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Introduction 
The impact of environment on human health is dramatic, with major risk factors including 

substance use1, diet2 and exercise3. However, identifying interactions between the environment 

and an individual’s genetic background (GxE) has been hampered by statistical and 

computational challenges4,5. By combining RNA sequencing of whole blood and extensive 

environmental annotations collected from 922 individuals6, we have evaluated GxE interactions 

at a cellular level. We have developed EAGLE, a hierarchical Bayesian model for identifying 

GxE interactions based on association between environment and allele-specific expression (ASE). 

EAGLE increases power by leveraging the controlled, within-sample comparison of 

environmental impact on different genetic backgrounds provided by ASE, while also taking into 

account technical covariates and over-dispersion of sequencing read counts.  EAGLE identifies 

35 GxE interactions, a substantial increase over standard GxE testing.  Among EAGLE hits are 

variants that modulate response to smoking, exercise and blood pressure medication. Further, 

application of EAGLE identifies GxE interactions to infection response that replicate results 
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reported in vitro7, demonstrating the power of EAGLE to accurately identify GxE candidates 

from large RNA sequencing studies. 

 

Main text 

Phenotypic variation results from the combined effect of environment and individual genetic 

background.  Many environmental and behavioral influences have been shown to substantially 

affect human disease risk1,2,8, and in model organisms gene-by-environment (GxE) interactions 

have been shown to be pervasive9,10. However, the prevalence and importance of GxE in human 

health is not well characterized, and identifying associations on a large scale in human 

populations has been challenging4,5. There are genetic variants that affect individual drug 

metabolism and response11, but only a few GxE interactions with disease have been identified12,13, 

with mixed results in replication14. Targeted experimental approaches are not always practical, 

and detection of GxE from genome-wide data faces considerations including small genetic effect 

sizes for most complex traits and high multiple hypothesis-testing burden. 

 

In this study, we analyzed GxE in the context of transcriptomic phenotypes; cellular traits can 

reflect or even mediate disease risk, and the effects of genetic variation on gene expression are 

large enough for well-powered, genome-wide detection of expression quantitative trait loci 

(eQTLs) even in modestly-sized cohorts.  Indeed, recent genetic studies of gene expression using 

RNA-sequencing have found thousands of eQTLs with high reproducibility6,15–17.  Gene 

expression can also reveal the impact of environmental factors18–21, and recently, studies have 

begun to evaluate GxE interactions using transcriptomic data. In vitro immune stimulation has 

been used to detect hundreds of GxE interaction effects on gene expression in both human 

monocytes7 and dendritic cells22,23. Further, agnostic to the specific environment involved, the 

presence of extensive GxE interactions on the transcriptome is supported by variance eQTL 

mapping24 and allele specific expression25 in mono- and dizygotic twins. However, transcriptomic 
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GxE mapping has not yet been performed for most major environmental risk factors.  The 

emerging availability of cohorts with RNA-sequencing of primary tissue and well-curated clinical 

data provides an opportunity to test GxE interactions for specific environmental factors on a large 

scale. Still, significant technical challenges remain. Specifically, both biological and technical 

factors that vary across samples, such as batch effects and correlation among environmental 

factors, can confound the detection of GxE from transcriptomic data.  Second, as discussed 

below, we observe that standard methods for testing GxE using gene expression are still 

underpowered, even in large cohorts. 

 

To improve power to discover GxE interactions, we developed EAGLE (Environment-ASE 

through Generalized LinEar modeling), a novel method to test for GxE interactions using allele 

specific expression (ASE). Intuitively, observing that allelic imbalance of a gene associates with a 

particular environmental factor suggests that there is a cis-regulatory effect whose impact on 

expression is modulated by that environment. For example, an environmentally responsive 

transcription factor that binds to one allele better than to the other allele (Figure 1A) would result 

in allelic imbalance of the target gene in that environmental context.  By comparing two alleles in 

the same sample, ASE provides an “internally matched” measure that inherently provides 

improved control for batch effects and other forms of confounding technical variation 

(Supplementary Figure S1).  We designed EAGLE to use a binomial generalized linear mixed 

model (GLMM), predicting the relative number of RNA-seq reads from each allele at exonic, 

heterozygous loci under different environmental conditions.  By directly modeling allelic read 

counts, rather than a simple continuous estimate of allelic imbalance, EAGLE improves power 

and additionally is able to model and account for over-dispersion inherent in RNA-seq data. As in 

previous analyses26,27 we have observed that allelic read counts display extra-binomial variation. 

While some apparent over-dispersion is likely to come from genetic and biological causes, PCR 

amplification and other technical factors may also contribute which when ignored lead to false 
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positive associations (Supplementary Figure S2). EAGLE estimates a per-locus overdispersion 

parameter (random effect variance) that accounts for both technical overdispersion and extrinsic 

variation between individuals. Statistical power is shared across loci by learning a genome-wide 

prior on variance parameters. Since EAGLE is a generalized linear mixed model, it is 

straightforward to add additional covariates. In particular, we control environment-independent 

cis-eQTL by including an indicator variable denoting whether the lead eQTL (found by total 

expression analysis) for the gene is heterozygous. Similarly, EAGLE can be used to identify 

associations with other, non-environmental factors, such as the identification of aseQTLs 

(Supplementary Figure S3).  EAGLE provides a flexible framework for modeling influence of 

both technical and biological factors on ASE while accounting for extra-binomial variation in 

sequencing data. 

 

We applied EAGLE to the discovery of GxE interactions from a large publicly-available cohort 

of 922 individuals with RNA-sequencing data from the Depression Genes and Networks study6. 

This study has high power to detect eQTLs, with 79% of tested transcripts having an eQTL for 

total expression at a conservative FDR (5%). In addition, diverse annotations are available 

describing medication use, behavior, and other environmental factors for each individual. The 

samples come from a primary tissue, enabling accurate analysis of environmental influences on 

the transcriptome; indeed, we detect thousands of environmentally responsive genes 

(Supplementary Figure S4).  

 

We tested for EAGLE associations between 30 environmental factors (Supplementary Table S1) 

and ASE of 8795 genes (Methods).  We found 35 significant associations at an FDR of 10% 

(Supplementary Table S2). Among these, we detected a GxE interaction between exercise before 

blood draw and DYSF, a skeletal muscle repair protein. Mutations in DYSF cause the recessive 

muscular dystrophy dysferlinopathy, with progression of the disease being exercise level 
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dependent28, indicating a disease relevant GxE interaction for this gene. We further detected a 

GxE interaction for blood pressure medication with NPRL3, part of the NPR3 protein family 

involved in homeostasis of fluid volume (Figure 2a). We also observed that higher BMI is 

associated with increased allelic imbalance of VNN1, which is associated with high-density 

lipoprotein cholesterol29, prevents lipid peroxidation30 and is predicted to be causally related to 

omental fat pad mass31.    

 

As a baseline against which to benchmark EAGLE’s power, we also detected GxE interactions on 

total expression using a standard linear model interaction test (Methods). Using Bonferroni 

correction per gene, since there is no appropriate permutation strategy for interaction testing32, 

followed by controlling the FDR at 10% we find only four associations across the 30 tested 

environmental factors. Thus, EAGLE shows much greater power to detect GxE interactions than 

standard interaction QTL testing (Figure 1B). Results from EAGLE or standard methods could 

represent interactions with (potentially unmeasured) factors that are correlated with the tested 

environmental variables. EAGLE however should be less susceptible to false positives from some 

technical confounders (Supplementary Figure S1). Overall, the improved power may derive from 

multiple sources, including the controlled, within-individual nature of our ASE-based test along 

with the direct modeling of read counts.  Further, EAGLE implicitly integrates over the entire cis-

regulatory landscape of a gene rather than explicitly testing a specific candidate SNP, reducing 

the multiple hypothesis-testing burden and potentially captures the contribution of multiple 

regulatory variants.  

 

EAGLE does not directly test individual candidate SNPs responsible for the association between 

environment and ASE.  However, we applied a two-step procedure based on EAGLE for finding 

candidate variants driving GxE associations that still yields more hits than standard interaction 

QTL testing.  In the first step, EAGLE was used with a lenient FDR of 0.2 to give a shortlist of 
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57 environment-gene associations. In the second step, we looked for candidate variants, within 

1Mb of the TSS, using EAGLE combined, through meta-analysis, with standard interaction 

testing (see Methods). For 15 out of 57 associations we found a cis-SNP with a nominally 

significant interaction QTL after conservative Bonferroni correction across tested SNPs (p<0.05; 

Supplementary Table S3). Those with no candidate variant hit may arise from variants outside of 

the 1MB window, rare variants, or non-genetic factors. Some SNPs were not testable using 

EAGLE because not enough double heterozygous individuals were available.  In this case, we 

used standard interaction testing alone. For the association between smoked same day and IL10RA 

(Benjamini-Hochberg q=0.13, see Figure 2b) the top candidate variant (! = 9!×10!!) is 

rs685419 which lies 4Mb from the TSS of IL10RA (interleukin 10 receptor-α) in a conserved 

CD14 primary cell enhancer (Figure 2c-d).  Polymorphisms in IL10 itself have been associated 

with the rate of lung function decline in firefighters33.  Since many diseases result from the 

combined effects of genetics and environment we investigated whether any of our candidate GxE 

variants, or variants in linkage disequilibrium (LD), are known genetic risk factors for disease 

using the NHGRI-EBI GWAS (accessed 6/17/2015)34 and Immunobase (available at 

www.immunobase.org; accessed 6/21/2015) catalogs. We identified eight disease-associated 

variants (Supplementary Table S4). For example, we found that rs1538257, which is the top 

candidate variant to modulate BMI’s association with LGALS3 expression, is in LD (R2=0.55) 

with rs2274273, which is associated with LGALS3 protein levels (! = 2!×10!!""). Interestingly, 

in mice, LGALS3 has been shown to have a protective role in obesity induced inflammation and 

diabetes35.  

 

Next, we sought to characterize the properties of the genes whose genetic regulation is modulated 

by each environment. Since the number of genome-wide significant associations remains 

relatively modest even with the improved power from EAGLE, we performed enrichment 

analysis using the top 50 associations for each environment. We first tested these associations 
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against a curated set of pathways taken from GO, KEGG and BioCarta (restricted to those with 

fewer than 100 genes), using a standard hypergeometric test with the entire set of genes tested by 

EAGLE as the background. The strongest enrichment is for smoking and the BioCarta CCR5 

pathway. CCR5 itself has been implicated in smoking induced emphysema36. Since our 

hypothesis is that GxE interactions for gene expression are often driven by allele specific binding 

of environmentally-responsive transcription factors, we tested for enrichment of transcription 

factor binding sites (TFBS) proximal to environment-associated genes. We used the union of 

TFBSs detected by CENTIPEDE37 from DNase I hypersensitivity data for seven blood cell 

types38 (see Supplementary Material Section 4). Since we only expect to see GxE when there is 

corresponding genetic variation, we filtered for TFBS within 5kb of each gene that also contained 

at least one variant previously identified in the 1000 Genomes Project, resulting in an average of 

7.7 TFBS per gene across 282 TF motifs. We again used a hypergeometric test for enrichment for 

each environment (Figure 3B). The strongest association (p=10-4) is for smoking-associated genes 

and the transcription factor TBX4. TBX4 is known to be regulated by SOX9, variants in which 

influence lung function specifically in smokers39. Additionally, genes showing a GxE interaction 

for blood pressure medication are enriched in binding of SP1, which is known to respond to 

antihypertensive drugs40 and regulates angiotensin receptor transcription41,42.  

 

Further, we investigated additional evidence for co-regulation of EAGLE hits of each 

environment based on trans-eQTLs.  DGN’s relatively large sample size enables the detection of 

inter-chromosomal trans-eQTLs (138 unique trans-eQTL genes at an FDR of 0.05 6). Applying a 

relaxed, nominal p-value threshold of 10-5 yielded a trans-network with 55,313 edges involving 

48,163 SNPs and 7473 genes. We investigated whether the top 50 genes associated by EAGLE 

for each environment tend to share distal regulatory SNPs in this network. Against an empirical 

null distribution generated by randomly sampling sets of 50 genes from those tested for each 

environment, we found the number of SNPs regulating more than one of the 50 genes is 
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significantly increased (p<0.05) for age, exercise, family history of depression and opiate use. 

The trans-network involving SNPs regulating more than one gene in the top 50 list for exercise is 

shown in Supplementary Figure S5. Interestingly all five of the genes (IFIT2, MX2, IFI44L, 

ADAR, RSAD2) implicated in this network are interferon inducible, highlighting the impact of 

exercise on immune response43.  

 

We investigated the degree to which EAGLE analyses, conducted within a large cohort, 

recapitulate GxE interactions discovered in vitro. Specifically, the interplay of immune 

stimulation, gene expression and genetics has been characterized in several recent in vitro studies: 

Barreiro et al. infected primary dendritic cells (DCs) with Mycobacterium tuberculosis23, Lee et 

al. stimulated DCs with lipopolysaccharide (LPS), influenza virus, or IFN-β22, and Fairfax et al. 

exposed CD14+ monocytes to interferon-γ (IFN-γ) and LPS for 2 or 24 hours7. All three of these 

studies found more eQTLs under stimulated conditions than in steady state, and discovered 

corresponding GxE interactions. To test if these interactions are detectable in our cohort, we 

focused on the Fairfax et al. study7 due to its large sample size, genome wide transcriptomic 

profiling and choice of interferon-γ (IFN-γ) and LPS immune stimulation (likely to be relevant in 

a population sample). Direct measurements of infection and immune activity are not available for 

the DGN cohort. We therefore used the expression levels of the top differentially expressed genes 

for each stimulus as “proxies” for the environment. Specifically, we identified 25, 16, and 26 

genes, for LPS at 2h, LPS at 24h and IFN-γ respectively, with an absolute log-fold change greater 

than 4 in the Fairfax et al. data. We then applied EAGLE genome-wide to find association 

between ASE and gene expression levels for each proxy gene. We exclude tests for interactions 

between proxy genes and allelic balance of genes on the same chromosome since such an 

association could represent direct cis-regulation rather than an interaction. At an FDR of 10%, we 

found 26, 6 and 14 GxE interactions for LPS at 2h, LPS at 24h and IFN-γ respectively. To test 

whether these interactions were also detected in Fairfax et al. we compared the reported t-
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statistics for the lead eQTL under the naïve and stimulated condition (Supplementary Material 

Section 5, Supplementary Figures S7-8). At a nominal p-value threshold of 10-4 we found that 

11/26, 3/6 and 6/14 interactions replicated for the three stimuli respectively (Figure 3c). To assess 

the significance of this replication, we generated an empirical null distribution using randomly 

chosen sets of environmental proxy genes not differentially expressed in response to any of the 

Fairfax et al. stimuli. This analysis gave empirical p-values for the observed replication of 0.048, 

0.06, and 0.029 respectively, or 0.0017 for the overall replication frequency.  

 

The results obtained by applying EAGLE to the DGN cohort demonstrate that careful analysis of 

allele specific expression from RNA-seq is an effective way to identify candidate interactions 

between genotype and environment that contribute to transcriptional variation. A key finding is 

that by modeling allele-specific read counts directly, EAGLE offers significantly improved power 

to detect GxE interactions over standard linear modeling of total gene expression. This is 

consistent with observations from recent studies of ASE in contexts other than GxE, such as QTL 

analysis44,45. The associations and variants detected by EAGLE indicate that common 

environmental risk factors, including substance use, exercise and BMI do in fact interact with 

individual genetic variation in regulation of gene expression. We also report a number of 

associations with potential consequences on disease risk. Despite the large increase in power, the 

overall number of associations remains modest, with 35 detected for 30 environments from a 

sample of 922 individuals, indicating that GxE effects on gene expression are not prevalent with 

large effect sizes compared with additive effects. Additionally, there are allele-specific, cis-

regulatory mechanisms other than genetic effects that could potentially explain some of the 

associations discovered, for example epigenetic regulation of expression. Finally, we note that the 

DGN samples analyzed here are from whole blood, which may mask GxE effects limited to a 

specific cell-type, although current multi-tissue eQTL studies indicate that cis-eQTLs are 

generally highly shared across tissues16,46. In conclusion, despite the challenges in analyzing GxE 
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interactions, we show it is possible to leverage the novel information provided by large RNA-seq 

cohorts to unravel the modulation of genetic effects by environmental factors relevant to human 

disease. 

 

EAGLE offers an extensible framework for robust detection of factors contributing to allelic 

imbalance across samples, and may be applied in various settings, such as the detection of 

aseQTLs (Supplementary Figure S3) or the reconstruction of regulatory networks. EAGLE 

provides a general method for accounting for over-dispersion and for modeling effects of 

technical covariates on both mean and variance of ASE. For instance, EAGLE could also be 

applied to in-vitro studies of GxE where RNA-seq is available for both control and perturbed 

conditions for the same cell-line or individual, with minor modification to the GLMM to account 

for correlated measurements. Additionally, the use of “proxy genes” to represent unmeasured 

environmental factors opens up a number of applications on a large scale with existing data and at 

comparably low cost, as demonstrated by our replication of infection response QTLs from Fairfax 

et al.7. As RNA-seq datasets become widely available, we envisage that EAGLE will be 

appropriate to obtain additional power to detect individual differences in environmental response 

for a wide range of contexts and studies.  More generally, EAGLE is a useful tool for 

understanding the combined effects of external stimuli, genetic variation, and cellular networks 

on regulation of gene expression.   

Methods  

Interaction QTL testing 

Total expression was quantified as previously described6, including controlling for known and 

latent confounders using HCP47. We quantile normalize each gene to a standard normal 

distribution to remove outliers, and perform standard interaction testing to find GxE effects for 
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the 8795 genes testable using ASE. For a specific combination of SNP, gene and environment 

consider the null model !! and alternative model !!,  

!!: !!!!!!!!!!!! = !!!! + !!!! + ! + !! 

!!:!!!!!!!!!!!!! = !!!! + !!!! + !!×!!!!! + ! + !! 

where !! is normalized total expression for individual i, !! is the genotype of the SNP encoded as 

{0,1,2}, !! is the environmental factor, !!,!! ,!!×! ,  are genetic, environment and interaction 

effect sizes respectively and ! is an intercept. Under the null the likelihood ratio max
!
!! ! !,!! /

max!! ! ! !,!!  is !!-distributed with one degree of freedom, which allows us to obtain a well 

calibrated p-value. We test all SNPs within 200kb of the TSS (obtained from GENCODE, release 

20). Since there is no appropriate permutation strategy for testing interaction terms 32, we were 

constrained to using Bonferroni correction to obtain an approximate gene level p-value. The gene 

level p-values for a particular environment are then adjusted using the Benjamini-Hochberg 

procedure to control the FDR at a pre-specified level.  

EAGLE model 

We first present the model itself and then motivate the various modeling choices. The null model 

!! is 

min(!!", !!" − !!") ∣ !, !!, !!" ∼ Binomial !!",!(!!!ℎ!" + !! + !!")  

and the alternative model !! is 

min(!!", !!" − !!") ∣ !, !!, !! ∼ Binomial !!",!(!!!! + !!!ℎ!" + !!!×!!!"ℎ!" + !! + !!")  

where !!" is the alternative read count for individual i at locus s , !!" is the total read count,  

σ(x) = 1/(1 + e!!) is the logistic function, ℎ!" denotes whether the top cis-eQTL is 

heterozygous, !! is an intercept term to take into account unexplained allelic imbalance unrelated 

to the environment and  ϵ!"|v ∼ !N(0, v!) is a per individual per locus random effect modeling 

overdispersion. This model can be derived by assuming the log expression of each allele is linear 
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in the environment and SNP genotype (see Supplementary Material Section 1. The variance itself 

is given an inverse gamma prior !"(!, !). We learn the hyperparameters !, ! across all genes.  

We expect that environmental effects on ASE are usually mediated by one or more causal cis-

regulatory genetic variants, which would often be in linkage disequilibrium with the locus where 

ASE is measured. However, some responsive individuals may have different causal sites and 

therefore may exhibit opposite direction of allelic effect. EAGLE gains power by testing just a 

single association statistic per gene, rather than modeling each possible causal site and incurring a 

large multiple testing burden, but therefore cannot assume a consistent direction of allelic effect 

across the cohort.  Additionally, linkage disequilibrium may be weak, especially for more distal 

elements. The EAGLE model is applicable in settings where causal sites vary between individual 

and also handles unphased data. We model the absolute deviation from allelic balance by 

considering min!(!!", !!" − !!") rather than the minor allele count !!" itself. This is analogous to 

using | !!"!!" −
!
! | as a quantitative measure of allelic imbalance, but maintains the count nature of 

the data. We also experimented with introducing explicit auxiliary “flipping” variables to provide 

implicit phasing, but found this was susceptible to over-fitting. 

Accounting for cis-regulation 

Standard cis-eQTL analysis allowed us to identify proximal genetic variants associated to the 

expression of each gene. These variants often explain a significant proportion of observed ASE. 

To account for this, we add a dependence on ℎ!", an indicator of whether the top cis-eQTL for the 

gene containing locus s is heterozygous in individual i. Additionally, in some cases one of the 

known cis-eQTLs could be the variant through which the environment influences the observed 

ASE, which we model by including an interaction term hiseis (see Supplementary Material 

Section 2 for further details). We approximately integrate over the random effects ϵ!" and per 

locus variance v! using non-conjugate variational message passing48 while optimizing the 

coefficients ! and hyperparameters !, ! (Supplementary Material Section 3).  
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Parameter estimation and inference 

Holding the overdispersion hyperparameters !, ! fixed we fit both the alternative and null models 

at each locus and use the variational lower bound as an approximation to the true marginal 

likelihood for each model, allowing us to calculate an approximate likelihood ratio. It is not 

obvious that the usual asymptotic theory should hold here since a) our data is not normally 

distributed, b) we only have an approximation of the true likelihood, and c) our model 

incorporates random effects terms. To investigate this we performed permutation experiments, 

using the conveniently valid strategy of separately permuting the individuals heterozygous or 

homozygous for the top cis-SNP32. These experiments show that our approximate likelihood 

ratios do in fact follow the asymptotic !! distribution quite closely, while being slightly 

conservative (see Supplementary Figure S6). Therefore we choose to use the nominal likelihood 

ratio test p-values, avoiding having to run computationally expensive permutation analysis for 

every tested association. 

Data Access 

Genotype, raw RNA-seq, quantified expression, covariates and environmental data for the DGN 

cohort are available by application through the NIMH Center for Collaborative Genomic Studies 

on Mental Disorders. Instructions for requesting access to data can be found at 

https://www.nimhgenetics.org/access_data_biomaterial.php, and inquiries should reference the 

“Depression Genes and Networks study (D. Levinson, PI)”. 

 

Software 

EAGLE was developed in C++ and R 3.1.2 using RcppEigen and is available as an R package at 

https://github.com/davidaknowles/eagle.  

 

!
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Figure 1: EAGLE associates allelic specific expression (ASE) with environmental covariates to detect GxE
interactions. (a) Allelic imbalance can be driven by allele specific binding of an environmentally responsive
transcription factor. (b) Using ASE increases power relative to standard interaction testing in the DGN
cohort across 30 environmental variables. EAGLE provides an internally controlled test and integrates across
the cis-regulatory landscape of a gene.
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Figure 2: EAGLE detects GxE interactions missed by standard interaction QTL testing. (a) Blood pressure
medication modulates regulation of NPRL3, involved in fluid homeostasis. (b) Smoking interacts with
regulation of IL10RA (interleukin 10 receptor-↵). (c-e) Using standard interaction QTL testing as a second
phase within EAGLE hits, we detect rs685419 as a promising candidate variant for smoking association with
IL10RA, lying 4Mb from the TSS in a conserved region corresponding to an enhancer in CD14+ primary
cells.
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Figure 3: Pathway and transcription factor binding site enrichment of genes with GxE interactions for each
environment reveals shared regulation. Uncorrected p-values are shown. (a) The strongest associations
between the top 50 genes for each environment and GO, KEGG and BioCarta pathways with fewer than 100
genes. (b) Enrichment of CENTIPEDE predicted TFBS within 5kb of the TSS of the top 50 genes associated
with each environment. (c) EAGLE recapitulates GxE interactions discovered using immune stimulation
of monocytes in vitro. We used genes di↵erentially expressed under immune stimulation in vitro as proxies
for the environment (stimulus). The genes detected by EAGLE as being modulated by these environmental
proxies replicate in the in vitro data: i.e. they have detectable response QTLs. Network depicts all EAGLE
predictions for each stimulus, with replicating interactions highlighted in yellow; each edge is annotated with
the tested proxy gene for reference.
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