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Abstract

Mapping reads to a genome remains challenging, especially for non-model
organisms with poorer quality assemblies, or for organisms with higher rates of
mutations. While most research has focused on speeding up the mapping process,
little attention has been paid to optimize the choice of mapper and parameters for a
user’s dataset. Here we present Teaser, which assists in these choices through rapid
automated benchmarking of different mappers and parameter settings for
individualized data. Within minutes, Teaser completes a quantitative evaluation of
an ensemble of mapping algorithms and parameters. Using Teaser, we demonstrate
how Bowtie2 can be optimized for different data.

Keywords: Mapping, benchmarking, individualized data, Next Generation
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Rationale

Recent and ongoing advances in sequencing technologies and applications [1, 2]
lead to a rapid growth of methods that align next generation sequencing (NGS)
reads to a reference genome (read mapping). By mid 2015, nearly 100 different
mappers are available, although not all are equally suited for a given application or
dataset [3]. The large number of potential options, and the even larger number of
potential parameter configurations makes it challenging to choose the most
appropriate mapper for a given dataset. Consequently most users generally rely on
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the default, unoptimized, parameters for one of a few popular algorithms, even
when this choice performs very poorly compared to an optimized approach. This
may introduce substantial biases in the subsequent analysis, including reduced
coverage, reduced rates of mutations or heterozygosity, false determination of
allele-specific expression, or other artifacts [4, 5].

Previous research [3, 6-8] has focused on benchmarking mappers for particular
scenarios (e.g. SNP calling, or data from a specific sequencing instrument) or for
selected organisms. Although these surveys represent a valuable resource for
certain tasks, they are most often performed using only the default parameters and
versions of the software that can be outdated by the time they are published. More
significantly, these evaluations may not capture the data types or genomes used in
the study at hand, which may have substantially different characteristics. To choose
the most suitable parameter settings for a given mapper requires in depth
knowledge of the data as well as the mapper. This is extremely complex to do, and in
many cases, even the author(s) of the software may not fully appreciate how to best
optimize their own software for a given dataset.

Recent efforts to provide guidance for choosing the mapper and its parameter
setting like GCAT focus on human data [8]. GCAT is an online resource that hosts
simulated reads for a version of the human genome that users can download and
analyze, using their own analysis pipelines. Afterwards the results can be uploaded
and are compared to the gold standard. On a voluntary basis the parameter settings
of the analysis are made publicly available for the benefit of the community.
However, not all researcher work with the human genome, and instead many
researchers face the challenge of markedly different genome and read
characteristics including the SNP rate, error rate, read lengths, quality of the
reference genome, and reference sequence complexity such as GC content and
repetitive regions, all of which influence the ability of mappers to align reads [3].
For example, whereas some mappers efficiently map reads to a human reference
genome, they might be less adequate when applied to a draft de-novo assembled
genome with incomplete and/or fragmented contigs. In any case, the choice of the
mapper parameters depends on the characteristics of the data.

Here we introduce Teaser, a method that assists users to determine the most
suitable mapper and parameters given the core characteristics of their individual
experiment. Teaser simulates read data, executes a number of popular mapping
tools under an ensemble of parameter settings, and then evaluates and illustrates
the results. Teaser can also be used to optimize the mapping of genuine NGS reads,
especially to account for difficult to simulate characteristics such as run-specific
error modes or sequencing biases. Teaser's short runtime enables users to evaluate
a multitude of different scenarios. Furthermore, Teaser is highly flexible, easily
allowing to: (i) extend the catalog of mappers, (ii) customize mapper parameters,
(iii) provide your own simulation or select from a list of preconfigured simulation
methods, and (iv) fine-tune the evaluation of mappers. Teaser provides several
summary statistics from the experiments such as the fraction of correctly/wrongly
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mapped reads, correctly mapped reads per second, precision and recall, F-measure
(i.e. the harmonic mean of precision and recall)[7], maximum memory usage and
runtime. In the end, Teaser generates a HTML based report including interactive
figures that can be viewed using common web browsers. Teaser is available open-
source as a web application (teaser.cibiv.univie.ac.at), a virtual machine image, and
as a standalone version (github.com/Cibiv/Teaser).

Teaser description and data characteristics

Teaser comprises three main steps. First, it simulates reads based on user-defined
specifications (e.g. sequencing technology, sequencing error model, read length, SNP
rate) and a reference genome. Second, Teaser automatically executes the mappers,
monitors and evaluates their performance. Third, it summarizes the evaluation
results and generates a HTML based report. In the following we will describe each
step.

Simulation of reads from subsampled reference genomes

The first stage of the simulation encompasses randomly subsampling regions from
the reference genome. By default, the length of each region is tenfold of the user
specified average read length or insert size in the case of paired-end sequencing. We
introduce the following default sampling-rates based on genome size. Sampling
stops if the total length of sampled regions exceeds 50% of the reference genome
length for small (<100mb) or 25% of medium sized genomes (<500mb). For larger
genomes (e.g. human) Teaser samples regions until reaching 1% of its genome
length. Overall Teaser samples at least 15mb to guarantee a robust measurement.
The sampled regions are then concatenated into an artificial chromosome. To avoid
reads branching from one region to another, regions are separated using two times
the specified average read length or insert size of N’s as padding. Subsequently
either DWGSIM [9] or Mason [10] generate simulated reads from the artificial
chromosome using the user specified characteristics for read lengths, error models,
and genome characteristics (rate of heterozygosity, proportion of indels, etc).
Moreover, Teaser optionally accepts fastq and SAM files [11], containing user-
simulated reads and their presumably correct alighment positions and strand (used
for evaluation). Finally, Teaser can also accept just a fastq file of genuine or
simulated reads for evaluation, although only a subset of metrics will be available
since the true mapping positions are not known.

Mapping of simulated reads

After read generation, Teaser executes the user-defined mappers with the
corresponding parameter values to align the reads to the complete reference
genome. By default, Teaser includes: BWA (version 0.7.12-r1039) [11], BWA-MEM
(version 0.7.12-r1039) [12], BWA-SW (version 0.7.12-r1039) [13], Bowtie2 (version
2.2.5) [14] and NextGenMap (version 0.4.13) [15]. Teaser monitors the runtime and
maximum memory consumption for each mapper. The reported run-times are the
times needed for mapping the reads only and do not include the time for
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preprocessing steps (i.e. indexing the reference genome), reading in the reference
sequence and initializing the mapper. Thus, these runtimes provide a useful
estimation for larger read sets.

Evaluation of simulated and real data

Teaser first checks if a mapped read exceeds the user defined mapping quality
threshold (default equals 0). A mapped read with mapping quality below that
threshold is counted as not mapped. Reads passing the mapping quality check are
considered correctly mapped if the following conditions are true: (i) The reported
starting position of the aligned read is within X bp (by default 50 percent of the
defined read length) from the original starting position of the simulated read. (ii)
The read is mapped to the same strand as it was simulated from. If any of these
conditions is violated the read is considered wrongly mapped. In case of multi-
mapping reads, only the primary alignment (the one the mapper considers to be
best [11]) is taken into account. Other methods have been suggested to evaluate
read alignments than comparing the distance between the correct and the reported
mapping position of a read [5]. However, we argue that evaluating the distance is
the most efficient and most important evaluation criteria.

Teaser further provides a way to assess the mapping rate of the mappers and
parameter settings based on real data. To grant a short runtime, Teaser first
subsamples the same number of reads as it would use for the simulation (see
above). After the mapping, however, Teaser computes the overall percentage of
mapped reads rather than the percentage of correctly mapped reads since that
information is not available. We recognize that mapping additional reads does not
necessarily indicate higher quality alignments, but nevertheless this information is
valuable to assess the robustness of parameter choices. Other metrics, especially
runtime and memory requires are recorded as before, allowing for in-depth
performance optimization.

Mapping Summary and Report

Teaser provides six statistics for further evaluation. First, Teaser outputs the
number of correctly, wrongly, and not mapped reads. Next, Teaser reports the
precision (fraction of correctly mapped reads compared to all mapped reads) and
the recall rate (fraction of correctly mapped reads if compared to correctly mapped
reads and not-mapped reads) for each mapper. Teaser computes the F-Measure, the
harmonic mean of precision and recall as suggested by Caboche et al.[7]. Thus, the F
score is a measure of a mapper’s accuracy, ranging from 0 (worst) to 1 (best).
Finally, Teaser reports the correctly mapped reads per second, the overall runtime,
and the peak memory requirement for each mapper.

All results are displayed as part of a HTML based report providing easy to read
tables and interactive figures. The report allows a direct comparison of the mapping
results for different summary statistics and different mapping quality thresholds.
Supplementary Note 1 describes the options in more detail. We also invite the
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reader to visit teaser.cibiv.univie.ac.at for further details and the presentation of
results.

Parameter Optimization

In addition to benchmarking different mappers, Teaser can evaluate different
parameter sets for each mapper, defined as either specific parameter values or
ranges of values to be evaluated for each mapper. The second option can be used to
automatically explore the impact of key parameters, such as the k-mer length, on the
mapping results. If parameter ranges are defined for more than one parameter,
Teaser systematically tests every combination and reports the results for each
combination separately.

Finally, to identify the optimal parameter set for the user specific genomic data,
Teaser provides an additional plot that shows the correctly mapped reads in
percentages and the number of reads processed per second for all evaluated mapper
and parameter combinations.
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H1 | GRCh37 [llumina | 100 | paired 313,716 | 0.1 0.6 1 | DWGSIM 15.41
H2 | GRCh37 [llumina | 100 | single 313,716 | 0.1 0.6 1 | DWGSIM 11.08
D1 | BDGP6 [llumina | 150 | single 239,544 | 0.2 0.6 25 | Mason 5.06
M1 | GRCm38 [llumina | 150 | single 322,561 | 0.2 0.6 1 | Mason 19.78
D2 | BDGP6 [llumina | 150 | single 239,544 | 5.0 0.6 25 | Mason 5.45
M2 | GRCm38 [llumina | 150 | single 322,561 | 5.0 0.6 1 | Mason 19.25
D3 | BDGP6 Ion 200 | single 179,658 | 0.1 4.0 25 | DWGSIM 4.18
Torrent
M3 | GRCm38 Ion 200 | single 241,921 | 0.1 4.0 1 | DWGSIM 20.4
Torrent
D4 | BDGP6 [Ilumina 22 | single 1,633,257 | 0.2 0.6 25 | Mason 9.76
M4 | GRCm38 [Mlumina 22 | single 2,199,284 | 0.2 0.6 1 | Mason 58.38
Cl | C. 112,500 0.6
2 perifretum | Illumina | 100 | paired 37500 0.9 10 1 | Mason 30.06

Table 1: Summary of the parameters to generate simulated reads.

Performance Evaluation

To demonstrate the usefulness of Teaser we benchmarked five mappers for ten
simulated data sets (Table 1). Similar to the data studied by GCAT [8], we simulated
two human I[llumina-like read-sets assuming a genomic SNP frequency of 0.1% and
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a 0.03% (H1) or 0.07% (H2) probability for the occurrence of insertion and
deletions. Read length was set to 100 bp, assuming a sequencing error of 2%
(default of DWGSIM [9]). In addition, we simulated from the Mus musculus (denoted
by M) and Drosophila melanogaster (denoted by D) genomes 150bp Illumina-like
reads (D1, M1) assuming a SNP frequency of 0.07% and indel frequency of 0.03%,
and to mimic a more diverse organism assuming a SNP frequency of 3.5% and indel
frequency of 1.5% (D2, M2). In both cases we assumed a sequencing error of 0.6%
(default of Mason [10]). Furthermore, we simulated Ion Torrent like data (D3, M3)
and data with 22bp long Illumina-like reads as encountered in miRNA sequencing
(D4, M4). Further details of the simulations are displayed in Table 1.

To investigate the influence of the subsampling process on the performance of the
mappers we further generated five data sets with different down-sampling rates for
each organism: human, Mus musculus and Drosophila melanogaster. Mason was used
to simulated Illumina-like reads for the entire genome, and Teaser was applied to
the full data set. Supplementary Table 2 lists the properties of each data set.

Finally, to assess the performance of the mappers on a de-novo assembly we
simulated two 100bp long paired end Illumina-like data sets (C1, C2) from a de-novo
assembly of the 1Gbp Cottus rhenanus genome (FJS, ].Cheng, ]. Altmiller, AvH, AW.
Nolte, under consideration). C1 and C2 were simulated with 0.9% SNP rate, to mimic
a closely related population (Cottus perifretum) to further assess cross-species
mapping performance. Based on the observation that a portion of the reads from the
real data set had a higher sequencing error rate, we simulated C1 and C2 with a
0.6% (default of Mason) and 1% sequencing error, respectively. The combined data
sets C1 and C2 were provided to Teaser using the import function described above.

Unless otherwise mentioned mappers were executed with their default parameters
on a desktop computer with an Intel(R) Core(TM) i5-2500K (3.30GHz) quad-core
CPU and 16GB of RAM. Only the data sets used to verify the downsampling process
were computed on an Intel(R) Xeon(R) CPU X5650 (2.67GHz) with 32GB of RAM.

Results
The influence of subsampling for benchmarking mappers.

Benchmarking the five mappers with Teaser based on a full human genome took
more than ten hours. To reduce computing time, Teaser randomly samples non-
overlapping subsequences from the genome, and from each subsequence reads
were simulated as described. The simulated reads were then mapped to the entire
reference genome and evaluated. Figure 1la displays the fractions of correctly
mapped reads for Human, Mus musculus and Drosophila melanogaster datasets with
subsampling rates ranging from 100% to 1% of the genome.
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Figure 1: Effect of subsampling on the percentage of correctly mapped reads (a) and
the runtime (b) for five mappers. For the genomes of Human, Mus musculus and
Drosophila melanogaster we each generated sets of reads, once for the whole genome
(shown as star symbol) and 25 times using the default subsampling rates of Teaser. The
plots in (a) show, that subsampling genomic regions has an insignificant effect on the
mapping rates. However, subsampling saves substantial computing time, which is most
impressive for the human genome, where we observed a 60-fold reduction.

Figure 1 a shows that the proportion of correctly mapped reads is not significantly
affected by the subsampling rate. The percentage of correctly mapped reads varied
by less than 0.5% for the default sampling rates for the five mappers and the three
reference genomes. Thus, investigating the performance of mappers on randomly
sampled regions of the genome suffices. This has the great advantage that it saves
computing time as shown in Figure 1b. The saving can be quite substantial, for the
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human genome we observe a runtime reduction from over ten hours to 13 minutes
with negligible differences in observed mapping characteristics.

Benchmarking different mappers

Teaser benchmarked the two human data sets in 26 minutes (Figure 2a, H1+H2).
For both data sets, BWA-MEM outperformed the other mappers in terms of
correctly mapped reads. This result is consistent with the results reported by GCAT.
Furthermore, the ranking of the four mappers (NextGenMap was not evaluated) was
also consistent. This shows that Teaser produced for the human data the same
results as GCAT, although Teaser has much greater flexibility.
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Figure 2: Mapping accuracy and mapping efficiency for different mappers and
different input data. (a) Percentages of correctly mapped reads and (b) number of
correctly mapped reads per second for five mappers. Table 1 gives a detailed description of
the data. A * indicates that at least 99.9% of the reads were not mapped, due to limitations
of the mapper. Teaser runtime in minutes is shown in parenthesis.
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Next, we evaluated if BWA-MEM still performs best when using data from other
model organisms or using different sequencing platforms and protocols. This
evaluation is only possible with Teaser. Teaser required between 4 (D3) and 58
(M4) minutes to benchmark the data, running five mappers with their default
parameters. The long runtime of M4 was mainly due to the runtime of BWA-MEM
(41 minutes), which accounted for 70% of the total runtime. However we note that
BWA-MEM was not designed for reads shorter than 70bp [12]. For the remaining
data BWA-MEM used on average 17.9% of the total runtime.

For the Drosophila melanogaster (D1, D2) and Mus musculus (M1, M2) [llumina data
sets, NextGenMap and BWA-MEM perform almost equally well in terms of correctly
mapped reads (max. difference of 0.4%). For the simulated Ion Torrent data sets
(D3, M3), NextGenMap showed a noticeably higher percentage of correctly mapped
reads (3.02% and 3.23%, respectively) than BWA-MEM. For the miRNA data sets
(D4, M4) BWA, and not BWA-MEM, had the highest rate of correctly mapped reads
(83.41%, 74.15%). These results show the benefit of using Teaser to find the best
mapper for a specific data set, especially considering that a 1% change in
performance translates to tens of millions of additional reads mapped correctly in a
genome-wide evaluation.

As highlighted by Fonseca et al. [3] and several others, runtime is crucial when
selecting the best mapper especially in large-scale projects. In addition, for data sets
like D1/D2 and M1/M2, where NextGenMap and BWA-MEM show very similar
accuracies, runtime can be used to break the tie. To account for this, Teaser further
reports the number of correctly mapped reads per second. Here, NextGenMap and
Bowtie2 show the best performance, while BWA-MEM ranges from 2nd to 5th place
depending on the data (Figure 2b).

Automated parameter optimization and evaluation of mapping accuracy

Our previous results (Figure 2a) showed that BWA-MEM and NextGenMap
performed best in terms of mapping reads to their correct position, while in terms
of mapped reads per second (Figure 2b), NextGenMap and Bowtie2 outperformed
the other mappers. However, the efficiency of Teaser with respect to computing
times allows another application; Teaser can be used to identify parameter
combinations that increase the fraction of correctly mapped reads and the number
of correctly mapped reads per second.
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Figure 3: Throughput and percentage of correctly mapped reads for Bowtie2 when
the mapping parameters were varied (grey circles and boxes). The black triangle
shows the performance for the Bowtie2 default settings. While BWA-MEM and NextGenMap
results using their default settings are shown as a blue triangle and a yellow triangle,
respectively. Symbols above the dotted horizontal line show an increase in mapping
accuracy if compared to Bowtie2 default, whereas symbols right of the dotted vertical line
represent parameter settings with increased throughput. The number of parameter
combinations that fell in each quadrant is specified by N.., N.., N_,, N., the “A” arrow points
to the parameter combination that achieved the highest accuracy, whereas the “S” arrow
marks the parameter combination with the highest throughput. The numbers in parenthesis
behind the input data (D1, D2, D3) are the total runtimes needed to evaluate all parameter
combinations on the respective data.

To show the versatility of Teaser, we ran Teaser for Bowtie2 with the default
parameters, and eight parameter-options provided by Bowtie2 (e.g. “--very-fast”
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through “--very-sensitive”), the so-called Bowtie Preset parameters. In addition, we
defined a custom range of values for three critical parameters: the length of the seed
(-L), extending the alignment (-D), and the maximum number of times a repetitive
read will be reseeded (-R). Thus a total of 34 different combinations of Bowtie2
parameters were evaluated and compared to BWA-MEM and NextGenMap, when
the default parameters were used.

Figure 3 displays the number of correctly mapped reads per second (x-axis) and the
percentage of correctly mapped reads (y-axis) for the 34 parameter combinations of
Bowtie2 and the default parameters of BWA-MEM and NextGenMap for the
Drosophila melanogaster genomic sequencing data (D1, D2, D3). For each of the
three data sets the entire analysis finished in 21 minutes or less.

We see that changing the mapping parameters can lead to a large increase in the
number of reads mapped per second and also in the fraction of correctly mapped
reads. The plot can be divided in four quadrants relative to the position of Bowtie2
using the default parameter (black triangle): upper/lower by left/right. The lower
left quadrant (N--) represents the parameter values that resulted in a lower amount
of correctly mapped reads and a reduced throughput. Thus, they are outperformed
by the default parameters. The lower right quadrant (N-+) encompasses the
parameter settings that improve throughput, but correctly map fewer reads. The
upper left quadrant (N+-) reflects parameter values that achieved a higher
percentage of correctly mapped reads, but with reduced throughput. Those
parameter combinations are interesting, but come at the expense of additional
runtime. Thus, they may not be preferred in all applications. Finally, the upper right
quadrant (N++) represents those parameter settings that outperformed the default
parameter both in terms of speed and correctly mapped reads. Thus, the N++
parameter settings are always preferable to the default settings.

For the Drosophila resequencing experiment (D1) the default parameter values
were substantially improved in terms of runtime (32% faster) at a marginal loss of
0.3% in accuracy. For the related species sequencing experiment (D2) and the Ion
Torrent resequencing experiment (D3) some parameters settings were superior in
terms of both speed and accuracy. For D2 we identified parameter settings that lead
to a runtime improvement of 21% and that mapped an additional 1% of the reads
correctly. The higher error rate and the length of the reads provided by Ion Torrent
(D3) posed another challenge to optimize Bowtie2. Among the parameter
combinations testes, Teaser found parameter values that led to a speed-up of 16%
and a mapping accuracy that increased by 1.2%, compared to the Bowtie2 default
values. More remarkably, one parameter combination (A-arrow Fig 3 D3) tested by
teaser almost doubled the percentage of correctly mapped reads (from 53.3% to
88.6%), while achieving the same throughput as BWA-MEM (blue triangle).

Summarizing, systematically varying the parameter combinations of a particular
mapper often leads to a substantial increase of accuracy and throughput. This
optimization can be done within a few minutes and can be adapted to the specific
data at hand. However, this analysis can be automatically extended to other
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mappers. Here we have only shown how to improve Bowtie2’s performance, but we
could also easily attempt to optimize BWA-MEM, NextGenMap, or other mappers as
well.

Real (32m) Simulation (27m)
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Figure 4: Benchmarking parameters on a real (a) and simulated (b) draft de-novo
assembly. For the simulations Teaser sampled 100k reads of the C. perifretum data set and
mapped it to the de-novo assembly of C. rhenanus. Simulation parameters were

approximated based on a visual inspection of the real data set. For a detailed explanation of
the legend we refer to Figure 3.

>>pme

Application to real data

Finally, we investigated how the mappers perform on a draft de-novo assembly
using genuine and simulated Illumina data. We investigated the mapping of Cottus
perifretum reads to the de-novo assembly of Cottus rhenanus (F]S, ].Cheng, ].
Altmiiller, AvH, AW. Nolte, under consideration). . Teaser was used to map a subset
of the real reads to the de-novo assembly using the same preset and default
parameter settings of Bowtie2 and the default parameter settings of BWA-MEM and
NextGenMap. Figure 4 shows the result for the parameter optimizations for real and
simulated data. For real data, the true mapping positions are not available, so Teaser
uses the percentage of mapped reads as the criteria to assess the performance of
each run as described above. Teaser supports this statistic to allow a comparison of
the optimized parameter settings and mappers for the real and simulated data. Thus
recognizing if the parameters for the simulation were chosen reasonable or not. For
example, if the simulated and genuine results strongly disagree, this can indicate if
the genuine reads have unrecognized trimming and/or sequencing error issues.
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Teaser automatically simulated and subsampled 100k reads for the simulated and
real data, respectively. In both data sets the parameter settings of Bowtie2 perform
equally well. Only the fastest parameter (indicated by S) changed for Bowtie2 from a
preset set to a custom parameter defined by Teaser for the real data set. The overall
throughput of the mappers and parameter settings changed between the simulation
and the real data. This is expected to some degree as the simulation cannot fully
mimic the complexity of the real data, especially when mapping to a de-novo
assembly that may be incomplete and/or fragmented [16].

Software

Teaser is available as a web application (teaser.cibiv.univie.ac.at), a virtual machine
image and a command line version (https://github.com/Cibiv/Teaser) to increase
the usability for expert and non-expert users. To further boost the applicability and
advantage of using Teaser we provide different parameter settings used in this
study on our github page (https://github.com/Cibiv/Teaser). Furthermore, we
encourage the community to contribute parameter settings that improve the
performance of mappers. We will incorporate such settings in the parameter files
provided on the github page. Teaser is easy to use and at the same time extendable
for other methods and parameters to be evaluated.

Discussion

Choosing the most suitable read mapper and its parameters for a particular data set
is far from trivial [3]. Improper mapper or parameter selection can result in many
significant technical artifacts, including reduced coverage, reduced rates of
heterozygosity, false determination of allele-specific expression, or other false
results. Nonetheless, most current studies rely on default parameters of arbitrarily
chosen mappers. Teaser seeks to overcome this deficiency by assisting in choosing
the appropriate mapper and parameter setting by measuring the performance over
an ensemble of different mappers and parameter combinations. This evaluation
takes only minutes and does not require any manual intervention. Thus, Teaser is
the first automated tool that finds and justifies the usage of a mapper and its
parameter settings.

Our results for human data sets (H1, H2) are consistent with the results from GCAT
[8]. At the same time, we demonstrate the necessity of benchmarking mappers
individually for different combinations of sequencing methods, protocols, and
genome complexities. For example, we find that BWA and not BWA-MEM to be a
superior mapper for very short reads, and used Teaser to substantially improve
Bowtie2’s mapping performance for three Drosophila melanogaster data sets and a
real de-novo assembled data set. This effectively demonstrates the versatility and
importance of Teaser, although such optimizations can and should be carried out for
every mapper and for each experimental design. The analyses presented here only
scratch the surface of Teaser’s potential, leaving the scientific community to fully
explore Teaser’s full power.
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From Figure 3 it is apparent that a simultaneous improvement of speed and
accuracy is not frequently accomplished. However, it is often possible to improve
accuracy with the expense of computing time or vice versa. Ultimately, the decision
lies with the users whether they prefer parameter settings that are fast and accurate
or more accurate but slower than the default. Teaser automatically provides such
insights within minutes so that users can make an informed decision.

Teaser is easy to use and at the same time extendable to other methods and
parameters combinations. Future work will include the incorporation of
benchmarking RNA-Seq mappers and variant calling methods. We furthermore
encourage the scientific community to contribute the optimal parameter
combinations they detected to our github repository for their particular organism of
interest. This will help others to quickly select the optimal combination of mapper
and parameter values using Teaser.
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