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Abstract6

Rapid climate change has generated growing interest in forecasts of future population7

trajectories. Traditional population models, typically built using detailed demographic8

observations from one study site, can address climate change impacts at one location, but are9

di�cult to scale up to the landscape and regional scales relevant to management decisions.10

An alternative is to build models using population-level data that is much easier to collect11

over broad spatial scales than individual-level data. However, such models ignore the fact12

that climate drives population growth through its influence on individual performance. Here,13

we test the consequences of aggregating individual responses when forecasting climate change14

impacts on four perennial grass species in a semi-arid grassland in Montana, USA. We15

parameterized two population models based on the same dataset, one based on individual-16

level data (survival, growth and recruitment) and one on population-level data (percent17

cover), and compared their accuracy, precision, and sensitivity to climate variables. The18

individual-level model was more accurate and precise than the aggregated model when19

predicting out-of-sample observations. When comparing climate e�ects from both models,20

the population-level model missed important climate e�ects from at least one vital rate for21

each species. Increasing the sample size at the population-level would not necessarily reduce22

forecast uncertainty; the way to reduce uncertainty is to capture unique climate dependence23

of individual vital rates. Our analysis indicates that there is no shortcut to forecasting climate24
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change impacts on plant populations — detailed demographic data is essential. Despite the25

superiority of the individual-level model, the forecasts it generated still were too uncertain to26

be useful for decision-makers. We need new methods to collect demographic data e�ciently27

across environmental gradients in space and time.28

Key words: forecasting, climate change, grassland, integral projection model, population model29

Introduction30

Perhaps the greatest challenge for ecology in the 21st century is to forecast the impacts of31

environmental change (Clark et al. 2001, Petchey et al. 2015). Forecasts require sophisticated32

modeling approaches that fully account for uncertainty and variability in both ecological33

process and model parameters (Luo et al. 2011, but see Perretti et al. 2013 for an argument34

against modeling the ecological process). The increasing statistical sophistication of population35

models (Rees and Ellner 2009) makes them promising tools for predicting the impacts of36

environmental change on species persistence and abundance. But reconciling the scales at37

which population models are parameterized and the scales at which environmental changes38

play out remains a challenge (Clark et al. 2010, 2012, Freckleton et al. 2011, Queenborough39

et al. 2011). The problem is that most population models are built using data from a single40

study site because collecting those data, which involves tracking the fates of individuals plants,41

is so di�cult. The resulting models cannot be applied to the landscape and regional scales42

relevant to decision-making without information about how the fitted parameters respond to43

spatial variation in biotic and abiotic drivers (Sæther et al. 2007). The limited spatial extent44

of individual-level demographic datasets constrains our ability to use population models to45

address applied questions about the consequences of climate change.46

The inability of most population models to address landscape-scale problems may explain47

why land managers and conservation planners have embraced species distribution models48

(SDMs) (see Guisan and Thuiller 2005 for a review). SDMs typically rely on easy-to-collect49
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presence/absence data (but see Clark et al. 2014 for new methods) and remotely-sensed50

environmental covariates that allow researchers to model large spatial extents (e.g., Maiorano51

et al. 2013). Thus, it is relatively straightforward to parameterize and project SDMs over52

landscapes and regions. However, the limitations of SDMs are well known (Pearson and53

Dawson 2003, Elith and Leathwick 2009, Araújo and Peterson 2012). Ideally, researchers54

would provide managers with landscape-scale population models, combining the extent of55

SDMs with information about dynamics and species abundances (Schurr et al. 2012, Merow56

et al. 2014).57

Aggregate measures of population status, rather than individual performance, o�er an58

intriguing alternative for modeling populations (Clark and Bjørnstad 2004, Freckleton et al.59

2011). Population-level data cannot provide inference about demographic mechanisms, but60

might be su�cient for modeling future population states, especially since such data are feasible61

to collect across broad spatial extents (e.g., Queenborough et al. 2011). The choice between62

individual and population-level data involves a di�cult trade-o�: while individual-level data63

leads to more mechanistic models, population-level data leads to models that can be applied64

over greater spatial and temporal extents. An open question is how much forecasting skill is65

lost when we build models based on population rather than individual-level data.66

To date, most empirical population modelers have relied on individual-level data, with67

few attempts to capitalize on population-level measures. An important exception was an68

e�ort by Taylor and Hastings (2004) to model the population growth rate of an invasive69

species to identify the best strategies for invasion control. They used a “density-structured”70

model where the state variable is a discrete density state rather than a continuous density71

measure. Such models do not require individual-level demographic data and can adequately72

describe population dynamics. Building on Taylor and Hastings (2004), Freckleton et al.73

(2011) showed that density-structured models compare well to continuous models in theory,74

and Queenborough et al. (2011) provide empirical evidence that density-structured models75

are capable of reproducing population dynamics at landscape spatial scales, even if some76
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precision is lost when compared to fully continuous models. The appeal of density-structured77

approaches is clear. However, none of these models included environmental covariates.78

Addressing climate change questions with models fit to population-level data is potentially79

problematic. It is individuals, not populations, that respond to climate variables (Clark et80

al. 2012). Ignoring this fact amounts to an “ecological fallacy”, where inference about the81

individual relies on statistical inference on the group (Piantadosi et al. 1988). Population82

growth (or decline) is the outcome of demographic processes such as survival, growth, and83

recruitment that occur at the level of individual plants. Climate can a�ect each demographic84

process in unique, potentially opossing, ways (Dalgleish et al. 2011). These unique climate85

responses may be di�cult to resolve in statistical models based on population-level data86

where demographic processes are not identifiable. If important climate e�ects are missed87

because of the aggregation inherent in in population-level data, then population models built88

with such data will make uninformative or unreliable forecasts.89

Here, we compare the forecasting skill of statistical and population models based on ag-90

gregated, population-level data with models based on individual-level data. We used a91

unique demographic dataset that tracks the fates of individual plants from four species over92

14 years to build two kinds of single-species population models, traditional models using93

individual growth, survival, and recruitment data and alternative models based on basal94

cover. In both models, interannual variation is explained, in part, by climate covariates.95

We first quantify forecasting skill using cross-validation. We then performed simulations to96

quantify the sensitivities of species’ cover to small perturbations in average precipitation and97

temperature. Based on the cross-validation results, predictions of individual level models98

were clearly better, but, unfortunately, still too uncertain to inform management decisions.99
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Materials and Methods100

Study site and data101

Our demographic data come from the Fort Keogh Livestock and Range Research Laboratory102

in eastern Montana’s northern mixed prairie near Miles City, Montana, USA (46¶ 19’ N, 105¶103

48’ W). The dataset is freely available on Ecological Archives2 (Anderson et al. 2011) , and104

interested readers should refer to the metadata for a complete description. The site is about105

800 m above sea level and mean annual precipitation (1878-2009) is 334 mm, with most annual106

precipitation falling from April through September. The community is grass-dominated and107

we focused on the four most abundant grass species: Bouteloua gracilis (BOGR), Hesperostipa108

comata (HECO), Pascopyrum smithii (PASM), and Poa secunda (POSE) (Fig. 1).109

From 1932 to 1945 individual plants were identified and mapped annually in 44 1-m2 quadrats110

using a pantograph. The quadrats were distributed in six pastures, each assigned a grazing111

treatment of light (1.24 ha/animal unit month), moderate (0.92 ha/aum), and heavy (0.76112

ha/aum) stocking rates (two pastures per treatment). In this analysis we account for potential113

di�erences among the grazing treatments, but do not focus on grazing◊climate interactions.114

The annual maps of the quadrats were digitized and the fates of individual plants tracked115

and extracted using a computer program (Lauenroth and Adler 2008, Chu et al. 2014). Daily116

climate data are available for the duration of the data collection period (1932 - 1945) from117

the Miles City airport, Wiley Field, 9 km from the study site.118

We modeled each grass population based on two levels of data: individual and quadrat (Fig.119

2). The individual data is the “raw” data. For the quadrat-level we data we simply sum120

individual basal cover for each quadrat by species. This is equivalent to a near-perfect census121

of quadrat percent cover because previous analysis shows that measurement error at the122

individual-level is small (Chu and Adler 2014). Based on these two datasets we can compare123

population models built using individual-level data and aggregated, quadrat-level data.124

2
http://esapubs.org/archive/ecol/E092/143/
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All R code and data necessary to reproduce our analysis is archived on GitHub as release125

v1.03 (http://github.com/atredennick/MicroMesoForecast/releases). That stable release will126

remain static as a record of this analysis, but subsequent versions may appear if we update127

this work. We have also deposited the v1.0 release on Dryad (link here after acceptance).128

Stastical models of vital rates129

At both levels of inference (individual and quadrat), the building blocks of our population130

models are vital rate regressions. For individual-level data, we fit regressions for survival,131

growth, and recruitment for each species. At the quadrat-level, we fit a single regression132

model for population growth. We describe the statistical models separately since fitting the133

models required di�erent approaches. All models contain five climate covariates that we134

chose a priori: “water year” precipitation at t-1 (lagppt); April through June precipitation at135

t-1 and t-2 (ppt1 and ppt2, respectively) and April through June temperature at t-1 and t-2136

(TmeanSpr1 and TmeanSpr2, respectively), where t is the observation year. We also include137

interactions among same-year climate covariates (e.g., ppt1 ◊ TmeansSpr1) and climate ◊138

size interactions. Climate ◊ size interactions are for climate main e�ects only; we do not139

include interactions between size and pairs of interacting climate e�ects.140

We fit all models using a hierarchical Bayesian approach. The models are fully descibed in141

Appendix A, so here we focus on the main process and the model likelihood. For the likelihood142

models, y

X is always the relevant vector of observations for vital rate X (X = S, G, R, orP143

for survival, growth, recruitment, or population growth). For example, y

S is a vector of 0’s144

and 1’s indicating whether a genet survives from t to t+1, or not.145

Vital rate models at the individual level We used logistic regression to model survival146

probability (S) of genet i from species j in quadrat group Q from time t to t + 1:147

3Note to reviewers: so that v1.0 will be associated with the published version of the manuscript, we have

released v0.1 to be associated with this review version.
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parameter for the e�ect of the kth climate covariate at time t (C
k,t

). Note that the vector of150

climate covariates (C) includes climate variable interactions and climate◊size interactions.151

We include density-dependence by estimating the e�ect of crowding on the focal individual152

by other individuals of the same species. Ê is the e�ect of crowding and w

t,Q

is the crowding153

experienced by the focal individual at time t in quadrat group Q. We include a size◊crowding154

interaction e�ect (‹S).155

We modeled growth as a Gaussian process describing genet size at time t + 1 as a function of156

size at t and climate covariates:157
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where x is log genet size and all other parameters are as described for the survival regression.158

We capture non-constant error variance in growth by modeling the variance around the159

growth regression (Á) as a nonlinear function of predicted genet size:160

Á

ij,t

= ae

bxijQ,t+1 (5)
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Our data allows us to track new recruits, but we cannot assign a specific parent to new genets.161

THerefore, we model recruitment at the quadrat level: the number of new individuals of162

species j in quadrat q recruiting at time t+ 1 as a function of quadrat “e�ective cover” (AÕ) in163

the previous year (t). E�ective cover is a mixture of observed cover (A) in the focal quadrat164

(q) and the mean cover across the entire group (Ā) of Q quadrats in which q is located:165

A

Õ
jq,t

= p

j

A

jq,t

+ (1 ≠ p

j

)Ā
jQ,t

(6)

where p is a mixing fraction between 0 and 1 that is estimated within the model.166

We assume the number of individuals, y

R, recruiting at time t + 1 follows a negative binomial167

distribution:168

y

R

jq,t+1 ≥ NegBin(⁄
jq,t+1, ’) (7)

where ⁄ is the mean intensity and ’ is the size parameter. We define ⁄ as:169

⁄

jq,t+1 = A

Õ
jq,t

e

(“R
j,t+„

R
jQ+◊

R
jkCk,t+Ê

R
Ô

A

Õ
q,t) (8)

where A

Õ is e�ective cover (cm2) of species j in quadrat q and all other terms are as in the170

survival and growth regressions.171

Population model at the quadrat level The statistical approach used to model aggre-172

gated data depends on the type of data collected. We have percent cover data, which can173

easily be transformed to proportion data. We first considered fitting three vital rate models174

analagous to those we fit at the individual level: one for probability of extirpation within a175

quadrat (analagous to survival), one for cover change within a quadrat (analagous to growth),176

and one for probability of colonization within a quadrat (analagous to recruitment). However,177
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within-quadrat extirpation and colonization events were rare in our time series (N = 9 and178

N = 10, respectively, across all species). Given the broad spatial distribution of the quadrats179

we are studying, it is safe to assume that these events are in fact rare enough to be ignored180

for our purposes. So we constrained our statistical modeling of vital rates at the population181

level to change in percent cover within quadrats. For the remaining discussion of statistical182

modeling, we refer to proportion data, which is simply percent cover divided by 100.183

An obvious choice for fitting a linear model to proportion data is beta regression because the184

support of the beta distribution is [0,1], not including true zeros or ones. However, when we185

used fitted model parameters from a beta regression in a quadrat-based population model,186

the simulated population tended toward 100% cover for all species. We therefore chose a187

more constrained modeling approach based on a truncated log-normal likelihood. The model188

for quadrat cover change from time t to t + 1 is189

x

jq,t+1 = “

P

j,t

+ „

P

jQ

+ —

P

j,t

x

jq,t

+ ◊

P

jk

C

k,t

(9)

y

P

jq,t+1 ≥ LogNormal(x
jq,t+1, ·

j

)T[0, 1] (10)

where x

jq,t

is the log of species’ j proportional cover in quadrat q at time t and all other190

parameters are as in the individual-level growth model (Eq. 3). Again, note that the climate191

covariate vector (C) includes the climate◊cover interaction. The log normal likelihood192

includes a truncation (T[0,1]) to ensure that predicted values do not exceed 100% cover.193

Model fitting194

Our Bayesian approach to fitting the vital rate models required choosing appropriate priors195

for unknown parameters and deciding which, if any, of those priors should be hierarchical.196

We decided to fit models where all terms were fit by species. Within a species, we fit yearly197
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size e�ects and yearly intercepts hierarchically where year-specific coe�cients were drawn198

from global distributions representing the mean size e�ect and intercept. Quadrat random199

e�ects were also fit hierarchically, with quadrat o�sets being drawn from distributions with200

mean zero and a shared variance term (independent Gaussian priors, Appendix A). Climate201

e�ects were not modeled hierarchically, and each was given a di�use prior distribution. We202

used standard di�use priors for all unknown parameters (Appendix A).203

All of our analyses (model fitting and simulating) were conducted in R (R Core Development204

Team 2013). We used the ‘No-U-Turn’ MCMC sampler in Stan (Stan Development Team205

2014a) to estimate the posterior distributions of model parameters using the package ‘rstan’206

(Stan Development Team 2014b). We obtained posterior distributions for all model parameters207

from three parallel MCMC chains run for 1,000 iterations after discarding an initial 1,000208

iterations. Such short MCMC chains may surprise readers more familiar with other MCMC209

samplers (i.e. JAGS or WinBUGS), but the Stan sampler is exceptionally e�cient, which210

reduces the number of iterations needed to achieve convergence. We assessed convergence211

visually and made sure scale reduction factors for all parameters were less than 1.01. For the212

purposes of including parameter uncertainty in our population models, we saved the final213

1,000 iterations from each of the three MCMC chains to be used as randomly drawn values214

during population simulation. This step alleviates the need to reduce model parameters by215

model selection since sampling from the full parameter space in the MCMC ensures that if a216

parameter broadly overlaps zero, on average the e�ect in the population models will also be217

near zero. We report the posterior mean, standard deviation, and 95% Bayesian Credible218

Intervals for every parameter of each model for each species in Appendix B.219

Population models220

With the posterior distribution of the vital rate statistical models in hand, it is straightforward221

to simulate the population models. We used an Integral Projection Model (IPM) to model222
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populations based on individual-level data (Ellner and Rees 2006) and a quadrat-based223

version of an individually-based model (Quadrat-Based Model, QBM) to model populations224

based on quadrat-level data. We describe each in turn.225

Integral projection model We use a stochastic IPM (Rees and Ellner 2009) that includes226

the climate covariates from the vital rate statistical models. In all simulations we ignore227

the random year e�ects so that interannual variation is driven solely by climate. We fit the228

random year e�ects in the vital rate regressions to avoid over-attributing variation to climate229

covariates. Our IPM follows the specification of Chu and Adler (2015) where the population230

of species j is a density function n(u
j

, t) giving the density of sized-u genets at time t. Genet231

size is on the natural log scale, so that n(u
j

, t)du is the number of genets whose area (on the232

arithmetic scale) is between e

uj and e

uj+du. The density function for any size v at time t + 1233

is234

n(v
j

, t + 1) =
⁄

Uj

Lj

k

j

(v
j

, u

j

, w̄

j

(u
j

))n(u
j

, t) (11)

where k

j

(v
j

, u

j

, w̄

j

) is the population kernel that describes all possible transitions from size u235

to v and w̄

j

is a scalar representing the average intraspecific crowding experienced by a genet236

of size u

j

and species j. The integral is evaluated over all possible sizes between predefined237

lower (L) and upper (U ) size limits that extend beyond the range of observed genet sizes.238

Since the IPM is spatially-implicit, we cannot calculate neighborhood crowding for specific239

genets (w
ij

). Instead, we use an approximation (w̄
j

) that captures the essential features of240

neighborhood interactions (Adler et al. 2010). This approximation relies on a ‘no-overlap’241

rule for conspecific genets to approximate the overdispersion of large genets in space (Adler242

et al. 2010).243

The population kernel is defined as the joint contributions of survival (S), growth (G), and244

recruitment (R):245
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(u
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))G
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, u
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j
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j

, u

j

, w̄

j

), (12)

which means we are calculating growth (G) for individuals that survive (S) from time t to t+1246

and adding in newly recruited (R) individuals of an average sized one-year-old genet for the247

focal species. Our stastical model for recruitment (R, described above) returns the number of248

new recruit produced per quadrat. Following previous work (Adler et al. 2012, Chu and Adler249

2015), we assume that fecundity increases linearly with size (R
j

(v
j

, u

j

, w̄

j

) = e

uj
R

j

(v
j

, w̄

j

))250

to incorporate the recruitment function in the spatially-implicit IPM.251

We used random draws from the final 1,000 iterations from each of three MCMC chains to252

introduce stochasticity into our population models. At each time step, we randomly selected253

climate covariates from one of the 14 observed years. Then, we drew the full parameter254

set (climate e�ects and density-dependence fixed e�ects) from a randomly selected MCMC255

iteration. Using this approach, rather than simply using coe�cient point estimates, captures256

the e�ect of parameter uncertainty. Relatively unimportant climate covariates (those that257

broadly overlap 0) will have little e�ect on the mean of the simulation results, but can258

contribute to their variation. Since our focus was on the contribution of climate covariates to259

population states, we set the random year e�ects and the random group e�ects to zero.260

Quad-based model To simulate our quad-based model (QBM), we simply iterate the261

quadrat-level statistical model (Eqs. 9-10). We use the same approach for drawing parameter262

values as described for the IPM. After drawing the appropriate parameter set, we calculate263

the mean response (population cover at t+1 = x

t+1) according to Eq. 9. We then make a264

random draw from a [0,1] truncated lognormal distribution with mean equal to x

t+1 from Eq.265

9 and the variance estimate from the fitted model. We can then project the model forward by266

drawing a new parameter set (unique to climate year and MCMC iteration) at each timestep.267

As with the IPM, random year e�ects are ignored for all simulations.268
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Model validation269

To test each model’s ability to forecast population state, we made out-of-sample predictions270

using leave-one-year-out cross validation. For both levels of modeling, we fit the vital rate271

models using observations from all years except one, and then used those fitted parameters in272

the population models to perform a one-step-ahead forecast for the year whose observations273

were withheld from model fitting. Within each observation year, several quadrats were274

sampled. We made predictions for each observed quadrat in the focal year, initializing each275

simulation with cover in the quadrat the previous year. Since we were making quadrat-specific276

predictions, we incorporated the group random e�ect on the intercept for both models. We277

repeated this procedure for all 13 observation years, making 100 one-step-ahead forecasts for278

each quadrat-year combination with parameter uncertainty included via random draw from279

the MCMC chain as described above. Random year e�ects were set to zero since year e�ects280

cannot be assigned to unobserved years.281

This cross-validation procedure allowed us to compare accuracy and precision of the two282

modeling approaches (IPM versus QBM). We first calculated the median predicted cover283

across the 100 simulations for each quadrat-year and then calculated the absolute error as the284

absolute value of the di�erence between the observed cover for a given quadrat-year and the285

median prediction. To arrive at mean absolute error (MAE), we then averaged the absolute286

error within each species across the quadrat-year specific errors. We use MAE as our measure287

of accuracy. To measure precision we calculated the distance between the upper and lower288

90th quantiles of the 100 predictions and averaged this value over quadrat-years for each289

species.290

Testing sensitivity to climate covariates291

With our fitted and validated models in hand, we ran simulations for each model type (IPM292

and QBM) under four climate perturbation scenarios: (1) observed climate, (2) precipitation293

13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2015. ; https://doi.org/10.1101/025742doi: bioRxiv preprint 

https://doi.org/10.1101/025742
http://creativecommons.org/licenses/by-nc-nd/4.0/


increased by 1%, (3) temperature increased by 1%, and (4) precipitation and temperature294

increased by 1%. We ran the simulations for 2,500 time steps, enough to estimate equilibrium295

cover after discarding an initial 500 time steps as burn-in. Each simulation was run under296

two parameter scenarios: (1) using mean parameter estimates and (2) using randomly drawn297

parameters from the MCMC chain. We use (1) to detect the overall sensitivity of equilibrium298

cover to climate, and we use (2) to show the impact of model and parameter uncertainty on299

forecast precision.300

As an e�ort to identify potential discrepencies between IPM and QBM forecasts, we also301

ran simulations designed to quantify the sensitivities of individual and combined vital rates302

to climate for the IPM. Specifically, we ran simulations for the above climate scenarios,303

but applied the perturbed climate covariates to survival, growth, or recruitment vital rates304

individually and in pairwise combinations. This allowed us to isolate the vital rate(s) most305

sensitive to climate. For this analysis, we used mean parameter estimates to reduce the306

sources of uncertainty in the sensitivity estimates.307

We expected the IPM to produce more accurate and precise forecasts due to either (1) the308

smaller sample size of the quadrat level data sets compared to the individual level data sets,309

leading to larger parameter uncertainty for the QBM, or (2) the QBM climate e�ects being310

weakly associated with one or more vital rate climate e�ects at the individual level. To assess311

the impact of sample size on QBM parameter uncertainty we refit the QBM statistical model312

(Eqs. 9-10) after removing sets of 2, 5, 10, and 15 quadrats. We fit 10 models at each level313

of quadrat removal (2, 5, 10, 15 quadrats), removing a di�erent randomly selected set of314

quadrats for each fit. We calculated the standard deviation of climate main e�ects (pptLag,315

ppt1, ppt2, TmeanSpr1, and TmeanSpr2) for each model and averaged those over replicates316

within each set of quadrat removals. This allowed us to regress parameter uncertainty against317

sample size.318

To deterime if the QBM climate e�ects are correlated with climate e�ects for each vital319
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rate model in the IPM, we simply regressed the QBM climate coe�cients against each vital320

rate model’s climate coe�cients and calculated Pearson’s fl. Strong correlations indicate the321

QBM is capable of detecting climate e�ects associated with individual vital rates. A weak322

correlation indicates the QBM “misses” the climate e�ect on a particular vital rate.323

Results324

Comparison of forecast models325

The IPM had lower overall error (MAE, mean absolute error) compared to the QBM for three326

species (Table 1). The IPM MAE is significantly lower at – = 0.05 for B. gracilis (P = 0.0012),327

H. comata (P = 4.0586 ◊ 10-8), and P. smithii (P = 3.183 ◊ 10-5). MAEs are statisticially328

similar between models for P. secunda (P = 0.0922). P values are highly sensitive to sample329

size, so not entirely appropriate in simulation exercises where we control the samples size.330

But, for our purposes they serve as relatively unbiased comparison metrics. In no case did the331

QBM significantly outperform the IPM (Table 1). The IPM was consistently more precise332

than the QBM, with lower distances between the 90% quantiles across all species (Table 1).333

In general the IPM outperformed the QBM because it had (1) lower MAE for three of the334

four species, (2) statistically similar MAE for the one other species, and (3) considerably335

more precise forecasts for all species.336

Sensitivity of models to climate337

The response of a population to climate change is a result of the aggregate e�ects of climate338

on individual vital rates. Since the IPM approach relies on vital rate regressions, we were339

able to quantify the sensitivity of each vital rate in isolation and in pairwise combinations.340

Across all species, climate covariates can have opposing e�ects on di�erent vital rates (Fig.341

3). Growth was the most sensitive vital rate for all species, showing a negative response342
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to increased precipitation, and stronger positive response to increased temperature, and a343

mostly positive response when both climate factors are increased (Fig. 3). B. gracilis survival344

rates were sensitive to temperature, resulting in an increase in plant cover under increased345

temperature (Fig. 3a). In isolation, recruitment and survival were insensitive to climate346

factors for H. comata (Fig. 3b). Survival and recruitment of P. smithii were both sensitive,347

negatively, to temperature and precipitation (Fig. 3c). P. secunda equilibrium cover was348

sensitive to the climate e�ects on survival and recruitment, showing a negative e�ect on both349

vital rates for increased precipition, but a strong positive e�ect on survival with increased350

temperature (Fig. 3d). Equilibrium cover responded negatively when increased precipitation351

and temperature a�ect recruitment (Fig. 3d). At least two of three vital rates were sensitive352

to climate for each species (Fig. 3).353

Sources of uncertainty in the QBM354

Sample size had a relatively weak e�ect on QBM climate parameter uncertainty after the355

number of quadrats used in fitting exceeded about 10 (Fig. 5). Inverse-gaussian fits show that356

increasing sample size beyond the number of quadrats we used would result in diminishing357

returns in terms of parameter certainty (Fig. 5).358

Climate e�ects estimated from the QBM are most correlated with climate e�ects from the359

growth regression at the individual level (Fig. 6). In no case does the QBM statistical360

model have strong correlations across all three vital rates (Fig. 6). QBM climate e�ects were361

most weakly correlated with those from individual-level recruitment models for B. gracilis,362

H. comata, and P. secunda (Fig. 6a,b,d). For P. smithii, QBM climate e�ects showed no363

correlation with the survival model e�ects (Fig. 6c).364
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Model forecasts365

Forecasts based on 1% climate changes were extremely uncertain when we considered model366

error and parameter uncertainty (Fig. 6; simulations with mean parameters are in Appendix367

D for comparison). As expected based on model validation (Table 1), QBM projections were368

more uncertain than IPM projections for all species except P. smithiii (Fig. 6). IPM forecasts369

for P. smithiii were very uncertain due to a very high instrinsic rate of recruitment combined370

with uncertainty in climate coe�cients which lead to high recruitment boom years and371

subsequent busts when young plants su�er high mortality (Appendx C). When we included372

model error and parameter uncertainty, forecast changes in proportional cover always spanned373

a wide range of negative to positive values. In other words, neither model could predict374

whether a climate perturbation would increase or decrease equilibrium population size.375

Discussion376

Population models built using individual-level data allow inference on demographic processes,377

but they can only forecast future population states across the (typically limited) spatial378

extent of the observations. Population-level data are much easier to collect across broad379

spatial extents, so models built using such data o�er an appealing alternative to traditional380

population models (Queenborough et al. 2011). However, density-structured models rely381

on the aggregation of individual-level data. This creates a potential problem if such models382

are to be used in a climate change context because it is individuals, not populations, which383

respond to climate (Clark et al. 2012). Are models based on population-level metrics as384

sensitive to climate as models based on individual-level metrics? Do these two types of models385

produce consistent forecasts? Do we need detailed demographic data to forecast the impacts386

of climate change?387
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The importance of demographic data388

Our comparison of a traditional, demographic population model (the IPM) with a model389

inspired by density-structured models (the QBM) showed that the IPM outperformed the390

QBM: the IPM was more accurate and precise than the QBM in out-of-sample cross validation391

(Table 1). The superiority of the IPM could reflect either di�erences in sample size or the392

e�ect of averaging over unique e�ects of climate on each individual-level vital rate. Although393

increasing sample size of quadrat percent-cover observations would be easy to do in the field,394

we found little evidence that it would lead to higher precision of climate coe�cient estimates395

(Fig. 4).396

We did, however, find evidence that the QBM statistical model failed to identify climate397

dependence for some vital rates (Fig. 5). For no species were climate e�ects from the398

QBM strongly correlated with all three vital rates (Fig. 5). Freckleton et al. (2011)399

acknowledge that averaging over complex stage dependence will lead to poorly specified400

models. This is analagous to our situation, but instead of averaging over complex life histories,401

we are averaging over complex climate dependence. Though our work here focused on plant402

species, this finding is applicable to any species with vital rates that respond uniquely to403

weather/climate.404

Our interpretation is that the QBM is “missing” climate signals associated with at least one405

vital rate for each species. This leads to inaccurate and imprecise forecasts because the QBM406

statistical model struggles to explain variation due to climate variables that have positive and407

negative impacts on di�erent vital rates. When this is the case, as it is for all our species to408

varying degrees (Fig. 3), forecasts from models based on population-level data will fail. Our409

result is consistent with related work on the importance of individual-level data to forecast410

population responses to exogenous drivers (Clark et al. 2011a, 2011b, 2012, Galván et al.411

2014).412

Detailed demographic data appears to be necessary to forecast climate change impacts413
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on plant populations when vital rates have unique climate responses. How then can we414

build models to make forecasts for the landscape and regional scales beyond the scope415

of traditional population models (Queenborough et al. 2011)? There are alternatives to416

density-structured models. For example, Clark et al. (2011a) use Forest Inventory and417

Analysis (FIA) data to parameterize a population model with multiple vital rates and climate418

dependence. Distributed e�orts such as PlantPopNet (http://plantago.plantpopnet.com) will419

allow researchers to estimate variation around climate responses for widespread species by420

taking advantage of spatial variation in climate (e.g. Doak and Morris 2010). Finally, new421

approaches on the horizon that leverage photo/video of plots and advanced object recognition422

algorithms (e.g. Liu et al. 2014) will increase the e�ciency of plant mapping and digitizing423

e�orts.424

The challenge of uncertainty425

An important, but unexpected, result of our analysis was the great uncertainty in forecasts,426

even for our best model. The typical approach in ecology is to use point estimates of model427

parameters to project populations forward according to the specified model, usually allowing428

for some variability around the determinstic process (e.g. Battin et al. 2007, Jenouvrier et al.429

2009, Adler et al. 2012). If we follow tradition and calculate the mean response to climate430

perturbation with only model error and interannual variation included, the IPM and the431

QBM produce opposing forecasts for three of four species (Fig. D1). It would be tempting432

to interpret this inconsistency as further evidence for the superiority of the IPM. However,433

if we introduce parameter uncertainty, the forecasts are actually indistinguishable (Fig. 6),434

though the IPM projections are generally more precise (consistent with our cross-validation435

results). The real story is that both models produce highly uncertain forecasts. For all species,436

the 90% quantiles of predicted changes in population size overlapped zero; we cannot even437

predict whether a change in precipitation or temperature will cause populations to increase438

or decrease. This result held when we tried perturbing climate by 10% and 20% as well.439
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Our results highlight the state of a�airs in ecology when it comes to forecasting the impacts440

of climate change. The analysis we conducted here could be considered at the forefront441

of ecological forecasting with respect to the statistical approach employed (hierarchical442

Bayesian), the type of population model we used (density-dependent, stochastic IPM with443

parameter uncertainty), and the amount of high quality data we had at our disposal (14444

years of individual-level data). Yet, model predictions proved so uncertain that any forecast,445

when bounded with model and parameter uncertainty, would be uninformative.446

How might we improve on this state of a�airs? First, forecasts could be improved by matching447

the spatial scale of predictor variables with the spatial scale of observations. One of the major448

limitations of the models we fit here is that the climate data are collected at a larger scale449

than the individual-level observations of plant size. Climate covariates only vary by year,450

with no spatial variability within years. Thus, even if we fit models to individual-level data,451

we are missing the key interaction point between weather and individual plants (Clark et452

al. 2011b) because all observations share the same climate covariates. Demographic studies453

should be designed with at least plot-level measurements of climate related variables (e.g.,454

soil moisture). Second, accurately detecting climate signals will take even longer time series.455

Recent theoretical work on detecting climate signals in noisy data suggests that even advanced456

approaches to parameter fitting require 20-25 year time series (Teller et al. n.d.). Third,457

ecologists need a stronger commitment to reporting uncertainty. Although most modeling458

studies explicitly consider model uncertainty, parameter uncertainty is often ignored. In some459

cases this is because the most convenient statistical methods make it di�cult to propogate460

parameter uncertainty. Yet even Bayesian approaches that allow integration of model fitting461

and forecasting (Hobbs and Hooten 2015) are not simple when using modeling approaches462

like integral projection models that separate the model fitting and simulation stages (Rees463

and Ellner 2009). However, as we have done here, it is still possible to include parameter464

uncertainty by drawing parameter values from MCMC iterations, taking care to draw all465

parameters from the same chain and iteration to account for their correlations. Only by466
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being honest about our forecasts can we begin to produce better ones, and forecasts reported467

without parameter error are disingenuous. Ignoring parameter error may be justifiable when468

the goal is investigating basic processes, but it is indefensible when forecasting is the goal.469

Conclusions470

This work is not a critique of density-structured population models. We are confident that471

density-structured models will prove to be a valuable tool for many applications. However,472

our analysis represents the first comparison, to our knowledge, of population models based on473

individual and aggregated forms of the same data in a climate change context. Our results474

confirm theoretical arguments (Clark et al. 2011b) and empirical evidence (Clark et al. 2011a,475

2012) that individual responses are critical for predicting species’ responses to climate change.476

It seems there is no short cut to producing accurate and precise population forecasts: we477

need detailed demographic data to forecast the impacts of climate change on populations.478

Given the importance of demographic data and its current collection cost, we need modern479

methods to collect demographic data more e�ciently across environmental gradients in space480

and time.481

Our results also o�er a cautionary tale because forecast uncertainty was large for both482

model types. Even with 14 years of detailed demographic data and sophisticated modeling483

techniques, our projections contained too much uncertainty to be informative. Uncertainty484

in demographic responses to climate can be reduced by collecting (1) longer time series and485

(2) climate covariates that match the scale of inference (e.g., plot rather than landscape level486

climate/weather metrics).487
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Tables498

Table 1: Accuracy (mean absolute error, MAE) and precision (90% Distance) of out of sample
predictions. Forecasts were made without random year e�ects; only climate covariates could
explain year-to-year variation. 90% Distance refers to the average distance between the upper
and lower 90th percentiles of the 100 predicted values for each quadrat-year combination.

Species Model MAE 90% Distance Mean Obs. Cover
BOGR IPM 12.18 38.52 9.43
BOGR QBM 19.66 56.50 9.26
HECO IPM 1.22 6.47 1.15
HECO QBM 12.35 41.11 1.18
PASM IPM 0.19 1.65 0.42
PASM QBM 0.55 7.78 0.42
POSE IPM 1.37 7.64 1.25
POSE QBM 1.79 40.59 1.27
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Figures499
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Figure 1: Time series of average percent cover over all quadrats for our four focal species:
Bouteloua gracilis (BOGR), Hesperostipa comata (HECO), Pascopyrum smithii (PASM), and
Poa secunda (POSE). Light grey lines show trajectories of individual quadrats. Note the
di�erent y-axis scales across panels.

24

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2015. ; https://doi.org/10.1101/025742doi: bioRxiv preprint 

https://doi.org/10.1101/025742
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Work flow of the data aggregation, model fitting, and population simulating.
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Figure 3: Sensitivity of equilibrium cover simulated from the IPM to each climate scenario
applied to individual and combined vital rates. For example, the points associated with G
show the median cover from IPM simulations where a climate perturbation is applied only to
the growth regression climate covariates. These simulations use mean parameter values for
clarity.
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Figure 4: E�ect of quadrat sample size on the precision (standard deviation) of main climate
e�ect estimates in the QBM. Increasing the number of quadrats results in diminishing returns
in terms of parameter certainty. Light dashed lines show individual climate e�ects at five
quadrat sample sizes. Thick dark lines are inverse gaussian fits showing the mean e�ect of
increasing quadrat sample size on parameter precision.
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Figure 5: Correlations (r) between QBM and IPM estimates of climate e�ects. We ignore
sizeXclimate interactions since these are not directly comparable across model types. The
QBM does not have multiple vital rates, so its values are repeated across panels within each
species. Across top panels, ‘growth’ = growth regression, ‘rec’ = recruitment regression, ‘surv’
= survival regression.
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Figure 6: Mean (points) and 90% quantiles (errorbars) for the proportional di�erence between
baseline simulations (using observed climate) and the climate pertubation simulation on the
x-axis. We calculated proportional di�erence as log(perturbed climate cover) - log(observed
climate cover), where ‘perturbed’ and ‘observed’ refer to the climate time series used to
drive interannual variation in the simulations. Model error and parameter uncertainty were
propagated through the simulation phase. Climate simulations are as in Figure 3.
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