. In the manner of a 2013 protocol established by Anders et al for RNA sequencing data 

analysis, protocols for normalization are worth developing as more and more research and researchers 

rely on RNA-Seq.  

 

 

REFERENCES 

Hansen, Kasper D., Rafael A. Irizarry, and W. U. Zhijin. "Removing technical variability in RNA-seq data 

using conditional quantile normalization."Biostatistics 13.2 (2012): 204-216. 

Dillies, Marie-Agnès, et al. "A comprehensive evaluation of normalization methods for Illumina high-

throughput RNA sequencing data analysis." Briefings in bioinformatics 14.6 (2013): 671-683. 

Risso, Davide, et al. "Normalization of RNA-seq data using factor analysis of control genes or 

samples." Nature biotechnology 32.9 (2014): 896-902. 

Anders, Simon, and Wolfgang Huber. "Differential expression analysis for sequence count data." Genome 

biol 11.10 (2010): R106. 

Holmes, Susan. "RNA Sequence Analysis in R: EdgeR." RNA Sequence Analysis in R: EdgeR. Stanford 

University, 15 June 2014. Web. 24 July 2015. 

Pickrell, Joseph K., et al. "Understanding mechanisms underlying human gene expression variation with 

RNA sequencing." Nature 464.7289 (2010): 768-772. 

Montgomery, Stephen B., et al. "Transcriptome genetics using second generation sequencing in a 

Caucasian population." Nature 464.7289 (2010): 773-777. 

Frazee, Alyssa C., Ben Langmead, and Jeffrey T. Leek. "ReCount: a multi-experiment resource of 

analysis-ready RNA-seq gene count datasets." BMC bioinformatics 12.1 (2011): 449. 

Gonzalez, Juan R., Maintainer Juan R. Gonzalez, and RNAseqData biocViews 

HighThroughputSequencingData. "Package ‘tweeDEseqCountData’." population464 (2010): 773-777. 

Esnaola, Mikel, Robert Castelo, and Juan Ramón González. "tweeDEseq: analysis of RNA-seq data 

using the Poisson-Tweedie family of distributions."dim (countsNigerian) 1.52580 (2013): 69. 

Anders, Simon, et al. "Count-based differential expression analysis of RNA sequencing data using R and 

Bioconductor." Nature protocols 8.9 (2013): 1765-1786. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 3, 2015. ; https://doi.org/10.1101/026062doi: bioRxiv preprint 

https://doi.org/10.1101/026062
http://creativecommons.org/licenses/by-nc-nd/4.0/

