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ABSTRACT 

Mutation is the ultimate source of all genetic variation and is, therefore, central to evolutionary change. 

Previous work on Paramecium tetraurelia found an unusually low germline base-substitution mutation 

rate in this ciliate. Here, we tested the generality of this result among ciliates using Tetrahymena 

thermophila. We sequenced the genomes of 10 lines of T. thermophila that had each undergone 

approximately 1,000 generations of mutation accumulation (MA). We developed a new probabilistic 

mutation detection approach that directly models the design of an MA experiment and accommodates the 

noise introduced by mismapped reads and also applied an existing mutation-calling pipeline. From these 

methods, we find that T. thermophila has a germline base-substitution mutation rate of 7.61 × 10–12 per 

site, per cell division, which is consistent with the low base-substitution mutation rate in P. tetraurelia. 

Over the course of the evolution experiment, genomic exclusion lines derived from the MA lines 

experienced a fitness decline that cannot be accounted for by germline base-substitution mutations alone, 

suggesting that other genetic or epigenetic factors must be involved. Because selection can only operate to 

reduce mutation rates based upon the “visible” mutational load, asexual reproduction with a 

transcriptionally silent germline may allow ciliates to evolve extremely low germline mutation rates. 

Key words: mutation accumulation, micronucleus, macronucleus, drift barrier hypothesis, microbial 

eukaryote, Oligohymenophorea. 

 

INTRODUCTION 

Mutation is the ultimate source of all genetic variation, and the rate, molecular spectrum, and phenotypic 

consequences of new mutations are all important drivers of biological processes such as adaptation, the 

evolution of sex, the maintenance of genetic variation, aging, and cancer. However, because mutations are 

rare, detecting them is difficult, often requiring the comparison of genotypes that have diverged from a 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 27, 2016. ; https://doi.org/10.1101/025536doi: bioRxiv preprint 

https://doi.org/10.1101/025536
http://creativecommons.org/licenses/by/4.0/


3 
 

common ancestor by at least hundreds or thousands of generations. Further, interpreting the results of 

such comparisons is complicated by the fact that mutations are frequently eliminated by natural selection 

before they can be studied. 

Mutation accumulation (MA) is a standard method for studying mutations experimentally. In a 

typical MA experiment, many inbred or clonal lines are isolated and passed repeatedly through 

bottlenecks. This reduces the effective population size and lessens the efficiency of selection, allowing all 

but the most deleterious mutations to drift to fixation (Bateman 1959; Mukai 1964). The genome-wide 

mutation rate and mutational spectrum can then be estimated by comparing the genomes of MA lines with 

their ancestors. Such direct estimates of mutational parameters are now available for a number of model 

organisms (Denver et al. 2009; Keightley 2009; Keightley et al. 2014; Lee et al. 2012; Lind and 

Andersson 2008; Lynch et al. 2008; Ness et al. 2012; Ossowski et al. 2010; Sung et al. 2012b; Zhu et al. 

2014). However, the narrow phylogenetic sampling of these species still limits our ability to understand 

how mutation rates and patterns have evolved and, in turn, have influenced evolution across the tree of 

life. 

Microbial eukaryotes are an extraordinarily diverse group, containing many evolutionarily distant 

lineages, some of which have unusual life histories and genome features (Katz and Bhattacharya 2006). 

However, microbial eukaryotes are often unsuitable for use in mutational studies because they are 

difficult to culture in the lab, especially at the small population sizes required for MA experiments. In 

addition, genomic resources (e.g., completed annotated reference genomes) are lacking for most 

eukaryotic microbes. These barriers have limited mutation rate studies in microbial eukaryotes to 

Saccharomyces cerevisiae (Lynch et al. 2008; Zhu et al. 2014) , Schizosaccharomyces pombe (Behringer 

and Hall 2015; Farlow et al. 2015), Paramecium tetraurelia (Sung et al. 2012b), Dictyostelium 

discoideum (Saxer et al. 2012), and Chlamydomonas reinhardtii (Ness et al. 2012; Ness et al. 2015; Sung 

et al. 2012a; fig. 1).  
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The ciliated unicellular eukaryote Tetrahymena thermophila is particularly well suited to MA 

experiments. Like all ciliates, individuals from this species have distinct germline and somatic copies of 

their nuclear genome. During asexual growth, the contents of the germline genome are duplicated 

mitotically but neither expressed nor used to generate a new somatic genome. But unlike most other 

ciliates (including P. tetraurelia, which senesces in the absence of periodic mating or autogamy), T. 

thermophila can be propagated this way indefinitely. Thus, during periods of asexual growth, which can 

last over thousands of generations (Doerder 2014), mutations can accumulate in the germline genome 

apparently without experiencing any natural selection. Long et al. (2013) confirmed that MA lines of T. 

thermophila can be propagated asexually for at least 1,000 generations and inferred that they accumulate 

mutations in their germline genomes with detectable effects on fitness. However, Long et al. (2013) did 

not estimate the mutation rate directly at the molecular level. 

The only other existing MA experiment from a ciliate, Paramecium tetraurelia (Sung et al. 

2012b), yielded the lowest known base-substitution mutation rate in a eukaryote. Sung et al. (2012b) 

suggested that this exceptionally low mutation rate is the result of the unusual life history of ciliates, in 

which a transcriptionally silent germline genome undergoes multiple rounds of cell division between 

sexual cycles. Measurement of the mutation rate of T. thermophila will help reveal whether a low 

mutation rate is a general feature of ciliates. In addition, natural populations of T. thermophila have been 

the focus of population-genetic studies (Katz et al. 2006; Zufall et al. 2013), so mutational parameters 

estimated from MA experiments can be related to population and evolutionary processes.  

Although the life history of T. thermophila is ideal for MA experiments, some features of its 

genome complicate typical computational approaches to detecting mutations from short-read sequencing. 

The genome is extremely AT-rich (~78% AT) and contains both low complexity and repetitive elements. 

These features, combined with an incomplete reference genome (Eisen et al. 2006), make mapping 

sequencing reads to the reference genome difficult, which may lead to false positives when using naive 

mutation detection methods. To overcome these difficulties, we have developed a novel probabilistic 
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mutation detection approach that directly models the design of an MA experiment and accommodates the 

noise introduced by mismapped reads. We used both our new method and an existing mutation-calling 

pipeline to analyse the MA sequences (Sung et al. 2012b). 

Here we expand the work presented by Long et al. (2013) by directly estimating the base-

substitution mutation rate in T. thermophila. Our results are consistent with the exceptionally low rate 

estimated for P. tetraurelia, indicating that low germline mutation rates may be a general feature of 

ciliates. We also use our estimated rate to calculate the effective population size of T. thermophila in the 

wild. Our results establish that it is possible to estimate the mutation rate of T. thermophila directly from 

sequence data, but owing to the extraordinarily low rate, longer and larger MA experiments will be 

required to confidently estimate the mutational spectrum of a species with such a low mutation rate.  

 

MATERIALS AND METHODS 

Cell lines 

The 10 evolved cell lines that were used in this study were generated from 10 parental MA lines 

(Supplementary Table S1). These lines were established from a single cell of the strain SB210 as 

described in Long et al. (2013). Briefly, the 10 MA lines were cultured in the rich SSP medium in test 

tubes (Gorovsky et al. 1975) and experienced ~50 single-cell bottlenecks and ~1000 cell divisions, except 

for M28, which was bottlenecked 10 times and passed ~200 cell divisions. The optical density of cultures 

was measured prior to each transfer and the number of generations calculated using a standard curve of 

optical density for the ancestor (Long et al. 2013). Because directly sequencing the T. thermophila 

micronuclear genome is not feasible, we generated autozygous lines with macronuclear genomes derived 

from haploid copies of our ancestral and descendant micronuclear genomes using genomic exclusion 

(Allen 1963). Genomic exclusion lines were produced by two rounds of crossing between the MA lines 
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(mating type VI) and a germline-dysfunctional B* strain (mating type VII, (Bruns and Cassidy-Hanley 

1999)). A mutation in the macronuclear genome of a genomic exclusion line derived from an MA line is 

assumed to correspond to a germline mutation in that MA line.  

We accounted for heterozygosity in the ancestral strain by generating 19 independent genomic 

exclusion lines from the progenitor line. The DNA from all 19 genomic exclusion lines was pooled before 

library construction, allowing us to sequence both alleles at any heterozygous sites. 

Whole-genome sequencing 

DNA libraries with insert size ~350 bp and Illumina paired-end sequencing were constructed in the 

DNASU core facility at the Biodesign Institute at Arizona State University and the Hubbard Center for 

Genome Studies, University of New Hampshire. The mean sequencing depth is ~47×, with >90% of the 

sites in the genome covered in all the sequenced lines (Supplementary Table S1). Sequencing reads are 

available from the NCBI’s SRA database under a BioProject with accession number PRJNA285268. 

Base-substitution analysis 

We used two independent approaches to call point-mutations to avoid false negatives that might not be 

detected by a single approach. First, a widely used consensus approach (Sung et al. 2012b). Second, a 

probabilistic approach that adapts methods designed for family-based data to the design of MA 

experiments (Cartwright et al. 2012). Our list of candidates was generated by the union of calls from both 

methods. 

Consensus approach 

For the consensus approach we applied the following filters to reduce false positives that may arise from 

sequencing, read mismapping or library amplification errors. (1) Two mapping programs, BWA 0.7.10 

(Li and Durbin 2009) and novoalign (V2.08.01; NOVOCRAFT Inc), were used in two independent 

pipelines to reduce algorithm-specific read mapping errors. (2) Only uniquely mapped reads were used 
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(BWA option: sampe –n 1; NOVOCRAFT option: novoalign –r None), with mapping/sequencing quality 

scores > 20 (samtools mpileup –Q 20 –q 20). (3) The line-specific consensus nucleotide at a genomic site 

needed support from greater than 80% of reads to filter out false positives from mismapping of paralog 

reads. (4) Three forward and three reverse reads were required to determine the line-specific consensus 

nucleotide, to reduce false positive calls due to errors in library construction or sequencing. Putative 

mutations were then called if a single line was different from the consensus of all the remaining lines 

following the approach of Sung et al. (2012b). This approach has been applied to a wide variety of 

prokaryotic and eukaryotic organisms and repeatedly verified with Sanger sequencing (Denver et al. 2009; 

Lee et al. 2012; Long et al. 2015; Ossowski et al. 2010; Sung et al. 2015). The consensus approach also 

makes predictions consistent with those of the GATK SNP caller (Behringer and Hall 2015; Farlow et al. 

2015).  

Probabilistic approach using accuMUlate 

The challenge of identifying mutations from genomic alignments can also be treated as a hidden-data 

problem (Cartwright et al. 2012). Fig. 2 illustrates the application of a hidden-data approach to our MA 

experiment. For a given site in the reference genome, the only data we observe directly is the set of 

sequencing reads mapped to that site. In order to determine if a mutation has occurred at the site, we have 

to consider the processes by which the read data was generated. These processes include biological 

processes (e.g., inheritance, mutation, genomic exclusion) and experimental processes that can introduce 

errors (e.g., library preparation, sequencing, data processing). Because none of these states are directly 

observed, we consider them to be hidden data. Each unique combination of hidden states represents a 

distinct history that could have generated the read data for a given state. See fig. 3 for an example of one 

such history with hidden and observed data illustrated. 

With the above formulation, our challenge is to determine the probability that a site contains at 

least one de novo mutation using our sequencing data (�� as the only observed input  
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( 1 ) 

 ��mutation|�; Θ�  �  ��mutation, �; Θ����; Θ� . 
Here, ��mutation, �; Θ) is the joint marginal probability of at least one mutation being present and the 

sequencing data, and ���; Θ� is the marginal probability of the sequencing data. The parameter Θ 

represents the model parameters and consists of the following:  

• �, the proportion of sites in the ancestor that are heterozygous, approximately (see Equation 6); 
• ��, the overdispersion parameter for sequencing of the ancestor (described below); 
• ��, the overdispersion parameter for sequencing of the descendant lines (described below); 
• �, a vector representing the frequency of each nucleotide in the ancestral genome; 
• �, the experiment-long mutation rate per site; 
• �, the rate of sequencing error per site. 

The numerator and denominator in Equation 1 are marginal probabilities. To calculate them from the full 

data we have to consider the hidden states in our model. Because the number of histories (i.e. unique 

combinations of hidden states, an example of one such history is shown in fig. 3) that could have 

generated the read data is enumerable, this amounts to summing over all of these histories H 

( 2 ) 

��mutation|�; ��  �  ∑ ��mutation, �, �; ��� ∑ ���, �; Θ��

 

�   ∑ ��mutation | �� ���, �; ��� ∑ ���, �; �� �  . 
Note that the probability of a mutation in a given history H, ��mutation | ��, is known to be either 1 or 0. 

Therefore, we only need to calculate ���, �; Θ�, the probability of the full data for the set of model 

parameters. This amounts to finding the probability that the read data was generated from an ancestral 

genotype ��  that gave rise to descendants with genotypes specified by the particular history being 

considered. This can be calculated as the products of the prior probability of genotypes and the 

likelihoods of those genotypes given R, 
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( 3 ) 

���, �; �� � ����; �, ���������
�

 ��!�| ��;  �� , �������������
�

 "  #����  | ��;  �, � ������������
	

 ��!
 | �� ;  �� , �������������
�

$�

�

. 
 

Here !� is a vector of size four containing the number of A, C, G and T bases in reads generated from the 

ancestral strain and mapped to this site (the pileup data). !
 and ��  are the base counts and genotype of 

the i-th descendant lines, respectively, and n is the total number of descendants.  

The terms labeled “b” and  “d” in Equation 3 are the probabilities of the observed sequencing 

data for a given genotype (i.e. genotype likelihoods). We calculate these genotype likelihoods using a 

Dirichlet-multinomial (DM) distribution. The DM is a compound distribution in which event-probabilities, 

%, of a multinomial distribution is a Dirichlet-distributed random vector. Using a compound distribution 

provides flexibility to model the complex sources of error in sequencing data. To make this property of 

our model explicit, we use a parameterization of the DM distribution where % is a vector of length four 

containing the expected proportion of reads matching each allele and � is an overdispersion parameter 

with values in the interval &0,1). Using this parameterization, the DM distribution is equivalent to a 

simple multinomial distribution when � = 0 and becomes increasingly overdispersed (i.e., the variance 

increases) as � tends to 1.  

We demonstrate the calculation of genotype likelihoods using the term for the ancestral genotype  

in Equation 3 (“b” term) as an example. To calculate ��!�| ��;  ��, ��, we use the probability mass 

function of the DM distribution 

( 4 ) 

��!� � * | �� � +; ��, �� � ,-* . Γ�ω��Γ�1� 2 -� " Γ�%
1� 2 *
�Γ�%
1�� .
�
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Here N is the total number of reads, 3�
�

4 is the multinomial coefficient, Γ is the gamma function, and 

1� � �1 5 ���/��. The parameter vector % contains the expected frequency of bases in {A, C, G, T} 

and is indexed by 7. Values in  % are determined by both the probability of sequencing error and diploid 

genotype + � 8+�, +�9 following Equation 5. 

( 5 ) 

%
 �  
:;<
;= 1 5 �, if 7 �  +� � +�  �homozygous match� 12 5 �3 , if 7 � +� G +�   or 7 � +� G +� �heterozygous match��3 , otherwise �error / mismatich� K 

 

We now consider the remaining terms in Equation 3. The term labeled “a” represents the prior 

probability that the ancestor had a particular genotype (+� below) given the nucleotide composition of the 

T. thermophila genome and average heterozygosity of the ancestral strain. We calculate this via a finite-

sites model with parent-independent mutation, 

( 6 ) 

���� � +�; �, �� �  LM� 11 2 � 2 M�M� �1 2 � if +� � +� � 7 �homozygote�
2 M�M� �1 2 � if +� � 7 and +� � O �heterozygote�.K 

 

Here 
�

���
 is the probability that the ancestor is autozygous at a site, and � is the vector of stationary 

nucleotide/allele frequencies in ancestral genome and h and j refer to the indices of the +� and +� alleles. 

See Wright (1949) for more details on this model and its biological assumptions.  

To complete Equation 3 we need to consider the term labeled “c”, which represents the 

probability that the i-th MA line inherited a particular genotype, given the ancestral genotype and the 
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probability of mutation. We calculate this via the Felsenstein (1981) model of nucleotide substitution. 

This model incorporates equilibrium nucleotide frequencies, allowing us to include the extreme AT-bias 

present in the T. thermophila genome.  

Using the approach described above, we used Equation 2 to calculate both the probability of at 

least one point-mutation and the probability of exactly one point-mutation at every site along the T. 

thermophila reference genome. In MA experiments, multiple mutations at the same site are unlikely; 

therefore, sites that contain a strong signal of more than one mutation are likely false positives due to 

systematic errors in sequencing and mapping of reads.  

This model is implemented in a C++ program called accuMUlate, which makes use of the 

Bamtools (Barnett et al. 2011) library. The source code used to perform the calculations described above 

is available under an MIT license from https://github.com/dwinter/accumulate; the specific version of the 

code used in these analyses is archived at http://dx.doi.org/10.5281/zenodo.19942. We ran our model on a 

genomic alignment produced by using Bowtie version 2.1.0 (Langmead and Salzberg 2012) to map reads 

to the December 2011 release of the T. thermophila macronuclear genome from the Tetrahymena 

Genome Database (Stover et al. 2006). One site in the reference contained a gap character, which we 

removed since our reads indicated that it was an artifact. We processed the resulting alignments to remove 

sequencing and mapping artifacts that could lead to false-positive mutation calls. In particular, we 

identified and marked duplicate reads using the MarkDuplicates tool from Picard 1.106 

(http://pricard.sourceforge.net) and performed local realignment around potential indels using GATK 3.2 

(DePristo et al. 2011; McKenna et al. 2010). We adjusted raw base quality scores by running GATK’s 

BaseRecalibrator tool, using a set of putative single nucleotide variants detected with SAMtools mpileup 

as input (Li et al. 2009). 

The putative mutations from this approach were preliminarily identified by running accuMUlate 

to identify sites with a mutation probability > 0.1 with parameter-values: �� �  �� � 0.001, � � 0.01, 
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 � � 10�� and only considering reads with mapping quality ≥ 13 and bases with base-quality score ≥ 13. 

The validation phase showed that false-positive mutations were frequently associated with poorly-mapped 

reads, low coverage regions surrounding deletions with respect to the reference genome, or the presence 

of rare bases in all samples. Thus, we re-ran the accuMUlate model, excluding all reads with a mapping 

quality < 25, and using the overdispersion parameters �� � 0.03 and  �� � 0.01. Setting �� P  �� 

allowed us to accommodate the increased variance generated by sequencing pooled genomic exclusion 

lines to infer the ancestral genotype. In addition, we filtered out putative mutations that were not 

supported by at least 3 reads in both forward and reverse orientation. This final filtering step removed 

sites with unusually low coverage and those displaying strand bias, both characteristics associated with 

mismapped reads. We investigated the influence of our choice of model parameters by calculating the 

overall likelihood of the data using the initial and final parameter sets. In order to make these results 

directly comparable, these calculations were performed on a data set consisting of all reads with mapping 

quality ≥ 25 and excluding any bases with quality score < 13. 

Validation of putative mutations 

The validity of a subset of putative mutations was tested by Sanger sequencing. All mutations identified 

by either the consensus or the probabilistic approach were tested with suitable primers up to 500 bp away 

from the mutation site. Primers were designed using the default parameters of Primer3 (Koressaar and 

Remm 2007; Untergrasser et al. 2012) as implemented in Geneious (Kearse et al. 2012). Successful PCR 

products were purified and directly sequenced at Lone Star Labs (Houston, TX). 

Mutation rate calculations  

Our probabilistic approach to mutation detection also provides a way to calculate the number of sites at 

which we could have detected a mutation if one was present, and thus the correct denominator to use for 

mutation rate calculations. Using our final model parameters, we shuffled the vector of read-counts 

generated from a given sample in order to simulate mutations in our data. This procedure was repeated for 
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every site in the reference genome, shuffling the read counts from each descendent separately then 

recalculating the probability of a mutation. A site was treated as missing from a sample if the mutation 

probability calculated from shuffled read-counts was < 0.1 or if the most probable mutant allele was not 

supported by at least 3 reads in both the forward and the reverse orientation. To investigate the impact of 

our final parameter values and filtering criteria on the number of callable sites we repeated this procedure 

using the initial parameter set (i.e. with �� � �� � 0.001 and removing reads with mapping quality < 

13). The number of callable sites detected using this approach for each line is given in Table 1. 

We calculated the mutation rate by summing the number of validated mutations �Q�� across MA 

lines, and then dividing it by the product of the number of analyzed sites (L) and the number of 

generations (T) in each MA line (i): �̂ � ∑ Q�� �S T�⁄ . Assuming that the number of mutations in each line 

follows a Poisson distribution (but not necessarily the same distribution) and ignoring uncertainty in our 

estimates for  L and T, the standard error for our estimate of mutation rate was estimated as SE��̂� �
X�̂ �S T�⁄ , and a 95% confidence interval was constructed as �̂  Y 1.96 \]��̂). 

To calculate genomic mutation rates we assumed a haploid genome size of 104 Mb (Eisen et al. 

2006). 

Annotation of mutations 

We annotated the functional context of identified mutations using snpEff (Cingolani et al. 2012) and the 

December 2011 release of the T. thermophila macronuclear genome annotation file from the Tetrahymena 

Genome Database.  
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RESULTS 

Mutation detection and validation  

To estimate the micronuclear mutation rate, we sequenced the whole macronuclear genomes of 10 

homozygous genomic-exclusion lines, each derived from a separate T. thermophila line that had 

undergone MA for approximately 1000 generations. Using two different mutation-detection approaches (a 

widely used “consensus” method and a new probabilistic approach described in the Materials and 

Methods), we identified 93 sites for which there was some evidence of a mutation in at least one lineage. 

On closer inspection we found an unusual pattern—more than half of the apparent mutations were from 

lines M47 and M51, and in many cases reads containing the apparent mutant allele from one of these lines 

were also sequenced from the other line (but absent or very rare in all other lines).  

To investigate this anomaly further we analyzed the frequency of non-reference bases in all 

samples across the whole genome (Supplementary Data). These analyses demonstrated that M47 and M51 

differ from all other lines in the frequency of non-reference bases and in patterns of sequencing coverage. 

We do not know what caused the anomaly. It is possible that some cellular process occurred in these lines 

but not others (e.g., the incorporation of sequences usually restricted to the micronucleus, or the inclusion 

of DNA from the B* strain during genomic exclusion). It is extremely unlikely that M47 and M51 

independently accrued more shared mutations than independent mutations during our MA experiment. 

For this reason, we have excluded these lines from all subsequent analyses. 

Forty-one putative mutations remained after lines M47 and M51 were removed (Supplementary 

Table S2). We attempted to validate each of these mutations using Sanger sequencing. Only 4 of these 

mutations were validated. The remaining sites were either shown to be false positives (11 sites) or failed 

to generate either PCR amplicons or clean sequence traces (26 sites). Closer inspection of the data 

underpinning both the false positive and inconclusive mutations showed these sites to have unusually low 

sequencing coverage and low mapping quality, and to be subject to strand bias. All of these properties are 
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associated with mapping error, and are known to generate false positive variant calls (Li 2014). For this 

reason, we re-ran our probabilistic mutation caller using stricter filters for mapping quality and excluding 

putative mutations that did not have at least 3 sequencing reads supporting a mutation in both the forward 

and reverse orientation. None of the inconclusive or false positive sites were called as mutations in this 

analysis, which also detected an additional mutation that was confirmed by Sanger sequencing. Thus, we 

detected a total of 5 mutations across 8 MA lines, with no line having more than one confirmed mutation 

(Table 1). Our probabilistic method produced more false positives than the consensus approach but 

generated no false negatives (Supplementary Table S2). Of the 5 mutations detected, 2 are non-

synonymous, 2 are synonymous, and one is in an intergenic region.  

Number of callable sites 

We estimated the denominator for our mutation rate estimates by calculating the number of sites at which 

a mutation could be called if one was present. An average of 86.1% of the reference genome was callable 

per line (Table 1). Sites for which we lacked power to detect mutations in at least one line are in relatively 

gene-poor regions; 30% of such sites are in exons compared to 49% of always-included sites. We also 

considered the impact of our final filtering steps and model parameters on our analyses. The more 

stringent filtering steps we used to generate our final mutation set reduced the proportion of callable sites 

per line, with the median proportion of callable sites declining from 93% to 88% (Table 1). The final 

parameter values used in our probabilistic mutation caller produced a better fit to our data than the initial 

values, with the overall log likelihood improving by 8 × 104.  

Mutation rate 

Given the number of callable sites, the 5 mutations that we detected yield a base-substitution mutation 

rate estimate of 7.61 × 10–12 per base pair, per asexual generation (95% confidence interval, CI = [0.691 × 

10–12, 14.53 × 10–12. This point estimate is approximately one third of the rate reported for P. tetraurelia, 
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although the 95% CIs of both estimates overlap (fig. 1),  and  equates to a genome-wide rate of 0.8 base-

substitution mutations per haploid genome per thousand asexual generations (95% CI = [0.07, 1.50]). 

If our estimate of the base-substitution mutation rate holds for the portions of the genome from 

which we did not have sufficient power to detect mutations, then we estimate that we have failed to detect 

an additional 0.87 mutations across all of the macronuclear genomes sequenced.  

DISCUSSION 

We have used whole-genome sequencing and a novel mutation-detection approach to estimate the base-

substitution mutation rate of T. thermophila from 8 MA lines (Long et al. 2013) and obtained an estimate 

of 7.61 × 10–12 mutations per-site per-generation. This is the lowest estimate of base-substitution mutation 

rate from a eukaryote (see fig. 1, and (Sung et al. 2012b), for surveys of mutation-rate estimates), and 

indeed lower than that observed in any prokaryote. However, it is not significantly different from the rate 

in either the social amoeba Dictyostelium discoideum (Saxer et al. 2012) or the ciliate P. tetraurelia (Sung 

et al. 2012b). The fact that the two lowest mutation rates have been recorded in ciliates supports the 

hypothesis that ciliates in general have low germline mutation rates (Sung et al. 2012b). 

Direct estimates of the mutation rate from MA lines can only be as accurate as the methods used 

to detect mutations. Our estimate of a low mutation rate in T. thermophila could conceivably result from a 

high rate of false-negative results. However, we believe that this is unlikely. Our approach to mutation 

detection was designed to maximize the sensitivity of our analyses. We initially applied lenient filters to 

our data and attempted to validate all putative mutations detected by two separate methods. Most of the 

putative mutations suggested by this initial analysis could not be validated by Sanger sequencing. For this 

reason, we developed filters and model-parameters that improved the specificity of our mutation-calling 

method (producing negligible mutation probabilities for all of our unconfirmed mutations, while still 

supporting our confirmed mutations). It is possible that this increased stringency also led us to miss 
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mutations present in our descendant lines. To account for the possibility of such false negatives in our 

mutation rate estimates, we simulated mutations in our data. This allowed us to identify sites at which we 

would not be able to detect a mutation in a given line even if one was present. Sites for which we could 

not call a simulated mutation were not included in the denominator of our mutation rate calculation. Thus, 

we are confident that our mutation rate estimate is accurate, at least for the regions of the genome from 

which we could call mutations. 

Our mutation rate estimate allows us to estimate the effective population size of T. thermophila. 

If we assume that silent sites in protein-coding genes are effectively neutral and under drift-mutation 

equilibrium, the population-level heterozygosity at silent sites (πs) has expected value 4-�μ, where -�  is 

the effective population size, and μ is mutation rate per site per generation. Using the estimate -� `  μ = 8 

× 10-4 reported by Katz et al. (2006), if we assume that mutation rates in the germline and somatic 

genomes are equal, our Ne estimate for T. thermophila is 1.12 × 108, which is almost identical to that of P. 

tetraurelia (-�=1.24 × 108; Sung et al. 2012b). These estimates may seem surprising given the 

observations that P. tetraurelia is cosmopolitan and regularly isolated from different continents (Catania 

et al. 2009), while T. thermophila has a distribution limited to the eastern United States (Zufall et al. 

2013). However, the relationship between census population size and genetic diversity (and therefore 

estimated -�) is not a simple one (Leffler et al. 2012; Lewontin 1974). In very large populations 

stochastic processes, including demographic events that prevent populations from reaching mutation-drift 

equlibrium (Haigh and Maynard Smith 1972; Leffler et al. 2012) and the effects of selection on sites 

linked to neutral variants (Gillespie 2001; Lynch 2007; Neher et al. 2013), limit genetic diversity across 

the whole genome. Regardless, the large effective population size estimated here suggests that selection 

will have considerable power to reduce mutation rates in T. thermophila.   

The unusual genome structure and life history of ciliates may explain their low mutation rates. 

Sung et al. (2012a) argued that mutation rates are minimized to the extent made possible by the power of 

natural selection—the “drift barrier” hypothesis. Selection operates to reduce the mutation rate based on 
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the “visible” mutational load, and mutations that accumulate in the germline genome in ciliates during 

asexual generations are not expressed and exposed to selection until they are incorporated in a new 

somatic genome following sexual reproduction. Thus, the mutation rate per selective event is equal to the 

mutation rate per asexual generation multiplied by the number of asexual generations between rounds of 

sexual reproduction.  The low mutation rates reported for ciliates may have evolved naturally as a 

consequence of the many asexual generations in between bouts of sexual reproduction, combined with 

large effective population sizes that promote strong selection for low mutation rates. 

Unlike P. tetraurelia, T. thermophila does not undergo senescence in the absence of sex, and we 

lack a good estimate for the frequency of sexual reproduction in natural populations (Doerder et al. 1995). 

Therefore, we cannot put an upper bound on the number of asexual generations between conjugation 

events. However, we can estimate a lower bound because cells arising from sexual reproduction enter a 

period of immaturity lasting ~50–100 divisions (Lynn and Doerder 2012). We know that the germline 

genome divides at least this many times without opportunity for selection on any newly acquired 

mutations. Using the immaturity period as a proxy for the frequency of sex gives an estimate of the base-

substitution mutation rate of ~0.1 mutations per haploid genome per conjugation event—much closer to 

that of other eukaryotes per round of DNA replication (Sung et al. 2012b). 

Most mutations with effects on fitness are deleterious, so the accumulation of mutations in the 

absence of selection is expected to lead to a reduction in organismal fitness (Bateman 1959; Halligan and 

Keightley 2009; Mukai 1964; Muller 1928). The fitness of a genomic exclusion line derived from an MA 

line of T. thermophila should, in part, reflect the germline mutations in that MA line. If most germline 

mutations are base-substitutions, the low germline base-substitution rate would lead us to predict modest 

effects on the fitness of the genomic exclusion lines we studied. Surprisingly, some of these lines 

experienced substantial fitness losses relative to the ancestor (Long et al. 2013). For example, we did not 

detect any base-substitution mutations in the line with largest observed loss in fitness (M50, w=0.38) 

(Table 1). It is unlikely that the fitness losses observed in these MA lines can be explained by other 
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undetected single-base substitutions, as our mutation calling method had power to detect mutations in an 

average of 86.1% of the genome (Table 1) and the excluded portion of the genome is relatively gene poor. 

Rather, it seems likely the fitness of these lines is determined in part by indels and other structural 

variants that we did not include in this study. Furthermore, non-Mendelian patterns of inheritance could 

obscure the relationship between mutations and fitness. For example, the fitness of an individual line may 

be influenced by epigenetic processes, such as cortical inheritance (Sonneborn 1963) or small RNA 

guided genome rearrangement (Mochizuki and Gorovsky 2004). 

In this study we have established that it is possible to detect mutations in T. thermophila MA 

lines through short-read sequencing, and thus to directly study the nature of mutation in this model 

organism. Although we were able to show that T. thermophila shares a low mutation rate with P. 

tetraurelia (the only other ciliate for which a mutation rate has been directly estimated), there is still much 

to learn about mutation in this species. For instance, the unusual genome structure of ciliates presents a 

novel test of the drift-barrier hypothesis of mutation rate evolution (Sung et al. 2012a). If the mutation 

rates of the germline and somatic nuclei can evolve independently then we would expect the somatic 

mutation rate to be higher (i.e., more similar to the mutation rates of other eukaryotes) because somatic 

mutations are exposed to selection after each cell division. Furthermore, the small number of mutations 

accumulated over this experiment has prevented us from analyzing the spectrum of mutations arising in T. 

thermophila and determining the influence of mutational biases on genome evolution. Similarly, the few 

mutations that we detect seem inadequate to explain the observed losses of fitness during MA. Future 

studies using more MA lines evolving over longer periods and detecting indels and other structural 

variants accrued during MA will be needed to fully understand the effects of mutation and selection in T. 

thermophila. 
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FIG. 1.—Mutation rate estimates for unicellular eukaryotes. Base-substitution mutation rates per 

nucleotide per generation estimated for different unicellular eukaryotes: T. thermophila (this paper), P. 

tetraurelia (Sung et al. 2012b), C. reinhardtii (Ness et al. 2015), D. discoideum (Saxer et al. 2012), Sa. 

cerevisiae (Zhu et al. 2014), and Sc. pombe (Farlow et al. 2015). Error bars are 95% confidence intervals. 

The phylogenetic tree was retrieved from the Open Tree of Life (Hinchliff et al. 2015); branch lengths are 

arbitrary. 
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FIG. 2.—Experimental design in relation to parameters of probabilistic mutation-detection model. A 

complete description of the experiment is presented in (Long et al. 2013). Here, we describe how the 

experiment relates to the parameters used in our probabilistic mutation-calling model. Specifically, the 

ancestral line with average heterozygosity  and genome-wide nucleotide frequencies is used to 

generate a set of MA lines. Each of these lines accumulates mutations at a rate  per nucleotide per 

generation for 1000 generations. Genomic exclusion, an auto-diploidization process, is used to generate 

lines with macronuclei representing one haploid-copy of each MA line (and multiple copies of the 

ancestral line, in order to detect ancestral heterozygosity). The macronuclear genomes of these genomic 

exclusion lines are then sequenced with a sequencing error rate of  and overdispersion caused by library 

preparation and other correlated errors modeled as  and  for ancestral and descendant lines 
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respectively. A full description of this model and its parameters is given in the subsection of the Materials 

and Methods labeled “Probabilistic approach using accuMUlate” 

 

FIG. 3.—Illustration of a single history in the accuMUlate method. In our model, a history is a unique 

combination of states (i.e. the genotypes of ancestral and MA lines, results of genomic exclusions and 

errors introduced during sequencing) generated during an MA experiment. Here we illustrate one such 

history by giving values to the different states in a model reflecting the same experimental design as fig. 2 

and show how we calculate the probability that this history occurred and generated the observed 

sequencing data. Because we treat sites in the reference genome independently, we describe the process 

for a single site. Specifically, we consider a history in which an ancestor that is heterozygous with 

genotype A/T is used to establish three MA lines. One of those lines experiences a mutation from A/T to 

A/C, and the C allele of this mutant is passed on to a new macronuclear genome through genomic 

exclusion.  The only data we observe for this locus is the set of bases mapped to this site that pass our 

filtering steps. We represent this data as vectors containing the number of A, C, G and T bases mapped to 

ls 
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a given site (the base counts). We can use Equation 3 to calculate the probability that this sequencing data 

was generated by the specific history shown here. To do this, we first calculate the probability that the 

ancestor would have genotype A/T and that the observed sequencing data from the ancestor could be 

generated from this genotype (using Equations 6 and 4, respectively). Next, we consider the MA 

(descendant) lines, calculating the probability that the three descendant lines would have genotypes A, T 

and C and that the observed sequencing data could be generated from these genotypes. In this case we use 

the Felsenstein (1981) model of nucleotide substitution to calculate the probabilities that genomic 

exclusions generated from the MA lines would have these genotypes. We use the same genotype 

likelihood model (Equation 4) to calculate the probability that the sequencing data was generated from 

MA lines with these genotypes. Because each of the descendant lines is independent of each other, the 

overall probability of the history is simply the product of the probabilities for the ancestral and all 

descendant lines (Equation 3). We calculate the probability of a site containing at least one mutation by 

repeating this procedure for all possible histories at a given site (i.e all possible combinations of 

genotypes) and keeping track of those histories that contain one or more mutations (Equation 2)  

 

 

 

Table 1: Summary of sequencing data and detected mutations.  Note, no mutations were detected  

from lines  M50, M28 or M19.  
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    Callable
b
   

Line Coverage Generations Fitnes
s
 Initial Final   Scaffold Substitution Feature Locus Effect 

M5 64.17 1000 0.56 0.92 0.88  scf_8254658 g.334881C>T Exon TTHERM_00675900A 

Synonymous  

(gaC>gaT, D>D) 

M19 53.05 1000 0.64 0.93 0.88  - - - - - 

M20 34.42 1000 0.44 0.93 0.88  scf_8254594 g.239327A>T Intron TTHERM_00286840A - 

M25 30.88 1000 0.57 0.93 0.88  scf_8254607 g.179325C>T Exon TTHERM_00439220A 

Non Synonymous  

(Gtt>Att, V>I) 

M28 50.65 200 0.65 0.92 0.87  - - - - - 

M29 31.36 1000 0.49 0.93 0.88  scf_8254365 g.304140T>G Intergenic - - 

M40 16.84 1000 0.57 0.83 0.63  scf_8254002 g.27830G>A Exon TTHERM_01128590A 

Non Synonymous (tGT>tAt, 

C>Y) 

M50 106.65 1000 0.38 0.93 0.88  - - - - - 

a. Fitness data from Long et al. (2013), using exponential growth rate as fitness metric and normalized by dividing the ancestral growth rate.  

b. The proportion of all sites in the MAC genome (1.04Mb) from which a mutation could have been called if one was present. “Initial” refers to the first 

analysis (with reads with mapping quality < 13 removed and parameter values �� � 0.001,�� � 0.001), “final” refers to the subsequent 

analysis (with reads with mapping quality < 30 removed and  putative mutations supported by < 3 read in forward and reverse orientation 

removed, and with parameter values �� � 0.03,�� � 0.01). 

 

Table 1: Summary of sequencing data and detected mutations.  Note, no mutations were detected  from lines  M50, M28 or M19.  
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