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Abstract29

Forest trees generally show high levels of local adaptation and efforts focusing on understanding30

adaptation to climate will be crucial for species survival and management.31

Merging quantitative genetics and population genomics, we studied the molecular basis of32

climate adaptation in 433 Populus trichocarpa (black cottonwood) genotypes originating across33

western North America. Variation in 74 field-assessed traits (growth, ecophysiology, phenology,34

leaf stomata, wood, and disease resistance) was investigated for signatures of selection35

(comparing QST -FST) using clustering of individuals by climate of origin. 29,354 SNPs were36

investigated employing three different outlier detection methods.37

Narrow-sense QST for 53% of distinct field traits was significantly divergent from expectations38

of neutrality (indicating adaptive trait variation); 2,855 SNPs showed signals of diversifying39

selection and of these, 118 SNPs (within 81 genes) were associated with adaptive traits (based on40

significant QST). Many SNPs were putatively pleiotropic for functionally uncorrelated adaptive41

traits, such as autumn phenology, height, and disease resistance.42

Evolutionary quantitative genomics in P. trichocarpa provides an enhanced understanding43

regarding the molecular basis of climate-driven selection in forest trees. We highlight that44

important loci underlying adaptive trait variation also show relationship to climate of origin.45
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Author summary46

Comparisons between population differentiation on the basis of quantitative traits and neutral47

genetic markers inform about the importance of natural selection, genetic drift and gene flow for48

local adaptation of populations. Here, we address fundamental questions regarding the molecular49

basis of adaptation in undomesticated forest tree populations to past climatic environments by50

employing an integrative quantitative genetics and landscape genomics approach. Marker-51

inferred relatedness was estimated to obtain the narrow-sense estimate of population52

differentiation in wild populations. We analyzed an unstructured population of common garden53

grown Populus trichocarpa individuals to uncover different extents of variation for a suite of54

field traits, wood quality and pathogen resistance with temperature and precipitation. We55

consider our approach the most comprehensive, as it uncovers the molecular mechanisms of56

adaptation using multiple methods and tests. We provide a detailed outline of the required57

analyses for studying adaptation to the environment in a population genomics context to better58

understand the species’ potential adaptive capacity to future climatic scenarios.59
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Introduction60

Knowledge about the genetic basis of adaptive quantitative traits in forest trees and genetic61

differentiation in response to selection facilitates the prediction of long-term responses to62

climate, but the genetic basis of adaptation is not comprehensively understood [1]. High levels of63

local adaptation due to consistent natural selection in a given environment resulted in local64

populations that have their highest fitness at their original provenance, and consequently, are65

differentiated from non-local populations. Within population diversity is fundamental to species66

survival in unpredictable environments, and therefore also relevant for conservation and forest67

management ([2]; [3]). Recent studies within forest trees have investigated the association of68

local climate and geography with either randomly identified loci (Pinus taeda: [4]; Cryptomeria69

japonica: [5], or candidate functional genes (Picea abies: bud set candidate genes, [6]; Populus70

balsamifera: flowering time candidate genes, [7]) to uncover genes underlying local adaptation.71

The genetic architecture underlying adaptive phenotypes of forest trees is generally highly72

complex (e.g. [8]). Therefore, untangling the relationships between adaptive loci and the role of73

climate in selection vs. neutral evolutionary processes is inherently difficult.74

Evidence for potential adaptive significance of a genetic marker is often interpreted from75

‘FST outlier’ analyses where genetic loci significantly differ in their allelic frequencies among76

populations. These ‘outliers’ can be efficiently detected using multilocus scans comparing77

patterns of nucleotide diversity and genetic differentiation to the simulated genome-wide neutral78

genetic background ([9]; [10]). For instance, this methodology has led to the detection of SNPs79

implicated in local climate adaptation in Picea ([11]; [12]; [13]). In order to obtain a detailed80

understanding of how populations have diverged in response to climate variation, such FST81

outliers can be tested for associations with an adaptive trait and an environmental variable to82
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substantiate the evidence for their involvement in local adaptation ([14]; [15]). Integrating83

quantitative and population genomics is therefore essential to determine the degree to which84

genetic and phenotypic variation are driven by selection as opposed to neutral processes (e.g.85

genetic drift). Specifically, this allows for comprehensive information from genome-wide86

association studies (GWAS), QST quantitative genetics analysis (i.e. ‘top-down’ approaches,87

[16]) and landscape population FST outlier analysis (i.e. ‘bottom-up’ approaches, [17]) be88

merged.89

The existence of interaction effects among different loci within co-adapted gene90

complexes has long been recognized [18]. Yeaman (2013) suggested that ecological selection91

might even promote the physical clustering of locally adaptive loci through genomic92

rearrangements [19]. Landscape population genomics can identify genome regions significantly93

associated with spatial and temporal environmental gradients [3]. For instance, the study using94

natural Arabidopsis genotypes spanning the species’ range revealed that local adaptation might95

be maintained by independent target loci enriched for molecular processes that exhibit their96

major genetic effects within distinct local environments but are neutral in others [20]. The97

geographic variation in the degree to which a genetic region under selection responds is termed98

“conditional neutrality” [21] and suggests a given species has not uniformly responded to an99

environmental pressure or that the pressure is not equally active across a species range.100

Importantly, the assessment of local adaptation in this work on Arabidopsis involves the study of101

fitness traits such as fecundity and survival (viability) ([20]; [22]). In addition, there also exist102

traits that increase fitness in one environment, but reduce it in another. Ecological genetics can103

more easily explore the genetic changes over time in annuals (due to their short generation times)104

involving multiple generations studied under a changing environment ([23]; [15]). This is less105
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feasible for long-lived forest trees. However, the estimation of quantitative genetic parameters106

using SNP marker-inferred relatedness estimation to obtain narrow-sense estimates of107

heritability and QST in wild populations [24] can allow monitoring adaptive genetic responses108

along an ecological time-scale [15].109

In this study, we integrated an extensive body of results on the genetics of wild Populus110

trichocarpa Torr. & A. Gray (black cottonwood) to understand adaptation to climate. All111

poplars, aspens, and cottonwoods (genus Populus) play important roles in natural ecosystems as112

pioneer species ([25]; [26]) and are economically important for various industrial products with113

an increasing role as bioenergy crops ([27]; [28]; [29]; [30]). Populus species are still largely114

undomesticated with very low population differentiation indicative of extensive long-distance115

intraspecific gene flow [31]. In western North America, P. trichocarpa has an extensive116

cordilleran range (31-62°N), yet with no clear north-south differentiation in genetic diversity117

(and no decreasing genetic diversity with latitude), consistent with the species’ colonization118

history from multiple potential glacial refugia [32]. Several studies have indicated subtle sub-119

structure in P. trichocarpa ([33]; [34]; [35]) relating to isolation-by-distance (IBD; i.e. the120

decrease of genetic similarity among populations with increasing geographical distance between121

these populations reflected in continuous patterns of genetic differentiation and allele frequency122

variation in the species [34] as opposed to natural barriers causing discrete local genetic123

clusters), introgression and adaptation [36]. We explored the extensive body of data on the124

genetics of P. trichocarpa, including genome-wide coverage of SNPs [35], and comprehensive125

GWAS results from wood characteristics [37], leaf rust fungus (Melampsora xcolumbiana)126

resistance [38], biomass, ecophysiology, leaf stomata and phenology traits [39]. We studied the127

divergence patterns of phenotypic variation and SNPs among distinct climate clusters in 433128
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unrelated P. trichocarpa genotypes originally collected throughout the northern two-thirds of the129

species’ latitudinal range (excluding the highly diverged Californian population Tahoe: [34],130

[40]). We tested whether phenotypic variation in traits was diverged among the climatic regions131

(based on non-neutral QST), as would be expected of adaptive variation. We then predicted that132

SNPs that are most diverged among different climatic regions would be associated with mapped133

genes that underlie adaptive phenotypic variation [13].134

In brief, we used an integrative analysis of quantitative traits and genetic markers to135

investigate climate adaptation in wild P. trichocarpa populations, we developed an integrative136

approach through merging genomic-based datasets and results. (1) The effects of individual loci137

were first separated from confounding population effects using spatial PCA (sPCA) to138

investigate the presence of local and global genetic structures. Following this assessment of139

population structure using genetic markers showing evidence of only one single genetic140

structure, distinct population clusters were generated based on climatic factors and this sub-141

population clustering was used in subsequent analyses (Fig. 1). (2) The genetic differentiation in142

quantitative traits (narrow-sense QST) among populations defined by climate clusters was143

calculated involving the estimation of relatedness based on genetic markers. (3) In parallel, the144

divergence of genetic markers (FST outlier analysis) among populations defined by climate145

clusters was assessed. (4) The significance of quantitative trait divergence among populations, as146

defined by climate clusters, was assessed by comparing the observed QST values with the147

simulated distribution of QST-FST for a neutral trait. If the null hypothesis was rejected, the trait148

was considered adaptive. (5) GWAS results identifying the SNP variants underlying adaptive149

traits were incorporated. If these SNP variants also corresponded to loci under selection150

(employing four different outlier detection methods), then, the SNP variants were considered151
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adaptive. This comprehensive analysis of genomic and phenotypic information underscores the152

necessity of merging multiple datasets to more fully understand evolutionary genomics of P.153

trichocarpa.154

155
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Results156

Population structure assessment157

Negative eigenvalues from sPCA were negligible (Fig. 2), suggesting no local genetic clusters.158

By comparison, the presence of IBD was verified by large positive eigenvalues (Fig. 2). These159

results were further confirmed by the local and global tests within the “adegenet” program (see160

Methods). While, again, we did not detect local genetic structure in P. trichocarpa (local test161

P=0.937), we did identify global genetic structure attributed to IBD (global test P=0.001) that162

was observed across the entire population involving the 140 unique geographical locations163

represented by one randomly chosen genotype.164

165

Divergence of quantitative characters (QST) among climate clusters166

We calculated narrow-sense QST values for 74 distinct field-assessed traits for the study167

population. Assessments included 16 wood, 12 biomass, 14 phenology, 18 ecophysiological, 13168

leaf stomata, and one rust resistance phenotype (Table S1). Observed QST values for each trait169

were compared to the simulated distribution of QST-FST values for a neutral trait (simulating a170

range of possible demographic scenarios, see Methods). Among all traits, 53% (39/74 traits) had171

QST values significantly different from zero and therefore were classified as adaptive (Table 1).172

The highest number of significant QST values was observed among biomass traits (76%),173

phenology traits (70%), ecophysiology traits (64 %) and leaf rust resistance (100%). By174

comparison, only 25% of wood-based traits had significant QST values. QST values for traits that175

significantly diverged among the four climate clusters ranged from 0.03 (δ15N, i.e. stable176

nitrogen isotope ratio) to 0.26 (bole biomass). Among all tested traits, the climatic clusters best177

explained the phenotypic variation in phenology based on the PST values, ranging from 17%178
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(100% leaf yellowing) to 24% (bud set). Among wood characteristics, two cell wall sugar traits179

(% galactose and % arabinose in dry wood) and two wood ultrastructure attributes (fiber length180

and microfibril angle) showed significant QST values. The climatic clusters explained 13 and181

12% of the arabinose and galactose content, respectively.182

183

Identification of SNPs under selection184

Using both unsupervised and climate-based SPA, a total of 1,468 SNPs were identified being185

under selection at a 5% cutoff for each method (Table S2). We also performed FST outlier186

analysis on climate clusters. While the mean FST value for the complete dataset (29,354 SNPs)187

was 0.0108, we obtained a mean neutral FST value (0.0078) after removing loci identified to be188

potentially under selection [41]. In the final analysis, all loci were tested against this neutral189

mean to identify a set of potential FST outliers relating to climate. Using 200k simulations in190

Fdist2, we identified 121 SNPs outside the 99% limits of the neutral distribution (Fig. S1) as191

potential candidates subjected to diversifying (positive) selection related to the four climate192

clusters. Among these, 88% of these climate-related ‘outliers’ were confirmed by allelic193

frequency correlation analysis with averages for climate variables within subpopulation (using194

multiple univariate logit regression models in SAM (α=0.05, Table S2)), 77 of these loci195

persisted across different selection scan scenarios employed (unsupervised SPA, climate-based196

SPA, and FST analysis based on population subdivision [36]), and 48 SNPs were retrieved using197

association genetics (see below) (Table S2). A comparison between Fdist and SPA testing gene198

dispersal and employing Moran’s test for spatial autocorrelation (Fig. 3) indicates, in general, the199

higher effectiveness of SPA to identify genetic selection signals under patterns of IBD.200
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A significant accumulation of FST outliers was identified on chromosome 15 (Fig. S1).201

The extent of linkage disequilibrium (LD) between all 121 outlier loci is presented in Fig. S2. In202

general, we found that LD was not substantial between SNPs from different genes. Incomplete203

LD can be caused by the possibility that SNPs are close to but not in complete LD with the204

causal variants (here probably due to ‘tag SNP’ design of the SNP chip array [35]) explaining205

why the observed LD between diverged loci is generally low [42] One notable exception is two206

neighboring poplar genes (Potri.009G008600 and Potri.009G008500) initially annotated based207

on sequence homology to Arabidopsis genes as nitrate transporter types ATNRT2:1 and208

ATNRT2:4, respectively. The allele frequencies of three SNPs and one SNP, respectively, in209

poplar orthologs of ATNRT2:1 and ATNRT2:4, respectively, are strongly correlated to210

temperature (R2>0.9; P=0.05), while the remaining SNPs in both genes did not follow such a211

strong pattern (Fig. S2).212

213

SNPs under diversifying selection and associated with quantitative traits214

To corroborate findings of candidate loci putatively under diversifying selection based on215

climate, we compared these results with SNPs uncovered by associations with adaptive traits216

(showing non-neutral QST). Among four GWAS studies in P. trichocarpa, a total of 619 SNPs217

had been identified with significant trait associations (at α=0.05): 410 with biomass,218

ecophysiology and phenology [39], 141 with wood property traits [43], 40 with Melampsora219

xcolumbiana resistance [38], and 28 SNPs related to leaf stomata variation [44].220

We compared four different outlier analyses to identify selection signals in 29,354 SNPs.221

Most trait-associated SNPs for which we detected selection signals were associated with adaptive222

traits (89%, Table S2). The highest percentage of trait-associated SNPs in outlier analyses was223
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found for climate-based FST outlier analysis (40% of the total number of outliers identified by the224

method; 48 SNPs), followed by geography-based FST outlier analysis (8%; 75 SNPs that were225

reported in [36], unsupervised SPA (5%; 75 SNPs), and SPA with climate as a covariate (3%; 37226

SNPs). In total, selection signals were detected for 151 trait-associated SNPs with 44% overlap227

among evaluation methods. Interestingly, there was a lack of genome-wide correlation between228

selection and association signal (Fig. 4) and thus only dispersed association signals were detected229

among SPA selection signals (Fig. 5, Table S2). This result is probably a consequence of the230

structure correction methods employed in GWAS.231

We retrieved a number of unique but also shared SNPs among the different analyses (Fig.232

6). Shared SNPs were highest for climate FST (75%) and geography-based FST (72%).233

Unsupervised SPA had the highest number of unique SNPs among the four methods (51%). We234

found 118 SNPs associated with adaptive traits (significant QST) including 59 SNPs under235

diversifying selection shared among at least two outlier detection methods and 59 unique SNPs236

detected by climate FST, climate SPA and unsupervised SPA, respectively (Table S3). A large237

number of SNPs (40%) that we identified as FST outliers using climate clustering were candidate238

SNPs from association studies (Table S2). The high number of trait-associated SNPs reflects239

both the polygenic nature of phenotypic traits (e.g., c.200 for bud set, [39]) and linkage240

disequilibrium (LD) to a lesser extent. The highest number of climate-based FST outliers241

associated with adaptive traits was found on chromosome 15 (12 SNPs), identifying a genomic242

region where SNPs putatively under selection to local climate generally may be clustered (Fig.243

S1).244

We found that SNPs under potential climate selection matching putative causal variants245

from association studies consistently mapped to non-neutral QST, adaptive traits (Table S1, Table246
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S2). Only one SNP associated with wood traits (within Potri.009G006500 annotated as FRA8247

associated with fiber length, [43]) was among the FST outlier loci. Comparatively, phenology248

traits were the most complex adaptive traits from the high match between the total number of249

associated SNPs and the proportion of SNPs with allele frequencies significantly diverged250

among climate clusters (Table S2). In total, 118 SNPs were outliers under diversifying selection,251

associated with adaptive traits (significant QST), and with many SNPs putatively pleiotropic for252

functionally uncorrelated adaptive traits, such as autumn phenology, height, and disease253

resistance (Table S3). The 78 annotated poplar genes were largely derived from major gene254

functional group such as (1) transcription factors of several categories and (2) carbohydrate-255

related genes, but also transporters. Among these transporters, two poplar genes256

(Potri.009G008600 and Potri.009G008500) annotated based on sequence homology to257

Arabidopsis genes as nitrate transporter types ATNRT2:1 and ATNRT2:4, respectively, were258

highly pleiotropic for several adaptive traits (Table S3).259

260
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Discussion261

Evolutionary quantitative genomics262

The main focus of our work involved identifying adaptive traits and their genetic basis in forest263

trees by employing both a quantitative genetics approach (QST analysis) and population genomics264

[16] to uncover SNPs under strong selection (among c.29k tested genetic polymorphisms). Our265

analyses revealed that 53% of these traits produced significant narrow-sense QST (Table S1)266

underscoring that such quantitative traits are very likely related to adaption to local climatic267

conditions [45].268

This study uses SNP marker-inferred relatedness estimation (i.e. the ‘animal model’) to269

obtain narrow-sense estimates of heritability and QST in wild populations [24]. The quality of270

genetic estimates using the ‘animal model’ approach largely depends on the accuracy of271

relationship coefficient estimates and are affected by: 1) number and quality of markers [46], 2)272

variance in actual relatedness [47], and 3) how well the relationship estimates reflect the273

segregation of causal variants [48] Our present study is based on extensive, genome-wide SNPs274

[35] which can provide high accuracy for both the relationship coefficients and the estimated275

genetic parameters. However, samples from natural tree populations are subject to intensive gene276

flow (outcrossing) and generally show low levels of relatedness which can negatively affect277

heritability and QST analyses.278

Heritability is usually dependent on the population sampled (i.e. the observed allele279

frequency differences) and thus, can differ for smaller sampling sizes and/or specific sampling280

areas (e.g., central vs. marginal regions of species distribution). Heritability estimates taken281

across a greater coverage of the species distribution are more likely to reflect evolutionary282

history of the traits (stabilizing vs. diversifying selection) rather than the effects of population283
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subsampling. Sufficient variance in the actual relatedness is also required to reveal heritability in284

wild populations [47], although heritability, and indirectly, QST estimates, can suffer from the285

inability to separate the pure additive genetics from environmental effects, specifically when286

relatedness is lacking. Thus, the presence of LD between markers and causal variants (QTLs) is287

crucial to recover the genetic parameters with sufficient precision. In the case of traits under288

diversifying selection, the additive genetic variance estimates (such as narrow-sense heritability)289

may also include a substantial QTL covariance component, in addition to the pure genic290

variance. This is especially the case when many QTLs follow the same cline, and can further291

extend the additive genetic variance when the QTLs interact (i.e., epistasis) [49] unless the292

epistasis is accounted for in the model [50]. Thus, heritability estimates for traits under293

diversifying selection (Table 1) may be upwardly biased (see below).294

Heritability estimates are often interpreted as the capacity for adaptive evolution. In295

addition, epistatic interactions, specifically, the directional epistasis, have major effects through296

altering the genetic background (both, the additive genetic variances and the covariances, i.e. the297

allelic frequencies but also their effects) [51]. Hemani et al. (2013) outlined that for traits under298

selection, high levels of genetic variation are maintained and the traits evolve more slowly than299

expected, yet this could be attributed to high epistasis in traits under strong diversifying selection300

[42].301

302

Selectively non-neutral genetic variants underlying traits adaptive to climate303

Overall, the number of FST outlier SNPs underlying an adaptive trait correlated well with the304

total number of candidate SNPs associated with that trait (r=0.625, P=0.0005). Yet, the majority305

of trait associated SNPs were not FST outliers (Table S2) and appeared to be unresponsive to306
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selection for different climatic conditions, especially for phenology traits such as bud set, leaf307

drop or growth period. A previous simulation study suggested that differentiation in candidate308

loci is limited for complex traits in forest trees (i.e., their FST values are similar to neutral values),309

despite their strong adaptive divergence among local populations (high QST), due to large310

population sizes and high levels of gene flow [52]. Thus, highly polygenic adaptation (as311

observed in complex genetic traits) will not show sufficient allele frequency differentiation such312

that climatic clines in SNPs of candidate genes can be exhaustively detected.313

We modelled the spatial structure of genetic variation using SPA (addressing gene flow314

under IBD), and SNPs identified via SPA were compared against GWAS-identified SNPs,315

climate-related FST outliers and geography-informed FST outliers. The majority of SNPs with316

steep allele frequency clines (based on unsupervised SPA) uncovered allele frequency317

correlations with the north-south cline (Table S2). We noted that enrichment for particular genes,318

such as circadian rhythm/clock genes, was found in PC1 (a north-south population structure) [45]319

and that SNPs of these genes were among the highest ranked in SPA. Nonetheless, associations320

of circadian rhythm clock genes with strong correlations to environment were largely missing321

among the identified genetic associations for phenology traits (discussed in McKown et al. [39]).322

The interplay of IBD and natural selection was lost by the necessary structure correction in323

GWAS, however, evidence from gene expression or gene regulation that is also highly correlated324

with the trait under question might be possible to retrieve such SNPs of putative importance325

(Anonymous, [53]).326

The presence of IBD in P. trichocarpa underscores the larger issue for investigating wild327

populations with quantitative genetics and population genomics approaches as IBD can confound328

population structure, association mapping, and outlier analyses. The power to detect local329
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selection depends on several factors, including selection strength, the presence of distinct types330

of microenvironment heterogeneity, and the distance of gene dispersal compared to the overall331

spatial scale [54]. In our case, as the observed gene dispersal is ~500 km (Fig. 3) and sampling is332

also discontinuous (Fig. 1), this does not allow us to perform FST analysis on arbitrarily defined333

local populations because it will be more difficult to separate the stochastic noise (drift,334

migration) from the selection signal in smaller scale population subsampling leading to an excess335

of false positives [54]. Yet, selection pressures can differ along environmental clines. Thus, FST336

outliers should be investigated on the largest scale possible following the spatial distribution of337

the environment in order to identify spatial genetic structure. Nevertheless, IBD in wild338

populations will create some compromised statistical power in detecting local adaptation using339

specific pairs of populations that is unavoidable (Fig. 3).340

341

Polygenic and pleiotropic adaptation relating to climate342

Our climate clustering partitioned the study population into four large, evenly-sized groups of343

individuals lending robustness to SNP detection even for lower frequency (recent) variants. In344

our study, the top two SNPs among climate related FST outliers showed strongest associations to345

climate partitions according to SAM analysis [Potri.010G250600 (MSR2/ MANNAN SYNTHESIS346

RELATED 2 implicated in carbohydrate metabolism) and Potri.010G254400 (transporter347

ATGCN4) (Table S2)]. In addition, six genes that harboured climate-related FST outlier SNPs348

have been identified as candidates for bud set in previous studies ([55]; [56]), yet these loci were349

not associated with bud set in our GWAS study ([39]; Table S2), possibly through implementing350

the conservative population structure correction term in GWAS. Nevertheless, these genes may351

represent additional candidates for bud set, including Potri.003G218900 (ACD1-LIKE),352
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Potri.009G015100 (senescence-associated family protein), Potri.014G170400 (XERICO),353

Potri.015G012500 (IQ-domain 21), Potri.018G015100 (chloroplast nucleoid DNA-binding354

protein), and Potri.019G078400 (leucine-rich repeat transmembrane protein kinase) (Table S2).355

Evidence is emerging that for perennial trees to effectively sense short day signals, i.e.356

critical day length in autumn phenology [57], a temperature optimum is required and genetically357

pre-determined by the local climate of the individual’s origin [58]. Allele frequencies for most of358

the SNPs that both associated with bud set and diverged among the climate clusters showed359

strong regression on the mean temperature variation of the climatic clusters (R2 up to 0.94; Table360

S2). A critical role for temperature, rather than precipitation, on bud set has also been found in361

Picea [12]. For autumn phenology, elevated temperatures can either accelerate or delay growth362

cessation depending on species or ecotype ([59]; [60]), but under climate warming, the overall363

effects on phenological timing in forest trees is unknown.364

SNP allelic frequencies within both nitrate transporter genes ATNRT2:4 and ATNRT2:1365

were strongly aligned with temperature variation (R2~90%) in P. trichocarpa. Moreover, these366

SNPs were pleiotropic for multiple autumn phenology traits, height, and leaf rust resistance367

(Table S3). Nitrate transporters are generally important in plants, as nitrate is the main nitrogen368

source required for synthesis of nucleic and amino acids. Therefore, a regulation of nitrate369

distribution is crucial to modulate growth (biomass acquisition) in response to temperature or370

light conditions ([61]; [62]). Interestingly, there are only two poplar representatives within a371

phylogenetic sub-clade of NRT2 that is populated by as many as five Arabidopsis sequences372

(ATNRT2.1/2.2/2.3/2.4/2.6). This implies that a deletion event occurred in this clade whose373

functional significance remains elusive to date [62]. Phylogenetic reconstruction coupled with374

gene expression analysis point at neo/subfunctionalisation of the two poplar nitrate transporters375
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for long distance nitrate transport from roots, wood to leaves [62]. This acquisition of novel376

expression pattern and loss of the ancestral expression pattern demonstrates the signature of377

adaptive evolution in functional diversification in paralogous gene pairs [63].378

In addition, our results revealed that adaptive genetic variants within both poplar nitrate379

transporters were also associated with leaf rust resistance ([38]; Table S3). In Arabidopsis, loss380

of function of ATNRT2.1 primes salicylic acid signaling and PR1 up-regulation [64]. In poplar381

leaf rust inoculations, both PTNRT2.4 and PTNRT2.1 are strongly down-regulated in382

incompatible interactions, while no expression change is apparent in compatible interactions (J.383

La Mantia, personal observation). The identified nitrogen transporters might be important in384

nitrogen storage and nitrogen remobilization to recycle nutrients during the progression of leaf385

senescence [65]. They may also function  in down-regulation of nitrogen assimilation during386

seasonal remodeling of tree phenology related to growth cessation induced by short photoperiods387

([66]; [67]) and/or temperature [58]. The effect of temperature on rust aggressiveness is noted388

[68] and the climatic conditions which form a conducive environment for rust infection and389

disease duration likely provide a strong adaptive selection toward resistance.390

Pectin esterase gene Potri.012G014500 (SNP scaffold_12_1811250) represents another391

example for which significant associations with climate (here: temperature) and several adaptive392

traits were found (Table S2, Table S3). In fact, the allelic effects of this SNP related to393

hypostomaty also related to less rust infection ([45]). This is an illustrative example regarding394

the tradeoff between carbon gain and pest resistance under favourable climatic conditions395

relating to pathogen pressure ([45]).396

397

Conclusions398
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The high adaptive potential of tree populations is considered the result of positive effects of399

long-distance gene flow based on its interactions with divergent selection across the contrasting400

environments [69], while local adaptation in forest trees with regards to climate-related traits is401

polygenic and recent [70]. For instance, interactions between temperature and photoperiodic cues402

were shown to influence bud set for short-term acclimation in poplar [58]. By combining403

quantitative genetics and population genomics analyses, our study contributes to an enhanced404

understanding of the molecular basis of adaptation to different local climate in an405

undomesticated perennial species (P. trichocarpa). The key findings provided SNPs whose406

allelic frequencies were most diverged among populations from different climate clusters and407

these SNPs tended to be associated with mapped genes underlying phenotypic variation. This408

phenotypic variation itself diverged among the different climate clusters. Our study dissected the409

influence of climate (specifically, temperature and precipitation), yet much of the variation in410

phenology is also attributed to photoperiod ([71]; [72]; [45]). The tight photoperiodic control of411

traits such as bud set, height growth cessation, and leaf senescence ([73]; [74]; [59]) is crucial412

both for resistance to cold temperatures and maximization of the growing season, particularly in413

trees originating from high-latitude and/or high elevation provenances ([75]; [56]). While we414

tested the influence of climate on the variation of other traits in P. trichocarpa, such as wood and415

biomass, we consider other local factors, such as soil condition (pH and minerals), soil/root416

microbial diversity, groundwater, and other ecological interactions also of potential importance.417

Reciprocal transplants will be necessary to elucidate the effects of gene × environment plasticity418

on the expression of traits with spatially heterogeneous selection [76], but can focus on specific419

genes identified through a combined quantitative genomics analysis, such as the one proposed420

here. Forthcoming research can also scale trait-to-performance mapping in known pedigrees for421
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the assessment of SNP effects on fitness [77]. These findings will have important implications422

for the future management of natural forests, acting to guide efforts in facilitated adaptation to423

climate change via measure such as assisted gene flow [78].424

425
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Materials and Methods426

Collection, genotyping, and phenotyping of P. trichocarpa427

Plant material was collected from a population of 433 P. trichocarpa Torr. & A. Gray genotypes428

growing in a common garden. These genotypes came from 140 unique geographic locations429

spanning two thirds of the species’ range (44-60ºN, 121-138ºW) ([79], Fig. 1). Originally430

collected by the BC Ministry of Forests, Lands and Natural Resource Operations, individual431

genotypes were grown in two common gardens, Surrey, BC and Totem Field, University of432

British Columbia, BC. Genotypes were replicated across the two field gardens and the Totem433

Field individuals (established in 2008 [80]) were clonal propagations from Surrey site434

individuals (established in 2000 [79]).435

Trees were genotyped using an Illumina iSelect array with 34,131 SNPs from 3,543436

candidate genes designed for P. trichocarpa [35]. The characteristics of the poplar genome and437

array development are outlined in [35]). Briefly, the SNP array was designed to include genes of438

known importance (i.e. candidate genes) or genes based on expression analyses. Because of the439

rate of linkage disequilibrium (LD) decay in P. trichocarpa, between 67 – 134k SNPs would be440

required to include all common variants throughout the genome at LD=0.2 (assuming a 403 Mb441

assembled genome length and an average of 3–6 kb for r2 between common variants to drop to442

0.2). Therefore, some SNPs were selected as representative SNPs to “tag” genes and genetic443

regions with high LD, and thus represent a group of SNPs (the haplotype). For this study, we444

further filtered array SNPs for: i) minor allele frequency (MAF) <0.05, ii) >10% missing data,445

and iii) Illumina’s GenTrain score <0.5, thereby reducing SNP numbers to 29,354. This filtering446

is not biased towards higher frequency SNPs (i.e. older variants established at much higher447
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frequencies within the population over time) as a wide distribution of allele frequencies448

(MAF>0.05) was considered for the analysis.449

Phenotyping of genotype accessions within the common gardens and climate of origin450

data were obtained from previously published work (for full phenotyping details, see [38]; [37],451

[45]). In brief, phenology, ecophysiology, biomass [45], leaf stomatal anatomy [44] and leaf rust452

(Melampsora xcolumbiana) resistance traits [38] were repeatedly measured from accessions453

planted at the University of British Columbia’s research field through replication in space (clonal454

ramets) and in time (measurements across years). Wood chemistry and ultrastructure traits were455

measured from wood cores of the nine-year-old ortets representing the same genotypes and456

growing in Surrey [37].457

458

Assessment of population structure459

Since forest tree species usually have extensive geographic ranges, exhibit extensive gene flow460

and have low levels of population stratification [81], we investigated whether the genetic461

variability due to non-random mating in our population was caused solely by isolation-by-462

distance (IBD), reflecting the large geographical distribution of our sample (cf. [36]), or also by463

natural barriers causing local genetic clusters. We performed spatial principal component464

analysis (sPCA) by using the “spca” function implemented in the R package “adegenet” [82]465

which is a spatially explicit multivariate analysis accounting for spatial autocorrelation processes466

and patterns of genetic variation. A K-nearest neighbours method with K = 10 was used as467

connection network. Positional information for each genotype were transformed into Universal468

Transverse Mercator (UTM) coordinates using “convUL” in the R package “PBSmapping” [83].469

Due to the occurrence of multiple genotypes with identical geographical coordinates (i.e. trees470
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collected at the same latitude/longitude), we randomly selected a single genotype representing a471

geographical region (out of the total 140 locations). Eigenvalues for principal components from472

sPCA provided a cumulative picture about contributing factors, including the genetic variance473

and the spatial autocorrelation (through Moran’s I, see below). Large positive eigenvalues reflect474

the importance of the proportion of the genetic variance along with a strong positive475

autocorrelation in the global pattern (i.e. IBD), while large negative eigenvalues indicate the476

importance of the proportion of the genetic variance along with negative autocorrelation477

indicating the existence of discrete local genetic clusters.478

We used the "global.test" and "local.test" functions in the "adegenet" package to infer the479

statistical significance of each type of genetic structure. These functions are based on a spectral480

decomposition of the connection matrix into Moran's eigenvector map and test for association of481

those eigenvectors from Moran's eigenvector map with Moran's I [82]. To investigate gene482

dispersal, we employed a Moran I test for spatial autocorrelation ([84]; [54]). Moran’s I483

coefficients were investigated in 200 km spatial lags and the analysis was performed using484

“moran.test” in the “spdep” R package [85]. Moran’s I coefficients were estimated as follows:485

= ∑ ∑ ∗ ∑ ∑ ( ̅) ̅∑ ( ̅) [1]486

where n is the number of populations (i.e. unique geographical locations), is weight set at 0487

or 1 depending on whether populations are considered neighbours in each 200 km lag test, is488

the allele frequency in the ith population, and is the allele frequency across all populations.489

490

Climatic zone clustering of P. trichocarpa491

Since our initial investigation of population structure with sPCA indicated the presence of only492

one global structure consisting of IBD and lack of local discrete clusters, any marker-based493
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inference about genetic clusters might be highly unreliable [86]. Therefore, we established494

population differentiation on the basis of climate envelopes ([12]). Clusters of individual495

genotypes were defined using climate of origin measures (i.e. independently of the genetic data).496

Climate variables were obtained using ClimateWNA [87] and included mean annual temperature497

(MAT; °C), number of frost-free days (NFFD), and mean annual precipitation (MAP; mm).498

Climate data were based on positional information (latitude, longitude, elevation) and 1971-2002499

Canadian Climate Normals [45]. Using K-medoids clustering and the Calinski-Harabasz500

criterion [88], we split the study population into four groups with relatively balanced sample501

sizes of 87, 103, 142, and 101 representing climate classes #1-4, respectively. Clusters generally502

followed the western North American coastline inwards (Fig. 1a & b).503

504

Genetic differentiation in quantitative characters among populations defined by climate505

clustering506

We tested phenotypic characteristics in P. trichocarpa for their adaptive potential (Table S1).507

For QST – FST comparisons, QST values among the identified climate-related population groups508

were first estimated for each trait following [89] and [24], respectively.509

The narrow-sense QST was estimated by computing the variance components using the510

‘animal model approach’ [90] following:511 = + + + [2]512

where β is a vector of fixed effects (intercept), p and a are vectors of random climate cluster and513

individual tree additive genetic effects, X and Z are incidence matrices assigning fixed and514

random effects to measurements in vector y, the cluster effects are following p~N(0, ) where515

is the cluster variance, individual tree additive effects are following a~N(0, G) where is516
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the additive genetic variance and G is the realized relationship matrix [91], using 29,354 SNPs517

estimated in R package “synbreed” [92] as follows:518 = ∑ ( ) [3]519

where Z is M-P, with M the marker matrix with genotypes recoded into 0, 1 and 2 for the520

reference homozygote allele, the heterozygote and the alternative homozygote allele,521

respectively, and with P the vector of doubled allele frequency; e is the vector of random residual522

effects following e~N(0, I) where is the residual variance and I is the identity matrix. The523

narrow sense QST was estimated as follows:524

QST= [4]525

where and are the estimates of cluster and additive genetic variance representing among-526

and within-group trait variances attributable to additive effects.527

The measurements of all ecology and disease traits using clonal ramets (i.e. replication)528

enable estimating broad-sense QST directly without the use of any relationship matrix, while529

narrow-sense QST estimation was based on variance components estimated in the mixed linear530

model considering the realized relationship matrix [91] as in equation 2. The model is identical531

to equation 2 where the variance components for broad-sense QST were estimated in the model532

considering a as the vector of clonal genotypic values following a~N(0, I) where is the total533

genetic variance (including both additive and non-additive component) and e as the vector of534

ramet within clone effects following e~N(0, I). Then, the computed QST values for each trait535

were compared to the average population differentiation estimate (FST) strictly based on neutral536

markers (see below) allowing inferences about trait evolution based on selection or genetic drift537

(neutral trait), [93].538
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Narrow-sense heritability (h2) was based on variance components estimated in the mixed539

model as follows:540 = + + [5]541

where β is the vector of fixed effects (intercept and cluster) and a is the random vector of542

additive genetic effects following the description of equation 2. The narrow-sense heritability543

was estimated as follows:544 ℎ = [6]545

where and are estimates of additive genetic and residual variance, respectively. The546

phenotypic QST (i.e. PST) ([89]; [24]) was estimated as follows:547

PST = [7]548

where and are estimates of cluster and residual variance representing among- and within-549

population variances, respectively, and ℎ is the heritability estimated according to [37]. The550

variance components were estimated in ASReml software [94] using the mixed linear model551

following:552 = + + [8]553

where β is the vector of fixed effects (intercept) and p is the vector of random cluster effects, the554

effect of individuals within cluster is found within the error variance.555

556

Identification of non-neutral SNPs and quantitative traits divergent among climate clusters557

To identify SNPs putatively under selection and also associated with adaptive traits ([38]; [43];558

[39]), we performed: 1) FST outlier analysis (using Fdist2) employing the same climate clusters559

as for QST analysis, 2) unsupervised spatial ancestral analysis (SPA), and 3) SPA with climate as560

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 4, 2015. ; https://doi.org/10.1101/026021doi: bioRxiv preprint 

https://doi.org/10.1101/026021


29

a covariate. Additionally, we compared our results with FST outlier analysis (using Fdist2 and561

BayeScan) that were reported in [36] using 25 topographic units separated by watershed barriers562

within the geographic area from Central Oregon, USA (44.3°N) to northern BC, Canada563

(59.6°N)).564

FST values for SNPs were calculated among the four climate clusters (for definition and565

calculation, see above). We implemented the Fdist2 program within the LOSITAN project [41]566

for SNP FST outlier detection. Fdist2 compares the distribution of FST values of sampled loci to567

the modeled neutral expectation of FST distribution using coalescent simulations [9]. We568

employed the infinite alleles mutation model (as we investigated SNPs), a subsample size of 50,569

and ran 200k simulations. FST values conditioned on heterozygosity and outside the 99%570

confidence interval were considered candidate outliers.571

Since P. trichocarpa populations have known structure related to IBD ([36] and this572

study), we applied spatial ancestral analysis (SPA), a logistic regression-based approach [86], to573

detect SNPs with sharp allelic frequency changes across geographical space (implying574

candidates under selection). The unsupervised learning approach (using only genomic data) was575

employed to obtain SPA statistics. In addition, we tested SPA including the first two principal576

components (PCs) based on climate variables (explaining 91% of the variance) as covariates to577

determine individuals’ location based on allele frequencies related to MAT, NFFD, and MAP578

climate components.579

We investigated correlations between the outlier SNPs (based on climate clusters) and the580

environmental variables that defined the established climatic clusters (Fig. 1). Subpopulation581

averages for MAT, NFFD, and MAP were tested for correlations with SNP allele frequencies582

employing multiple univariate logistic regression models with the spatial analysis method (SAM;583
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[95]). The significance of correlations was assessed using three independent statistical tests584

(likelihood ratio and two Wald tests) implemented in SAM and applying an initial 95%585

confidence interval for the statistical tests. We used the Bonferroni correction method (α=0.05)586

for multiple testing resulting in p<6.887052*10-5 for 726 tested models (242 alleles, three587

variables). Only those correlations that remained significant after Bonferroni correction for each588

of the three test statistics (i.e. the likelihood ratio and the two Wald tests) were retained.589

Finally, we compared observed QST values with the simulated distribution of QST-FST590

values for a neutral trait using previously provided R scripts [96]. In brief, a range of possible591

demographic scenarios was tested simulating the distribution of QST values based on mean FST592

for neutral markers and mean QST for neutral traits ([97]; [98]). For a neutral trait, the expected593

QST was estimated based on (i.e., measured within-population variance; see above) and594

(i.e., expected between-population variance) given in equation 4. The distribution of values595

was based on and the observed FST values of 29,233 SNPs present (total number reduced by596

removing outliers) within the simulated neutral envelope of FST values (FST outlier analysis) with597

QST replaced by the FST in equation 4. P-values were obtained by testing whether the null598

hypothesis that the estimated narrow-sense QST for each tested trait is statistically equal to the599

expected QST for a neutral trait [96].600

601

Marker-trait association mapping602

In previous analyses of marker-trait associations in P. trichocarpa, confounding effects of603

population stratification were adjusted using principal component analysis ([38]; [43]; [39] and a604

Q matrix population structure correction [39]. Phenological mismatch within the common garden605

can confound trait values [45], thus, association analyses included “area under the disease curve”606
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resistance measures with adjustment for bud set [38] and all ecophysiological traits that were607

measured prior to bud set [39]. The Unified Mixed Model (a modification of the generalized608

linear model) was employed for marker-trait association mapping and is fully described ([38];609

[43]; [39]). While necessary, the adjustment for confounding, cryptic genetic structure in the610

association analyses may have reduced the statistical power to detect associations. This is611

particularly problematic in species whose distribution is mainly along a one-dimensional cline or612

for which differentiation in ecological traits covaries with the species demographic history ([13];613

[45]). Furthermore, the GWAS results may be biased towards common variants or variants with614

the greatest effects. This is related to the size of the SNP discovery panel (34k) [99] and the615

power to detect significant associations given the tested population sizes (334-448 individuals).616

As whole genome sequencing and phenotyping of thousands of genotypes would be required to617

comprehensively uncover the genetic architecture of complex traits, we consider the GWAS618

results informative but not exhaustive.619
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Supporting table captions877

878

Table S1. Comprehensive population differentiation estimates and h2 corrected PST for P.879

trichocarpa: broad-sense and narrow-sense QST for 58 distinct field traits; QST1 and narrow-880

sense QST (QST2) estimates for 16 wood traits.881

(XLS)882

883

Table S2. Comprehensive summary table of all SNP detection results from GWAS [ecology884

[39]; rust [38]; stomata [44]; wood [43]] and outlier analysis (geographic FST [36], this study:885

climate FST, unsupervised SPA, climate SPA) for the black cottonwood population (presented in886

Fig. 1) and using the 34k SNP chip [35]; adaptive traits (significant QST) are in bold. In red and887

dark blue are 1% cutoffs (spa=2.78025 and spa=1.50795), in orange and light blue are 5%888

cutoffs (spa=2.12467 and spa=1.08868) in unsupervised SPA and climate SPA analyses,889

respectively.890

(XLSX)891

892

Table S3. List of 118 SNPs associated with adaptive traits (significant QST for at least one893

associated trait) including 59 SNPs under diversifying selection shared among at least two outlier894

detection methods and 59 unique SNPs detected by climate FST, climate SPA and unsupervised895

SPA, respectively. Comprehensive results are provided in Table S2.896

(XLS)897
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Table 1. h2, QST, and h2 corrected PST of adaptive traits (P<0.05)900

Summary of 39 distinct adaptive traits of P. trichocarpa that diverged among different climate clusters (displayed are 59 tests for901

adaptation including tests for traits replicated in time, comprehensive results shown in Table S1)902

# Trait
narrow-

sense h2
S.E.

narrow-

sense QST
S.E.

Variance

explained by

partitions║

S.E. P-value

1 Bole density_2012a 0.4040 0.0402 0.0482 0.0522 0.0397 0.0429 0.0017

2 Bole mass_2012a 0.1758 0.0430 0.2584 0.1788 0.1109 0.0877 0.0000

3 *Branches_2009a 0.4898 0.0245 0.1567 0.1151 0.1541 0.1131 0.0000

4 H:D2+_2011a 0.3753 0.0254 0.0321 0.0352 0.0243 0.0268 0.0178

5 *Height _2008a 0.4540 0.0260 0.1133 0.0905 0.1040 0.0835 0.0000

6 *Height _2009a 0.6543 0.0200 0.1132 0.0893 0.1432 0.1088 0.0000

7 *Height _2010a 0.7378 0.0165 0.0900 0.0743 0.1274 0.1006 0.0000

8 *Height _2011a 0.7092 0.0178 0.0792 0.0673 0.1087 0.0892 0.0000

9 *Height gain _2009a 0.7504 0.0163 0.0952 0.0777 0.1364 0.1061 0.0000

10 *Height gain _2010a 0.6217 0.0212 0.0477 0.0455 0.0586 0.0551 0.0019

11 *Height gain _2011a 0.3372 0.0250 0.0490 0.0483 0.0337 0.0335 0.0016

12 Whole tree mass_2012a 0.2279 0.0434 0.2323 0.1634 0.1225 0.0953 0.0000

13 *Volume _2009a 0.3663 0.0256 0.1159 0.0925 0.0877 0.0718 0.0000

14 *Volume _2010a 0.4519 0.0253 0.0945 0.0783 0.0862 0.0718 0.0000

15 *Volume _2011a 0.5091 0.0243 0.0900 0.0751 0.0915 0.0760 0.0000

16 *Volume gain _2010a 0.4441 0.0254 0.0913 0.0763 0.0820 0.0689 0.0000
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17 *Volume gain _2011a 0.4396 0.0253 0.0923 0.0771 0.0822 0.0691 0.0000

18 Amax/mass_2009b 0.1349 0.0264 0.1822 0.1396 0.0579 0.0493 0.0000

19 Amax_2009b 0.1916 0.0261 0.0596 0.0604 0.0240 0.0248 0.0007

20 Chlsummer _2009b 0.2692 0.0292 0.1160 0.0968 0.0663 0.0577 0.0000

21 Chlsummer _2011b 0.3078 0.0288 0.1438 0.1135 0.0939 0.0777 0.0000

22 C:N_2009b 0.1631 0.0270 0.1423 0.1156 0.0518 0.0454 0.0000

23 d15N_2009b 0.0882 0.0232 0.0257 0.0395 0.0047 0.0072 0.0446

24 Dleaf_2009b 0.4872 0.0272 0.0269 0.0299 0.0263 0.0291 0.0371

25 gs_2009b 0.4243 0.0279 0.0402 0.0401 0.0344 0.0343 0.0055

26 Leaves per bud _2011b 0.3307 0.0310 0.0767 0.0695 0.0523 0.0482 0.0001

27 Leaves per bud _2012b 0.4786 0.0297 0.0910 0.0765 0.0875 0.0735 0.0000

28 *LMAsummer _2010b 0.2360 0.0281 0.0628 0.0644 0.0307 0.0322 0.0000

29 Narea_2009b 0.1907 0.0278 0.0479 0.0525 0.0189 0.0211 0.0028

30 Nmass_2009b 0.1592 0.0271 0.1409 0.1150 0.0500 0.0441 0.0000

31 WUE_2009b 0.2457 0.0274 0.0731 0.0667 0.0373 0.0350 0.0000

32 AUDPC-2009c 0.5322 0.0245 0.0490 0.0470 0.0521 0.0495 0.0017

33 AUDPC-2010c 0.3937 0.0260 0.0723 0.0646 0.0579 0.0523 0.0002

34 AUDPC-2011c 0.3132 0.0251 0.0848 0.0740 0.0551 0.0492 0.0001

35 *Active growth rate _2009d 0.6094 0.0222 0.0390 0.0393 0.0471 0.0469 0.0083

36 *Bud set _2008d 0.5970 0.0224 0.1390 0.1051 0.1617 0.1186 0.0000

37 *Bud set _2009d 0.7390 0.0165 0.1790 0.1262 0.2438 0.1580 0.0000

38 *Bud set _2010d 0.6483 0.0200 0.1708 0.1224 0.2108 0.1434 0.0000
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39 Bud set186_2009d 0.5247 0.0234 0.1988 0.1368 0.2067 0.1403 0.0000

40 Bud set186_2010d 0.4041 0.0268 0.2125 0.1444 0.1792 0.1261 0.0000

41 *Height growth cessation _2009d 0.7114 0.0178 0.1434 0.1072 0.1923 0.1354 0.0000

42 *Leaf drop _2008d 0.5175 0.0244 0.1533 0.1137 0.1579 0.1160 0.0000

43 *Leaf drop _2009d 0.5168 0.0237 0.2335 0.1525 0.2396 0.1547 0.0000

44 *Leaf drop _2010d 0.5965 0.0214 0.1453 0.1088 0.1687 0.1225 0.0000

45 *Leaf lifespan_2010d 0.6278 0.0208 0.0432 0.0419 0.0537 0.0514 0.0039

46 Canopy duration _2009d 0.2409 0.0253 0.0944 0.0809 0.0480 0.0428 0.0000

47 *Canopy duration _2010d 0.8119 0.0126 0.0462 0.0438 0.0729 0.0671 0.0024

48 Growth period _2009d 0.3176 0.0255 0.1046 0.0862 0.0693 0.0589 0.0000

49 *Growth period _2010d 0.7095 0.0176 0.1365 0.1032 0.1833 0.1308 0.0000

50 *Post-bud set period _2009d 0.4222 0.0260 0.0332 0.0352 0.0282 0.0299 0.0187

51 *Post-bud set period _2010d 0.5230 0.0237 0.1432 0.1075 0.1489 0.1106 0.0000

52 *100% Yellowing _2010d 0.5886 0.0220 0.1498 0.1113 0.1718 0.1240 0.0000

53 *75% Yellowing _2010d 0.5640 0.0227 0.0638 0.0571 0.0714 0.0632 0.0002

54 Arabinosee 0.8786 0.2227 0.0749 0.0707 0.1276 0.1079 0.0002

55 Fibere 0.3027 0.2423 0.0825 0.1135 0.0446 0.0515 0.0000

56 Galactosee 0.9327 0.2089 0.0663 0.0621 0.1167 0.1002 0.0000

57 MFA1e 0.4074 0.2383 0.0403 0.0539 0.0355 0.0419 0.0054

58 Ad_StomataNUM1f 0.3165 0.0266 0.1229 0.0984 n.d. n.d. 0.0129

59 Ad_STM_distributionf 0.1779 0.0351 0.1050 0.1041 n.d. n.d. 0.0357
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Note: P-value obtained by comparison of the observed QST - FST to the quantile of the simulated QST - FST distribution for a neutral903

trait [96].904
abiomass trait [45]905
becophysiology trait [45]906
cleaf rust resistance trait [38]907
dphenology trait [45]908
ewood trait [37]909
fleaf stomata traits [44]910

*spatially adjusted trait [45]911
║the variance explained by climate clusters compared to the total variance was estimated as h2 corrected PST912

S.E. refers to standard errors913

Active growth rate (cm day -1)914

Ad_StomataNUM1: Adaxial stomata numbers915

Ad_STM_distribution: Adaxial stomata distribution916

Amax/mass = photosynthetic rate per unit dry mass (µmol CO2 mg−1 s−1)917

Arabinose in dry wood (%)918

AUDPC = (calculated) area under the disease curve, based on M. xcolumbiana infection rating919

Bole density (kg/m3)920

Bole mass (kg)921

Branch #922

Bud set (day)923

Bud setǂ (day): bud set dates considered only after summer solstice924
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C:N = carbon:nitrogen (mg mg−1)925

Canopy duration (days)926

Chlsummer = chlorophyll content index (CCI)927

D15N = stable nitrogen isotope ratio (‰)928

Dleaf = net discrimination (‰)929

Fiber: fiber length Lw (mm)930

Galactose in dry wood (%)931

Growth period (days)932

gs = stomatal conductance (mol H2O m−2 s−1)933

H:D = height to diameter (cm:cm)934

Height (cm)935

Height gain (cm)936

Height growth cessation (day)937

Leaf drop (day)938

Leaf lifespan (days)939

Leaves per bud (#)940

LMA = leaf mass per unit area (mg mm−2)941

MFA1: microfibril angle at most recent growth ring (°)942

Narea = nitrogen (mg mm−2)943

Nmass = nitrogen (mg mg−1)944

Post-bud set period (days)945

Volume (cm3)946
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Volume gain (cm3)947

Whole tree mass (kg)948

WUE = instantaneous water-use efficiency (µmol CO2 mmol−1 H2O)949

Yellowing, 100% (day)950

Yellowing, 75% (day)951
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Figures952

953
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954
Fig. 1. Geographical origins of 433 P. trichocarpa genotypes collected across 140 unique locations within the955

Pacific Northwest (British Columbia, Canada; Oregon, USA) and grouped into four distinct climate clusters using956

local temperature and precipitation records for location of origin.957

The climate regions were identified based on K-medoids clustering using the mean annual temperature (°C) between958

yrs 1971-2002 (MAT_1971-2002), the number of frost-free days (NFFD_1971-2002), and the mean annual959

precipitation (mm), observed between yrs 1971-2002 (MAP_1971-2002). Color coding is as follows: (a) population960

averages for MAT_1971-2002; NFFD_1971_2002: dark red (9.5°C; 287.1d); red (8.1°C; 267.2d); orange (6.4°C;961

215.2d); yellow (4.2°C; 175.4d); (b) population average for MAP_1971-2002: dark blue (2805.9mm); blue962

(1571.8mm); light blue (1517.0mm); green (744.2mm).963

We note here that canonical correlations between geography and ecology were high (r=0.9 for the first canonical964

variable component).965
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967
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968
Fig. 2. Identification of isolation-by-distance (IBD) among 433 P. trichocarpa genotypes based on spatial PCA.969

Large positive eigenvalues were indicative of IBD.970

(TIFF)971
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973
Fig. 3. Comparison of two outlier detection methods (FST, SPA) for their efficiency to identify genetic selection974

signals under isolation-by-distance (IBD).975

Gene dispersal was tested employing Moran’s test for spatial autocorrelation using 200km lags.976
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979
Fig. 4. Genome-wide correlations between selection outliers and association signals based on 29k SNPs.980

Correlation of -log (P) versus spa was plotted against the trait’s QST.981
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984

985

Fig. 5. Individual SNPs under diversifying selection within genes mapping to quantitative trait variation.986

5% cutoff: dashed and yellow lines; 1% cutoff: solid and red lines; ecology (biomass, ecophysiology, phenology,987

stomata) - green dots; wood properties (orange); rust resistance (blue)988
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991
Fig. 6. Venn diagram showing the numbers of unique and shared SNPs (totaling 151 trait-associated SNPs) among992

four different outlier detection approaches.993

FST using climate clusters, FST using geographical grouping, SPA analyses - with climate-based PCs incorporated as994

covariates and unsupervised, respectively. A subset of this information (118 SNPs) related to genetic995

polymorphisms associated solely with adaptive trait variation is provided in Table S3.996
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998
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999
Fig. S1. FST outlier loci detection in P. trichocarpa and distribution of outliers along the poplar chromosomes.1000

Caption: (a) FST outlier loci detection and distribution of empirical FST estimates conditioned on expected1001

heterozygosity (HE).1002

The envelope of values corresponding to neutral expectations at 99% CI level (with mean FST=0.0078), solid line,1003

was constructed with the infinite allele model according to (Beaumont & Nichols, 1996) (b) Distribution of the1004

empirical FST estimates along the 19 poplar chromosomes and additional scaffolds (abbrev: scaff); the 121 identified1005

outlier loci are indicated by red circles above their FST value bars.1006

A goodness-of-fit test assuming a uniform distribution was performed to test whether the observed frequencies of1007

‘outlier loci’ along the 19 poplar chromosomes differed significantly from the expected value. Following the1008

rejection of the null hypothesis (chi-square = 81.98 df = 18, p-value = 3.85e-10), we declared ‘outlier loci hotspots’1009

if the number of outliers at a given chromosome was equal or above the maximum value (i.e., 20) for assessed1010

outlier clusters from a randomly generated data set using the 118 outliers found across the 19 chromosomes, and1011

running 1,000 replicates, which identified significant clustering of outliers on chromosome 15.1012

1013
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1014

1015

Fig. S2. Linkage disequilibrium between 121 identified FST outlier loci and relationship between FST outlier allele1016

frequencies and climate variables in P. trichocarpa.1017

Simple linear regression (R2) of allelic frequencies (following arcsine transformation) on temperature and1018

precipitation, respectively (mean annual temperature in °C: MAT_1971-2002; number of frost-free days:1019

NFFD_1971-2002 and mean annual precipitation in mm: MAP_1971-2002, observed between yrs 1971-2002)1020

calculated among the four distinct climate clusters (Fig. 1); Note: POPTR_0143s00200 was recently re-annotated to1021

Potri.009G008500 and both genes are now assembled on chromosome 9 within 50kb of each other (new poplar1022

genome assembly Phytozyme v3). Both sequences are now described as tandem gene pair PTNRT2.4A (alias1023

Potri.009G008600) and PTNRT2.4B (alias Potri.009G008500) with 97% DNA sequence similarity (Bai et al.,1024

2013).1025

1026

The order of loci follows:1027

1 scaffold_1_274856201028

2 scaffold_1_274878741029

3 scaffold_1_274881191030

4 scaffold_1_336285331031
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5 scaffold_1_336323791032

6 scaffold_1_370653041033

7 scaffold_1_374108401034

8 scaffold_1_374108561035

9 scaffold_1_457571791036

10 scaffold_1_457587391037

11 scaffold_2_1279661038

12 scaffold_2_1284161039

13 scaffold_2_1284321040

14 scaffold_2_1305061041

15 scaffold_2_109495331042

16 scaffold_2_130354751043

17 scaffold_3_141354871044

18 scaffold_3_141355421045

19 scaffold_3_193397851046

20 scaffold_3_197474821047

21 scaffold_3_197505211048

22 scaffold_4_171610261049

23 scaffold_4_171614131050

24 scaffold_4_171626551051

25 scaffold_5_881271052

26 scaffold_5_123396851053

27 scaffold_5_123447231054

28 scaffold_5_164870251055

29 scaffold_5_168119231056

30 scaffold_5_192110881057

31 scaffold_5_192118341058

32 scaffold_5_199537231059

33 scaffold_5_226330441060

34 scaffold_6_24853731061

35 scaffold_6_24896981062

36 scaffold_6_32492321063

37 scaffold_6_63903621064

38 scaffold_6_64365091065

39 scaffold_6_232997671066

40 scaffold_6_246315401067

41 scaffold_6_246342151068
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42 scaffold_6_258931861069

43 scaffold_6_258934071070

44 scaffold_6_258939001071

45 scaffold_7_748791072

46 scaffold_7_1786431073

47 scaffold_7_1791881074

48 scaffold_7_8089191075

49 scaffold_7_8096321076

50 scaffold_7_8111431077

51 scaffold_8_8052841078

52 scaffold_8_65673731079

53 scaffold_8_92674121080

54 scaffold_9_13796961081

55 scaffold_9_15997461082

56 scaffold_9_16062131083

57 scaffold_9_16762271084

58 scaffold_9_16765901085

59 scaffold_9_16786241086

60 scaffold_9_16788261087

61 scaffold_9_21609221088

62 scaffold_9_25636001089

63 scaffold_9_26779171090

64 scaffold_9_26793401091

65 scaffold_9_26878111092

66 scaffold_9_37957841093

67 scaffold_9_37981761094

68 scaffold_9_38003841095

69 scaffold_10_2551591096

70 scaffold_10_201687701097

71 scaffold_10_212460811098

72 scaffold_10_212499911099

73 scaffold_10_212536731100

74 scaffold_10_214519681101

75 scaffold_11_1450581102

76 scaffold_11_2959881103

77 scaffold_11_150849391104

78 scaffold_11_150849421105
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79 scaffold_11_184774971106

80 scaffold_12_18112501107

81 scaffold_12_18117191108

82 scaffold_12_18120311109

83 scaffold_13_142969931110

84 scaffold_14_121734671111

85 scaffold_14_121735601112

86 scaffold_14_129272451113

87 scaffold_15_1334081114

88 scaffold_15_2470541115

89 scaffold_15_2475271116

90 scaffold_15_2478111117

91 scaffold_15_2678491118

92 scaffold_15_2686121119

93 scaffold_15_3424101120

94 scaffold_15_3828271121

95 scaffold_15_5124791122

96 scaffold_15_6306771123

97 scaffold_15_7033491124

98 scaffold_15_7045621125

99 scaffold_15_7182401126

100 scaffold_15_7195401127

101 scaffold_15_7196821128

102 scaffold_15_9108081129

103 scaffold_15_10068711130

104 scaffold_15_135964001131

105 scaffold_15_136187701132

106 scaffold_15_138086561133

107 scaffold_15_138087091134

108 scaffold_15_138897721135

109 scaffold_17_7243841136

110 scaffold_17_52205791137

111 scaffold_17_123929051138

112 scaffold_17_124368961139

113 scaffold_18_11109471140

114 scaffold_18_25650401141

115 scaffold_19_59857661142
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116 scaffold_19_122210321143

117 scaffold_19_124840191144

118 scaffold_19_152999251145

119 scaffold_21_2809971146

120 scaffold_143_29551147

121 scaffold_143_30261148
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