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Abstract 

Experimental measurements require calibration to transform measured signals into 

physically meaningful values.  The conventional approach has two steps: the 

experimenter deduces a conversion function using measurements on standards and then 

calibrates (or normalizes) measurements on unknown samples with this function.  The 

deduction of the conversion function from only the standard measurements causes the 

results to be quite sensitive to experimental noise.  It also implies that any data collected 

without reliable standards must be discarded.  Here we show that a new “1-step 

calibration method” reduces these problems for the common situation in which samples 

are measured in batches, where a batch could be an immunoblot (Western blot), an 

enzyme-linked immunosorbent assay (ELISA), a sequence of spectra, or a microarray, 

provided that some sample measurements are replicated across multiple batches.  The 1-

step method computes all calibration results iteratively from all measurements.  It returns 

the most probable values for the sample compositions under the assumptions of a 

statistical model, making them the maximum likelihood predictors.  It is less sensitive to 

measurement error on standards and enables use of some batches that do not include 

standards.  In direct comparison of both real and simulated immunoblot data, the 1-step 

method consistently exhibited smaller errors than the conventional “2-step” method.  

These results suggest that the 1-step method is likely to be most useful for cases where 

experimenters want to analyze existing data that are missing some standard 

measurements and where experimenters want to extract the best results possible from 

their data.  Simple open source software for both methods is available for download or 

on-line use. 

 

Author Summary 

Most quantitative measurements do not return the physical quantities that are of interest, 

but some instrument-specific response value instead.  These measurements are then 

converted to physical quantities through a conversion function, which the experimenter 

deduces from instrument responses for one or more standard samples of known 
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composition.  This is called calibration or normalization.  For example, we recently 

performed quantitative immunoblotting on a large number of samples, each replicated on 

multiple blots, and then calibrated the measurements to yield protein concentrations 

relative to those in a standard sample.  We found that the conventional calibration 

approach of treating the samples in each blot independently of the samples in other blots  

produced inaccurate results because this approach is completely dependent on the 

standard measurements, which were sometimes missing or erroneous in our data.  Thus, 

we developed a new calibration approach in which we fit a statistical model to the entire 

data set simultaneously.  This method, which applies to a very wide range of calibration 

problems, was substantially more accurate during validation tests and can be shown to 

return the most accurate results possible within the assumptions of the model.  It is 

particularly useful when some standard measurements are missing from data sets or when 

experimenters want the best possible results. 

 

Introduction 

Nearly every quantitative experiment requires calibration – the mathematical 

conversion of raw measurements into physically meaningful values.  For example, 

calibration of immunoblot (Western blot) data converts the intensities of protein bands 

that are detectable on a blot into the concentrations of proteins that were present in the 

original samples.  Although many scientists take calibration for granted, we show here 

that conventional approaches are not particularly accurate, causing them to lose some of 

the information that is carried by valuable measurement data.  We present a novel 

approach that exploits all available information in the data and returns the most accurate 

results possible within the constraints of a statistical model. 

The classical solution to the linear calibration problem [1-4] is a two step process: 

first, during the calibration step, measurements on known samples, “standards,” are used 

to deduce a conversion function.  Then, during the prediction step, the conversion 

function is used to convert measurements on unknown samples to physical quantities.  

For example, suppose a chemist uses an instrument whose response is linear in the 
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amount of protein, chemical, or other analyte in a sample.  This means that an instrument 

measurement, y, is related to the amount of analyte, x, according to the response function 

 y =α + βx + ε .  (1) 

The α and β parameters are instrument-specific sensitivity coefficients and ε represents 

random measurement noise.  In the calibration step, the chemist estimates the α and β 

sensitivity coefficients, yielding a and b respectively, by measuring several standards 

with known compositions and fitting the resulting data with eq. 1 using linear regression. 

Substituting the regression results into eq. 1 and solving for x yields the conversion 

function 

 
 
x ! y − a

b
 . (2) 

In the prediction step, the chemist measures samples of unknown composition on the 

same instrument and inserts the measurements into eq. 2.  This yields the sample analyte 

amounts. 

In this example, note that errors in the standard measurements lead directly to errors 

in the sensitivity coefficient estimates.  From there, they lead to errors in the computed 

analyte amounts.  For this reason, it is good practice to measure standards repeatedly 

because this reduces the effects of their errors through averaging.  If different standard 

concentrations are used, doing so also enables the experimenter to test the instrument (or 

method) response linearity (e.g. see ref. [5]).  However, this approach is limited by the 

constraint that each standard measurement costs time and materials.  Often standard 

measurements replace the opportunity to measure unknown samples; for example, protein 

electrophoresis gels have a fixed number of lanes, so lanes that are used for standards 

cannot be used for unknown samples.  Additionally, even though it is best to measure 

standards repeatedly, this doesn’t always happen in practice.  Instead, for any of many 

possible reasons, data sets may contain valuable measurement data but insufficient 

standard measurements. 

Calibration often needs to be performed repeatedly.  For example, many 

experimental methods analyze samples in groups in which the sensitivity is the same for 
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all measurements within a group but different for measurements in different groups (e.g. 

immunoblots and ELISA assays).  Multiple calibrations are also required when one has 

many instruments that have different sensitivities.  Additionally, most instrument 

sensitivities “drift” over time, necessitating periodic re-calibration (e.g. spectrometers and 

chromatographs).  For convenience, we call all of these situations “batch-analyses,” 

defining a batch as any collection of measurements for which the sensitivities can be 

considered to be constant.  By implication, each batch requires its own calibration. 

We show here that calibrating each batch independently of the others, which is 

typical, is not the best approach, but that spreading sample replicates across different 

batches and then performing a simultaneous analysis of the data in all batches can 

substantially reduce the effects of measurement noise.  In brief, our approach is to fit a 

statistical model to all of the data in a single step, finding both the instrument sensitivities 

and analyte amounts that best agree with all of the measurements.  In other words, we 

cross-calibrate each batch against every other one.  We call this the 1-step method, in 

contrast to the conventional 2-step method.  The principle advantage of the 1-step method 

is that it makes calibration less sensitive to individual standard measurements.  This often 

enables the use of batches that did not include any standards and it also enables the 

detection of errors in standard measurements.  The results of the 1-step method are the 

maximum likelihood predictors, meaning that they are the results that are most probable 

within the assumptions of a statistical model. 

We developed the 1-step calibration method to analyze data that we recently 

collected on proteins in mouse skin tumors.  Our goal was to compare the relative levels 

of each of 7 different proteins (CypA, Hsp90, Hsp70, Hsc70, P53, Raf, and pERK) in 230 

precancerous and cancerous mouse skin tumors using quantitative immunoblotting 

methods [6-10].  In brief, tumor extracts (replicated, pre-mixed with denaturing SDS-

sample buffer, and stored at -80 C in small aliquots to maintain their integrity) were run 

on polyacrylamide gels (SDS-PAGE) to separate proteins by size and charge, followed 

by their transfer to nitrocellulose membranes.  To individually probe query proteins of 

different molecular weights, the membranes were cut into horizontal strips bracketing 

size ranges determined by visible molecular weight standards that were run with each gel.  

Each strip, usually containing just one, or at most two query proteins of close molecular 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 2, 2015. ; https://doi.org/10.1101/026005doi: bioRxiv preprint 

https://doi.org/10.1101/026005
http://creativecommons.org/licenses/by/4.0/


 6 

weight, was probed with the appropriate primary antibody (Spratt et al., in preparation).  

This was followed by incubation with secondary antibodies linked to an infrared 

fluorophore using the LICOR fluorescent Western blot detection system [11,12].  This 

method assured that signal intensity was linear within a large dynamic range (e.g. see 

[5]).  

Calibrating these data was challenging for several reasons.  First, immunoblotting is 

inherently imprecise.  Indeed, all of the samples in our study, including those for 

standards, exhibited substantial measurement error (after calibration, our average CV was 

37%).  For this reason, we analyzed each sample multiple times on different blots so that 

we could reduce the effects of measurement noise through averaging.  In total, we 

analyzed 230 tumor extracts on 117 immunoblots, each of which held up to 20 lanes 

(1510 replicated samples total, average of 6 replicates/sample).  Secondly, one cannot 

directly compare fluorescence measurements between different blots because each blot’s 

sensitivity is strongly affected by minor experimental differences [9].  As a result, each 

blot needed to be treated as its own batch, with its own batch-specific sensitivity 

(calibration showed that they varied 27-fold between least and most sensitive).  Finally, 

we could not use internal standards in this investigation (see [6]), which in this case 

would be naturally expressed proteins that are expected to have nearly constant 

concentrations such as the products of housekeeping genes, because tumors are very 

heterogeneous.  As a result, we had to use a separate external standard, which was then 

subject to independent measurement errors.  We created our standard by pooling several 

samples together to produce a single sample that included all of our proteins of interest 

[13]. 

Our 1-step calibration method is distinct from several other modifications to the 

classic calibration problem.  Of particular note, Krutchkoff showed, nearly 50 years ago, 

that it can be better to fit the experimental results for the standard using the conversion 

function (eq. 2), rather than with the response function (eq. 1), which is called the inverse 

approach [14,15].  This led to an active debate about the relative merits of the two 

methods, along with the development of inverse regression methods [2,4,16].  From our 

reading of the literature, this debate appears to have largely ended by now, although 

without a clear winner.  Other modifications to the classic calibration problem include 
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Baysian [17] and non-parametric [3,18] methods.  Bayesian methods are particularly 

helpful when the instrument is relatively insensitive to analyte variation (i.e. β is small) 

and the non-parametric methods when the measurement errors are substantially non-

normally distributed.  Finally, bootstrapping methods [19,20] can provide more accurate 

confidence intervals for the results, particularly for multivariate problems.  In contrast to 

these developments, our 1-step approach follows the style of the classic calibration 

approach.  It keeps the linear statistical model and the least squares fitting approaches, 

but simply extends them to account optimally for multiple batches.  Our method builds 

on other analysis methods that also accounted for variability between batches [21-23] but, 

to the best of our knowledge, has not been described before.  However, it is sufficiently 

straightforward that we would be surprised if some version of it has not been used 

previously. 

 

Results 

Definitions and model 

Extending the analytical chemistry example given above, consider the situation in 

which one is quantifying the amount of an analyte in each of many samples, where a 

sample is simply some quantity of material.  Assume this work is performed in batches, 

where a batch is a collection of measurements for which the instrument (or experimental 

method) sensitivity can be assumed to be constant.  Additionally, assume that one or 

more standards are included in the analysis, where the standards already have well 

characterized analyte amounts.  If such a standard is not available, then one simply 

assigns the role of the standard to one of the unknown samples and measures the other 

analyte amounts relative to that one.  Our case followed this situation reasonably closely: 

the different mouse tissue extracts were our samples, the measured protein species in 

these samples were our analytes, the immunoblot gels were our batches, and the pooled 

sample served as our standard.  This situation generalizes to many other calibration 

problems, too. 
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Assume that the following statistical model accurately represents the experimental 

data: 

 yijk =α i + βi x j + ε ijk . (3) 

On the left side of the equation, each yijk value represents a single measurement, where i 

is the batch number, j is the sample number, and k distinguishes between multiple 

measurements of a particular sample that are within a single batch.  Every measurement 

can be assigned a unique set of i, j, and k subscripts and so can be identified in this way.  

However, this does not necessarily imply that every sample was measured in every batch.  

To the contrary, most samples are likely to have been measured only a few times total in 

the entire experiment, making the yijk values a relatively sparse dataset (e.g. we had 230 

total samples but only analyzed up to 20 at a time on any given immunoblot).  On the 

right side of the equation, αi and βi are batch-specific sensitivity coefficients, xj is the 

amount of analyte in sample j, and εijk is the measurement error that arose in the k’th 

measurement of sample j in batch i.  Assume that this error is normally distributed with 

mean of zero and standard deviation of σ, and that it is independent between 

measurements.  This statistical model is very simple and builds upon conventional 

assumptions (including, importantly, that measurements depend linearly upon analyte 

amounts).  It was also appropriate for our work because our immunoblot detection was 

linear in antigen amounts [12] and our tests of measurement repeatability showed 

reasonably independent and normally distributed errors (we found that the distribution of 

squared differences between repeated measurements of the same samples on the same 

blots was reasonably exponential, as one would anticipate for normally distributed 

errors).  Table 1 summarizes the nomenclature introduced here. 

The primary data analysis goal, typically, is to estimate the analyte amounts, xj, and 

their confidence intervals.  Below, we also solve for the sensitivity coefficients, ai and bi, 

which can enable one to calibrate any new measurements that were not included in the 

original data.  We also find the measurement standard deviation, σ, which can be helpful 

for improving the measurement technique and for identifying any outlier data points. 
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The 2-step method 

We present the conventional 2-step calibration method, focusing on its application to 

samples that are measured in batches, to introduce our mathematical notation in a setting 

that may be familiar and to show some aspects of the method that are widely overlooked.  

The left side of Figure 1 illustrates the 2-step method. 

(1) Tabulate data.  The measurements need to be tabulated, putting each sample in a 

separate column and each batch in a separate row.  Each table site has as many entries as 

there are measurements for that specific sample and batch, which may be zero, one, or 

more than one. 

(2) Remove batches with insufficient standards.  To enable calibration, each batch needs 

to include at least as many different standard measurements as there are unknown 

sensitivity coefficients (because of the linear algebra result that one needs at least n 

equations to solve for n unknowns).  The statistical model (eq. 3) includes two sensitivity 

coefficients, αi and βi, so each batch generally needs to include at least two different 

standard measurements.  On the other hand, if one assumes that measurements do not 

have a consistent offset, meaning that all of the αi values are assumed to equal zero, then 

each batch only needs one standard measurement.  Figure 1 illustrates this latter situation.  

Our work also fit this latter situation because we corrected for background fluorescence 

before starting our data calibration.  Any batches that do not include as many standard 

measurements as unknown sensitivity coefficients need to be removed from the data 

analysis.  In the process, any samples that were only measured in these batches get 

removed too. 

Next, it is helpful to define several variables.  Define NB as the number of batches 

(number of rows), NS as the number of samples (number of columns), and nij as the 

number of measurements of sample j in batch i (number of entries at site i,j).  

Generalizing this last definition, nAll,j is the total number of measurements of sample j 

(the number of entries in column j), ni,All is the total number of measurements in batch i 

(the number of entries in row i), and nAll,All is the total number of measurements (the 

number of entries in the table).  Also, define T as the list of standards; for example, there 
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is one standard in Figure 1, which is sample number 1, so T = {1} in that case.  Finally, 

ni,T is the number of standard measurements in batch i. 

(3a) Fit sensitivity coefficients.  As the first step of the 2-step method (the calibration 

stage), a line is fit to the standard data in each batch using least-squares methods.  This 

provides best-fit ai and bi values as estimates for the “true” αi and βi sensitivity 

coefficients.  If the αi sensitivities are not assumed to equal zero, then the ai and bi values 

are found using the standard results for simple linear regression [24], 

 bi =
x jyijk T ,k

− x j T ,k
yijk T ,k

x j
2

T ,k
− x j T ,k

2   (4) 

 ai = yijk T ,k
− bi x j T ,k

 . (5) 

Angle brackets indicate averaging over the indices that are listed in their subscripts.  In 

this case, the average is over all standards that were measured in any particular batch.  

For example, 

 x jyijk T ,k
≡ 1
ni,T

x jyijk
k=1

nij

∑
j∈T
∑    (6) 

 x j
2

T ,k
≡ 1
ni,T

x j
2

k=1

nij

∑
j∈T
∑  . (7) 

If the αi sensitivities are assumed to equal zero, then all of the ai values clearly equal zero 

and the bi values simplify to 

  bi =
x jyijk T ,k

x j
2

T ,k

 . (8) 

Note that an intuitively sensible, but incorrect, approach would be to compute the bi 

values in the latter case by simply solving yijk ≈ bixj for bi to give bi ≈ yijk/xj and then 

averaging these values to give bi = 〈yijk/xj〉T,k.  Eq. 8 is different in that it weights each 

term in this average by xj
2.  Doing so correctly emphasizes those data points that are 
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likely to have larger measurement values and hence lower relative errors (see the 

derivations in the appendix). 

(3b) Compute analyte amounts.  In the second step of the 2-step method (the prediction 

stage), the amount of analyte in each unknown sample is computed by inverting the 

statistical model equation (eq. 3), while using the ai and bi estimates for αi and βi.  Then, 

averaging results over all analyses of each sample yields the following estimate for the 

sample’s analyte amount: 

 x j =
biyijk ik

− aibi ik

bi
2

ik

 . (9) 

As in eq. 8, this solution is weighted to emphasize the data points that have larger 

measurement values and hence lower relative errors.  In contrast, the intuitively sensible 

but incorrect approach gives the average as xj = 〈(yijk–ai)/bi〉ik, but this over-emphasizes 

data points that are likely to have large errors and under-emphasizes those that are likely 

to have small errors. 

(4) Compute standard deviations and standard errors.  Our statistical model assumes that 

measurements have normally distributed errors.  To estimate the standard deviation of 

those errors, we compute the root mean square (rms) average deviation of the actual 

measurements, yijk, away from where we would have expected them, ai+bixj, 

 σ = 1
nAll ,All − 2NB − NS

yijk − ai − bix j( )2
k=1

nij

∑
j=1

NS

∑
i=1

NB

∑  . (10) 

The denominator represents the number of degrees of freedom, which is one for each of 

the nAll,All data points, minus the number of fit coefficients.  There are 2NB+NS fit 

coefficients if the αi values are not assumed to equal zero (for the ai, bi, and xj values), as 

shown in eq. 10, and NB+NS if the αi values are assumed to equal 0.  Because we assumed 

Gaussian distributed noise, about 68% of the measurements should be within one 

standard deviation of their expected values and about 95% within two standard 

deviations.  Measurements that are many standard deviations away from their expected 

values are outliers, which may warrant further inspection and possible removal.  
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Importantly though, if the minimum number of standards were measured in each batch, 

which is typical, then it is impossible to determine if any of them are outliers because the 

sensitivity parameters were computed directly from their measurements. 

Separate standard deviations represent the variability in the different analyte 

amount estimates, which came from eq. 9.  These estimates are weighted means, so their 

variabilities are computed as weighted standard deviations, for which the general 

equation is [25] 

 SD =
n wi zi − z( )2

i
∑
d wi

i
∑ . (11) 

Here, zi represent the data, wi represent the weights, z  is the sample mean, n is the 

number of data points, and d is the number of degrees of freedom.  Applying this to the 

sample analyte amounts and simplifying gives 

 SDj =
nAll , j

nAll , j −1
⋅

yijk − ai − bix j( )2
ik

bi
2

ik

 . (12) 

The number of degrees of freedom is nAll,j-1 because there are nAll,j terms in the sum but 

the xj value was constrained through eq. 9. 

The standard errors of the means reflect the accuracy with which the xj values are 

likely to represent the true analyte amounts.  As usual, they are computed by dividing the 

standard deviations by the square root of the number of measurements being considered 

[25].  However, doing so yields a lower bound for the standard error because the standard 

deviations were computed while assuming that the ai and bi values equaled their true 

values and that the xj value was the only one that needed to be fit to the data.  However, 

all three of these are estimates, which increases the uncertainty for the analyte amounts.  

Thus, the standard errors are 

 SEj ≥
SDj

nAll , j
. (13) 
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The interpretation is that the difference between each computed xj value and the true 

analyte amount for the sample is likely to be a Gaussian distributed random variable with 

standard deviation equal to SEj.  This result does not apply to the standards because their 

analyte amounts are assumed to be known. 

 

1-step method 

The 1-step method parallels the 2-step method very closely. 

(1) Tabulate data.  The 1-step method uses the same data table as the 2-step method. 

(2) Remove orphan measurements.  The 1-step method relies on standards less than the 2-

step method does, but still requires that each measurement can be related to the standard 

measurements in some way.  More precisely, each batch needs at least as many 

independent “connections” to standard measurements as there are sensitivity coefficients; 

a batch is connected to a standard if (i) it includes a measurement of that standard or (ii) it 

shares a sample with some other batch that is connected to that standard.  We call 

measurements that cannot be connected to enough standard measurements orphans.  

These orphan measurements need to be removed from the data analysis, along with the 

samples and batches to which they belong.  The 1-step method uses the same definitions 

for the NB, NS, ni,j, T, and other variables as the 2-step method. 

(3) Iteratively fit sensitivities and analyte amounts.  The single step of the 1-step method 

is to simultaneously fit the ai, bi, and xj values to the data while assuming the statistical 

model given in eq. 3.  This can be accomplished in many ways, including with 

deterministic and stochastic minimization algorithms [24].  However, we found that 

computing the sensitivities and analyte amounts iteratively, using equations derived in the 

appendix, was particularly simple and efficient.  In this method, one first guesses all of 

the sensitivities.  An adequate approach is simply to set all of them to 1 initially, but we 

found that results converged faster when we guessed as many as possible using eqs. 4, 5, 

and 8 from the 2-step method and then set the rest to their means.  Next, the unknown 

analyte amounts are computed from 
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 x j =
biyijk ik

− aibi ik

bi
2

ik

 , (14) 

which is identical to eq. 9.  Then, the sensitivities are computed from 

 bi =
x jyijk jk

− x j jk
yijk jk

x j
2

jk
− x j jk

2   (15) 

 ai = yijk jk
− bi x j jk

  (16) 

if the αi values are not assumed to equal zero, and 

 bi =
x jyijk jk

x j
2

jk

  (17) 

if they are.  These equations only differ from eqs.  4, 5, and 8 in that they include 

averages over all measurements in a batch rather than just the standard measurements.  

Iterating over eqs. 14 to 17 leads to the best-fit values for the analyte amounts and 

sensitivities.  We continued until all sensitivity parameter and analyte amount estimates 

changed by less than 1 part in 105 between subsequent iterations, which never took more 

than a few hundred iterations (340 for our immunoblot data and about 70 for most of the 

validation tests described below). 

(4) Compute standard deviations and standard errors.  The standard deviation and 

standard error equations that are presented above in eqs. 10 to 13 apply here as well.  

However, the standard deviation can be used to identify outlier standard measurements in 

this case, even if relatively few standard measurements were made, because these 

sensitivity parameters were computed from all of the measurements instead of just the 

standard measurements. 

 

Validation 

We validated our method by analyzing 1000 artificially generated data sets and 

comparing the fit results with the true parameters from which the data sets were 
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generated.  Each data set comprised 20 samples that had random analyte amounts, 20 

batches that had random α and β sensitivity values, and 400 measurements that were 

randomly distributed in the data table.  The first two samples were assigned to be 

standards, with fixed analyte amounts.  We analyzed each data set with both the 1-step 

and 2-step methods.  Figure 2A-D shows results from one of these data sets.  It shows 

that both analysis methods were able to recover the true parameters from the data 

reasonably well, but the 1-step method generally led to smaller errors.  There were 

enough standard measurements in this data set that all analyte amounts could be 

estimated using both methods.  However, only 8 of the batch sensitivities could be 

estimated using the 2-step method because the others had insufficient standards and so 

were removed from the analysis (note the relatively few gray data points in panels C and 

D). 

We observed essentially the same results for the other artificial data sets as well.  

Figure 2E shows that the 1-step method overestimated analyte amounts by 0.2% on 

average, whereas the 2-step method underestimated them by 2.6% on average.  Further 

tests showed that these deviations arose from the choices of standards, becoming larger 

when the standard analyte amounts differed more from typical sample analyte amounts.  

However, the 1-step method always had much smaller deviations.  Figure 2E also shows 

that the 1-step method generally computed individual analyte amounts that were closer to 

the true values: the root mean square (rms) error for the analyte amounts was 8% for the 

1-step method and 13% for the 2-step method.  Similarly, Figure 2F-G show that the 1-

step method computed sensitivity parameters that were closer to their true values: rms 

errors were 18% and 27% for the a sensitivity parameter and 17% and 25% for the b 

sensitivity parameter, for the two methods respectively (this comparison only includes 

parameters that both methods computed successfully, to make them comparable). 

Analysis of the results showed that these improvements arose from two factors.  

First, the 1-step method included more data points in the calibration due to its decreased 

dependence on standards (out of the 1000 data sets, none of the batches needed to be 

removed from the analysis in the 1-step method but 60% of them needed to be removed 

for the 2-step method).  As a result, the 1-step method was able to include more 
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measurements in its averages and hence reduce the effects of measurement noise.  

Secondly, the 1-step computed the sensitivity parameters more accurately, even when 

there were sufficient standards for both methods.  To investigate this latter point further, 

we repeated the validation procedure but altered it so that every batch included every 

standard.  As a result, no measurements needed to be removed during either analysis.  In 

this case, rms errors for the analyte amounts were 14% and 16% for the 1-step and 2-step 

methods, respectively, again showing smaller errors for the 1-step method. 

We also compared the computed standard deviations and standard errors against the 

true ones as a way of validating eqs. 9 and 13.  We found good agreement.  The 1-step 

and 2-step methods estimated the measurement standard deviation to be 17 and 21 units, 

respectively, while the true value was 20 units.  Also, the average 1-step and 2-step 

standard error estimates were 76% and 71% of the actual deviations between the 

computed and true analyte amounts.  These show reasonable agreement and are 

consistent with the inequality in eq. 13. 

 

Protein immunoblot data 

We analyzed our experimental immunoblot data using both methods, of which a 

small portion of the results are shown in Figure 3.  These data are scaled so that the 

standard (not shown in the figure) has an analyte amount of 1.  As part of the analysis, we 

automatically removed all measurement results that were 4 or more standard deviations 

away from their expected values, which we deemed to be outliers, and then re-calibrated 

the remaining data until there were no more outliers.  This process showed that about 1% 

of our measurement results were outliers (for comparison, 0.003% would be expected to 

be more than 4 standard deviations away from the mean if errors were distributed 

perfectly normally).  After all outliers were removed, the 1-step method enabled us to use 

all of our measurements in the final analysis, whereas we would have needed to remove 

about 35% of them with the 2-step method. 

Differences between the two methods were more striking with the real data than 

with the artificial data that we used for validation.  Here, the two methods often returned 

substantially different analyte amount estimates.  Also, the 1-step method typically 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 2, 2015. ; https://doi.org/10.1101/026005doi: bioRxiv preprint 

https://doi.org/10.1101/026005
http://creativecommons.org/licenses/by/4.0/


 17 

returned substantially smaller standard errors for the analyte amount estimates, with a 

mean standard error of 20% as compared to 31% for the 2-step method.  We are using the 

1-step method results for further investigation of these data. 

 

Discussion 

We have described a method for calibrating data to external standards.  The conventional 

approach to calibrating measurement data, which we call the 2-step method, is justifiably 

nearly ubiquitous.  It is simple, intuitive, and convenient.  As a result, it can be performed 

by hand or with spreadsheet software.  Also, if there is only a single batch of data, then it 

is the optimal approach, returning the maximum likelihood predictors for the analyte 

amounts (assuming that the statistical model is correct and that the measurements are 

weighted properly when averaging, as shown above).  However, it does not return the 

best possible results if there are multiple batches because it ignores information from 

samples that were measured in multiple batches.  This makes it particularly sensitive to 

errors in the standard measurements, and also completely reliant on there being sufficient 

standards in every batch.  On the other hand, our novel 1-step method uses information 

from samples that were measured in multiple batches.  This decreases its reliance on 

standard samples and enables it to return more accurate results, which are the maximum 

likelihood predictors, now for the complete data set. 

A drawback of the 1-step method is that it requires an iterative computation, 

making it impractical to perform by hand or in a simple spreadsheet.  Nevertheless, this 

computation is not particularly demanding.  Calibrating our immunoblot data set, which 

comprises 5966 measurements and requires 340 iterations, takes just over 1 minute on a 

2013 MacBook laptop computer.  From inspection of eqs. 14 to 17, the computational 

demands scale approximately linearly with the number of measurements, implying that 

much larger data sets can be calibrated reasonably efficiently as well.  A second 

drawback of the method is that it assumes that instrument or method responses increase 

linearly with analyte amounts (see eq. 3), which is often not the case.  However, it is 

relatively straightforward to modify the 1-step method as it is presented here to specific 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 2, 2015. ; https://doi.org/10.1101/026005doi: bioRxiv preprint 

https://doi.org/10.1101/026005
http://creativecommons.org/licenses/by/4.0/


 18 

non-linear relationships by repeating the derivations presented in the appendix, but for 

the desired relationship. 

An obvious question arises of how to best design experiments so that they yield the 

most accurate results, while calibrating the data with the 1-step method.  Although 

addressing it was beyond the scope of our work, some aspects are reasonably obvious.  

First, we anticipate that it is best to measure standards in as many of the batches as 

possible because that minimizes the number of steps that need to be taken to connect 

unknown sample measurements with standard measurements.  Also, we suspect that it is 

better to spread replicates of sample measurements out over multiple batches, rather than 

to perform them all within a single batch, because that improves the ability to cross-

calibrate the different batches. 

Our software for calibrating data using both the 1-step and 2-step methods is written 

in Python, is open source, and is in the public domain (i.e. we do not reserve any 

intellectual property rights).  It is available at http://www.smoldyn.org/calibration.html.  

It can also be used at the same website as an online calibration service. 

 

Appendix 

This appendix derives most of the equations presented above.  It is shown at a 

relatively elementary level to make it widely accessible, so statistics textbooks (e.g. ref. 

[25]) should be consulted for more rigorous treatments. 

From eq. 3, we assume the statistical model 

 yijk =α i + βi x j + ε ijk  . (A.1) 

We rearrange the equation and divide both sides by σ, the measurement error standard 

deviation, to yield the scaled measurement errors, 

 ′ε ijk =
ε ijk
σ

=
yijk −α i − βi x j

σ
. (A.2) 

Because we assumed that the measurement noise is Gaussian distributed and independent 

between data points, the ε'ijk values are independent normally distributed random 
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variables with zero mean and unit standard deviation.  We square both sides of this 

equation and sum over all data points to yield 

 ′ε ijk
2

k=1

nij

∑
j=1

NS

∑
i=1

NB

∑ =
yijk −α i − βi x j

σ
⎛
⎝⎜

⎞
⎠⎟

2

k=1

nij

∑
j=1

NS

∑
i=1

NB

∑ . (A.3) 

The left side is a sum of squared independent normally distributed random variables, 

which means that it is itself a random variable and it obeys the chi-squared distribution. 

Looking back at eq. A.1, if we knew the exact values of each αi, βi, and xj but not 

the yijk values, then the assumption that the error is normally distributed with a mean 

value of zero would imply that the most likely value for yijk is the one that arises if the 

error equals zero.  However, we actually know the yijk values but not the αi, βi, or xj 

values.  So, we rearrange the prior statement to claim that the most likely values of αi, βi, 

and xj, given the known yijk values, are those that minimize the computed errors (eq. A.2).  

This rearrangement is not completely legitimate but is the central ansatz of maximum 

likelihood estimation and is partially justified by Bayesian analysis [24].  Without going 

further into the details, we perform maximum likelihood estimation by replacing the true 

sensitivity coefficients, αi and βi, in eq. A.3 with the unknown ai and bi estimated 

sensitivity coefficients to yield the following “goodness-of-fit” function, 

 χ 2 =
yijk − ai − bix j

σ
⎛
⎝⎜

⎞
⎠⎟

2

k=1

nij

∑
j=1

NS

∑
i=1

NB

∑  . (A.4) 

We then minimize this function with respect to each ai, bi, and unknown xj parameter to 

find their most likely values.  The parameter values that minimize the χ2 function are 

called the maximum likelihood predictors because they are the most probable values, 

within the assumptions of the model. 

We find the minimum of χ2 with respect to xj', where j' is the index of a specific 

unknown sample, by differentiating χ2 with respect to xj' and setting the result to zero: 

 ∂χ 2

∂x ′j

= ∂
∂x ′j

yijk − ai − bix j
σ

⎛
⎝⎜

⎞
⎠⎟

2

k=1

nij

∑
j=1

NS

∑
i=1

NB

∑  
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  = ∂
∂x ′j

yi ′j k − ai − bix ′j

σ
⎛
⎝⎜

⎞
⎠⎟

2

k=1

ni ′j

∑
i=1

NB

∑  

  = 2
yi ′j k − ai − bix ′j

σ
⎛
⎝⎜

⎞
⎠⎟
⋅− bi

σk=1

ni ′j

∑
i=1

NB

∑  

  = − 2
σ 2 bi yi ′j k − ai( )

k=1

ni ′j

∑
i=1

NB

∑ + 2
σ 2 x ′j bi

2

k=1

ni ′j

∑
i=1

NB

∑ . (A.5) 

Setting the result to zero, renaming j' to j, and simplifying yields 

 0 = biyijk ik
− aibi ik

− x j bi
2

ik
. (A.6) 

This result represents one equation for each unknown sample.  Minimizing χ2 with 

respect to ai and bi are analogous, yielding 

 0 = yijk jk
− bi x j jk

− ai   (A.7) 

 0 = x jyijk jk
− ai x j jk

− bi x j
2

jk
. (A.8) 

These results represent one pair of equations for each batch.  In principle, equations A.6 

to A.8 can be solved for the unknown ai, and bi, and xj values.  However, this appears to 

be analytically intractable so instead we rearrange them to yield 

 x j =
biyijk ik

− aibi ik

bi
2

ik

  (A.9)

 

 

 bi =
x jyijk jk

− x j jk
yijk jk

x j
2

jk
− x j jk

2     (A.10) 

  ai = yijk jk
− bi x j jk

  (A.11) 

If it is assumed that the αi values all equal zero, then the ai values are set to zero and the 

solutions for xj and bi get simplified to 
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 x j =
biyijk ik

bi
2

ik

  (A.12)

 

 

 bi =
x jyijk jk

x j
2

jk

    (A.13) 

These equations cannot be computed sequentially because each equation requires 

knowledge of the other results.  Thus, the approach taken by the 2-step method is to limit 

the averages in eqs. A.10, A.11, and A.13 to just those samples which have known 

analyte amounts, which are the standards.  After this, eqs. A.9 or A.12 can be computed 

without problems.  Alternatively, the approach taken by the 1-step method is to compute 

the equations iteratively, which then yields the best-fit ai, bi and xj values.  To convince 

ourselves that the iterative method leads to the correct solutions, we also minimized χ2 

using Mathematica’s “NMinimize” function for a series of validation data sets.  In all 

cases, results were identical but the iterative approach was many-fold faster. 

To compute the measurement standard deviation, we start with the fact that the 

mean of a chi-squared distribution is equal to the number of random variables that are 

summed.  In eq. A.4, the χ2 sum includes nAll,All terms, suggesting that this would be the 

mean of the distribution.  However, we don’t know the true αi, βi, or xj values, but only 

those that we fit by minimizing χ2, which reduces the mean by 2NB+NS degrees of 

freedom.  Using the assumption that any specific data set is likely to be reasonably 

typical, we equate χ2 to nAll,All–2NB–NS, yielding 

 χ 2 =
yijk − ai − bix j

σ
⎛
⎝⎜

⎞
⎠⎟

2

k=1

nij

∑
j=1

NS

∑
i=1

NB

∑ = nAll ,All − 2NB − NS . (A.12) 

Solving for the measurement standard deviation then yields 

 σ = 1
nAll ,All − 2NB − NS

yijk −α i − βi x j( )2
k=1

nij

∑
j=1

NS

∑
i=1

NB

∑   (A.14) 
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Finally, we solve for the individual sensitivity coefficient and analyte standard 

deviations.  Both are simply weighted averages, so we use the general equations for a 

weighted standard deviation (main text eq. 11) to yield the results 

 SDxj
=

nAll , j
nAll , j −1

⋅
yijk − ai − bix j( )2

ik

bi
2

ik

  (A.15) 

 SDai
=

ni,All
ni,All −1

yijk − bix j − ai( )2   (A.16) 

 SDbi
=

ni,All
ni,All −1

⋅
yijk − ai − bix j( )2

jk

x j
2

jk

   (A.17) 

Dividing these results by the square root of the number of data points yields estimates for 

the standard errors. 
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Table 1.  Data analysis nomenclature. 

Roman 

symbols 

 

ai, bi estimates of batch sensitivity parameters 

i, NB batch index and number of batches 

j, NS sample index and number of samples 

k measurement index within a specific batch and sample 

ni,j number of measurements of sample j in batch i (replacing i or j with 

“All” denotes all batches or samples) 

SDj, SEj standard deviation and standard error for analyte amount j 

T list of standards 

xj analyte amount in sample j 

yi,j,k measurement value for measurement k of sample j in batch i 

Greek 

symbols 

 

αi, βi true batch sensitivity parameters 

εi,j,k measurement error for a specific measurement 

σ standard deviation of measurement noise 

χ2 goodness of fit parameter 
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Figure 1.  Comparison of workflow for 2-step and 1-step calibration methods, illustrated for 
calibrating band intensities on immunoblots.  A.  Illustration of samples 1 (the standard) 
through 7, run on 5 different immunoblots with variable replication.  The band intensities shown 
depend on the sample, blot, and experimental noise.  B. Tabulated data showing assigned band 
intensities for each sample and blot.  C. Direct comparison of the conventional 2-step calibration 
method (left) with the 1-step calibration method (right).  D. Plots of the calibrated estimates of 
analyte amounts in each sample using the different methods.  Error bars represent the standard 
error of the mean and numbers above the bars represent the number of calibrated measurements 
of each sample.  
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Figure 2.  Comparison of the 1-step and 2-step methods using artificial data sets.  A. Sample 
analyte amounts for an artificial data set; see the main text for details.  Here and in subsequent 
panels, black features represent the true analyte amounts, gray features represent results from the 
2-step method, and red features represent results from the 1-step method.  Error bars represent 
standard errors.  (B-D) Comparison of computed sample analyte amounts, a sensitivity 
coefficients, and b sensitivity coefficients with their true values for the same artificial data set.  
(E-G) Histograms of errors between fit values and true values for computed sample analyte 
amounts, a sensitivity coefficients, and b sensitivity coefficients for 1000 artificial data sets.  In 
all cases, the 1-step method yields more accurate data calibration.  Data sets were generated with: 
20 batches with Gaussian distributed α values with mean of 100 and standard deviation of 30, 20 
samples with Gaussian distributed x and β values with mean of 10 and standard deviation of 3, 
400 measurements distributed randomly in the data table with σ set equal to 20, and standard 
analyte amounts set to 5 and 15. 
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Figure 3.  Calibrated experimental immunoblot data.  This figure shows calibrated analyte 
amounts for 40 of our 230 samples that we analyzed with immunoblots.  The others were 
qualitatively similar.  Gray bars represent results from the 2-step method, red bars represent 
results from the 1-step method, and error bars represent standard error values.  On average, there 
were 3.4 calibrated measurements for each sample with the 2-step method and 4.9 for the 1-step 
method.  Note that the 1-step method results have smaller standard errors. 
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