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ABSTRACT 16 

There is a gradual change towards explicitly considering landscapes in regulatory risk assessment. To realise the 17 
objective of developing representative scenarios for risk assessment it is necessary to know how detailed a landscape 18 
representation is needed to generate a realistic risk assessment, and indeed how to generate such landscapes. This 19 
paper evaluates the contribution of landscape and farming components to a model based risk assessment of a 20 
fictitious endocrine disruptor on hares. In addition, we present methods and code examples for generation of 21 
landscape structures and farming simulation from data collected primarily for EU agricultural subsidy support and GIS 22 
map data. 23 

Ten different Danish landscapes were generated and the ERA carried out for each landscape using two different 24 
assumed toxicities. The results showed negative impacts in all cases, but the extent and form in terms of impacts on 25 
abundance or occupancy differed greatly between landscapes.  A meta-model was created, predicting impact from 26 
landscape and farming characteristics. Scenarios based on all combinations of farming and landscape for five 27 
landscapes representing extreme and middle impacts were created. The meta-models developed from the 10 real 28 
landscapes failed to predict impacts for these 25 scenarios. Landscape, farming, and the emergent density of hares all 29 
influenced the results of the risk assessment considerably. 30 
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The study indicates that prediction of a reasonable worst case scenario is difficult from structural, farming or 31 
population metrics; rather the emergent properties generated from interactions between landscape, management 32 
and ecology are needed. Meta-modelling may also fail to predict impacts, even when restricting inputs to 33 
combinations of those used to create the model. Future ERA may therefore need to make use of multiple scenarios 34 
representing a wide range of conditions to avoid locally unacceptable risks. This approach could now be feasible 35 
Europe wide given the landscape generation methods presented. 36 

1. INTRODUCTION 37 

In Europe pesticides are regulated under Regulation (EC) 1107/2009, a replacement for Directive 91/414/EEC. This 38 
change in regulation has sparked a gradual change the regulatory focus from  individual toxicity and single compound 39 
regulation towards a population approach, and consideration of ecosystem services as a key component of regulatory 40 
environmental risk assesssments (Nienstedt, Brock et al. 2012). In the USA, similar considerations have been applied 41 
to environmental risk assessment (ERA), and landscape scale ERA has already been undertaken (Landis 2003). 42 
Whereas in the EU this step has been proposed recently by EFSA (EFSA Panel on Plant Protection Products and their 43 
Residues (PPR) 2015, Topping, Craig et al. 2015). This change towards landscape scale requires consideration of many 44 
new facets of ecology in the ERA, very different from the traditional hazard quotient and toxicity-exposure ratio 45 
approach. Although it seems there is a general concensus that population models have the potential for adding value 46 
to ERA by incorporating better understanding of the links between individual responses and population size and 47 
structure and by incorporating greater levels of ecological realism, there are still many issues that require further 48 
study (Forbes, Calow et al. 2008). 49 

One of the new issues that need to be dealt with is the fact that the precise effect of pesticide application in a 50 
particular landscape configuration relies on complex spatial and temporal dynamics involved in animal behaviour and 51 
ecology. For example, in ERA focus is often placed on recovery of local populations, utilizing the spatial dynamics of 52 
mobile agricultural land species. However, this recovery is normally based on small plot experiments which do not 53 
take into account the landscape scale impacts of source-sink dynamics (Topping and Lagisz 2012, Topping, Kjær et al. 54 
2013, Focks, ter Horst et al. 2014). In addition, the way in which the pesticide is used, and the context into which it is 55 
placed is also likely to alter population outcomes (e.g. 20% by area treated in a predominatly arable area may have a 56 
different effect to the same area in a pastoral context).  57 

In conservation and general ecology it is well known that landscape structure will influence population dynamics, and 58 
population persistence (e.g. Silver, Wooster et al. 2004, Aviron, Kindlmann et al. 2007, Pavlacky, Possingham et al. 59 
2012), and as a consequence that it can affect biological control in agro ecosystems (With, Pavuk et al. 2002). 60 
However, until recently there was little focus on the role of landscape structure in determining impacts in ERA. In 61 
some cases landscape features have been used to more precisely determine predicted exposure (Gaines, Porter et al. 62 
2005), or as an explanatory variable in estimating population impacts , but rarely taken into account as a determining 63 
factor for the state of the population before exposure to pesticides. However, previous simulations using voles and 64 
carabid beetles have shown that precise structure is important to predict pesticide impacts, i.e. both composition and 65 
configuration of landscape elements must be considered (Dalkvist, Sibly et al. 2013, Topping, Craig et al. 2015). 66 
Similarly it can be expected that the context of the pesticide application will also be important if it changes the 67 
properties of the population in focus. This will include both landscape structure and management contexts altering 68 
exposure as well as potentially the state of the organisms pre-exposure. 69 

Recent EFSA scientific opinions (EFSA Panel on Plant Protection Products and their Residues (PPR) 2015, EFSA Panel on 70 
Plant Protection Products and their Residues (PPR) 2015) highlight the need for landscape approaches, and a number 71 
of studies include spatial issues in pesticide ERA (e.g. Topping and Lagisz 2012, Liu, Sibly et al. 2013, Meli, Auclerc et al. 72 
2013). However, many approaches utilize very simplified representations of the spatial structure of the landscape. 73 
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Landscapes represented by one or a few regularly shaped fields are common, despite the fact that when linked to 74 
population models it is known that these regular representations result in bias (Holland, Aegerter et al. 2007).  There 75 
must therefore also be an open question regarding neutral landscapes (With 1997) generated by more complex 76 
artificial procedures. In these landscapes, statistical structure may be comparable, but functional structure may not be 77 
maintained (e.g. roadside verges by roads, field geometry and field margin placement).   78 

There may be four reasons for not using realistic landscapes. The first is an active choice of a simple representation for 79 
simplicities sake. The second may be that computational limits resulting from hardware or language limitations restrict 80 
the complexity of the system modelled. The third may be that creation of sufficiently accurate and detailed landscape 81 
representations is difficult in itself. Fourth, if it was demonstrated that landscape realism has no impact on the ERA. In 82 
this study, we address the question of the extent of the impact precise landscape and farming configurations have on 83 
an ERA. This is done using a range of Danish landscapes and their associated management created from EU farming 84 
subsidy claim data together with readily available GIS mapping data.  85 

To be able to make a realistic assessment of landscape and management impacts it was necessary to be able to create 86 
realistic maps and farm management. The method for creating landscapes which can be used as a basis for landscape-87 
scale population-level risk assessment is presented, as well as details of the ALMaSS farm management module. The 88 
landscape generation method involves the linking of a number of data sets not previously possible due to data 89 
restrictions. It is therefore a new a powerful procedure that may be widely applicable. 90 

This paper considers how landscape structure and management affects ERA by carrying out what might be considered 91 
a higher tier ERA of a fictitious endocrine disruptor by modelling hare populations in various landscape scenarios in 92 
ALMaSS (Topping, Hansen et al. 2003). 93 

2. METHODS 94 

This paper present a simulation of pesticide application scenarios in ten real Danish landscapes. The simulation 95 
models used are part of ALMaSS (Topping, Hansen et al. 2003), a large simulation system comprised of many 96 
interacting agent-based models.  ALMaSS has two main components: the dynamic environment or landscape that 97 
change over time as a result of farm management and season and the animal agents that are affected by the 98 
landscape and interact with other agents. This section is divided in three: The making of the landscape is described in 99 
“Landscape generation” below and the agent-based modelling is treated under “ALMaSS simulation system”. Finally, 100 
the choice of pesticide application scenarios and analyses is described under “Scenarios”. 101 

2.1 LANDSCAPE GENERATION 102 

All landscapes used in the current study are surface covering raster maps with a resolution of 1 m * 1 m. They were all 103 
generated using the same mapping algorithm and input data sets. The overall process consists of the following six 104 
steps:  105 

1. Classifying and defining farm types;  106 
2. Stratified selection of model landscapes;  107 
3. Converting input vector data to raster layers;  108 
4. Combining individual raster layers into thematic maps (e.g., all road types, paths and railway tracks in a 109 

transportation theme);  110 
5. Stacking thematic maps in a reasonable order (i.e. roads on top of fields etc.), and, finally;  111 
6. Reclassifying and regionalising the land cover map to an ALMaSS landscape.  112 
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Below we first describe the input data, then the steps involved in generating the final map. For further details see 113 
Appendix 1 and the program code (in Python) available at:  https://github.com/au-bios/python-landscapegen. 114 

2.1.1 INPUT DATA 115 

We used publicly available vector map layers from the Danish common public geographical administration data 116 
(GeoDanmark data, downloaded 2012, http://download.kortforsyningen.dk ). The vector layers were used to map 41 117 
different landscape features (see Table S1).  118 

The Danish AgriFish Agency (under the Ministry of Food, Agriculture and Fisheries) maintains an annually updated 119 
map of all fields and a database of crops grown in Denmark (“Det Generelle Landbrugsregister” - GLR) (Danish Ministry 120 
of Food Agriculture and Fisheries 1999). Farmers are obliged to report for each individual field the crop they intend to 121 
grow the following year. The data set used in this study is from 2013 where more than 45,000 farmers contributed to 122 
the database. The data set makes it possible to identify the owner (or manager) of each field and the actual crop 123 
grown on it. 124 

Lastly, where a pixel in the final land-cover map  was not covered by either a field or any of the GeoDanmark layers 125 
(approximately 3-5% of the area), we used the Area Information System (AIS) data, which is a surface covering map 126 
with 45 different land cover types for Denmark (Stjernholm, Olsen et al. 2000). The AIS map is based on data and 127 
satellite imagery from the late nineties, but is, nevertheless, the best surface covering map available.   128 

Soil types, used for farming and vegetation growth purposes in ALMaSS, are also mapped. To map soil type to each 129 
field in the landscapes we used a soil classification map (resolution 1:200.000) from the Danish centre for food and 130 
agriculture (DCA) at Aarhus University (downloaded from http://dca.au.dk/forskning/den-danske-jordklassificering/). 131 
The soil classification map was rasterized and field polygons were overlaid to determine the dominant soil type for 132 
each field. 133 

During an ALMaSS simulation, crop type on any field at any time is a function of management (crop rotation based on 134 
the GLR data), weather and the soil type of the field.   The crop rotation also depends on the farm type, which is 135 
created by classifying GLR data together with data on the numbers and type of stock a farm has. This data is available 136 
from the Danish Livestock Register (CHR) (Danish Ministry of Food Agriculture and Fisheries 1999) a data set used 137 
primarily for disease control in Denmark. 138 

2.1.2 STEP 1: FARM CLASSIFICATION AND ROTATION 139 

A small program was used to classify all farms in Denmark into general farm types (see Appendix 1 for documentation 140 
and links to program code and its documentation). The program classifies all farms based on a combination of the 141 
crops they are growing using data obtained from the GLR, and on the animals they have from the CHR.  142 

By combining crop and animal information, it was possible to identify major farm types such as pig or arable, or dairy 143 
farms. Some less common types are also identifiable, e.g. farmers that grow sugar beet on contract. In addition to this 144 
information the GLR also indicates whether a farm is organic or not and the overall farm size. This extra information 145 
provides the basis for the classification. Rules used to classify the farms needed to be very general because real farms 146 
tend not to fit neatly into pure farm type rules (e.g., many arable farms have grazing because they have some animals 147 
e.g. horses or a few animals for their own consumption). The rules used were: 148 

1. Farms with large proportion of vegetables (minimum 0.5) and larger than 2-ha were organic or conventional 149 
Vegetable farms, otherwise if small were classified as 'other'. 150 

2. Farms with a proportion of potatoes or sugar beet not less than 20% were Potato or Beet farms respectively. 151 
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3. Farms with animal (cows, sheep and pigs) transformed to standard animal units that have fewer than 20 animal 152 
units and an area less than 20 ha were designated as Hobby farms (<25 ha is typically part-time or hobby (Levin 153 
2006), so 20 ha will reduce the chance of misclassifying commercial farms). 154 

4. Farms with animal units above 20 and cattle + sheep above 75% they were designated as Cattle farms. 155 
5. Farms with animal units above 20 and pigs above 75%, or crop area of grazing pigs above 15% were designated as 156 

Pig farms. 157 
6. Farms with animal units above 20, but not pig or cattle farms, were designated as Mixed Stock. 158 
7. Farms with no animals registered but with large areas of grazing were assumed to be either Cattle farms or Mixed 159 

Stock farms depending on whether grazing area was above 40% or 20-40% respectively. 160 
8. All remaining farms must have been Arable farms (i.e. large area with few or no animals and little or no grazing). 161 

All farms except ‘other’ could be designated as organic or not dependent upon the information on that farm in the 162 
GLR giving a total of 17 farm types possible. 163 

For each farm type, the mean proportion of the farm crop area was calculated for each crop. Crops with less than 1% 164 
share of the area of a farm type were ignored and the rest used to create a farm rotation for that classification. It was 165 
assumed that the rotation could be represented by 100 crops (1 crop for each 1%). The order of crops followed typical 166 
agronomic practices and issues such as late harvest leading to impossible sowing conditions were controlled by the 167 
built in ALMaSS farm code. The result is a pattern of changing crops on a field that matches the overall crop 168 
distribution pattern for that farm type precisely over 100 seasons. Viewed on a larger scale crop distributions will 169 
therefore be overall correct at any point in time, although the actual crop grown on a single field will not replicate 170 
reality. This method does not, however, take into account differing soil types between fields, which in reality would 171 
restrict some crop distributions. 172 

2.1.3 STEP 2: LANDSCAPE SELECTION 173 

We created ten landscapes representing different predominant farming/landscape structure combinations for use in 174 
the pesticide scenarios. Initially all farms were classified and mapped at national scale. ’Hot-spots’ where particular 175 
farm types dominated were identified and the landscapes selected to capture as much variation as possible whilst 176 
having all main types represented. The ten 10 x 10 km landscapes cover predominantly agricultural areas without 177 
large woodlands or towns. Predominant farm types were conventional pig (2 landscapes), conventional cattle (3), 178 
conventional arable (2), conventional potato (1) conventional sugar beet (1) and organic cattle (1) (see Appendix 3).  179 

2.1.4 STEP 3: CONVERSION OF VECTOR- TO RASTER-LAYERS 180 

Each of the vector layers were initially rasterized with a resolution of 1 m * 1 m. Linear features were described as 181 
their centre line. To get a meaningful raster representation of these features, a buffer was added when converting to 182 
raster. For example for large roads (width 10m) we added a 5m buffer around the centre line. Same procedure was 183 
followed for other linear features (e.g. streams and hedgerows). Point features such as wind turbines, power pylons 184 
and individual trees which are represented as their centre points were also buffered (see the online code for details). 185 
Fields are a special case since identification of individual fields is necessary for the farm management in ALMaSS. 186 
When converting the vector layer of all fields, each field was assigned a unique id. All input data initially used the UTM 187 
zone 32/ETRS89 coordinate system. 188 

2.1.5 STEP 4: COMBINING INDIVIDUAL RASTER LAYERS INTO THEMATIC MAPS 189 

Individual layers were organized into thematic maps before combining to the final map. E.g. all layers with roads, road 190 
verges, road side slopes, tracks, railroads etc. were combined in to a road theme. In total the 41 layers were combined 191 
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into six different themes (built up areas, nature, wet nature, water and cultural areas). At this point, each theme is a 192 
raster map with the value 1 where features in the theme are absent or another numeric value unique to the theme 193 
where the features are present. 194 

2.1.6: STEP 5: STACKING OF THEMATIC MAPS 195 

Finally the themes were stacked step by step onto each other. Since each data source has variable accuracy, and some 196 
features are overlaid, a procedure was needed to ensure complete coverage, this was based on 9 layers and maps:  197 

• The field layer was used as the bottom layer (1) 198 
• The lake and streams were put on top of the field layer (2) 199 
• Dry natural areas were then added, but only to cells not already occupied by 1 or 2 (3)  200 
• Built-up areas were added to cells not already occupied by 1, 2 or 3 (4) 201 
• Wet natural areas (5) 202 
• Cultural features (6) 203 
• Roads (7)  204 
• Sea (8) 205 
• Buildings (9) 206 

Layers 5-9 were added sequentially on top of everything else.   207 

After this process there may still be a number of cells without land cover type, depending of the quality of the input 208 
data. For the present study we used an existing, older land cover map of Denmark (AIS data) to fill in these gaps. 209 

All handling and analysis of spatial data was done using Python and the python library *arcpy* to access ArcGIS 210 
features. The python script used to generate the maps used here is freely available on Github (https://github.com/au-211 
bios/python-landscapegen). 212 

2.1.7 STEP 6: RECLASSIFY AND REGIONALIZE LAND COVER MAPS 213 

The land cover map contains more detail than are used in ALMaSS for the purpose of this study and need to be 214 
condensed into the landscape element types to be used in the simulation system. This was done using a simple 215 
reclassification of sub-divided types to ALMaSS landscape element types.  Finally, as the landscape simulation engine 216 
in ALMaSS works on polygons rather than individual cells, clusters of cells with similar land cover class were converted 217 
into polygons using regionalizing and exported in ASCII raster format with each cell of the raster containing the 218 
polygon reference number for the polygon occupying the majority of that 1m2. ALMaSS therefore uses the flyweight 219 
pattern (Gamma, Helm et al. 1994) with eachcell in the raster containing a reference number of a polygon where all 220 
data concerning that polygon is stored. Polygons are considered to be homogenous. 221 

2.2 ALMaSS SIMULATION SYSTEM 222 

For a comprehensive description of the ALMaSS, the reader is directed to the online documentation found at (Anon. 223 
2014).  This documentation follows ODdox format (Topping, Hoye et al. 2010), combining model description with 224 
doxygen (van Heesch 1997) code documentation.  225 

ALMaSS is comprised of two main components, the environment and its associated classes and the animal 226 
representations (classes). The environment interface is provided by the ‘Landscape’ class. This class contains a map of 227 
the landscape to be simulated together with individual landscape elements such as fields, hedges, roads and 228 
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woodlands. Fields are a special case. Fields are linked in groups to form farms. These groups were based on ownership 229 
or management information from municipal or EU-farming subsidy sources (see Landscape Generation). Each farm is 230 
an instance of the Farm class which simulates the detailed management of its fields, dependent upon its farm type, 231 
the weather, soil type, and past history of management.   232 

Crop management is an important feature of ALMaSS. Although originally implemented in 2003 (Topping, Hansen et 233 
al. 2003), ALMaSS still appears to be unique in being able to generate dynamic patterns of crop usage at landscape 234 
scales together with detailed crop husbandry. This produces emergent properties of crop distribution between fields 235 
and proportions of crops at the landscape scale, but also of patterns of crop management activities in space and time 236 
(e.g. see Topping and Odderskær 2004, Gevers, Hoye et al. 2011, Parry, Topping et al. 2013). The farm management 237 
and crop rotation methods in ALMaSS are documented previously (Topping 2009) but a written description has also 238 
been provided in Appendix 2. 239 

All vegetated landscape elements (crops and non-crops) undergo type-specific daily vegetation development based on 240 
weather and fertilizer inputs as drivers. Farm management events (e.g. spraying, harvest, ploughing) directly interact 241 
with vegetation height and biomass, providing a dynamic picture of changing landscape conditions as a result of both 242 
environmental and anthropogenic processes and factors. These events may impact animals directly (e.g. ploughing 243 
related mortality) or indirectly e.g. pesticide application resulting in residues and subsequent exposure. 244 

The second main ALMaSS component is the simulation of animals, represented by specific species classes all derived 245 
from a common base class. All animals are agents and are affected by environmental variables, vegetation structure, 246 
and by direct interaction with other agents or farm management. Each animal represents an individual of a particular 247 
species, with its own behavioural rules and interactions with its environment. Animals can sense the characteristics of 248 
their environment (habitat type, vegetation structure, temperature etc.), management events, and their own 249 
physiological condition. Hence, animals exposed to management will choose behaviour suitable for that management, 250 
their current location, and physiological state. Animals can interact with each other in a variety of ways ranging from 251 
simple local-density dependent interactions to complex behavioural messaging, depending upon animal type and 252 
current activity. All animals share a common basic form of control simulated as a state machine. This means that they 253 
exhibit behaviour associated with a specific state, and make transitions to other behavioural states as a result of 254 
internal or external cues.  255 

2.2.1 HARE MODELLING 256 

The animal model used for all simulations here was the European Brown Hare model (Topping, Hoye et al. 2010). The 257 
model simulates the growth, movement, reproduction, and mortality of individual hares using a daily time-step for 258 
most activities, but a 1 minute time-step for foraging. Full details of the hare model are described by (Topping 2009), 259 
but a short description is presented here to aid readability. 260 

The hare model simulates five life-stages: infants up to 11 days during which they are totally dependent on the 261 
lactating doe; young 12-35 days old after which they are fully weaned, juveniles 35-365 days old, adult males and 262 
females. In the model hares are quite mobile and able to find suitable forage over a wide area when not encumbered 263 
with young. If feeding conditions are good hares will generally drift over large areas, in poor feeding conditions the 264 
hares will optimally forage, and thus may become restricted to localised ranges for periods within a season. Breeding 265 
starts in spring if body condition allows for the production of foetal mass. After birth the female must increase her 266 
energy intake in order to provide enough energy for lactation. Energy comes from foraging from green shoot material 267 
and the amount of energy obtained depends on the age of the shoot and the overall structure of the vegetation. 268 
Dense vegetation may therefore have a high food value in terms of biomass but a poor digestibility and high 269 
impedance. A female that cannot support lactation because her combined energy intake and reserves fall too low will 270 
abandon her young. Reproduction will not be attempted again until energy reserves are replenished. Growth of model 271 
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hares is also dependent on energy balance and hares which do not achieve 45% of their potential weight at any age 272 
will die. Adults rarely die of energy shortage and are assumed to be able to "carry" a negative energy balance. They 273 
thus will remain in the population contributing to social stress, which is ultimately the primary density-dependent 274 
regulation factor in the hare model and reducing population growth. Hunting occurs in autumn but other non-275 
energetic related losses are based on life-stage specific constant daily probabilities (e.g. predation of young), or on 276 
events driven by human management activities (e.g. harvest mortality). 277 

2.2.2 PESTICIDE MODELLING AND TOXICOLOGY 278 

The model hares must forage realistically from the landscape and are exposed to pesticide residues in the process. 279 
Foraging is done by selecting a 10 x 10 m area at the current hare location and foraging from this; this is assumed to 280 
take 100 minutes. The hare then selects the 10 x 10 m area adjacent to this first forage area that provides the best 281 
energetic return based on forage quality and impedance. Time to walk between squares and sample them is also 282 
included. This process continues until either the period of time allocated for foraging is used up, or the hares cannot 283 
eat any more.   284 

Hares have an energetic maximum daily intake limit of 5500 kJ day-1 (Valencak, Tataruch et al. 2009), but stomach 285 
contents of wild hares contain 11 kJ g-1 (Hacklander, Tataruch et al. 2002), which suggests a daily throughput 286 
maximum of 500 g. The maximum rate observed for hares by Andersen (1947) was 1.7g per minute would result in 287 
only 294 minutes foraging. This is much less than assumed in ALMaSS where 67% of the daily activity will be foraging 288 
or movement associated with foraging. To compensate we assume that intake rate in grams per minute is 500/(1440 289 
min x 0.67)  = 0.518 g per foraging minute. If the hare uses less time than this due to other activities, then the 290 
pesticide intake rate will decrease proportionally with the forage intake. The ingestion rate of pesticide (mg minute-1) 291 
is therefore the environmental concentration (mg/g) multiplied by 0.518 for each minute spent foraging in each 292 
location. 293 

The model includes internal and external toxicokinetics (TK) in terms of the varying rates of ingestion of the pesticide, 294 
and the process of elimination within the hare. The internal TK are represented by a single compartment model 295 
assuming a percentage elimination rate per day. External TK is determined by the feeding behaviour of the hare and 296 
ultimately by the time spent feeding from contaminated areas, and the concentration of pesticide on vegetation.  297 

We based the scenarios on a generalised pesticide. Application rates are assumed to be 10 g a.i. per hectare.  This 298 
gives a residue of 0.4 mg/kg vegetation immediately after spraying based on a mean residual unit dose (RUD) for 299 
cereals and leafy forage crops (Fletcher, Nellessen et al. 1994).  This will result in a daily dose of 0.2 mg a.i. per day 300 
(0.5 kg/d x 0.4 mg/kg = 0.2 mg/d), if an adult hare eats its full 500 g from a contaminated area immediately after 301 
spraying. Per foraging minute we can calculate that the initial rate after spraying would be 0.000518kg * 0.4 mg/kg = 302 
0.000207 mg/min. We assume an environmental half-life of 7 days.  303 

Drift was included, assuming that drift occurs up to 12 m from the edge of any sprayed field, following the equation p 304 
= e-0.6122x, where p is the proportion of application rate falling from x to 1m, and x is distance in m from the point of 305 
spray. This gives c.a. 24% drift at 1 m, and 2.1% at 5 m. The direction of drift varies randomly depending on the day of 306 
spraying and was assumed to be due north, south, east or west. 307 

In all cases it was assumed that the pesticide was an insecticide. Spraying on spring barley harvested at maturity (i.e. 308 
not spring barley for silage), was with a 35% chance of one application each season. For winter wheat grown to 309 
maturity there were up to three applications per season each with a 50% chance dependent on carrying out the 310 
previous spray (3 applications probability is therefore 12.5%). Spring barley application was on April 30th, winter wheat 311 
applications on 15th May, 1st June and 15th June. No other crops were assumed to be treated with toxic substances, 312 
although otherwise followed normal agricultural management. These treatment probabilities allowed calculation of 313 
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mean frequency of application per landscape by calculating the area of barley and wheat and multiplying by their 314 
respective treatment frequencies. 315 

The toxicological effects assumed were entirely constructed and are not intended to represent any real pesticide, but 316 
were designed to demonstrate noticeable impacts. The effect used was intended to represent a chronic reproductive 317 
effect. Change in litter size is typical of such an impact for pesticides on mammals (Bishop, Morris et al. 1997, Sharara, 318 
Seifer et al. 1998), and we assumed that this was the only impact (typically litter number and offspring size can also be 319 
affected). For the chronic effect, the impact of exposure above a threshold body-burden is modelled as a uniformly 320 
distributed chance of litter size reduction of 0-100% for female hares exposed during gestation of that litter. Initial 321 
scoping runs indicated that a trigger threshold of 0.0001 mg a.i./kg bw with an internal degradation rate of 5% per day 322 
gave noticeable population level impacts. This was designated as the 1X toxicity scenario. Increasing sensitivity by 323 
factor 10 to 0.00001 mg a.i./kg bw was designated the 10X toxicity scenario. 324 

2.3 SCENARIOS 325 

Ten landscapes of 10 x 10km area were selected using the landscape generation methods described above. These 326 
landscapes varied in structure and had differing farm management based on differing predominant farm types (Pig (2 327 
landscapes), Dairy (3), Arable (2), Organic Dairy (1), Potato (1) and Sugar beet (1)). They were also chosen to span the 328 
range of hare densities encountered in Denmark, from high (Lolland, sugar beet) to low (Mors, pig farms) (Table 1). 329 
See Appendix 3 for a figure of each landscape and Appendix 4 for the proportion of area assumed occupied for each 330 
crop for each farm type. The proportion of the area of landscape occupied by each main crop and the total area 331 
treated with pesticide varied between landscapes. Treated area varied from 35% to 60% of the farmed landscape 332 
(Table 2). 333 

Esbjerg Himmerland Karup Kolding Lolland 

Type %Area Type %Area Type %Area Type %Area Type %Area 

Conv. Cattle 75% Conv. Cattle 65% Conv. Potato 84% Conv. Arable 59% Conv. Beet 86% 

Conv. Arable 10% Conv. Pig 11% Conv. Cattle 6% Conv. Pig 20% Conv. Arable 11% 

Conv. Mixed Stock 4% Conv. Mixed Stock 9% Org. Cattle 3% Conv. Cattle 12% Conv. Mixed Stock 1% 

Conv. Pig 4% Conv. Arable 8% Conv. Hobby 2% Conv. Hobby 4% Conv. Cattle 1% 

 334 

Mors Næstved Odder Toftlund Tønder 

Type %Area Type %Area Type %Area Type %Area Type %Area 

Conv. Pig 56% Conv. Arable 61% Conv. Pig 42% Conv. Cattle 39% Conv. Cattle 60% 

Conv. Cattle 18% Conv. Mixed Stock 16% Conv. Cattle 14% Org. Cattle 26% Org. Cattle 17% 

Conv. Arable 18% Conv. Pig 8% Conv. Arable 36% Conv. Arable 14% Conv. Arable 13% 

Conv. Hobby 5% Conv. Cattle 7% Con. Hobby 4% Conv. Pig 10% Conv. Pig 5% 

Table 1. Ten landscapes (Esbjerg – Tønder) with the for most common farm types by area listed. Conv. = conventional. 335 
Org. = organic. 336 

 Esbjerg Himmerland Karup Kolding Lolland Mors Næstved Odder Toftlund Tønder 

Spring Barley 0.214 0.250 0.271 0.304 0.281 0.288 0.301 0.301 0.225 0.228 

Rotational Grass 0.243 0.256 0.063 0.078 0.018 0.099 0.068 0.085 0.266 0.291 

Winter Wheat 0.110 0.145 0.069 0.276 0.230 0.275 0.260 0.284 0.128 0.123 
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Permanent Grass 0.144 0.019 0.139 0.037 0.194 0.012 0.082 0.009 0.030 0.016 

Oats 0.016 0.019 0.014 0.026 0.004 0.023 0.024 0.025 0.038 0.034 

Potatoes 0.002 0.001 0.139 0.003 0.001 0.001 0.002 0.001 0.010 0.002 

Winter Rye 0.020 0.025 0.026 0.037 0.005 0.037 0.036 0.038 0.032 0.028 

Sugar Beet 0.002 0.003 0.001 0.005 0.194 0.004 0.008 0.005 0.002 0.002 

Spring Barley Silage 0.038 0.040 0.009 0.009 0.001 0.012 0.007 0.010 0.050 0.051 

Winter Rape 0.031 0.042 0.016 0.086 0.021 0.084 0.082 0.088 0.036 0.034 

Spring Wheat 0.005 0.006 0.005 0.010 0.002 0.009 0.009 0.009 0.013 0.010 

Winter Barley 0.027 0.035 0.014 0.063 0.014 0.069 0.056 0.069 0.030 0.029 

Seed Grass 0.015 0.021 0.014 0.015 0.017 0.023 0.023 0.020 0.018 0.016 

Vegetable crops 0.002 0.002 0.002 0.003 0.003 0.003 0.004 0.003 0.002 0.002 

Maize Silage 0.099 0.100 0.028 0.020 0.006 0.032 0.015 0.025 0.066 0.094 

Others 0.031 0.036 0.191 0.029 0.009 0.030 0.027 0.028 0.053 0.038 

Total  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Treated 0.362 0.434 0.348 0.589 0.511 0.574 0.567 0.595 0.403 0.402 

Table 2. The proportion of each ALMaSS crop, ordered by overall area, by area in each of the ten landscapes used for 337 
the study. ‘Treated’ is the sum of the area treated with the pesticide for which the ERA was carried out (winter wheat 338 
and spring barley). 339 

We considered four types of scenario for each:   340 

1) Baseline scenarios using the correct farm classification and rotation for each landscape;  341 
2) A treatment scenario using an application of our test pesticide using both acute and chronic toxicological 342 

impacts separately for each landscape using both 1X and 10X toxicity;  343 
3) Baseline scenarios using farming information from another landscape;  344 
4) Treatment scenarios using baseline conditions from ‘3’ and an application of our test pesticide using both 345 

acute and chronic toxicological impacts separately for each landscape using 1X toxicity. 346 

Scenarios 3 & 4 were used to evaluate landscape and farming independently. These scenarios used farm management 347 
combinations from Esbjerg, Karup, Lolland, Odder and Tønder, as representing the range of density options from the 348 
baselines. In all cases all 20 replicates were run with all five farm classifications (an additional 20 combinations in 349 
addition to the five baselines). 350 

For all scenarios simulations were run for 30 years and the pesticide was applied in the last 10 years (21-30). 351 

2.4 ANALYSIS 352 

Each scenario was run by running 20 replicates and analysed separately before creating an average response statistic 353 
of the 20 replicates. These response statistics were used to compare impacts. We used the Abundance Occupancy 354 
Ratio index (AOR-index (Hoye, Skov et al. 2012)) to compare responses between scenarios using a fixed grid size of 355 
400m.  The AOR-index provides a measure of changes in occupancy and abundance of hares relative to a baseline 356 
scenario. If we assume equal weighting to both changes in occupancy and abundance, then a summed AOR score can 357 
be made by summing the changes in both dimensions. This provides a reasonable guide to overall impact and is more 358 
sensitive than using the more typically employed measurement endpoint of population size (e.g. Dalkvist, Sibly et al. 359 
2013). 360 
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If using AOR scores for ERA then typically we are concerned with a specific protection goal (SPG), which if described at 361 
the population level might be ‘negligible effects’ (see e.g. EFSA Panel on Plant Protection Products and their Residues 362 
(PPR) 2015). This could be done using the AOR approach to integrate both spatial and temporal impacts. In this case a 363 
SPG would need to be specified in terms of population impacts (e.g. a trigger value of 10%); then any scenario 364 
resulting in a summed AOR score of < -0.1 would trigger concern (see Fig. 1 for a graphical representation).  365 

3. RESULTS 366 

Baseline hare densities were predicted to vary between the landscapes (Table 3). Variations in density match the 367 
estimates for differences between landscapes reported for Denmark to date (ref Hare Management Plan). Densities 368 
on two places from the Lolland region were 65 and 111 hares km-2. Other regions varied between 3.1 and 13.0 hares 369 
km-2, 13 being a count from the Tønder area. Thus, although not possible to directly test the model against data from 370 
precisely replicated conditions, the general trends and range of densities seems to match those recorded. 371 

Landscape Es Hi Ka Ko Lo Mo Na Od To Tø 

Total Hares/km2 11.31 11.97 2.94 21.15 65.24 3.72 7.94 2.17 1.25 28.50 

Table 3. Baseline hare densities predicted for each landscape. Es = Esbjerg, Hi = Himmerland, Ka = Karup, Ko = Kolding, 372 
Lo = Lolland, Mo = Mors, Na = Næstved, Od = Odder, To = Toftlund, Tø = Tønder 373 

Evaluating the impact of the endocrine disruptor at 1X and 10X toxicity using AOR scores was performed by 374 
comparison of mean AOR score over the last 10-years of simulation. In order to be sure that the deviations from the 375 
baseline were significant, and not due to between run variation, the analysis was performed for the 10 simulation 376 
years before pesticide application. The variation here can be considered to be the range of variation which cannot be 377 
attributed to the treatment differences. This variation was largest in the 10x toxicity replicates (Fig. 1a). This 378 
background variation is clearly small enough to be able to make comparisons between landscapes without any need 379 
for statistical tests. 380 

  381 

Impacts of applying the pesticide varied considerably between landscapes (Table 4). For 1X toxicity impacts varied 382 
between -0.027 to -0.143 for abundance, and -0.018 and -0.228 for occupancy. The range for 10X toxicity was -0.113 383 
to -0.246 and -0.054 and -0.501 for abundance and occupancy respectively. Summed AOR scores provide an estimate 384 
of the total impact. Summed AOR for 10X toxicity was correlated with summed AOR for 1X, and was larger by a factor 385 
2.14 (regression y = 2.14x - 0.0301, R² = 0.5, n = 10). Impacts were highest in Mors, Næstved and Odder, and lowest in 386 
Tønder. The lower impacts seem to correlate with more extensive farming in this area. 387 

Endocrine Disruptor 1X Tox. Es Hi Ka Ko Lo Mo Næ Od To Tø 

Occupancy -0.077 -0.095 -0.167 -0.112 -0.028 -0.228 -0.191 -0.143 -0.220 -0.018 
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Abundance -0.070 -0.070 -0.030 -0.086 -0.143 -0.033 -0.032 -0.056 -0.027 -0.049 

Summed AO -0.147 -0.165 -0.197 -0.197 -0.170 -0.261 -0.223 -0.199 -0.247 -0.067 

Endocrine Disruptor 10X Tox.          

Occupancy -0.221 -0.233 -0.179 -0.343 -0.161 -0.481 -0.501 -0.424 -0.370 -0.054 

Abundance -0.152 -0.160 -0.123 -0.185 -0.246 -0.136 -0.149 -0.173 -0.119 -0.113 

Summed AO -0.373 -0.393 -0.301 -0.528 -0.408 -0.617 -0.649 -0.598 -0.489 -0.167 

Table 4: Occupancy, abundance and summed AO scores for each landscape after treatment with an endocrine 388 
disruptor set at 1X and 10X toxicity. Es = Esbjerg, Hi = Himmerland, Ka = Karup, Ko = Kolding, Lo = Lolland, Mo = Mors, 389 
Na = Næstved, Od = Odder, To = Toftlund, Tø = Tønder 390 

To attempt to make a simple model that could be used to predict impact, the sum of the AOR scores was used as a 391 
measure of impact and plotted against baseline hare density and landscape descriptors for both 1X and 10X toxicity 392 
(Fig. 2). In 1X toxicity scenarios density was the best determinant of impact (R2 = 0.52), followed by arable area (R2 = 393 
0.49), pesticide treated area (R2 = 0.38) and lastly treated area multiplied by number of applications (R2 = 0.25). 394 
However, the pattern was quite different in the 10X toxicity scenarios. R2 for density was 0.03, arable area 0.35, 395 
treated area 0.88, and treated area multiplied by number of application 0.86. 396 

In both cases density was combined with the best correlated landscape descriptor to try to improve model fit using 397 
linear, geometric and exponential combinations. Here our aim was to find the best way to combine these parameters 398 
to create a good meta-model for the ALMaSS simulations. The resulting best overall model was: 399 

Summed AOR as = a℮d^i, where a is the proportion of area treated, and d is the density (adult female km-2) and i is a 400 
constant. 401 

R2 (n=10) for the fitted model was high (0.83 & 0.89 for 1X & 10X toxicity), thus impact could be predicted using the 402 
regression equation of this model. This, however, would require both treated farm area and hare density as inputs, 403 
and the equation for the model was rather different in 1X & 10X versions, with i having values of 0.373 and 0.022 404 
respectively. However, the fit for 10X toxicity was equally good based on treated area only (Fig. 2). 405 

 406 
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  407 

To further analyse the extent landscape structure and farming influenced the impact of the pesticide the 10X 408 
simulation was run for all possible combination of 5 landscapes and their farming. The resulting hare densities varied 409 
slightly more than the original 10 landscapes from virtual extinction in all Lolland landscape runs (except when using 410 
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Lolland farming), to 14 adult females km-2 for all other landscapes with Lolland farming. There was a clear separation 411 
between both farming effects and landscape effects on the hare densities (Fig. 3). Further analysis was performed 412 
using AOR scores for all landscape combinations with pesticide compared to the same combination without pesticide. 413 

 414 

 415 

 416 

Using the same model as used to predict summed AOR scores for the 10 baseline landscapes did not predict impacts 417 
as well for this larger data set (R2 = 0.42, n= 21). The four low density Lolland landscapes could not be fitted using the 418 
model chosen and were ignored as outliers. There was no clear pattern discernible from the fit except an indication 419 
that the Tønder landscape deviated more from the linear fit than the others. It was not easy therefore to predict 420 
impacts with accuracy based on a knowledge of area of pesticide use and hare density, even though in the smaller 421 
landscape set this seemed promising.  422 

AOR plots for scenarios where landscape/farming combinations were tested showed that when considering impacts of 423 
a pesticide on a population that both landscape and farming can have very large influence on the ERA endpoints. In 424 
the Tønder landscape the impacts of pesticides were low for all farming regimes tested, with impacts primarily on 425 
abundance of 0-5% (Fig. 4). In contrast, impacts on the Lolland landscape were in general very large reductions in 426 
occupancy due to the low population size resulting from 4 out of 5 of the farming regimes, and large impact on 427 
abundance in the one farming regime that gave high hare densities. Farming regimes had different influences in all the 428 
different landscapes, although the impacts in landscapes with Lolland farming were all primarily in reduction of 429 
abundance (as a result of the high overall population density). Overall, with the exception of the Tønder landscape, 430 
the results of the ERA were not constant in any of the landscapes or farming regimes. These variations in impact were 431 
large enough to result in a number of these landscape/farming combinations to fall below the arbitrary -0.1 summed 432 
AOR threshold assumed in the initial real landscape/farming combination scenarios. These combinations all had either 433 
Tønder landscape or Lolland farming (Fig. 4). 434 

 435 
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 437 

4. DISCUSSION  438 
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The landscape generation method provided a chance to evaluate the extent to which a mammalian pesticide ERA was 439 
affected by the type of landscape and the farming regime in force on that landscape. Generation of 10 x 10 km 440 
landscapes takes only a few hours of computer time on standard PC architecture (2.8 GHz Intel Core-i7, 32GB), and is 441 
almost totally automated once rules for landscape generation have been decided upon. Using this methodology 442 
allowed creation of 10 different and detailed examples of Danish agricultural landscapes together with their 443 
respective farming regimes. This provides the basis for generating scenario input and in conjunction with suitable 444 
measurement endpoints and population models creates a relatively easy method for creating landscape-specific ERAs.  445 

Impacts in ERA are likely to be needed to be measured in both changes in abundance and also distribution (EFSA Panel 446 
on Plant Protection Products and their Residues (PPR) 2015). It is therefoe important that both are incorporated in the 447 
measurement endpoints. This can be achieved using the AOR –scores (Topping, Craig et al. 2015). The advantage of 448 
this approach is that it is very easy to make comparisons relative to a baseline condition and to assign a threshold for 449 
unacceptable effects. Here we have assumed a threshold of -10% change, and that abundance and occupancy have 450 
equal weight (e.g. Fig. 4). The use of summed AOR scores as a measurement endpoint provides a way to combine both 451 
changes in range and abundance into a single metric. Summed AOR scores provide the easiest way to work, since they 452 
can be directly compared to the trigger value set by the SPG. However, summing the scores makes some assumptions; 453 
chiefly that equal weight is assumed to be given to changes in both. This assumption can be violated easily if the grid 454 
size used for occupancy is unsuitable (too large and there is no sensitivity, too small and abundance and occupancy 455 
are subject to stochasticity). It may also be violated if there is some a priori ecological or social reason that distribution 456 
is more or less important than density. If the latter is the case, then it would be possible to weight the summed AOR 457 
scores accordingly before assessment. 458 

When carrying out the ERA for the fictitious endocrine disrupting pesticide using summed AOR scores there was a 459 
general agreement between landscapes that the 10X higher toxicity scenario had higher impacts than the 1X toxicity 460 
scenario. However, impacts were approximately doubled, nowhere near the 10X factor on toxicity. Similar responses 461 
have been seen before (Dalkvist, Topping et al. 2009), where vole population ERA was influenced at least as much by 462 
ecological factors as by toxicological ones. This should not be a surprise. Three main factors will dampen responses 463 
when considering a population approach. The first is that there may be local buffering of impact as a result of local 464 
density-dependent processes resulting in faster reproduction at lower population levels (e.g. Kramarz, Banks et al. 465 
2007). The second is that the impacts are spatial, and mixing of the population is not complete, hence impacts can be 466 
reduced if recolonization to continually treated areas is slow. Finally, a threshold response effect (e.g. preventing 467 
reproduction) means that, once triggered, further increase in toxicity has no effect. Of these three, the latter is likely 468 
to be the most important in this case, since hares will generally move quickly into unoccupied suitable areas and 469 
become exposed. In this case the population responses will also be delayed since hares are long-lived if they reach 470 
adulthood (Abilgaard, Andersen et al. 1972), and temporarily reduced reproduction may be compensated for during 471 
the lifetime of the hare. 472 

Impact varied tremendously between landscapes and farming. This was a consequence both of the pattern of 473 
exposure and of internal population processes. The effect of internal population processes can be clearly seen in 474 
populations exposed under the Lolland farming regime where high population levels buffered changes in occupancy, 475 
leading only to impacts on abundance. However, exposure must also differ between landscapes since the populations 476 
were of approximately the same size, but magnitude of impacts differed between landscapes with Lolland farming. 477 
Area of treatment was not a good predictor and in some cases was barely correlated with overall impact. It is 478 
important to be aware, however, that these ecological drivers are probably more important than precise toxicity and 479 
exposure measures in cases where effects are certain and the implication of these effects at the population level are 480 
the main point of interest. In cases where prediction of individual toxic effects is in focus, then toxicity will have a 481 
major influence on impact and toxico-kinetics and toxico-dynamics will play a more important role. This would be the 482 
case if the pesticide caused acute rather than chronic effects and individual deaths were unacceptable;  for example, 483 
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in mammal and bird risk assessment where no individual mortality is used as a surrogate protection goal for no visible 484 
mortality (EFSA 2009). 485 

The variation linked to both farming and landscape makes matching the correct farming with the correct landscape 486 
critical to prediction of impact. Some mixed landscape/farming settings altered impacts significantly and would in an 487 
ERA lead to errors in estimating risk. Similar hare sensitivities to management were also seen for specific management 488 
changes as well as farming regime changes between organic and conventional management forms (Topping 2011). 489 
From a regulatory ERA perspective this raises a complex issue, i.e. which landscape/farming regime should be used to 490 
base the assessment upon. A basic principle of regulatory ERA is that scenarios are based on a reasonable worst-case 491 
scenario (e.g. EFSA Panel on Plant Protection Products and their Residues (PPR) 2014), but how should these worst-492 
case scenarios be identified? Both farming and hare density were the major determinants of the impact, but 493 
prediction of these requires knowledge of the landscape structure, and density relies on farming. It is quite possible to 494 
make an erroneous judgement here based on observation from the real world. For example the Lolland landscape had 495 
the highest predicted hare population, and also has the highest agricultural hare densities in Denmark, thus it 496 
probably would not be considered worst case. However, unless the specific farming regime of Lolland is used in the 497 
scenario, populations there were predicted to be the lowest in any simulations. This context dependency is 498 
unfortunate, but is a feature of ecological systems (Noda 2004, Chamberlain, Bronstein et al. 2014, Paterson, Dick et 499 
al. 2015). Reasonable worst-case is therefore not easy to predict.  Accurate assessment is also clearly a case of 500 
ensuring the correct landscape and farming is used, since simplifications and generalisations may have unexpected 501 
consequences. 502 

Context dependency is also very clearly shown in the meta-models used to analyse correlations between summed 503 
AOR and scenario descriptors. Creation of a meta-model is clearly a good idea given the complexity of developing and 504 
running the scenarios, since prediction of impacts would be much simpler. However, this example demonstrates the 505 
danger in extrapolating results from one (even replicated) scenario to another. In this case only toxicity was changed, 506 
but this dramatically altered the overall model and predictions based on one toxicity failed to model the other 507 
accurately. This result may indicate that the practice of meta-modelling (also called Emulation) of complex agent-508 
based simulations may need to be applied with caution to scenarios that are not represented by the original training 509 
dataset. These approaches are typically currently used to evaluate sensitivities of model (e.g. Happe, Kellermann et al. 510 
2006, Parry, Topping et al. 2013), but the idea of using a simplified meta-model to predict, in this case population, 511 
impacts under new conditions would be attractive, and clearly could be misleading. 512 

This study uses a single species of mammal and a single pesticide impact on litter size. Whilst the results clearly 513 
demonstrate context dependency on landscape and farming, and therefore should be of concern in regulatory ERA, 514 
the extent to which these results can be extrapolated to other species and effects is currently unknown. The critical 515 
interactions which determined the landscape and farming influence on the ERA here were those determining hare 516 
density at low (1X) application rates, but changed to area treated at 10X toxicity. This is probably a fairly general 517 
pattern. Medium and low effects will be buffered by a highly fecund population, and large effects by spatially 518 
distributed sub-populations, at least in highly mobile species. However, the resources required to produce these 519 
highly fecund/high-density or spatially distributed populations will vary with species. In the hare, large areas of low 520 
intensity grazing provided a solid buffer in the Tønder landscape, whereas the high-density populations occurred in 521 
Lolland due to type of farming.  Similarly, the precise impact (e.g. reproductive effect, mortality, behavioural changes) 522 
will interact with the population dynamics to change density and distribution in different ways in different species. 523 
Therefore, whilst the conclusions indicating the importance of context dependency on ERA are likely to be general, the 524 
specifics will be species and stressor-effect dependent. Developing a large number of species models and carrying out 525 
a widely varying set of ERA scenarios may provide general rules to determine for which species context is critical and 526 
for which generalisations can be made but was beyond the scope of this study. However, some preliminary tests (not 527 
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presented) using a toxic standard test of direct mortality as suggested by Schmitt, Auteri et al. (2015), indicated that 528 
similar interactions with landscape and farming might be expected with other modes of action. 529 

Context dependency is a problem for regulatory ERA where the ideal approach would be a set of standardized 530 
scenarios, for instance as is done for surface water in Europe (FOCUS 2001). A single scenario, for in this case 531 
Denmark, would only work at a very large scale where all possible conditions would be encountered. However, this 532 
would not be feasible from a simulation perspective, and would also run the real risk of being unable to detect 533 
impacts at lower spatial scales that might be a cause for concern (e.g. if regional populations became extinct). One 534 
alternative based on the approach used here would be to select a range of representative areas and use these as a 535 
basis for screening for unacceptable inputs. This would have been very difficult previously; however, the methods 536 
used here for extracting the information necessary for ERA at this scale are now available and can work with EU 537 
subsidy scheme information and GIS layers. This provides a very important tool for landscape scale risk assessment in 538 
the future, since previously developing landscape data of this resolution as well as linkage to farming was very difficult 539 
and time consuming; previous versions of ALMaSS relied on hand-digitised maps taking two months to produce. 540 
Future improvements to this process would accrue from access to the pesticide use data collected under the 541 
Sustainable Use Directive (EU Directive 2009/128/EC), which requires farmers to record their pesticide usage.  542 

5. CONCLUSIONS 543 

The need for landscape scale risk assessment is becoming more widely accepted. However, tools to achieve this are 544 
scarce. Models are being developed for this scale of assessment, but until now there was no quick and reliable way to 545 
generate landscapes detailed enough to run these simulations on without recourse to laborious procedures. The 546 
methods for landscape creation presented here make creation of landscapes for risk assessment feasible based on EU 547 
subsidy information and planning maps. 548 

Both landscape and agricultural regime influence the result of an ERA for and endocrine disruptor on populations of 549 
hares considerably. Area treated was a poor indicator of impact. The major determinant of the impact was the 550 
baseline population level, but this is difficult to predict without accurate simulation models, and changes in farming 551 
can have very large impacts on this metric. Accurate landscape and farming information is therefore necessary to 552 
determine impacts of pesticides on hare populations. The extent to which similar effects can be expected with other 553 
species and models of action is unknown, but this seems likely. 554 

Since prediction of a reasonable worst case scenario is difficult from landscape or population metrics measured in the 555 
real world, future ERA may need to make use of multiple landscapes (or “scenarios”) as a screening tool to avoid 556 
locally unacceptable risks. Given the advances in landscape generation this approach could now be feasible Europe 557 
wide. However, the results caution against the use of meta-modelling to represent new landscape/farming/species 558 
combinations which could give spurious results. 559 
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Figure Captions 693 

Figure 1. AOR scores from endocrine disruptor scenarios. a) AOR scores for the 10 different simulation landscapes 694 
relative to baselines in the 10 years prior to pesticide treatment for 10X toxicity. These scores can be viewed as the 695 
residual variation that cannot be attributed to the treatment in the following 10 years; b) AOR scores for the same 696 
landscapes, as a mean of the 10 years of pesticide treatment for 1X toxicity. c) The AOR scores for the 10X toxicity 697 
scenario. a-c) The white area exemplifies a SPG for a threshold of effect, assuming a SPG trigger value of -0.1 summed 698 
AOR score.  699 

Figure 3: Adult female hare densities plotted for all 25 farming and landscape combinations run. Lolland landscape has 700 
very low hare numbers unless farmed using real Lolland farming, which his highly hare beneficial in all landscapes. 701 

Figure 2. Summed AOR plotted against model data inputs for 1X (a,c,e,g,i) and 10X (b,d,f,h,j)  toxicity scenarios and 10 702 
landscapes with linear regression and associated R2. a - b female hare density, c - d total arable area, e - f pesticide 703 
treated area, g - h pesticide treated area multiplied by landscape specific mean number of applications, I - j best fit 704 
model combining hare density and area treated. 705 

Figure 4. AOR plots for each landscape/farming combination tested. Each pair of plots shows the variation resulting 706 
from either using different farming on a single landscape (landscape) or applying the same farming to different 707 
landscapes (farming). a – Esbjerg landscape, f – Esbjerg farming, b – Karup landscape, g – Karup farming, c – Lolland 708 
landscape, h – Lolland farming, d – Odder landscape, i – Odder farming, e – Tønder landscape, j – Tønder farming. The 709 
white area exemplifies a specific protection goal of no more than -10% change in the sum of occupancy or abundance 710 
changes.  711 

 712 

 713 
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Appendix 1 - Generation of model 
landscapes for ALMaSS 
The process of generating a complete simulation landscape for ALMaSS is divided into two main 
tasks: 

1. Farm classification (to classify all farms in Denmark into a number of general farm types) 
2. Generation of landscapes as input for ALMaSS 

Farm classification 
A program was written in C++ to classify all farms in Denmark into general farm types 
(http://www.ecosol.dk/MSTProject/Documentation/FarmClassification/index.html). The program classifies all 
farms based on a combination of the crops they are growing using data obtained from the General 
Farm Register (“Det Generelle Landbrugsregister” - GLR), and on the animals they have which is data 
from the Central Livestock Register (“Det Centrale HusdyrbrugsRegister” - CHR). The GLR is a 
compilation of the data submitted by the farmers in support of EU subsidy payments. The CHR is a 
register of all agricultural animals maintained primarily for purposes of disease control. 

 

By combining crop and animal information it was possible to identify major farm types such as pig, 
arable, or dairy farms. Some less common types are also identifiable e.g. farmers that grow sugar 
beet on contract. In addition to this information the GLR also indicates whether a farm is organic or 
not and the overall farm size. This extra information provides the basis for the classification. Rules 
used to classify the farms were needed to be very general because real farms tend not to fit neatly 
into pure farm type rules (e.g. many arable farms have grazing because they have some animals e.g. 
horses or a few animals for their own consumption. The rules used were: 

 

1. Farms with large proportion of vegetables (minimum 0.5) and larger than 2-ha were organic or 
conventional Vegetable farms, otherwise if small were classified as 'other'. 

2. Farms with a proportion of potatoes or sugar beet not less than 20% were Potato or Beet farms 
respectively. 

3. Farms with animal (cows, sheep and pigs) transformed to standard animal units that have fewer than 
20 animal units and an area less than 20 ha were designated as Hobby farms (<25 ha is typically part-
time or hobby (Levin 2006), so 20 ha will reduce the chance of misclassifying commercial farms). 

4. Farms with animal units above 20 and cattle + sheep above 75% they were designated as Cattle farms 
5. Farms with animal units above 20 and pigs above 75%, or crop area of grazing pigs above 15% were 

designated as Pig farms. 
6. Farms with animal units above 20, but not pig or cattle farms, were designated as Mixed Stock. 
7. Farms with no animals registered but with large areas of grazing were assumed to be either Cattle 

farms or Mixed Stock farms depending on whether grazing area was above 40% or 20-40% 
respectively. 

8. All remaining farms must have been Arable farms (i.e. large area with few or no animals and little or no 
grazing). 

9. All farms except ‘other’ could be designated as organic or not dependent upon the information on that 
farm in the GLR giving a total of 17 farm types possible. 
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For each farm type, the mean proportion of the farm crop area was calculated for each crop. Crops 
with less than 1% share of the area of a farm type were ignored and the rest used to create a farm 
rotation for that classification. It was assumed that the rotation could be represented by 100 crops 
(1 crop for each 1%). The order of crops followed typical agronomic practices and issues such as late 
harvest leading to impossible sowing conditions were controlled by the built in ALMaSS farm code 
(see Appendix 2). The result is a pattern of changing crops on a field that matches the overall crop 
distribution pattern for that farm type precisely over 100 seasons. Viewed on a larger scale crop 
distributions will therefore be overall correct at any point in time, although the actual crop grown on 
a single field will not replicate reality. This method does not, however, take into account differing 
soil types between fields, which in reality would restrict some crop distributions. 

 

Generation of ALMaSS simulation landscapes 
The aim of this task is to generate a land cover raster map with complete coverage; hence all cells 
must be classified in accordance with their landscape element type. In most cases existing land cover 
maps are in a coarse spatial resolution (e.g. 100m * 100m; Corine Land cover 2006, EEA 2013) and 
landscape elements are often broadly categorized (e.g. ESA 2014). Thus for application in individual 
based modelling, such maps are inadequate. Alternatively manual digitization from areal images can 
produce maps of sufficient resolution and detail, but this is extremely time-consuming and therefore 
often not feasible for larger areas (i.e. several square kilometres). However, in many cases highly 
detailed vector maps are used for e.g. landscape planning and nature conservation purposes and 
these maps are increasingly becoming publicly available (Europoean Union Open Data Portal – open-

data.europa.eu/en/data). Here we make use of a large number of such vector maps and combine 
them into a single raster map with high spatial resolution as well as with a large number of 
landscape elements. However, using a large number of different data sources can result in 
inconsistencies if maps have been made independently and/or if they have been made in different 
points in time. In most cases these inconsistencies will relate to the spatial alignment of vector layers 
resulting in either overlaps or gaps between features that are actually adjacent to each other (Figure 
1).  
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Figure 1.  Examples of the three basic vector data types (polygons, lines and points) used as input to the land cover map. 
Vector data have been digitized for different purposes, in different points in time and they vary in spatial accuracy and 
detail and in the way the geometry is represented. The figure shows some of the common problems encountered when 
converting a number of vector themes to a surface covering map. (1) Gaps between polygons. (2) Lack of dimension, i.e. 
points are per definition dimensionless and lines have length, but not a width. This is obviously a cartographic 
abstraction and a land cover map need to address the exact extent of a feature (e.g., the width of a road, the actually 
area covered by a solitary tree etc.). (3) Spatial overlap.  Vector layers differ in spatial accuracy which results in gaps or 
in overlap. 

 

Additionally certain vector types, such as points and lines are dimensionless and therefore decisions 
about their dimensions needs to be made in order to obtain a meaningful mapping of these in a 
raster format (Figure 2). When working at high spatial resolution, these issues can be quite 
substantial and needs to be dealt with in order to obtain a surface covering land cover map. In the 
remainder of this section we describe methodologies to process a large number of input vector data 
to produce a surface covering land cover map while taking the abovementioned problems into 
account. 
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Figure 2.  Part of figure 1 at finer scale showing gaps between polygons and lack of dimension. A forest- and a field-
polygon with empty space in between, but two line features (a road and a hedgerow) will supposedly fill this gap. In this 
particular case, it is known that the road is a medium sized with a width between 3 and 6 meters. There is no further 
information about the hedgerow. The map reveals some problems: The middle of the road is not centred in the gap 
between the forest and the field and the centre of the hedgerow is situated inside the field polygon and divides it in 
two. 

The overall process to generate the land cover map follows three steps: 1) Convert the input vector 
data to raster format, 2) combine individual raster layers into thematic maps (e.g., all road types, 
paths and railway tracks in a transportation theme), 3) stack these thematic maps in a reasonable 
order (i.e. roads on top of fields etc.). Below we first describe the input data, and then the three 
steps involved in generating the final map are described in detail. 

Input data 
We used publicly available vector map layers from the Danish common public geographical 
administration data (GeoDanmark data, downloaded 2012, http://download.kortforsyningen.dk). The 
vector layers were used to map 41 different landscape features (see table 1). The Danish AgriFish 
Agency (DAFA, under the Ministry of Food, Agriculture and Fisheries) provided vector maps of 
individual agricultural fields. Lastly, where a pixel was not covered by a field or the GeoDanmark 
layers (approximately 3-5% of the area), we used the Area Information System (AIS) data, which is a 
surface covering map with 45 different land cover types for Denmark (Stjernholm et al., 2000). The 
AIS map is based on data and satellite imagery from the late nineties, but is, nevertheless, the best 
surface covering map available.  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 21, 2015. ; https://doi.org/10.1101/025833doi: bioRxiv preprint 

https://doi.org/10.1101/025833
http://creativecommons.org/licenses/by-nc/4.0/


Table 1 Description of the individual layers used in the final map, the theme in which they are grouped, their data 
sources and the original data type. Layer names follow the convention shortdescription_numericvalue, e.g. the layer  
slopes_105 is the layer with slopes along roads and 105 is the numeric value indicating presence of the feature. 

  

Layer Description Theme Source Type Cut-off 

landsea Landmass All GeoDK Polygon - 
slopes_105 Slopes along roads Road GeoDK Line 2.5 
roadsideverge_110 Road side verges Road GeoDK Line 1.75 
paths_112 Paths Road GeoDK Line 1.51 
parks_114 Parking areas Road GeoDK Polygon 3.0 
dirtroads_115 Unpaved roads and tracks Road GeoDK Line 2.25 
railways_120 Railways Road GeoDK Line 4.5 
smallroads_122 Small roads (< 3 meter) Road GeoDK Line 1.75 
mediumroads_125 Medium sized roads (3-6 meter) Road GeoDK Line 3.0 
largeroads_130 Large roads (> 6 meter) Road GeoDK Line 5.0 
pylons_150 Power pylon or transmission tower Road GeoDK Point 1.5 
windturbines_155 Wind turbines Road GeoDK Point 1.5 
builtuplow_205 Built up areas low Building GeoDK Polygon - 
builtuphigh_210 Built up areas high Building GeoDK Polygon - 
citycenter_215 City center Building GeoDK Polygon - 
industry_220 Industrial areas Building GeoDK Polygon - 
churchyard_225 Cemeteries Building GeoDK Polygon - 
sportsfields_230 Sports areas Building GeoDK Polygon - 
buildings_250 Buildings Building GeoDK Polygon - 
forests_310 Forest Natural Top10DK Polygon - 
shrubs_315 Shrub Natural Top10DK Polygon - 
sand_320 Sand flats Natural Top10DK Polygon - 
heathland_325 Heath land Natural Top10DK Polygon - 
wetland_330 Wetland Natural Top10DK Polygon - 
meadowprotected_355 Protected meadows Natural GeoDK Polygon 3.0 
heathlandprotected_360 Protected heath land Natural GeoDK Polygon 3.0 
bog_365 Protected bog WetNature GeoDK Polygon 3.0 
drygrassland_370 Protected dry grassland Natural GeoDK Polygon 3.0 
marshprotected_375 Protected salt marshes Natural GeoDK Polygon 3.0 
lakesprotected_380 Protected lakes WetNature GeoDK Polygon 1.0 
lakes_440 Lakes FreshWater GeoDK Polygon - 
smallstreams_435 Small streams (< 2.5 meter) FreshWater GeoDK Line 2.01 
mediumstreams_436 Medium streams (2.5 - 12 meter) FreshWater GeoDK Line 7.0 
largestreams_437 Large streams (> 12 meter) FreshWater GeoDK Line 7.0 
lakebuffer_420 Lake buffer FreshWater GeoDK Derived 2.05 
fields_1000 Agricultural fields Fields DAFA Polygon - 
dikes_620 Dikes Cultural GeoDK Line 1.2 
archeological_625 Archeological sites Cultural GeoDK Point 6.0 
recreational_630 Recreational areas Cultural GeoDK Polgon - 
hedgerows_635 Hedgerows Cultural GeoDK Line 2.0 
coppice_640 Tree groups Cultural GeoDK Point 8.0 
individualtrees_641 Individual trees Cultural GeoDK Point 4.0 
gravelpits_650 Gravel pits Cultural GeoDK Polygon - 
ais_1100 AIS landcover map AIS AIS Raster - 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 21, 2015. ; https://doi.org/10.1101/025833doi: bioRxiv preprint 

https://doi.org/10.1101/025833
http://creativecommons.org/licenses/by-nc/4.0/


The Danish AgriFish Agency (under the Ministry of Food, Agriculture and Fisheries) maintains a map 
of all fields and a database of crops grown in Denmark. The database is updated annually. Farmers 
are obliged to report for each individual field the crop they intend to grow the following year. The 
data set used for this study stems from 2013 where more than 45.000 farmers contributed to the 
database. The data set makes it possible to identify the owner (or manager) of each field and the 
actual crop grown on it. 

The ALMaSS landscape simulator modifies the actual production in each field based on the dominant 
soil type. The Danish centre for food and agriculture (DCA) at Aarhus University maintains soil 
classification maps and we used the  1:200.000 map for this study (downloaded from 
http://dca.au.dk/forskning/den-danske-jordklassificering/). The soil classification map was rasterized and 
field polygons were overlaid to determine the dominant soil type for each field. 

 

Making the map 
All handling and analysis of spatial data was done using Python 2.7 and the python library arcpy to 
access ArcGIS features (ESRI 2010). For documentation of each individual arcpy tool used see 
help.arcgis.com (search for: ‘What is ArcPy?’). The entire process of producing surface covering land 
cover map has been programmed in a python script that is freely available on Github 
(https://github.com/flemmingskov/python-landscapegen/tree/PrepForPub). In addition to the data 
described above an outline of the simulation area is needed before running the python script. The 
outline needs to be rectangular, in raster format and have the desired spatial resolution (usually 1m 
by 1m). The outline will be used as a clipping mask to clip any of the data layers that extend beyond 
the simulation area (Figure 9).  

 

The Python script 
The python script is divided into 5 sections of which the first four makes the land cover map. The 
fifth is only needed if the map is prepared in order to run ALMaSS simulations. Each main operation 
is described here with references to figures where relevant. 

 

In the first section (Setup) the libraries needed are imported, paths to input data and outputs are 
defined, the processing environment is defined and generation of individual themes and layers can 
be switched on or off. The script assumes a geodatabase to store output (Figure 9, top right). 

 

The second section (Conversion), which constitutes the majority of the script deals with the 
conversion of the original vector data into raster format. For linear and point features the 
conversion process involves two steps. First calculate a raster with the Euclidian distance from the 
features (Figure 3) and second define a raster with the numeric value for the feature at a defined 
distance from the original vector feature and 0 beyond this distance (Figure 4; see Table 1 for detail 
about distance used for each of the layers). The numeric value chosen to indicate presence of the 
feature determines the hierarchy when later combining individual layers into themes. Thus at this 
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stage care must be taken to ensure that numeric values within each theme are sensible. Polygon 
features are converted directly without adding a buffer, except for a few cases where the original 
mapping was inaccurate (mostly because the features mapped were difficult to delineate, e.g. the 
border between swamp and marshland). 

 

 

 

Figure 3. Conversion of a vector feature (here a line) to a raster layer. For each cell in the raster grid the Euclidean 
distance to the nearest point of the line is calculated (the darker the shading, the closer the cell is to the line). The next 
step is to choose a cut-off value to select the cells that will be coded as ‘road’ in the final land cover map. 
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Figure 4. The final representation of ‘road’ and ‘hedgerow’ in the land cover map is shown here. The actual choice of a 
width for a line feature depends on the information available and the purpose of the map. In the present case it is 
known that the road is medium sized (between 3 and 6 meters); the highest of the two values was chosen and all cells 
<= 3 meters from the road centre was included as road. No information about the width of the hedgerow is available. 
Here an average width of 3 meters was chosen. 

 

 

The third section (Themes) collects the raster layers into thematic maps (e.g., all road types, paths 
and railway tracks in a transportation theme etc., see Figure 5). In cases where two or more of the 
layers in a theme overlap, the layer with the highest numeric value is prioritized. For example if a 
large road (numeric value 130) intersects a small road (numeric value 122) the large road gains 
predominance and is shown on the final map (Figure 6). 
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Figure 5. Example of a thematic map.  The road network theme is made up of 11 individual raster layers. Each of these 
raster layers has a numeric code > 0 assigned to cells occupied by the feature in question (and 0 if the feature is absent) 
(see Table S2).  The final theme is made by comparing all raster maps cell by cell and choosing the maximum value. Thus 
the numeric value rank features and determines which layers will occupy a given cell when more features are present. In 
the road network theme, for example, small roads (code 122) will precede railway tracks (code 120). The choice of codes 
is therefore important and depends on the purpose of the final land cover map. 

 

 

 

Figure 6. Map assembly and final mosaic map. The individual themes are put together according to a set of rules 
determining the order of stacking. The order depends on the purpose of the final land cover map and may be changed 
accordingly. The numbers refer to the problem areas described in Figure 1. The procedure is shown in Figure 7. 
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The fourth section (Stack) stacks the thematic maps in sequence such that the final map shows the 
ecological meaningful layers on top. E.g. the fresh water theme has to be stacked on to the fields to 
avoid artificial overlaps (Figure 7). 

 

Figure 7. Stacking. Illustration of the stacking procedure used in Topping et al. 2015. See text for further detail. 
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For the present project, the land cover map was assembled using the following rules: (1) The field 
layer was the bottom layer and (2) the lake and streams (freshwater theme) was put on top of the 
field layer. (3) Dry natural areas (nature theme) were then added, but only to cells not already 
occupied by 1 or 2. (4) Similarly, built-up areas (builtup theme) were added to cells not already 
occupied by 1, 2 or 3. (5) Wet natural areas (wetnature theme), (6) Cultural features (cultural 
theme), (7) roads (road theme) & (8) sea (raster layer landsea) were then added sequentially onto 
preceding map. Finally (9) buildings (raster layer buildings_250) were added. After this process there 
may still number of cells without land cover type, depending of the quality of the input data. There 
may be several strategies to complete the map: One option is to compare gaps to a recent 
orthophoto and manually assign a land-use category, but this is a very time-consuming for larger 
maps. Another option is to fill gaps with a randomly chosen landscape feature (stratified to 
represent the general landscape structure). For the present study we used an existing, older land 
cover map of Denmark (AIS, Stjernholm et al. 2010) to fill in gaps. 

 

Preparing maps for ALMaSS simulation 
 

Convert land cover map to ALMaSS landscape 
Finalizing the ALMaSS landscape is done in the fifth and last section of the python script (Finalize). 
The land cover map contains more detail than are used in ALMaSS for most applications. This 
information has been retained up until now, but will need to be condensed into the landscape 
element types to be used in ALMaSS. This is a simple reclassification based on a text file with the 
landscape element codes used in ALMaSS. All features in the raw ALMaSS landscape, both features 
consisting of single or of multiple raster cells, have a unique value that is common to all cells within 
the feature. This is achieved by regionalizing (Fig. 8) the raster before exporting the map as an ASCII 
file. This ASCII file is then converted to a binary format whereby all cells are represented by a 32-bit 
integer, in ALMaSS designated as a landscape binary file (.lsb). This step may not be necessary for 
other applications, but if so the LSBConverter.exe program can be obtained from the ALMaSS project 
site on CCPForge http://ccpforge.cse.rl.ac.uk/gf/project/almass  

 

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 21, 2015. ; https://doi.org/10.1101/025833doi: bioRxiv preprint 

http://ccpforge.cse.rl.ac.uk/gf/project/almass
https://doi.org/10.1101/025833
http://creativecommons.org/licenses/by-nc/4.0/


 

Figure 8. Regionalization. This figure shows how a reclassified land cover maps is transformed into an ALMaSS model 
landscape. ALMaSS uses landscape units (defined as clusters of pixels of the same land cover type) to store landscape 
information. Each unit has a unique identifier (as a polygon would) and a land cover code. This is achieve by the 
regionalize function in ArcGIS. The map on the left shows the classified land cover map (with two fields, a road, road 
side verge and a hedgerow.  The map on the right shows the results of the regionalization. The two fields, the road and 
the hedgerow are uninterrupted and treated as units. The road side verge, on the other hand, is fragmented and each 
fragment must be treated as a unique ALMaSS landscape unit. 

 

Polygon reference file 
Each polygon on the final ALMaSS landscape only contains one value which is the unique ID of the 
polygon. All additional information about the polygon, such as landscape element type and farm 
ownership is contained in the polygon reference file. The polygon reference file is a text file 
containing a unique ID on all polygons in the landscape, the landscape element type of each of the 
polygons, the number of cells belonging to each polygon, a reference indicating farm ownership and 
optionally the soil type of each polygon (see Table 2). Upon loading the polygon reference file in 
ALMaSS, the program adds coordinates for the polygon centroid in the coordinate system used in 
the simulation. Additionally, columns with openness scores (used when modelling geese) and a 
unique ID for unsprayed field margins on fields are added. 

 

PolyType PolyRefNum Area FarmRef UnSprayedMarginRef SoilType 

80 0 2004 -1 -1 -1 

110 1 8105 -1 -1 -1 

94 2 163599 -1 -1 -1 

110 3 3 -1 -1 -1 

123 4 278954 -1 -1 -1 

110 5 62 -1 -1 -1 

20 6 43825 -1 -1 5 

 

Table 2. Table showing the structure of the polygon reference file when first imported to ALMaSS. The first line is 
indicating the number of lines in the file (here just an example, the actual file will contain many more lines), second line 
the headers and all following lines the actual values. The value -1 is used to indicate NA. 

 

Farm reference file 
ALMaSS needs a farm reference file for the each simulated landscape. The file is a text file with two 
columns, one being the farm reference number (a unique ID for each farm in the landscape)  and a 
column with the farm type of each of the farms (see “Farm classification”). 

 

Making the reference files 
To create the polygon reference file, the attribute table from the final land cover map needs to be 
exported manually from ArcGIS. With this the attribute table and information about farm ownership 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 21, 2015. ; https://doi.org/10.1101/025833doi: bioRxiv preprint 

https://doi.org/10.1101/025833
http://creativecommons.org/licenses/by-nc/4.0/


(which farm owns which fields) a minimal polygon reference file can be made. If soil type 
information is available it can be used to improve modelling of growth of vegetation in the 
simulation. The task is to merge these three pieces of information together. Merging can be done in 
any standard data base program or programming language and the optimal choice of tool will 
depend on the format in which farm- and soil type information is available. To prepare the polygon- 
and farm-reference files for Topping et al. 2015 we used R and functions in the R packages ralmass 
(Dalby 2015), devtools (Wickham & Chang, 2015) and data.table (Dowle et al. 2014). An example 
script is provided below. 
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Figure 9. Study area outline and final map. In (a - top) the red outline show the area to make a simulation landscape for. 
The ortophoto is showing a recent image of the actual landscape. In the catalog pane on the right hand side of (a) is 
showing the file structure for the workspace that is needed to run the python script. A Scratch folder to store temporary 
files, a geodatabase (project.gdb) holding the vector outline (demo, shown in red on in the map view) and the raster 
version of this outline (here name demomask) and finally a geodatabase to store outputs from the script (here named 
demo.gdb). In (b - bottom) the final map is shown. In the catalog pane on the right hand side the demo geodatabase is 
shown with all its containing layers expanded (some not shown). These are the individual raster layers, the thematic 
maps and the final maps. They are stored to enable quality control of the individual steps in the process after the final 
map is made. 
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R script 

 

Set-up and import the attribute table from ArcGIS. 

library(devtools)  # Needed to install from github 
install_github('LDalby/ralmass') 
library(ralmass) 
library(data.table)  # We use the data.table package to import the data files 
 (some of them are big) as the fread function is very fast  
We refer the user to the data.table documentation for detail on the syntax. 
 
# import the attribute table exported from ArcGIS: 
PathToFile = 'o:/foo/bar/'  
LandscapeName = 'LandscapeX' 
FileName = paste(LandscapeName, 'Attr.txt', sep = '') 
attr = fread(paste(PathToFile, FileName, sep = '')) 
# Use CleanAttrTable in the ralmass package to clean the file: 
# see ?CleanAttrTable for documentation 
cleanattr = CleanAttrTable(AttrTable = attr, Soiltype = TRUE)  
dim(cleanattr) 

## [1] 68595     6 

setkey(cleanattr, 'PolyType')  # See ?setkey for documentation 
 
# Here we seperate the fields form the rest of the polygons.  
# The fields are treated slightly different from the rest. 
targetfarms = cleanattr[PolyType >= 10000]  # The fields 
targetfarms[,Soiltype:=NULL]  # Remove dummy variable, sinse real soil type data for th 
e fields is available. Will be added further down 
 
cleanattr = cleanattr[PolyType < 10000]  # Everything else  
dim(cleanattr) 

## [1] 66655     6 

str(targetfarms) 

## Classes 'data.table' and 'data.frame':   1940 obs. of  5 variables: 
##  $ PolyType          : num  13494 13495 13496 13498 13499 ... 
##  $ PolyRefNum        : num  6709 5566 212 15020 8580 ... 
##  $ Area              : num  1873 58159 11445 8495 8999 ... 
##  $ Farmref           : num  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ... 
##  $ UnsprayedMarginRef: num  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ... 
##  - attr(*, "sorted")= chr "PolyType" 
##  - attr(*, ".internal.selfref")=<externalptr> 

Next we read in the farm information. In this example the data is stored in a text file where each 
field is a row in the data set. Each field has a unique ID for the farm to which it belongs. 

farm = fread('o:/foo/bar/FarmInfo2013.txt') 

farminfo = farm[, c('AlmassCode', 'markpolyID', 'BedriftID', 'BedriftPlusID', 'AfgKode'), w
ith = FALSE]  # Extract only the columns we need for now 
farminfo[,markpolyID:= gsub(pattern = ',', replacement = '', 
          x = farminfo$markpolyID, fixed = FALSE)]  # Fix seperator issue 

setkey(farminfo, 'markpolyID') 

In this particular case we do have soil type information for the fields, so we load that. 

soil = fread('o:/foo/bar/Soil_type.txt') 
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setnames(soil, old = 'MAJORITY', new = 'Soiltype') 
setkey(soil, 'markpolyID') 

With all three pieces of information we merge the datasets using the unique field polygon ID as key. 

SnF = merge(farminfo, soil, all.x = TRUE) 
temp = merge(x = targetfarms, y = SnF, all.x = TRUE) 
# Rearrange and remove obsolete columns 
temp[,PolyType:=AlmassCode] 
temp[,AlmassCode:=NULL] 
temp[,Farmref:=BedriftID] 
temp[,BedriftID:=NULL] 
 
result = rbind(cleanattr, temp)  # This is essentially putting the fields and everything 
 else back together. 

# Check that the dimensions match the original input: 

dim(attr)   

## [1] 68595     3 

dim(result)  

## [1] 68595     6  # Okay (we added the extra columns) 

setkey(result, 'PolyRefNum') 
FileName = paste(LandscapeName, 'PolyRef.txt', sep = '') 
WritePolyref(Table = result, PathToFile = paste(PathToFile, FileName, sep = ''))  # The 
 function WritePolyref ensures that the resulting complies with the format required by 
 ALMaSS. see ?WritePolyref for documentation. 

#----------------------------------------------# 
# Make a farmref file to go with the landscape 
#----------------------------------------------# 
 
# The file The2013Farmref.txt contains all farms in Denmark with their unique farm 
 reference number and their farm type. See the section ”Farm classification” in 
 Topping et al. 2015 for details on the classification. 
We make a simple subset of this file to only the farms actually situated in the 
 landscape in question. 
farm = fread('foo/bar/The2013Farmref.txt') 
setnames(farm, c('Farmref', 'FarmType')) 
landscapefarms = farm[Farmref %in% unique(result[,Farmref]),] 
FileName = paste(LandscapeName, 'Farmref.txt', sep = '') 
WritePolyref(Table = landscapefarms, PathToFile = paste(PathToFile, FileName, sep = ''), He
aders = FALSE, Type = 'Farm') 

´ 
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Appendix 2: overview of ALMaSS farm 
management 

Aspects of the farm management have been described in a number of ALMaSS publications 

separately (incl. Topping, Ostergaard et al. 2003, Topping, Hansen et al. 2003, Thorbek and Topping 

2005, Topping and Olesen 2005, Topping 2011, Parry, Topping et al. 2013), and are described in the 

program documentation ODdox (Topping, Hoye et al. 2010) format (e.g. Topping 2009),but have not 

been described as a whole in text form. Since much of the power of ALMaSS for use in 

environmental risk assessment comes from its ability to handle detailed farm management, a 

general overview of the processes is provided here. 

Purpose 
The farm management in ALMaSS creates a dynamic and emergent pattern of both crop coverage 

patterns at landscape and field scales but also patterns of farm management activities in time and 

space. This information is available via the ALMaSS Landscape class interface for any object in the 

ALMaSS simulations. Thus the farming module’s purpose is to simulate farming realistically at 

landscape and farm scales and to provide information on vegetation changes and farming activities 

to the Landscape class. 

Class structure (class names in italics) 
The overall class handling environmental information in ALMaSS is the Landscape. This class contains 

a map of the landscape represented by homogenous polygons (LE (landscape element)) classified 

into types. Those designated as type field are represented by the Field class, and each is linked to the 

farm that manages it (either based on real information e.g. GLR (see Methods), or specified as the 

user wishes). All farms are represented by the Farm class, and all farms are held in lists managed by 

the class FarmManager, which is instantiated as a class member of Landscape.  Crops grown on a 

field are also classes, each is a specific descendent class of the main Crop class, e.g. SpringBarley. 

These classes include the implementation of the specific crop husbandry for that crop. 

Process overview 
This version of the methods assumes the use of the Farm class rather than the OptimisingFarm class. 

The Farm class cannot really be considered an agent, since they have no goals on which to base 

decisions but act following predefined rules made variable by the introduction of stochasticity as 

probabilistic rules. In contrast OptimisingFarm objects are true agents and have goals and more 

flexible decision and learning behaviour. Farm class is the most common usage of ALMaSS since it 

requires much less information to set up compared to the more complex alternative. 

At the highest level of organisation data is used to classify farms (see manuscript section 2.1.2), 

which in turn determines the rotation used by all farms. This information is used, together with the 

mapped field polygons and their associated farm classified into types, as the basis for determining 

crop coverage by area at the landscape and farm level. Day-to-day farm management determines 
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the actual cover on fields and in the landscape, crop structure in terms of height and green and total 

leaf-area index, and farming activities (e.g. ploughing) (Fig.1). 

 

Figure 1: The farm management inputs and outputs at the general level of organisation 

On a daily basis the management is carried out at field polygon level and comprises a crop 

husbandry model fed by system data inputs, linked to a crop growth model and jointly creating 

outputs at the field polygon level (Fig. 2). 

 

Figure 2: Data flows into and out of farm management at the field polygon level. Dashed arrows 
are data flows, solid arrows process flow 
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The basis for the crop growth model is described by (Topping and Olesen 2005). This results in a 

series of growth phases with height, leaf-area total, and leaf area green as a function of summed day 

degrees from the start of the growth phase (e.g. Table 1). Using these growth phases it is possible to 

recombine them in different orders to represent all Danish crops e.g. an autumn sown crop will get 

‘From Sowing’, ‘From Jan 1st’ ‘From Mar 1st’, ‘From harvest 1’, whereas a spring crop might be ‘From 

mar 1st’, ‘From Sowing’. ‘From Harvest 1’. Management e.g. harvest or sowing can cause a change in 

growth phase and a sudden change in vegetation characteristics (e.g. height after harvest), hence at 

the start of each growth phases it is possible (but not obligatory) to set the vegetation characteristics 

to a particular value. For each growth phase the rates of change for the three response variables per 

day degree (calculated between inflection points on the curve, i.e. rows in Table 1) are stored as 

vegetation specific growth curves.  These specific change rates are applied on a daily basis (Fig. 3) 

and vegetation characteristics updated based on the leaf-area index and height changes (cover and 

biomass can be calculated from these e.g. using Beer’s Law for cover). 

Table 1: An example of the format of the vegetation growth curve data used in ALMaSS as input to 
the vegetation daily growth model showing the five growth phases possible. 

Growth Phase TSum LAI-Total LAI-Green Height 

From Jan 1st 0 4.83 0 70 

 105 3.85 0 56 

From Sowing 99999 0 0 0 

From Mar 1st 0 3.85 0 56 

 289 4.5 1 65 

 695 5 1.25 73 

 1017 5.5 0 80 

 2619 5.5 0 80 

 2787 4.83 0 70 

 99999 4.83 0 70 

After cutting/harvest 1 0 0.3 0 10 

 289 4.5 1 65 

 695 5 1.25 73 

 1017 5.5 0 80 

 2619 5.5 0 80 

 2787 4.83 0 70 

 99999 4.83 0 70 

From cutting/harvest 2 99999 0 0 0 

 289 4.5 1 65 

 695 5 1.25 73 

 1017 5.5 0 80 

 2619 5.5 0 80 

 2787 4.83 0 70 

 99999 4.83 0 70 
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Figure 3: The crop growth model data and process flows leading to changes in vegetation height 
and leaf area index. Data is represented by dashed lines, process flows by solid lines 

 

Crop husbandry results in recording the farm operation events that occur on each field each day. 

The sequence of events and their conditions is specified by a unique crop management plan for each 

crop. Examples of the implementation can be found in the ALMaSS ODdox (e.g. Topping 2009). 

These plans are long and complicated and hence only a section of a representative plan is shown 

here to demonstrate the process (Fig. 4). Whether an operation is carried out on a particular day is 

determined by a probability distribution resulting in a spreading of operations in time within the 

permitted period of action (start to end date inclusive in Fig. 4). It is also dependent upon weather or 

history events e.g. spraying a second herbicide may only happen if the first was sprayed and only 

under low wind-speed and no precipitation conditions. In this way real agronomic constraints can be 

included. 

Some constraints for farm operations are programmed into the farm class and are thus general to all 

attempts to carry out the operation e.g. weather constraints to pesticide sprays; others are specific 

to the crop husbandry plan and the actual polygon it is being applied to, e.g. history of operations. 
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Figure 4: Flow diagram showing events in the husbandry plan for triticale up to end of April. Black 
numbers are base % making the choice to carry out an operation (blue boxes). Note threads fork 
from the ’Fork Point’ and carry on parallel actions until each thread ends. One thread, in this case 
the NPK thread carries on to the rest of the husbandry plan (not shown). St = start date End = end 
date for an operation 

 
 
 

References  
 

Parry, H. R., C. J. Topping, M. C. Kennedy, N. D. Boatman and A. W. A. Murray (2013). "A Bayesian 
sensitivity analysis applied to an Agent-based model of bird population response to landscape 
change." Environmental Modelling & Software 45: 104-115. 

Thorbek, P. and C. J. Topping (2005). "The influence of landscape diversity and heterogeneity on 
spatial dynamics of agrobiont linyphiid spiders: An individual-based model." BioControl 50(1): 
1-33. 

Topping, C. and J. Olesen (2005) "Vegetation growth simulation in ALMaSS 4.0." 
Topping, C., S. Ostergaard, C. Pertoldi and L. A. Bach (2003). "Modelling the loss of genetic diversity 

in vole populations in a spatially and temporally varying environment." Annales Zoologici 
Fennici 40(3): 255-267. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 21, 2015. ; https://doi.org/10.1101/025833doi: bioRxiv preprint 

https://doi.org/10.1101/025833
http://creativecommons.org/licenses/by-nc/4.0/


Topping, C. J. (2009). "Voles and related classes ODdox Documentation." from 
http://www.biomedcentral.com/content/supplementary/1472-6785-9-10-
s2/Vole_ODDox/main.html. 
Topping, C. J. (2011). "Evaluation of wildlife management through organic farming." Ecological 
Engineering 37(12): 2009-2017. 
Topping, C. J., T. S. Hansen, T. S. Jensen, J. U. Jepsen, F. Nikolajsen and P. Odderskaer (2003). 
"ALMaSS, an agent-based model for animals in temperate European landscapes." Ecological 
Modelling 167(1-2): 65-82. 
Topping, C. J., T. T. Hoye and C. R. Olesen (2010). "Opening the black box-Development, testing and 
documentation of a mechanistically rich agent-based model." Ecological Modelling 221(2): 245-255. 

 

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 21, 2015. ; https://doi.org/10.1101/025833doi: bioRxiv preprint 

http://www.biomedcentral.com/content/supplementary/1472-6785-9-10-s2/Vole_ODDox/main.html
http://www.biomedcentral.com/content/supplementary/1472-6785-9-10-s2/Vole_ODDox/main.html
https://doi.org/10.1101/025833
http://creativecommons.org/licenses/by-nc/4.0/


Appendix 3: 10 Danish ALMaSS 
Landscapes 
We here present a visual overview of each of the 10 Danish landscapes used in Topping et al. 2015 
along with a map of Denmark with each of the landscapes shown. Note that at the scale used here it 
is not possible to map all landscape elements present in the landscapes. See Appendix 1 in Topping 
et al. 2015 for full details. 

Topping, C. J., Dalby, L. & Skov, F 2015: Landscape structure and management alter the 
outcome of a pesticide ERA: evaluating an endocrine disruptor using the ALMaSS European 
Brown Hare model 

Figure 1: The location of each of the 10 landscapes in Denmark 
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Figure 2: Esbjerg 

 

Figure 3: Himmerland 
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Figure 4 Karup 

 

Figure 5 Kolding 
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Figure 6 Lolland 

 

Figure 7 Mors 
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Figure 8 Næstved 

 

Figure 9 Odder 
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Figure 10 Toftlund 

 

Figure 11 Tønder 
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APPENDIX 4: THE PROPORTION OF EACH 

CROP ASSUMED TO BE GROWN BY EACH 

FARM TYPE 
 

The proportion of each ALMaSS crop type assumed to be grown by each farm type was based on a national farm 

classification. 

 

Farm Type/Crop 
Conv. 

Pig 
Conv. 
Cattle 

Conv. 
Arable 

Conv. 
Hobby 

Conv.  
Mixed 
Stock 

Conv. 
Potato 

Conv. 
Beet 

Conv. 
Veg 

Other 
Farm 
Types 

Mean 

Spring Barley 0.28 0.19 0.34 0.22 0.30 0.32 0.35 0.07 0.08 0.22 

Rotational Grass 0.03 0.29 0.02 0.25 0.10 0.04 0.02 0.04 0.31 0.14 

Winter Wheat 0.32 0.07 0.32 0.09 0.19 0.07 0.28 0.02 0.02 0.11 

Permanent Grass 0.04 0.17 0.02 0.24 0.07 0.02 0.01 0.02 0.36 0.09 

Oats 0.02 0.01 0.03 0.02 0.02 0.01 0.00 0.01 0.01 0.05 

Potatoes 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.03 0.02 0.05 

Winter Rye 0.04 0.01 0.04 0.02 0.04 0.03 0.00 0.00 0.00 0.04 

Sugar Beet 0.00 0.00 0.01 0.00 0.01 0.00 0.27 0.00 0.00 0.03 

Spring Barley Silage 0.00 0.05 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.02 

Winter Rape 0.10 0.02 0.10 0.02 0.07 0.01 0.02 0.00 0.01 0.02 

Spring Wheat 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.02 

Winter Barley 0.08 0.02 0.07 0.02 0.04 0.01 0.01 0.00 0.00 0.02 

Seed Grass 0.03 0.01 0.01 0.00 0.08 0.02 0.02 0.00 0.00 0.02 

Vegetable crops 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.02 

Maize Silage 0.01 0.13 0.00 0.01 0.02 0.03 0.01 0.00 0.01 0.02 

Others 0.02 0.03 0.02 0.08 0.04 0.24 0.01 0.58 0.16 0.14 

Table 1: Conventional farm types and the proportion of each crop or group of crops assumed to be grown. 

Farm Type/Crop Org. Pig 
Org. 

Cattle 
Org. 

Arable 
Org. 

Hobby 

Org. 
Mixed 
Stock 

Org. 
Potato 

Org. 
Beet 

Org. Veg 

Spring Barley 0.28 0.09 0.27 0.10 0.22 0.10 0.44 0.01 

Rotational Grass 0.14 0.40 0.05 0.42 0.17 0.11 0.00 0.04 

Winter Wheat 0.03 0.02 0.06 0.01 0.04 0.03 0.30 0.00 

Permanent Grass 0.06 0.17 0.02 0.20 0.07 0.03 0.02 0.02 

Oats 0.07 0.07 0.28 0.07 0.15 0.08 0.00 0.01 

Potatoes 0.00 0.00 0.00 0.00 0.00 0.28 0.00 0.03 

Winter Rye 0.06 0.04 0.12 0.04 0.10 0.08 0.00 0.00 

Sugar Beet 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.00 

Spring Barley Silage 0.10 0.09 0.01 0.04 0.03 0.03 0.00 0.01 

Winter Rape 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

Spring Wheat 0.03 0.02 0.06 0.03 0.07 0.04 0.00 0.01 
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Winter Barley 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

Seed Grass 0.03 0.02 0.01 0.01 0.04 0.01 0.00 0.00 

Vegetable crops 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 

Maize Silage 0.01 0.02 0.00 0.00 0.01 0.02 0.00 0.00 

Others 0.19 0.05 0.11 0.08 0.09 0.18 0.00 0.83 

Table 2: Organic farm types and the proportion of each crop or group of crops assumed to be grown. 
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