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Summary19

1 Rapid environmental change has generated growing interest in forecasts of future popu-20

lation trajectories. Traditional population models built with detailed demographic obser-21

vations from one study site can address the impacts of environmental change at particular22

locations, but are difficult to scale up to the landscape and regional scales relevant to man-23

agement decisions. An alternative is to build models using population-level data that are24

much easier to collect over broad spatial scales than individual-level data. However, it is25

unknown whether models built using population-level data adequately capture the effects26

of density-dependence and environmental forcing that are necessary to generate skillful27

forecasts.28
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2 Here, we test the consequences of aggregating individual responses when forecasting29

the population states (percent cover) and trajectories of four perennial grass species in a30

semi-arid grassland in Montana, USA. We parameterized two population models for each31

species, one based on individual-level data (survival, growth and recruitment) and one on32

population-level data (percent cover), and compared their forecasting accuracy and fore-33

cast horizons with and without the inclusion of climate covariates. For both models, we34

used Bayesian ridge regression to weight the influence of climate covariates for optimal35

prediction.36

3 In the absence of climate effects, we found no significant difference between the forecast37

accuracy of models based on individual-level data and models based on population-level38

data. Climate effects were weak, but increased forecast accuracy for two species. Increases39

in accuracy with climate covariates were similar between model types.40

4 In our case study, percent cover models generated forecasts as accurate as those from a41

demographic model. For the goal of forecasting, models based on aggregated individual-42

level data may offer a practical alternative to data-intensive demographic models. Long43

time series of percent cover data already exist for many plant species. Modelers should44

exploit these data to predict the impacts of environmental change.45

Key-words: forecasting, climate change, grassland, integral projection model, population46

model, statistical regularization, ridge regression47

Introduction48

Perhaps the greatest challenge for ecology in the 21st century is to forecast the impacts of envi-49

ronmental change (Clark et al. 2001, Petchey et al. 2015). Forecasts require sophisticated mod-50

eling approaches that fully account for uncertainty and variability in both ecological process and51

model parameters (Luo et al. 2011, but see Perretti et al. 2013). The increasing statistical sophis-52

tication of population models (Rees and Ellner 2009) makes them promising tools for predicting53

the impacts of environmental change on species persistence and abundance. But reconciling the54

scales at which population models are parameterized with the scales at which environmental55

changes play out remains a challenge (Clark et al. 2010, 2012, Freckleton et al. 2011, Queenbor-56

ough et al. 2011). Most population models are built using demographic data from a single study57

site because tracking the fates of individuals is so difficult. The resulting models cannot be ap-58

plied to the landscape and regional scales relevant to decision-making without information about59

how the estimated parameters respond to spatial variation in biotic and abiotic drivers (Sæther60
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et al. 2007). The limited spatial extent of individual-level demographic datasets constrains our61

ability to use population models to address applied questions about the consequences of climate62

change.63

Aggregate measures of population status, rather than individual performance, offer an intrigu-64

ing alternative for modeling populations (Clark and Bjørnstad 2004, Freckleton et al. 2011).65

Population-level data cannot provide inference about demographic mechanisms, but might be66

sufficient for modeling future population states, especially because population-level data, such67

as plant percent cover, are feasible to collect across broad spatial extents (e.g., Queenborough et68

al. 2011). The choice between individual and population-level data involves a difficult trade-off:69

while individual-level data are necessary for mechanistic models, population-level data enable70

models that can be applied over greater spatial and temporal extents. An open question is how71

much forecasting skill is lost when we build models based on population rather than individual-72

level data.73

To date, most empirical population modelers have relied on individual-level data, with few at-74

tempts to capitalize on population-level measures. An important exception was an effort by Tay-75

lor and Hastings (2004) to model the population growth rate of an invasive species to identify76

the best strategies for invasion control. They used a “density-structured” model where the state77

variable is a discrete density state rather than a continuous density measure. Such models do not78

require individual-level demographic data and can adequately describe population dynamics.79

Building on Taylor and Hastings (2004), Freckleton et al. (2011) showed that density-structured80

models compare well to continuous models in theory, and Queenborough et al. (2011) provide81

empirical evidence that density-structured models are capable of reproducing population dynam-82

ics at landscape spatial scales (also see Mieszkowska et al. 2013), even if some precision is lost83

when compared to fully continuous models. However, previous tests of density-structured popula-84

tion models have yet to assess their ability to forecast out-of-sample observations, and they have85

not included environmental covariates, which are necessary to forecast population responses to86

climate change.87

Addressing climate change questions with models fit to population-level data is potentially prob-88

lematic. Population growth (or decline) is the outcome of demographic processes such as sur-89

vival, growth, and recruitment that occur at the level of individual plants. Climate can affect each90

demographic process in unique, potentially opposing, ways (Dalgleish et al. 2011). These unique91

climate responses may be difficult to resolve in statistical models based on population-level data92

where demographic processes are not identifiable. Futhermore, models based on aggregated data93

may reflect short-term effects of one vital rate more than others whose importance may only94

emerge over the long-term. For example, a one-year change in a plant species’ cover or biomass95
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might reflect growth or shrinkage of the largest individuals, whereas the long-term trajectory96

of the population might be more influenced by recruitment. The same is true for density depen-97

dence: intraspecific density depedence may act most strongly on vital rates, like recruitment,98

that are difficult to identify from population-level data. If density dependence and/or important99

climate effects are missed because of the aggregation inherent in population-level data, then100

population models built with such data will make uninformative or unreliable forecasts.101

We compared the forecasting skill (accuracy and precision) of statistical and population models102

based on aggregated, population-level data with the skill of models based on individual-level data.103

We used a demographic dataset that tracks the fates of individual plants from four species over 14104

years to build two kinds of single-species population models, traditional models using individual105

growth, survival, and recruitment data and alternative models based on population-level (basal106

cover) data. We simulated from the models to answer two questions motivated by the fact that the107

effects of intraspecific competition (density dependence) and interannual weather variability act108

at the level of the individual (Clark et al. 2011). First, can population models fit using aggregated109

individual-level data (percent cover) adequately capture density dependence to produce forecasts110

as skillful as those from models fit to demographic data? Second, can population models fit using111

aggregated data adequately capture the influence of climate on population growth and, in turn,112

produce forecasts as skillful as those from models fit to demographic data?113

Materials and Methods114

Overview of analysis115

We used two types of data: individual-level data and percent cover data. Using the individual-116

level data, we fit three vital rate regressions (survival, growth, and rectruitment) to build an Inte-117

gral Projection Model (IPM) for simulating the plant populations. Using the percent cover data118

we fit a simple, Gompertz population growth model, which we refer to as a quadrat-based model119

(QBM). For both model types (IPM and QBM), we fit and simulate versions of the model with120

and without climate covariates. We used Bayesian ridge regression to weight the importance121

of each climate covariate. We then performed cross-validation to assess each model’s ability to122

predict out-of-sample data. We compared the forecast accuracy (ρ, correlation between obser-123

vations and predictions) and mean absolute error (MAE) between the IPM and the QBM to test124

our expectation that the IPM should outperform the QBM. Lastly, we use in-sample forecasts to125

quantify each model’s forecast horizon (Petchey et al. 2015).126
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Study site and data127

Our demographic data were obtained from a northern mixed grass prairie at the Fort Keogh Live-128

stock and Range Research Laboratory near Miles City, Montana, USA (46◦ 19’ N, 105◦ 48’ W).129

The dataset is available on Ecological Archives1 (Anderson et al. 2011), and interested read-130

ers should refer to the metadata for a complete description. The site is 800 m above sea level131

and mean annual precipitation (1878-2009) is 334 mm, with most annual precipitation falling132

from April through September. The community is grass-dominated, and we focused on the four133

most abundant grass species: Bouteloua gracilis (BOGR), Hesperostipa comata (HECO), Pas-134

copyrum smithii (PASM), and Poa secunda (POSE) (Fig. 1 and Table 1). B. gracilis is a warm-135

season perennial grass, whereas H. comata, P. smithii, and Poa secunda are cool-season perennial136

grasses. The growing season begins in early spring (typically in April) and lasts through mid-137

summer (typically in June).138

From 1932 to 1945, individual plants were identified and mapped annually in 44 1-m2 quadrats139

using a pantograph. The quadrats were distributed among six pastures, each assigned a graz-140

ing treatment of light (1.24 ha/animal unit month), moderate (0.92 ha/aum), and heavy (0.76141

ha/aum) stocking rates (two pastures per treatment). In this analysis, we accounted for poten-142

tial differences among the grazing treatments, but do not focus on grazing×climate interactions.143

The annual maps of the quadrats were digitized and the fates of individual plants tracked and ex-144

tracted using a computer program (Lauenroth and Adler 2008, Chu et al. 2014). The permanent145

quadrats have not been relocated, but their distribution in six different pastures implies that the146

data represent a broad spatial distribution for the study area. Daily climate data are available for147

the duration of the data collection period (1932 - 1945) from the Miles City airport, Wiley Field,148

9 km from the study site.149

We modeled each grass population based on two levels of data: individual and quadrat. The in-150

dividual data are the “raw” data. For the quadrat-level data, we summed individual basal cover151

for each quadrat by species. This is equivalent to a near-perfect census of quadrat percent cover152

because measurement error at the individual-level is small (Chu and Adler 2015). Based on153

these two datasets of 13 year-to-year transitions, we can compare population models built using154

individual-level data and aggregated, quadrat-level data. At the individual level, we explicitly155

model three vital rates: growth, survival, and recruitment. At the quadrat level, we model popula-156

tion growth as change in percent cover of quadrats with non-zero cover in year t and in year t-1,157

ignoring within-quadrat extirpation and colonization events because they are very rare in our time158

series (N = 16 and N = 13, respectively, across all species). Sample sizes for each species and159

vital rate model are shown in Table 1.160

1http://esapubs.org/archive/ecol/E092/143/
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All R code and data necessary to reproduce our analysis is archived on GitHub as release v1.02
161

(http://github.com/atredennick/MicroMesoForecast/releases). We have also deposited the v1.0162

release on Dryad (link here after acceptance).163

Statistical models of vital rates164

At both levels of inference (individual and quadrat), the building blocks of our population models165

are vital rate regressions. For individual-level data, we fit regressions for survival, growth, and166

recruitment for each species. At the quadrat-level, we fit a single regression model for population167

growth. We describe the statistical models separately because they required different approaches.168

For both model types, we fit vital rate models with and without climate covariates. Models with169

climate effects contain five climate covariates that we chose a priori based on previous model170

selection efforts using these data (Chu et al. 2016) and expert advice (Lance Vermeire, personal171

communication): “water year” precipitation at t-2 (lagppt); April through June precipitation at t-1172

and t (ppt1 and ppt2, respectively) and April through June temperature at t-1 and t (TmeanSpr1173

and TmeanSpr2, respectively), where t-1 to t is the transition of interest. We also include interac-174

tions among same-year climate covariates (e.g., ppt1 × TmeansSpr1), resulting in a total of seven175

climate covariates.176

We fit all models using a hierarchical Bayesian approach. In the following description, we focus177

on the main process and the model likelihood (full model descriptions are in the Supporting In-178

formation). For the likelihood models, yX is always the relevant vector of observations for vital179

rate X (X = S, G, R, or P for survival, growth, recruitment, or population growth). For example,180

yS is a vector of 0s and 1s indicating whether a genet survives from t to t+1, or not, for all obser-181

vation years and quadrats. All model parameters are species-specific, but we omit subscripts for182

species in model descriptions below to reduce visual clutter. For brevity, we only describe models183

with climate covariates included, but models without climate covariates are simply the models184

described below with the climate effects removed.185

Vital rate models at the individual level We used logistic regression to model the proba-186

bility that genet i in quadrat q survives from time t to t+1 (si,q,t):187

ySi,q,t ∼ Bernoulli(si,q,t), (1)

logit(si,q,t) = β0,t + βs,txi,q,t + βQ,q + z′tβc + βd,1wi,t + βd,2(xi,q,twi,q,t), (2)

188

2Note to reviewers: so that v1.0 will be associated with the published version of the manuscript, we have re-
leased v0.2 to be associated with this review version.
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where xi,q,t is the log of genet i basal area at time t, β0,t is a year specific intercept, βQ,q is the189

random effect of the qth quadrat to account for spatial location, βs,t is the year-specific slope190

parameter for size, z is a vector of p climate covariates specific to year t, βc is a vector of fixed191

climate effects of length p, βd,1 is the effect of intraspecific crowding experienced by the focal192

genet at time t (wi,q,t), and βd,2 is a size by crowding (xi,q,twi,q,t) interaction effect.193

We follow the approach of Chu and Adler (2015) to estimate crowding, assuming that the crowd-194

ing experienced by a focal genet depends on distance to each neighbor genet and the neighbor’s195

size, u:196

wi,q,t =
∑
k

e−δd
2
ik,q,tuk,q,t. (3)

In equation 3, wi,q,t is the crowding that genet i in year t experiences from k conspecific neigh-197

bors (uk,q,t) in quadrat q. The spatial scale over which conspecific neighbors exert influence on198

any genet is determined by δ. The function is applied for all k conspecific genets that neighbor199

the focal genet at time t, and dik,q,t is the distance between genet i and conspecific genet k in200

quadrat q. We use regression-specific (survival and growth) δ values estimated by Chu and Adler201

(2015).202

We modeled growth as a Gaussian process describing log genet size (yGi,q,t+1) at time t + 1 in203

quadrat q as a function of log size at time t and climate covariates:204

yGi,q,t+1 ∼ Normal(µi,q,t+1, σ
2
xi,q,t+1

), (4)

µi,q,t+1 = β0,t + βs,txi,q,t + βQ,q + z′tβc + βd,1wi,q,t + βd,2(xi,q,twi,q,t), (5)

205

where µi,q,t+1 is log of genet is predicted size at time t + 1, and all other parameters are as de-206

scribed for the survival regression. We capture non-constant error variance in growth by mod-207

eling the variance in the growth regression (σ2
xi,q,t+1) as a nonlinear function of predicted genet208

size:209

σ2
xi,q,t+1

= a exp[b× µi,q,t+1], (6)

210

where µi,q,t+1 is log of predicted genet size predicted from the growth regression (Eq. 4), and a211

and b are constants.212

Our data allows us to track new recruits, but we cannot assign a specific parent to new genets.213

Therefore, we model recruitment at the quadrat level. We assume the number of individuals,214

yRq,t+1, recruiting at time t+ 1 in quadrat q follows a negative binomial distribution:215

yRq,t+1 ∼ NegBin(λq,t+1, φ), (7)
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216

where λ is the mean intensity and φ is the size parameter. We define λ as a function of quadrat217

composition and climate in the previous year:218

λq,t+1 = c̃q,t exp
(
β0,t + βQ,q + z′tβc + βd

√
c̃q,t
)
, (8)

219

where c̃q,t is effective cover (cm2) of the focal species in quadrat q at time t, and all other terms220

are as in the survival and growth regressions. Effective cover is a mixture of observed cover (c)221

in the focal quadrat (q) and the mean cover across the entire group (c̄) of Q quadrats in which q is222

located:223

c̃q,t = pcq,t + (1− p)c̄Q,t, (9)

224

where p is a mixing fraction between 0 and 1 that is estimated when fitting the model.225

Population model at the quadrat level The statistical approach used to model aggregated226

data depends on the type of data collected. We have percent cover data, which can easily be trans-227

formed to proportion data in our case because plant areas were scaled by plot area. An obvious228

choice for fitting a linear model to proportion data is beta regression because the support of the229

beta distribution is (0,1), which does not include true zeros or ones. However, when we used fit-230

ted model parameters from a beta regression in a quadrat-based population model, the simulated231

population tended toward 100% cover for all species. We therefore chose a modeling approach232

based on a truncated log-normal likelihood. The model for quadrat cover change from time t to233

t+ 1 is234

yPq,t+1 ∼ LogNormal(µq,t+1, σ
2)1

0, (10)

µq,t+1 = β0,t + βs,txq,t + βQ,q + z′tβc, (11)

235

where µq,t+1 is the log of proportional cover in quadrat q at time t+ 1, and all other parameters are236

as in the individual-level growth model (Eq. 4) except that x now represents log of proportional237

cover. The log normal likelihood includes a truncation (subscript 0, superscript 1) to ensure that238

predicted values do not exceed 100% cover.239

Model fitting and statistical regularization240

Model fitting Our Bayesian approach to fitting the vital rate models required choosing appro-241

priate priors for unknown parameters and deciding which, if any, of those priors should be hier-242

archical. For each species, we fit yearly size effects and yearly intercepts hierarchically, where243

year-specific coefficients were modeled with global distributions representing the mean size244

effect and intercept. Quadrat random effects were also fit hierarchically, with quadrat offsets245

modeled using distributions with mean zero and a shared variance term (independent Gaussian246

priors). Climate effects were modeled as independent covariates whose prior distributions were247
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optimized for prediction using statistical regularization (see Statistical regularization: Bayesian248

ridge regression below).249

All of our analyses (model fitting and simulating) were conducted in R (R Core Team 2013).250

We used the ‘No-U-Turn’ Hamiltonian Monte Carlo sampler in Stan (Stan Development Team251

2014a) to sample from the posterior distribution of model parameters using the package rstan252

(Stan Development Team 2014b). We obtained samples from the posterior distribution for all253

model parameters from three parallel MCMC chains run for 1,000 iterations after discarding an254

initial 1,000 iterations. Such short MCMC chains are possible because the Stan sampler reduces255

the number of iterations needed to achieve convergence. We assessed convergence visually and256

checked that scale reduction factors for all parameters were less than 1.1. For the purposes of257

including parameter uncertainty in our population models, we retained the final 1,000 iterations258

from each of the three MCMC chains to be used as randomly drawn values during population259

simulation. We report the posterior mean, standard deviation, and 95% Bayesian Credible Inter-260

vals for every parameter of each model for each species in the Supporting Information (Tables261

S5-S20).262

Statistical regularization: Bayesian ridge regression For models with climate covari-263

ates, our objective is to model the response of our focal grass species to interannual variation264

in climate, even if those responses are weak. Therefore, we avoid selecting among models with265

all possible combinations of climate covariates, and instead use Bayesian ridge regression to266

regulate, or constrain, the posterior distributions of each climate covariate (Gerber et al. 2015,267

Hooten and Hobbs 2015). Ridge regression is a specific application of statistical regulariza-268

tion that seeks to optimize model generality by trading off bias and variance. As the name im-269

plies, statistical regularization involves the use of a regulator that constrains an optimization.270

The natural regulator in a Bayesian application is the prior on the coefficients of interest. Each271

of our statistical models includes the effects of climate covariates via the term z′tβc with prior272

βc ∼ Normal(µβc
, σ2

βc
I). Because we standardized all climate covariates to have mean zero and273

variance one, we set µβc
= 0 and let σ2

βc
serve as the regulator that shrinks covariate effects to-274

ward zero – the smaller the prior variance, the more the posteriors of βc are shrunk toward zero,275

and the stronger the penalty (Hooten and Hobbs 2015).276

To find the optimal penalty (i.e., optimal value of the hyperparameter σ2
βc

), we fit each statistical277

model with a range of values for σ2
βc

and compared predictive scores from leave-one-year-out278

cross-validation. We performed the grid search over 24 values of σ2
βc

, ranging from σ2
βc

= 0.01279

to σ2
βc

= 2.25. For each statistical model and each species, we fit 13 × 24 = 312 iterations of280

the model fitting algorithm to search σ2
βc

for the optimal value (13 years to leave out for cross-281
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validation and 24 values of σ2
βc

) – a total of 4,992 model fits. We calculated the log pointwise282

predictive density (lppd) to score each model’s ability to predict the left-out data (Gelman et al.283

2014). Thus, for training data ytrain and held-out data yhold at a given value of σ2
θ across all MCMC284

samples s = 1, 2, ..., S and all hold outs of data from year t to year T, and letting θ represent all285

unknowns, lppd is286

lppdCV =
T∑
t=1

loge
∫

[yt,hold|θ][θ|ytrain]dθ, (12)

287

and computed as288

T∑
t=1

loge

(
1
S

S∑
s=1

[yt,hold|θts]
)
. (13)

289

We chose the optimal prior variance for each species-statistical model combination as the one that290

produced the highest lppd and then fit each species-statistical model combination using the full291

data set for each species and the optimal prior variance. We calculated the lppd from posterior292

samples using the algorithm from Vehtari et al. (2016).293

Population models294

Using samples from the posterior distribution of the vital rate statistical models, it is straightfor-295

ward to simulate the population models. We used an Integral Projection Model (IPM) to simulate296

populations based on individual-level data (Ellner and Rees 2006) and a quadrat-based version297

of an individually-based model (Quadrat-Based Model, QBM) to simulate populations based on298

quadrat-level data. We describe each in what follows.299

Integral projection model We use a stochastic IPM (Rees and Ellner 2009) to simulate300

our focal populations based on the vital rate regressions described above. In all simulations, we301

ignore the random year effects so that interannual variation is driven solely by climate. We fit302

the random year effects in the vital rate regressions to avoid over-attributing variation to climate303

covariates. Our IPM follows the specification of Chu and Adler (2015) where the population of304

species j is n(uj, t), giving the density of sized-u genets at time t. Genet size is on the natural log305

scale, so that n(uj, t)du is the number of genets whose area (on the arithmetic scale) is between306

euj and euj+du. The function for any size v at time t+ 1 is307

n(vj, t+ 1) =
∫ Uj

Lj

kj(vj, uj, w̄j(uj))n(uj, t)duj, (14)

308

where kj(vj, uj, w̄j) is the population kernel that describes all possible transitions from size u to309

v and w̄j is a scalar representing the average intraspecific crowding experienced by a genet of310

size uj and species j. The integral is evaluated over all possible sizes between predefined lower311

(L) and upper (U) size limits that extend beyond the range of observed genet sizes.312
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The IPM is spatially-implicit, thus, we cannot calculate neighborhood crowding for specific313

genets (wij). Instead, we use an approximation (w̄j) that captures the essential features of neigh-314

borhood interactions (Adler et al. 2010). This approximation relies on a ‘no-overlap’ rule for315

conspecific genets to approximate the overdispersion of large genets in space (Adler et al. 2010).316

The population kernel is defined as the joint contributions of survival (S), growth (G), and recruit-317

ment (R):318

kj(vj, uj, w̄j) = Sj(uj, w̄j(uj))Gj(vj, uj, w̄j(uj)) +Rj(vj, uj, w̄j), (15)

319

which means we are calculating growth (G) for individuals that survive (S) from time t to t+1320

and adding in newly recruited (R) individuals of an average sized one-year-old genet for the focal321

species. Note the S, G, and R are incorporated in the IPM using the fitted vital rate regressions.322

Our statistical model for recruitment (R, described above) returns the number of new recruits323

produced per quadrat. Following previous work (Adler et al. 2012, Chu and Adler 2015), we324

assume that fecundity increases linearly with size (Rj(vj, uj, w̄j) = eujRj(vj, w̄j)) to incorporate325

the recruitment function in the spatially-implicit IPM.326

We used random draws from the final 1,000 iterations from each of three MCMC chains for327

each vital rate regression to carry-through parameter uncertainty into our population models. At328

each time step, we drew the full parameter set (climate effects and density-dependence fixed329

effects) from a randomly selected MCMC iteration. Relatively unimportant climate covariates330

(those that broadly overlap 0) will have little effect on the mean of the simulation results, but can331

contribute to their variation. To retain temporal variation associated with random year effects, we332

used posterior estimates of the mean temporal effect and the standard deviation of that effect to333

generate a random year effect for unobserved years. That is, for some future year T, the intercept334

is β0,T ∼ Normal(β0, σ
2
β0) and the effect of size is βs,T ∼ Normal(βs, σ2

βs
).335

Quadrat-based model To simulate our quadrat-based model (QBM), we iterate the quadrat-336

level statistical model (Eqs. 9-10). We use the same approach for drawing parameter values337

as described for the IPM. After drawing the appropriate parameter set, we calculate the mean338

response (log cover at t+1 is µt+1) according to Eq. 10. We make a random draw from a [0,1]339

truncated lognormal distribution with mean equal to µt+1 from Eq. 10 and the variance estimate340

from the fitted model. We project the model forward by drawing a new parameter set (unique341

to climate year and MCMC iteration) at each timestep. Random year effects are included as342

described above for the IPM.343
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Model validation344

To test each model’s ability to forecast population states, we made out-of-sample predictions345

using leave-one-year-out cross validation. For both levels of modeling and for models with and346

without climate covariates, we fit the vital rate models using observations from all years except347

one, and then used those fitted parameters in the population models to perform a one-step-ahead348

forecast for the year whose observations were withheld from model fitting. We made predic-349

tions for each observed quadrat in each focal year, initializing each simulation with cover in the350

quadrat the previous year. Because we were making quadrat-specific predictions, we incorpo-351

rated the group random effect on the intercept for both models. We repeated this procedure for352

all 13 observation years, making 100 one-step-ahead forecasts for each quadrat-year combination353

with parameter uncertainty included via random draw from the MCMC chain as described above.354

As described above, year-specific parameters for left-out data were drawn from the posterior355

distribution of the mean intercept.356

This cross-validation procedure allowed us to compare the accuracy and precision of the two357

modeling approaches (IPM versus QBM) with and without climate covariates. We first calculated358

the median predicted cover across the 100 simulations for each quadrat-year and then calculated359

forecast skill as the correlation (ρ) between forecasts and observations. We calculated forecast360

error as mean absolute error (MAE) between forecasts and observations. We compared ρ and361

MAE between model types and within model types between models with and without climate362

covariates using one-sided t tests with adjusted degrees of freedom following Wilcox (2009) and363

standard errors calculated using the HC4 estimator of Cribari-Neto (2004). Statistical tests for364

comparing correlations and error were conducted using algorithms from Ye et al. (2015).365

Forecast horizons366

An important feature of any forecasting model is the rate at which forecast skill declines as the367

time between an observation and a forecast increases. In particular, we are interested in the tem-368

poral distance at which forecast skill falls below a threshold: the so-called ecological forecast369

horizon (Petchey et al. 2015). To assess the forecast horizons of our models, we initiate the fore-370

cast model with the population state at some time t and make sequential forecasts of the popula-371

tion at times t+ 1, t+ 2, . . . , t+ T where T is the maximum number of years between the initial372

year and the final year of our observations. For example, if we initialize the forecast model with373

percent cover in 1940, we are able to make five forecasts up to the year 1945. Forecast models374

are not re-initialized with observations between years. Thus, in our current example, the model375

forecast for percent cover in 1941 has a forecast horizon of one year, the forecast in 1942 has a376
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forecast horizon of two years, and so on. We performed these simulations using mean parameter377

values for all model types (IPM with/without climate; QBM with/without climate) and all pos-378

sible initial years. For a given forecast distance, we averaged the correlation between forecasts379

and observations. Note that our forecasts for the horizon analysis are all made using in-sample380

data because we used model fits from the full data set. Nonetheless, our simulations offer insight381

into the differences among model forecast horizons. We chose an arbitrary forecast accuracy of382

ρ = 0.5 as our forecast proficiency threshold. the forecast horizon is the temporal distance at383

which forecast accuracy falls below ρ = 0.5. For basic research on forecasting, arbitrary profi-384

ciency thresholds suffice for comparative purposes (Petchey et al. 2015), and ρ = 0.5 represents385

the point at which about 25% of the variance in observations is explained by the predictions.386

Results387

The IPM and QBM generated one-step-ahead forecasts of similar skill for out-of-sample obser-388

vations, with an average correlation between predictions and observations (ρ) of 0.72 across all389

models and species (Fig. 2). Without climate covariates, the accuracy of forecasts from the IPM390

were not statistically greater than the accuracy of forecasts from the QBM (Fig. 2) and overall er-391

ror was similar (mean absolute error; Fig. S1, Supporting Information). With climate covariates,392

the best out-of-sample predictive model (highest lppd) for each species and vital rate typically393

resulted from highly constrained priors on the climate effects (Fig. S2, Supporting Information).394

Thus, the posterior distributions of climate effects included in our models overlapped zero and395

generally were shrunk toward zero, though for some species-vital rate combinations, important396

effects (80% credible interval does not include zero) did emerge (Fig. 3).397

Despite the weak climate effects, including climate covariates did increase the accuracy of fore-398

casts for two species: B. gracilis and Poa secunda (Fig. 2). However, only for B. gracilis were399

the skill increases statistically significant at α = 0.05 for the IPM (t(279) = 1.70, P = 0.045) and400

the QBM (t(279) = 1.80, P = 0.037). Similarly, forecast error decreased significantly with the in-401

clusion of climate covariates for the B. gracilis IPM (t(280) = -3.72, P = 0.029) and QBM (t(280)402

= -3.34, P < 0.0001), and for the Poa secunda IPM (t(196) = -1.90, P < 0.0001) and QBM (t(196) =403

-2.47, P = 0.007) (Fig. S2, Supporting Information). In no case did including climate covariates404

significantly decrease forecast skill (Table S21), despite small changes in the mean skill (Fig. 2).405

IPM forecasts were significantly more accurate than the QBM in only one case (Fig. 2): forecast406

accuracy of P. smithii percent cover from an IPM with climate covariates was greater than the407

accuracy from the QBM with climate covariates (t(215) = 1.92, P = 0.028). However, adding408

climate covariates decreased the skill of both models, and the difference between the IPM and409
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QBM emerges only because skill decreased less for the IPM than the QBM. Results from all410

pairwise statistical tests are shown in Table S22 of the Supporting Information.411

With climate covariates included and using mean parameter values, the accuracy of both models’412

forecasts declined as the distance between the last observation and the forecast increased, but they413

did so at similar rates (Fig. 4). The only exception is for Poa secunda, where QBM forecast ac-414

curacy remained steady as the temporal distance of the forecast increased, whereas IPM forecast415

accuracy declined (Fig. 4). The forecast horizons were short: forecast accuracy fell below ρ = 0.5416

after one year for the IPM for most species, and after four years, at most, for the QBM (Fig. 4).417

Across the different temporal distances from the observation to the forecast, the IPM was never418

more accurate than the QBM (P > 0.05 for all one-sided t-tests, Table S23). Likewise, the QBM419

was rarely more accurate the IPM, the only exception being for H. comata at temporal distances420

of two (t(115) = 2.39, P = 0.002) and three years (t(98) = 2.04, P = 0.022) (Table S24). There were421

some cases where the QBM was more accurate than the IPM for Poa secunda, but neither model422

exceeded the forecast proficiency threshold by a large margin (Fig. 4, Table S24).423

Discussion424

Our comparison between a traditional, demographic population model without environmental425

forcing (the IPM) and an equivalent model inspired by density-structured models (the QBM)426

showed that IPM forecasts of out-of-sample plant population states were no more accurate than427

forecasts from the QBM (Fig. 2; ‘no-climate’ bars). This result differed from our expectation that428

the IPM would out-perform the QBM, because of its mechanistic representation of the perennial429

life cycle. Our result also confirms theoretical (Freckleton et al. 2011) and empirical work (Tay-430

lor and Hastings 2004, Queenborough et al. 2011) showing that density-structured models can431

be useful surrogates for demographic models when the goal is to estimate or forecast population432

states over large spatial extents.433

We also expected the inclusion of environmental forcing to reveal further differences between434

the models. Interannual variation in weather can affect vital rates in different ways (Dalgleish et435

al. 2011). Thus, estimates of climate effects on plant population growth may be biased or non-436

identifiable when the underlying statistical model is fit using population-level data that integrates437

over the potentially unique climate responses of individual vital rates. We found some evidence438

that the QBM failed to detect climate effects for three species (B. gracilis, H. comata, and Poa439

secunda), where important climate effects were identified in the individual vital rate models but440

not in the percent cover model (Fig. 3). For H. comata, adding climate covariates did not improve441

forecasts (Fig. 2), despite the significant climate effects in the vital rate regressions (Fig. 3).442
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Furthermore, for the two species where including climate covariates increased forecast accuracy443

(B. gracilis and Poa secunda), forecast accuracy (Fig. 2) and error (Fig. S2) were equivalent444

between the IPM and QBM.445

The higher accuracy of the IPM and QBM with climate covariates for B. gracilis and Poa se-446

cunda highlights the advantage of contemporary modeling and variable selection approaches447

such as ridge regression and LASSO over techniques that would exclude “non-significant” effects448

from final models. Ridge regression allows researchers to retain covariates whose effects may449

be difficult to identify in noisy data or short time series. This is especially important when fore-450

casting the impacts of climate variability, where it is important to include the effects of forcing451

variables (e.g., temperature and precipitation) even if such effects are difficult to identify. Indeed,452

we failed to detect strong climate effects in the QBM for B. gracilis and Poa secunda, but includ-453

ing climate covariates still improved forecasting skill (Fig. 2). If a species is truly unresponsive to454

a given climate variable, statistical regularization techniques will shrink the mean and variance of455

a covariate estimate toward zero (Hooten and Hobbs 2015). Of course, regardless of what model456

selection approach is adopted, a critical step is identifying the appropriate candidate covariates,457

which we attempted to do based on our knowledge of this semi-arid plant community. However,458

the climate covariates we chose required aggregating daily weather data over discrete time peri-459

ods. It is possible that we did not choose the optimal time periods over which to aggregate. New460

methods using functional linear models (or splines) may offer a data-driven approach for identi-461

fying the appropriate time periods over which to aggregate to produce a tractable set of candidate462

climate variables (Sims et al. 2007, Pol and Cockburn 2011, Teller et al. 2016).463

We also expected IPM forecast accuracy to decline at a lower rate than the QBM as the time be-464

tween the model initialization and the forecast increased. In principle, more mechanistic models465

should produce better predictions, especially under novel conditions (Evans 2012, Schindler and466

Hilborn 2015). In our case, the IPM explicitly models the influence of weather on recruitment467

and survival, effects that may be poorly represented in the QBM because recruitment and survival468

mainly affect small plants that contribute little to year-to-year changes in percent cover. Over469

longer time scales, the addition and subtraction of small plants could have large effects on popu-470

lation growth, so explicitly modeling these effects could contribute to a longer forecast horizon.471

However, we found no evidence that the forecast horizon for the IPM was greater than the QBM472

(Fig. 4). On the contrary, the QBM tended to have a slightly longer forecast horizon than the IPM473

for most species (Fig. 4). The QBM has fewer processes and parameters, which can reduce bias474

due to parameter uncertainty. As a result, the QBM may better capture near term dynamics when475

populations do not fluctuate widely, as in our case.476

Our comparison of a model based on individual-level data with one based on percent cover data477
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is not an exhaustive test. Understanding the reasons why the percent cover-based model matched478

the skill of a demographic model for our focal species may help us anticipate situations in which479

a percent-cover approach would fail. First, for none of our species did a climate covariate have a480

strong negative effect on one vital rate and a strong positive effect on a different vital rate (Fig. 3).481

As noted by Freckleton et al. (2011), complex age or stage structure can compromise predictions482

from models that aggregate over life-histories, and the same should be true when aggregating483

across vital rates with contrasting responses to climate drivers. Second, our particular recruit-484

ment model is already so aggregated – it averages across seed production, germination and es-485

tablishment – that it may fail to detect important demographic responses to climate, putting our486

individual-based model and percent cover model on more equal footing. More finely resolved re-487

cruitment data might help our individual-based model outperform the population-level model. As488

advocated by Freckleton et al. (2011), knowledge of a species’ population ecology should guide489

the modeling approach. Third, our percent cover data are essentially error-free because we were490

able to aggregate indiviual plant areas to calculate percent cover. Percent cover data collected by491

typical sampling methods (e.g., Daubenmire frames) will include error that may affect population492

forecasts due to misspecifing the initial conditions and/or biasing model parameters (Queenbor-493

ough et al. 2011). Percent cover models based on data containing more measurement error than494

ours might perform worse in comparison with individual-based models. One way to account for495

such error is to develop a sampling model that relates the observations (estimated percent cover496

in a plot) to the true state (percent cover derived from individual plant measurements in the same497

plot) (Hobbs and Hooten 2015).498

Although our main goal was to compare individual-based and population-level modeling ap-499

proaches relative to one another, it is worth reflecting on the absolute forecasting skill of our500

models. In particular, the forecast horizon of both models, defined as the time horizon at which501

the correlation between predictions and observations falls below ρ = 0.5, is less than five years502

for all species. Such short forecast horizons are not encouraging. Unfortunately, we have few503

ideas about how to improve population forecasts that have not already been proposed (Mouquet504

et al. 2015, Petchey et al. 2015). Longer time-series should improve our ability to detect exoge-505

nous drivers such as climate (Teller et al. 2016), and modeling larger spatial extents may reduce506

parameter uncertainty (Petchey et al. 2015). We may also have to shift our perspective from mak-507

ing explicit point forecasts to making moving average forecasts (Petchey et al. 2015). Whether508

the poor predictive ability of our models impacts the comparison of models based on individual509

vs. population-level data is an open question.510

In conclusion, we found that models based on individual-level demographic data generally failed511

to generate more skillful population forecasts than models based on population-level data, even512
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in models which included climate covariates. This finding runs counter to our expectations, but513

is consistent with recent theoretical (Freckleton et al. 2011) and empirical work (Queenborough514

et al. 2011). We conclude that models based on population-level data, rather than individual-515

level data, may be adequate for forecasting the states and dynamics of plant populations. This516

conclusion comes with the caveat that our analysis may be a weak test of the prediction that517

individual-level data is necessary for forecasting if different vital rates respond to climate in518

opposing ways, because climate effects were relatively unimportant in our vital rate regressions.519

Nonetheless, our results should encourage the use of easy-to-collect population-level data for520

forecasting the state of plant populations.521
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Tables544

Table 1: Description of data. The observations span 13 year-to-year transitions.
Species Vital Rate Model Num. Obs. Num. Quadrats
B. gracilis Growth 5670 29

Survival 10102 33
Recruitment 304 33
Percent cover 281 29

H. comata Growth 1990 16
Survival 3257 18
Recruitment 304 18
Percent cover 171 17

P. smithii Growth 8052 19
Survival 11344 19
Recruitment 304 19
Percent cover 217 19

Poa secunda Growth 3018 18
Survival 4650 18
Recruitment 304 18
Percent cover 197 18
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Figures545
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Figure 1: Time series of average percent cover over all quadrats for our four focal species:
Bouteloua gracilis (BOGR), Hesperostipa comata (HECO), Pascopyrum smithii (PASM), and
Poa secunda (POSE). Light grey lines show trajectories of individual quadrats. Note the different
y-axis scales across panels. See Table 1 for sample size information.
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Figure 2: Comparisons of one-step-ahead, out-of-sample forecast accuracy between the IPM
and QBM models with and without the inclusion of climate covariates. Boxplots show the dis-
tribution of ρ averaged over quadrats for each cross-validation year (i.e., 13 values of ρ for each
species-model combination). For each comparison, P-values are from one-sided t tests designed
to assess whether the first model in the comparison statement had higher accuracy than the sec-
ond model in the comparison statement (see details in Table S22). Statistical tests relied on corre-
lation values for each quadrat-year-species combination, after averaging over model reps for each
combination. In no case did adding climate covariates decrease forecast accuracy (Table S21).
Species codes are as in Fig. 1.
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Figure 3: Posterior distributions of climate effects (βC) for each species and vital rate statistical
model. Because our priors were constrained via ridge-regression, we highlight climate effects
whose 80% credible intervals do not overlap zero (red for negative coefficients, blue for positive
coefficients). Kernel bandwidths of posterior densities were adjusted by a factor of 4 for visual
clarity. Species codes are as in Fig. 1. Climate covariate codes: pptLag = "water year" precipita-
tion at t-2; ppt1 = April through June precipitation at t-1; ppt2 = April through June precipitation
at t; TmeanSpr1 = April through June temperature at t-1; TmeanSpr2 = April through June tem-
perature at t.

22

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2016. ; https://doi.org/10.1101/025742doi: bioRxiv preprint 

https://doi.org/10.1101/025742
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: The forecast horizons for both models with climate covariates included and using mean
parameter values. Points show the average accuracy (ρ,correlation between observations and
predictions) across all forecasts at a given distance between the last observation and the forecast,
where forecasts are made for in-sample data. We only examine the forecast accuracy of models
with climate covariates included because in no case did including climate covariates significantly
decrease accuracy (see Fig. 2). The dashed blue line indicates a forecast proficiency threshold of
ρ = 0.5. Species codes are as in Fig. 1 and statistical comparisons between the IPM and QBM at
each forecast distance are in Tables S23 and S24.
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