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Abstract

RNA-seq technology is widely used in biomedical and basic science research. These studies

rely on complex computational methods that quantify expression levels for observed transcripts.

We find that current computational methods can lead to hundreds of false positive results

related to alternative isoform usage. This flaw in the current methodology stems from a lack of

modeling sample-specific bias that leads to drops in coverage and is related to sequence features

like fragment GC content and GC stretches. By incorporating features that explain this bias

into transcript expression models, we greatly increase the specificity of transcript expression

estimates, with more than a four-fold reduction in the number of false positives for reported

changes in expression. We introduce alpine, a method for estimation of bias-corrected transcript

abundance. The method is available as a Bioconductor package that includes data visualization

tools useful for bias discovery.

INTRODUCTION

RNA sequencing (RNA-seq) provides a rich picture of the transcriptional activity of cells, al-

lowing researchers to detect and quantify the expression of different isoforms and types of genes.

To estimate transcript abundance, software such as Cufflinks [1] or RSEM [2] is used to take

RNA-seq reads and (optionally) transcript annotations to infer i) which transcripts are expressed

and ii) at what level. The results of downstream analyses are heavily dependent on these soft-

ware and their underlying models and algorithms. Accurate and robust transcript abundance

estimates are critical and enable further analyses and downstream validation.

Consortia have investigated the accuracy of RNA-seq expression estimates at scale and have

confirmed that significant batch-specific biases are often present, that relative expression across

samples is more reproducible than absolute expression estimates, and that batch effects arise

mostly from RNA extraction and library preparation steps [3–5]. Computational methods for

estimating gene and transcript abundance attempt to mitigate the effect of technical biases

by estimating sample-specific bias parameters with the hopes of capturing as much unwanted

variation as possible. For gene-level expression, common normalization methods include fitting

a smooth curve to the observed counts of RNA-seq fragments for each gene over the GC content

and length of the genes [6, 7]. Other methods target batch effects directly at the gene-level
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Figure 1: (a) RNA-seq biases. (b) Ignoring fragment sequence bias impairs transcript abundance
estimation when critical regions that distinguish isoforms have GC content or sequence features
that make fragments hard to amplify, resulting in false positives of predicted expression of isoforms
that are lowly or not expressed.

counts using approaches based on factor analysis [8–10]. However, here we are interested in

transcript-level analysis not the gene-level analysis these methods address.

At the transcript level, a number of sample-specific bias parameters are estimated by methods

and included in the model during the estimation of transcript abundance. These known biases

and their sources include the fragment length distribution from size selection, the positional bias

along the transcript due to RNA degradation and mRNA selection techniques, and a sequence-

based bias in read start positions arising from the differential binding efficiency of random

hexamer primers [2, 11–15] (Figure 1a). Some methods apply a correction to transcript-level

estimates after abundance estimation using the average GC content of the transcripts [16, 17].

Recent investigations into the coverage of RNA-seq fragments along transcripts revealed

examples of extreme variability in coverage that is purely technical and sample-specific [18].

Despite these efforts toward transcript-level bias correction, highly variable patterns of coverage

confound current methods that are designed to identify and quantify transcripts [19].

Here we investigate the cause of systematic errors in transcript abundance estimates. We

find that GC content and other sequence features in the fragment explain much of the coverage

variation within transcripts, and outperform the read start features used by current methods to

reduce the bias from random hexamer priming. Despite the importance of GC content in explain-

ing differences in expression estimates across batches, none of the existing transcript abundance

estimation methods incorporate sample-specific fragment-level GC content bias in their models

[3, 5]. We show that ignoring these fragment sequence biases can lead to hundreds of false pos-

itive estimates of transcript expression and misidentification of the major isoform, as methods

are unable to interpret drops in coverage as technical artifacts (Figure 1b). By incorporating

a term for fragment sequence bias alongside other bias terms into an expectation-maximization

algorithm for transcript abundance estimation, we are able to produce estimates that are more

stable across centers and batches. The bias modeling framework and transcript abundance

estimation methods are distributed as an open-source R/Bioconductor package alpine. Our

framework enables further research both into optimization of library preparation protocols to

reduce or eliminate biases as well as computational approaches that mitigate bias.
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RESULTS

Current methods predict many significant differences across center

We sought to identify and quantify different kinds of technical bias in RNA-seq data, both on

absolute estimates of abundance and in comparisons of expression estimates across samples.

To uncover such biases, we downloaded 30 RNA-seq samples from the GEUVADIS Project

of lymphoblastoid cell lines derived from the TSI population, 15 of which were sequenced at

one center and 15 at another [20] (Supplementary Table 1). We ran state-of-the-art transcript

quantification software Cufflinks (with the sequence bias removal option turned on) and RSEM

on these 30 samples, generating a table of estimates for RefSeq transcripts. Performing a simple

t-test on log2(FPKM + 1) values from Cufflinks across centers, and filtering on Benjamini-

Hochberg adjusted p values less than 1% false discovery rate (FDR) resulted in 2,510 transcripts

out of 25,588 with FPKM greater than 0.1 reported as differentially expressed (Figure 2a, see

Supplementary Figure 1 for RSEM results). 619 out of 6,761 genes with multiple isoforms and

FPKM greater than 0.1 for one or more isoform had changes in the reported major isoform

across centers using FPKM values estimated by Cufflinks (Supplemental Table 2). While it is

expected that there will be batch effects when comparing estimates from samples prepared in

different centers, our across-center analysis provides a baseline picture of the extent of systematic

errors in absolute transcript-level abundance estimates. Well-designed sequencing projects such

as GEUVADIS are careful to distribute samples from one biological condition (here population)

across centers and to consider this in statistical comparisons.

We then examined what sources of technical bias might be underlying the differences in

transcript abundance estimates. While the transcripts with reported differential expression were

equally divided among single and multiple isoform genes as the rest of transcripts, we choose to

focus on genes with two isoforms, so that we could more easily identify what features of genes

might be causing the difference in estimated expression. Out of 5,716 transcripts from genes

with two isoforms in which at least one isoform had FPKM greater than 0.1, 566 transcripts

reported differential expression across center according to Cufflinks estimated abundances, at an

FDR threshold of 1%. Of these, 164 transcripts were from genes where both of the two isoforms

were reported differentially expressed, and in the majority of cases the reported fold change was

in different directions (134 different vs 30 same direction). Furthermore, the critical regions of

the genes’ exonic structure – those regions that were exclusive to one or the other isoform – for

genes with one or more isoform reported as differentially expressed, had much higher GC-content

(mode at 70% compared to 50%) than expected by chance (Figure 2b, Wilcoxon p < 0.0001).

An example of a gene with differences in expression estimates across center is USF2 (Figure

2d). It is often small, critical regions (exons or parts of exons) that distinguish isoforms of a

gene. For some genes, these regions will have stretches of high GC content. Because methods

such as Cufflinks and RSEM employ a likelihood model that ignores differences in coverage due

to fragment sequence features like GC content, the drop in coverage for samples from center

1 results in a shift in expression estimates from the first isoform to the second isoform, which

does not include the high GC exon (Figure 2e). Note that the samples from center 1 have

dramatically reduced representation of high GC fragments compared to center 2, even after

adjusting for differences due to random hexamer priming bias (Figure 2c).
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Figure 2: Problems with current transcript abundance estimation methods. (a) Volcano plot of a
comparison of Cufflinks transcript estimates across center, with 2,510 transcripts having FDR less
than 1% and 515 with family-wise error rate (FWER) of 1% using a more conservative Bonferroni
correction. (b) GC content of critical gene regions distinguishing two isoforms when one or more
reported differential expression, compared to GC content of random exons. (c) Dependence of
fragment rate on GC content after controlling for random hexamer priming bias of read starts.
(d) Coverage and GC content in a region of the USF2 gene containing the alternative exon. (e)
Cufflinks FPKM estimates for USF2.
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A model for RNA-seq fragment sequence bias

PCR amplification of DNA fragments generates the GC content bias seen in sequencing data

[21–23], and for DNA-seq it has been shown that optimal correction for the amplification bias

occurs when modeling at the scale of the fragment [24]. Therefore, we used fragment features,

such as fragment GC content and the presence of long GC stretches within the fragment (de-

fined in Methods), to predict the number of times a potential fragment of a transcript was

observed (0, 1, 2, . . . ). The effect of GC stretches within a gene in reducing RNA-seq coverage

has been previously described [25]. We considered all potential fragments with a range of length

within the center of the fragment length distribution, at all possible positions consistent with the

transcript’s beginning and end. While one existing method for estimating percent of isoform

expression assumed a positive linear relationship between exon counts and exon GC content

[26], our investigation reconfirmed the findings of Benjamini and Speed [24], that the GC con-

tent effect was often nonlinear and highly sample-specific, therefore requiring sample-specific

estimation of smooth curves of GC content.

We constructed a Poisson generalized linear model for the count of each potential fragment

for each sample separately, with a number of modular bias correction terms that could be used

exclusively or in combination (see Methods for details). Possible terms included smooth curves

for the fragment GC content, indicator variables for the presence of GC stretches, a term for the

fragment length, smooth functions of the relative position within the transcript, and the read

start bias for both ends of the fragment, using the same variable length Markov model (VLMM)

proposed by Roberts et al. [13] and used in Cufflinks.

Fragment sequence explains more technical variability in coverage than

read start sequence

To test the predictive power of various models for technical bias, we downloaded a recently

published benchmarking dataset, where 1,062 human cDNA clones were in vitro transcribed

and the resulting transcripts were mixed at various concentrations with mouse total RNA,

prepared as libraries and sequenced (IVT-seq) [18]. Libraries were prepared using standard

techniques, including poly(A) enrichment, no selection, and for those libraries titrated with

mouse total RNA, ribosomal RNA depletion was performed. The resulting publicly available

dataset is valuable for studying technical variability in coverage, as the exact sequence of the

transcripts are known, and the raw data displays the typical non-uniform transcript coverage

not found in spiked-in DNA. We focused our analysis on 64 of the IVT transcripts defined by

Lahens et al. [18] as exhibiting “high unpredictable coverage”.

We compared the predictive power of various models, all of which included fragment length,

and which optionally included read start sequence bias, fragment GC content, and identifiers for

GC stretches (Supplementary Figures 2-4). For prediction, we used 2-fold cross validation, such

that two models were trained on two halves of the data, and always evaluated on transcripts that

were not in the training set. Predictive power was measured as the percent reduction of mean

squared error in explaining raw fragment coverage, compared to a null model that predicted

uniform coverage across the transcript. The models that included fragment GC content doubled

the predictive power of the model that included read start sequence bias (Figure 3a). The model

that also included the information about GC stretches was more predictive than the model
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Figure 3: Modeling and correcting fragment sequence bias. (a) Comparison of reduction in mean
squared error (MSE) for different bias models for all 8 samples and 64 transcripts (n=512). (b)
Comparison of test set coverage prediction for bias models on GenBank BC011380 (raw coverage
in blue, predicted coverage in black). (c) and (d) Volcano plots of differential transcript expression
across centers for genes with two isoforms (orange: Benjamini-Hochberg FDR less than 1%; red:
Bonferroni FWER rate less than 1%). (e) Consistency of percent expression of the major isoform
identified in center 1 compared to center 2. Cufflinks had 78 genes with estimated isoform percent
change more than 35% across center, while alpine had 32 genes (red points). (f) and (g) FPKM
estimates for two isoforms of BASP1 across center.
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with just the fragment GC content, although only slightly so. The fragment sequence models

accurately capture the drops in coverage that were not captured by the read start sequence

model (Figure 3b, Supplementary Figures 5-6).

Correcting for fragment sequence bias reduces false positives of esti-

mated transcript expression

We then used our approach to compare the transcript abundance estimates from one center

against the other in the 30 GEUVADIS samples. To more clearly show the performance with

respect to differential isoform usage, we focused on 5,712 transcripts from genes with only two

isoforms and FPKM values estimated by Cufflinks greater than 0.1 for one of the two isoforms.

Additionally, we required that the two isoforms have at least one overlapping basepair. We

compared log2(FPKM + 1) estimates across center using a t-test. We found that including bias

terms for fragment GC and GC stretches resulted in more than a four fold decrease in the num-

ber of false positives at an FDR threshold less than 0.01 (Cufflinks reported 562 differentially

expressed transcripts, while alpine reported 130 (Figure 3c-d)). Using a more conservative Bon-

ferroni correction, Cufflinks reported 157 transcripts differentially expressed transcripts across

center with FWER of 1%, while alpine reported only 27. Of the 5,712 transcripts considered,

Cufflinks reported 5,020 with FPKM greater than 0.1 and alpine reported 4,903. In general,

alpine greatly reduced across-center significant differences while within-center coefficient of vari-

ation of abundance estimates remained the same as for Cufflinks (Supplementary Figures 7-10).

Likewise we observed reduced across-center differences for estimation of isoform percentages

within the 2,856 genes. For each gene, we calculated the estimated percent expression of the

major isoform for center 1 (a number ranging from 50% to 100% by definition), against the

estimated percent expression of that same isoform in center 2. Comparing Cufflinks with alpine,

inclusion of the fragment sequence terms reduced the number of extreme predicted changes in

isoform percent when comparing across center (Figure 3e). An example of how false positives

for isoform switching arose is the two-isoform gene BASP1, with the FPKM estimates from

both methods shown in Figure 3f-g (additional examples in Supplementary Figure 11). Similar

improvements were attained over RSEM (Supplementary Figures 12-13). Including read start

bias terms in the alpine model did not provide visible improvements (Supplementary Figures

14-17).

Fitting the fragment sequence model does require more computational effort than models

which assume uniformity of fragments, or which correct only for fragment length distribution,

though our implementation runs in comparable time to the cuffquant and cuffnorm steps of

the Cufflinks suite. Generating the bias coefficients for the 30 GEUVADIS samples required 24

minutes using 6 cores and 75 Gb of memory. Estimating the transcript abundances for 5,712

transcripts from two-isoform genes for all 30 samples required 3.5 hours using 40 cores and 50

Gb of memory. The alpine software is implemented using core Bioconductor packages and the

speedglm R package [27, 28].

DISCUSSION

Systematic errors and batch effects are a continuing cause of concern for RNA-seq experiments.

Large-scale, well-documented transcriptome sequencing projects such as GEUVADIS [20] allow
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the creation of computational methods that correct technical biases, such as sample-specific

fragment sequence bias. Here we used an across-center comparison to find and quantify signif-

icant differences in transcript expression estimates. We note that our findings reflect general

systematic errors and not just differences induced by batch effects. The problem holds with

absolute abundance estimates derived from data from a single center. There are likely to be

many incorrectly reported major isoforms and biased abundance estimates for experiments that

show strong dependence of the fragment rate on GC content (e.g. Figure 2d), unless these are

explicitly corrected for using fragment sequence bias modeling.

For analyses focusing on differential abundance across conditions, batch effects affecting a

number of transcripts can be controlled for with proper experimental design – distribution of

samples from one biological condition across centers – and by considering technical factors in

statistical comparisons. However, for those genes with misidentification of the major isoform,

for example, the more than one hundred transcripts we identified from genes with two isoforms

that showed significant and opposite directions of expression fold changes (Figures 2e and 3f),

including blocking or inferred technical variation factors will not prevent a differential signal

across condition being attributed by a naive model to the wrong transcript.

While computational methods are available for correcting gene-level expression using average

GC content for the gene [6, 7] or by estimating hidden factors [8–10], the systematic errors

induced at the transcript level are more problematic and difficult to correct for than at the gene

level. Transcript-level corrections do not effectively correct the bias, because the GC content

of the isoforms can be very similar when the critical regions distinguishing isoforms are short

compared to the total transcript length. Removal of duplicate reads/fragments, and barcoding

of unique molecules is also not likely to correct for these technical biases, as the observation of

one fragment compared to zero is equally affected by PCR amplification bias as the observation

of two or more compared to one. Longer reads or fragments are also unlikely to correct this

bias, as from our investigation, PCR amplification is impaired based on sequences contained

within fragments. Here we focused primarily on specificity, showing a decrease in false positives

through modeling of additional bias terms. New benchmarking experiments are necessary in

order to test sensitivity: experiments where the true isoform or set of isoforms are known, and in

which characteristically highly-variable profiles of transcript coverage are obtained by following

as closely to the steps of a standard RNA-seq experiment as possible.

While the sequence features we included in our model provided substantial improvements

over existing methods, we hypothesize that more variability can be explained by discovering new

predictive features. Our R/Bioconductor package provides a modular framework that facilitates

further exploration. For example, though we did not include an interaction term between

fragment length and GC content curves as described by Benjamini and Speed [24], this could be

added. Our software also will prove useful for optimization of protocols to reduce GC content

bias [22] or bias due to stretches of GC, which is preferable to computational corrections.

METHODS

RNA-seq read alignment

IVT-seq FASTQ files made publicly available by Lahens et al. [18] were downloaded from the

Sequence Read Archive. Paired-end reads were aligned to the human reference genome contained
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in the Illumina iGenomes UCSC hg19 build, using STAR version 2.3.1 [29]. The exons of the

GenBank transcripts were read from the feature quant.txt files posted to GEO by Lahens

et al. [18]. The list of transcripts with high unpredictable coverage was downloaded from the

additional files of Lahens et al. [18].

GEUVADIS FASTQ files made publicly available by Lappalainen et al. [20] were downloaded

from the European Nucleotide Archive (see Supplementary Table 1). Paired-end reads were

aligned to the human reference genome contained in the Illumina iGenomes UCSC hg19 build,

using TopHat version 2.0.11 [30]. The genes.gtf file contained in the Illumina iGenomes build

was filtered to genes on chromosomes 1-22, X, Y and M, and provided to Cufflinks, RSEM and

alpine as gene annotation.

Transcript quantification for GEUVADIS

Cufflinks version 2.2.1 [1, 13] was run with bias correction turned on, with the commands:

cuffquant -p 40 -b genome -o cufflinks/file genes.gtf \

tophat/file/accepted_hits.bam

cuffnorm genes.gtf -o cufflinks cufflinks/file1/abundances.cxb \

cufflinks/file2/abundances.cxb ...

RSEM version 1.2.11 [2] was run with the commands:

rsem-prepare-reference --gtf genes.gtf genome rsem/hg19

rsem-calculate-expression -p 20 --no-bam-output --paired-end \

<(zcat fastq/file_1.fastq.gz) <(zcat fastq/file_2.fastq.gz) \

rsem/hg19 rsem/file/file

RNA-seq fragment sequence bias model

The following model applies to paired-end RNA-seq fragments, but could be easily modified for

single-end reads. For each sample and each transcript (each isoform of a gene), we build a 2

dimensional matrix Y in which we store counts (0, 1, 2, . . . ) of the aligned paired-end fragments.

This matrix is indexed along the rows p by the start of the first read of a potential fragment,

and along the columns l by the length of a potential fragment. Fragments which were not

observed will then have Ypl = 0. For computational efficiency, the columns are limited to the

middle 99% of the empirical fragment length distribution. For the IVT-seq samples, the center

of the distribution was defined by l ∈ [100, 350] and for the GEUVADIS samples, l ∈ [80, 230],

with a total of L fragment lengths considered. The elements of the matrix Ypl are then the

counts of fragments with a read starting a position p and of length l. Note that most entries

of this matrix are 0. For estimating bias parameters and comparison of predicted coverage to

observed coverage, the fragments which begin on the first basepair or end on the last basepair

of a transcript are not included, as large counts for these potential fragments could impair

estimation of the coefficients for coverage biases within the body of the transcript. The matrix

Y represents nearly all of the potential fragment types which could occur from a given transcript.

Paired-end reads which are compatible with multiple isoforms are assigned a 1 to each of the

transcript matrices Y , as long as the fragment length is within the range defined above. The

counts in the matrix are modeled on a number of features including:
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• The fragment’s length

• The relative position of the fragment in the transcript

• The GC content of the fragment (and other features of the fragment sequence)

• The sequence in a 21 bp window around the starts of the two paired-end reads. This is

used by the Cufflinks variable length Markov model (VLMM) for the random hexamer

priming bias [13].

The counts in the matrix Y are collapsed into a vector ~y, which is indexed with j such that

yj is a count for the j-th potential fragment type. Data for all of the features listed above is

gathered for all the potential fragments using vectorized Bioconductor functions [27]. Two offsets

are calculated using the observed fragments aligning to genes with a single isoform: the length

of a particular fragment is converted into an offset using the log of the empirical probability

density function, and a 21 bp VLMM is calculated and turned into an offset identical to the one

introduced by Roberts et al. [13] for Cufflinks.

A number of coefficients are then included in a Poisson generalized linear model (GLM).

These coefficients include: a natural cubic spline based on the GC content for each fragment

(with knots at 0.4, 0.5, 0.6 and boundary knots at 0, 1), a natural cubic spline for the relative

position of the fragment in the transcript (with knots at 0.25, 0.5, 0.75 and boundary knots at

0, 1), and four indicator variables which indicate if the fragment contains a stretch of higher

than 80% or 90% GC content in a 20 or 40 bp sequence within the fragment. These terms

together form a model matrix X, where Xj· gives the row of the model matrix for the j-th

potential fragment. For fitting the GLM across multiple genes, an indicator variable is added

for the different genes used in the bias modeling steps. This term absorbs any differences due

to gene expression. Note that we do not model an interaction between fragment length and GC

content of the fragment, as discussed by Benjamini and Speed [24], because we were able to

predict coverage drops with GC content alone and so to limit the number of parameters in the

model. However, the interaction could be added at this stage.

yj is modeled as follows:

yj ∼ Poisson(λj)

log(λj) =
∑
f

Xjfβf + oj

where f indexes the columns in the matrix X and βf is the matching coefficient. The oj term

is the offset from fragment length and/or the variable length Markov model (VLMM) term for

the read start primer bias from both reads. The coefficients and offsets are estimated using the

genes that have only one isoform, which avoids the problem of probabilistic deconvolution of the

fragments from different isoforms of a single gene. The coefficients and offsets were estimated

across the 64 transcripts in the IVT-seq dataset (in two batches for cross-validation) and across

60 medium to highly expressed genes in the GEUVADIS dataset.

Predicted read start coverage

The predicted read start coverage for position p is defined as:
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v̂p =
∑

j: c(j)=p

λ̂j

where c(j) = p indicates that the j-th potential fragment covers position p. Note that the

predicted coverage v̂p is only used for plotting and model comparison on the IVT-seq dataset,

and not for estimation of the GLM coefficients or transcript abundance. For estimation of the

GLM coefficients and transcript abundance, only the fragment-level counts yj and estimates λ̂j

are used.

Bias models

The following models were fit for IVT-seq samples:

• “GC”: y ∼ gene + frag. length + frag. GC content

• “GC+str.”: y ∼ gene + frag. length + frag. GC content + GC stretches

• “read start”: y ∼ gene + frag. length + VLMM

• “all”: y ∼ gene + frag. length + frag. GC content + GC stretches + VLMM

The following models were fit for GEUVADIS samples:

• “GC+str.”: y ∼ gene + frag. length + rel. position + frag. GC content + GC stretches

• “read start”: y ∼ gene + frag. length + rel. position + VLMM

• “all”: y ∼ gene + frag. length + rel. position + frag. GC content + GC stretches + VLMM

In the IVT-seq dataset, relative position was not included, as strong positional bias was not

observed, as opposed to the poly(A)-selected GEUVADIS dataset, which did exhibit positional

bias. During modeling, the observations from highly expressed genes are down-sampled, so that

each gene contributes equally to the final model in terms of FPKM. This is equivalent to the

approach in Roberts et al. [13] for the Cufflinks bias estimation steps.

Transcript abundance estimation

The estimated bias terms can be used to improve the estimates of transcript abundance for

genes with single isoforms or multiple isoforms. For fragment type j and isoform i, the Poisson

rate is given by:

λij = θiaij

where A is a sampling rate matrix, and ~θ represents the abundance of the different isoforms of

a gene, as described by Salzman et al. [31] and Jiang and Salzman [32]. aij = 0 if fragment type

j could not arise from isoform i. If fragment type j can arise from isoform i, one parametrization

sets aij = q(lj)N , where q is the empirical density of fragment lengths, lj is the fragment length

of the j-th fragment type, and N is the total number of mapped reads. Here, we included the

fragment length in the overall bias term λ̂j , so we set aij = λ̂jN/(L109) when fragment type j

can arise from isoform i. The denominator contains 109 and the range of the fragment lengths

L considered in the model, so that final estimates of θ̂ are on the FPKM scale.
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Note that
∑

i θ̂i is not equal to 1, as these represent expression abundances, so they are only

required to be non-negative (the θ̂ are proportional to FPKM). The Poisson model defined here

is the same model as proposed by Jiang and Salzman [32], but here we explicitly model the bias

using offsets ~o, a matrix of features X, and a vector of log fold changes ~β, so not the same β as

defined by Jiang and Salzman [32].

The log likelihood of a given estimate of the isoform abundances is evaluated with:

`(θ̂|aij) ∝
∑
j

log fPois(yj ,
∑
i

λij)

The maximum likelihood estimate of θ̂ is obtained using an EM algorithm as described

by Jiang and Salzman [32], where fragment types j with no observed fragments need only be

considered for certain steps of the EM. For genes with a single isoform, the maximum likelihood

estimate for θ, given the estimated bias terms λj , is:

θ̂ =
L109

∑
j yj

N
∑

j λ̂j

As some of the bias terms introduce arbitrary intercepts, the estimates θ̂ for all transcripts

are scaled by a single scaling factor for each sample to match the null model estimates (the model

with λj = 1) using the median ratio of θ̂bias over θ̂null. For normalizing transcript abundances

across samples, the θ̂ estimates are scaled using the median-ratio method of DESeq [33].
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Supplementary Tables and Figures

Supplementary Tables

pop center assay sample experiment run
TSI UNIGE NA20503.1.M 111124 5 ERS185497 ERX163094 ERR188297
TSI UNIGE NA20504.1.M 111124 7 ERS185242 ERX162972 ERR188088
TSI UNIGE NA20505.1.M 111124 6 ERS185048 ERX163009 ERR188329
TSI UNIGE NA20507.1.M 111124 7 ERS185412 ERX163158 ERR188288
TSI UNIGE NA20508.1.M 111124 2 ERS185362 ERX163159 ERR188021
TSI UNIGE NA20514.1.M 111124 4 ERS185217 ERX163062 ERR188356
TSI UNIGE NA20519.1.M 111124 5 ERS185167 ERX162948 ERR188145
TSI UNIGE NA20525.1.M 111124 1 ERS185212 ERX163022 ERR188347
TSI UNIGE NA20536.1.M 111124 1 ERS185156 ERX163042 ERR188382
TSI UNIGE NA20540.1.M 111124 2 ERS185349 ERX162940 ERR188436
TSI UNIGE NA20541.1.M 111124 4 ERS185125 ERX163043 ERR188052
TSI UNIGE NA20581.1.M 111124 4 ERS185181 ERX162937 ERR188402
TSI UNIGE NA20589.1.M 111124 3 ERS185057 ERX162793 ERR188343
TSI UNIGE NA20757.1.M 111124 1 ERS185169 ERX162732 ERR188295
TSI UNIGE NA20761.1.M 111124 7 ERS185420 ERX163049 ERR188479
TSI CNAG CRG NA20524.2.M 111215 8 ERS185498 ERX162769 ERR188204
TSI CNAG CRG NA20527.2.M 111215 7 ERS185082 ERX163033 ERR188317
TSI CNAG CRG NA20529.2.M 111215 6 ERS185422 ERX162984 ERR188453
TSI CNAG CRG NA20530.2.M 111215 6 ERS185442 ERX163025 ERR188258
TSI CNAG CRG NA20534.2.M 111215 8 ERS185144 ERX162843 ERR188114
TSI CNAG CRG NA20543.2.M 111215 5 ERS185134 ERX163170 ERR188334
TSI CNAG CRG NA20586.2.M 111215 7 ERS185426 ERX162880 ERR188353
TSI CNAG CRG NA20758.2.M 111215 8 ERS185342 ERX162819 ERR188276
TSI CNAG CRG NA20765.2.M 111215 5 ERS185306 ERX162794 ERR188153
TSI CNAG CRG NA20771.2.M 111215 7 ERS185108 ERX163165 ERR188345
TSI CNAG CRG NA20786.2.M 111215 8 ERS185069 ERX162761 ERR188192
TSI CNAG CRG NA20790.2.M 111215 6 ERS185378 ERX163152 ERR188155
TSI CNAG CRG NA20797.2.M 111215 6 ERS185263 ERX162729 ERR188132
TSI CNAG CRG NA20810.2.M 111215 7 ERS185427 ERX162968 ERR188408
TSI CNAG CRG NA20814.2.M 111215 6 ERS185127 ERX163109 ERR188265

Supplementary Table 1: Information on the GEUVADIS samples. CNAG CRG was coded as center
1 and UNIGE was coded as center 2 in the text. The read length was 75 for all samples.

Number of isoforms: 2 3 4 5-8 9-12 13+ Sum

Cufflinks changes 169 155 103 160 19 13 619
Cufflinks total 2867 1682 932 1096 142 42 6761

RSEM changes 173 157 107 163 25 12 637
RSEM total 2955 1687 947 1105 147 42 6883

Supplementary Table 2: Number of genes with changes in major isoform. Considering genes which
have more than one isoform, and which had estimated FPKM greater than 0.1 in at least one
isoform (total), shown is the number of genes for which the isoform with highest average FPKM
was different across centers.
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Supplemental Figures

Supplementary Figure 1: Volcano plot of a comparison of RSEM transcript estimates across center.
2,829 transcripts had Benjamini-Hochberg adjusted p value less than 1% and 892 had family-wise
error rate of 1% using a Bonferroni correction, out of 26,057 transcripts with FPKM estimate
greater than 0.1.
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Supplementary Figure 2: The 0-order terms of the read start bias model estimated for the 5’
fragment end for one sample of the IVT-seq dataset. The 0-order terms are shown for visual
simplicity, although the variable length Markov model (VLMM) used here and proposed by Roberts
et al. [13] has higher order (1- and 2-order) Markov dependence for the middle positions. Both 5’
and 3’ end biases are combined for the read start bias calculation.
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Supplementary Figure 3: The fragment length distributions for IVT-seq samples.

20

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2015. ; https://doi.org/10.1101/025767doi: bioRxiv preprint 

https://doi.org/10.1101/025767
http://creativecommons.org/licenses/by/4.0/


Supplementary Figure 4: The dependence of fragment rate on fragment GC content for IVT-seq
samples. The following smooth curves were fit for the model with all terms, therefore representing
the GC content dependence after removing read start bias and fragment length bias (fit as an
offset).
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Supplementary Figure 5: Test set prediction of coverage for IVT-seq transcripts. Predicted coverage
(black lines) and raw fragment coverage (colored lines) is shown for four different bias models and
four transcripts: BC000158, BC011047, BC011377 and BC011380 (from top left, across rows), and
for all eight samples (color denotes sample condition). Test set mean squared error was calculated
by averaging the squared residuals from the predicted to the observed coverage.
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Supplementary Figure 6: Comparison of the reduction in test set mean squared error (MSE) across
the four models, split for eight IVT-seq samples. In all scatterplots, the y-axis shows the reduction
in MSE for the model with fragment GC content and GC stretches, compared to a null model of
uniform coverage. The x-axis shows (from left to right) the reduction in MSE for the read start
model, the fragment GC content model (no GC stretches), and the model with all terms.
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Supplementary Figure 7: Comparison of −log10 p values and FPKM estimates across methods.
Raw p values are shown for the set of transcripts with adjusted p values less than 0.1. In the top
row, Cufflinks and alpine run with the “GC+str.” bias terms are compared (see Methods). In the
bottom row, RSEM and alpine run with the “GC+str.” bias terms are compared.
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Supplementary Figure 8: Total number of false positives at various false discovery rate (FDR)
cutoffs. Shown are the total number of transcripts reported as differentially expressed among 5,712
transcripts from genes with two isoforms, when comparing log2(FPKM+1) estimates of GEUVADIS
samples across sequencing center. p values were adjusted using the Benjamini-Hochberg method.
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Supplementary Figure 9: Within-center standard deviation and mean of log2(FPKM+1) estimates.
Shown is the median (dark line), and 25% to 75% quantile (shaded region) of within-center standard
deviation of transcript estimates for 10 bins along the mean. Only transcripts with FPKM estimates
greater than 0.1 are included.

Supplementary Figure 10: Within-center coefficient of variation of log2(FPKM + 1) estimates. For
transcripts with FPKM greater than 0.1, the within-center coefficient of variation (variance divided
by mean) was calculated for each center and averaged.
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Supplementary Figure 11: Examples of estimated FPKM across sequencing center for genes with
two isoforms, for the three methods. Sequencing center (1 or 2) is indicated on the x-axis. Examples
selected for large across-center differences for Cufflinks and RSEM.
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Supplementary Figure 12: Volcano plots of differential transcript expression across centers for genes
with two isoforms, using RSEM estimated FPKM. Out of 5,712 transcripts, 577 transcripts reported
differential expression across center using an adjusted p value threshold of 1%, and 239 transcripts
using a conservative Bonferroni family-wise error rate of 1%. 4,979 of the 5,712 transcripts have
average FPKM greater than 0.1.

Supplementary Figure 13: Consistency of percent expression of the major isoform across center
across 2856 genes. Cufflinks had 78 genes with a change in estimated isoform percent greater than
35%, while alpine had 32 genes and RSEM had 97 genes.
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Supplementary Figure 14: Comparison of across-center differences for different alpine bias models.
At a threshold on Benjamini-Hochberg adjusted p values of 1%, the models reported 130, 393 and
372 transcripts differentially expressed out of 5,712, for the models with GC content + GC stretches,
read start, and a model with all terms, respectively. At a more conservative Bonferroni threshold of
1% family-wise error rate, the models reported 27, 125 and 124 transcripts differentially expressed,
respectively. See Methods for model details.

Supplementary Figure 15: The 0-order terms of the read start bias model estimated for the 5’
fragment end for one sample of the GEUVADIS dataset. As in Supplementary Figure 2, the 0-
order terms are shown for visual simplicity, although the variable length Markov model (VLMM)
used here has higher order (1- and 2-order) Markov dependence for the middle positions.
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Supplementary Figure 16: The fragment length densities calculated for GEUVADIS samples.
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Supplementary Figure 17: The relative position bias curves calculated for GEUVADIS samples.
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