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Abstract

Due to recent advances in reprogramming cell phenotypes, many efforts have been dedi-

cated to developing reverse engineering procedures for the identification of gene regulatory

networks that emulate dynamical properties associated with the cell fates of a given bio-

logical system. In this work, we propose a systems biology approach for the reconstruction

of the gene regulatory network underlying the dynamics of the Trypanosoma cruzi ’s life

cycle. By means of an optimisation procedure, we embedded the steady state mainte-

nance, and the known phenotypic transitions between these steady states in response to

environmental cues, into the dynamics of a gene network model. In the resulting network

architecture we identified a small subnetwork, formed by seven interconnected nodes, that

controls the parasite’s life cycle. The present approach could be useful for better under-

standing other single cell organisms with multiple developmental stages.

Keywords: gene regulatory network — reverse engineering — Trypanosoma cruzi

Abbreviations: GRN, gene regulatory network; SVD, singular value decomposition; TS,

trans-sialidase

1 Introduction

One of the main aims in the post-genome era is to elucidate the complex webs of inter-

acting genes and proteins underlying the establishment and maintenance of cell states.

Consequently, many researchers have focused on developing quantitative frameworks to
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identify modules that govern the transitions between different phenotypes. The gene

regulatory network (GRN) approach is one of the most popular frameworks used today.

This approach has been used to study key reprogramming genes and cell differentiation

processes in stem cells from different points of view [1–5]. Mathematically, GRN models

are dynamical systems whose states determine the gene-expression levels. The structure

of the network is defined as a graph whose nodes are associated with genes (or groups

of genes), and whose edges represent the interactions between the nodes. The task of

uncovering the GRN architecture from the cell states (gene-expression profiles) represents

a very complex inverse problem that has become central in functional genomics [6]. The

main drawbacks of this reverse engineering task are not only the large number of genes and

the limited amount of data available, but also the nonlinear dynamics of regulations, the

inherent experimental errors, the noisy readouts of expression levels, and many other un-

observed factors that are part of the challenge. Although emerging technologies offer new

prospects for monitoring mRNA concentrations, researchers have focused on determining

the architecture of simplified theoretical models.

In this work, we have implemented a GNR approach to analyse transcriptional data

of the steady states of the flagellated protozoan parasite Trypanosoma cruzi (T. cruzi).

This trypanosomatid is the causative agent of Chagas disease, that affects about 7-8 mil-

lion people worldwide causing about 12,000 deaths per year. Usually, the parasites are

transmitted to humans and to other mammalian hosts mainly by contact with the faeces

of infected blood-sucking triatomine bugs. T. cruzi has several developmental stages both

in insect vectors and in mammalian hosts (Fig. 1a). Insects become infected by sucking

blood from mammals with circulating parasites (trypomastigotes). In the midgut of the

insect, trypomastigotes differentiate into epimastigotes that replicate by binary fission.

Then, epimastigotes differentiate into metacyclic trypomastigotes in the hindgut. This

parasite form is released in the insects faeces and enters the mammalian host. In turn,

metacyclic trypomastigotes invade local cells and differentiate into amastigotes that repli-

cate by binary fission. They subsequently transform into trypomastigotes inside the cells.

By lysing the cells, trypomastigotes are released into the circulation. Thus, they spread

via the bloodstream and infect new cells from distant tissues where they transform back

into intracellular amastigotes. The cycle of transmission is completed when circulating

trypomastigotes are taken up in blood meals by triatomine vectors [7].
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Figure 1: The life cycle of T. cruzi. (a) Sketch illustrating the life cycle of the par-
asite. (b) Plots illustrating the transcriptional snapshots of the parasite’s four stages.
After a dimensional reduction analysis of the microarray dataset, we have found that the
four steady states can be represented by 339 variables. Each of these variables (cells in
the 19×18 array) corresponds to the intra-cluster average of the log-transformed relative
expression level of the genes that belong to the corresponding cluster. Since gene assign-
ment to the clusters is the same for all states, the arrays can be directly compared with
one another.
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Even though there are potential vaccine candidates against T.cruzi infection, no vac-

cine is yet available [8]. Thus, the finding of novel therapeutic targets remains a significant

challenge in the control of Chagas disease. Taking this into consideration, we have imple-

mented a GRN approach to analyse transcriptional data of T. cruzi ’s steady states [9]. In

this framework, we have uncovered the underlying architecture network that supports the

steady states associated with the four phenotypic stages of T. cruzi and the transitions

between the parasite’s life cycle stages in response to environmental cues. We believe

that this gene network model can clarify the signaling pathways, predict the response of

cellular systems to multiple perturbations other than the ones used to derive the model,

and determine the perturbation pattern for any desired response.

2 Methods

2.1 Microarray data normalisation

In this work we have used the microarray experiments of Minning et al. [9]. These

data are publicly available in Gene Expression Omnibus (GEO) database (Accession no.:

GSE14641). This series is the result of dye-swap experiments, out of which we selected

the probe intensity signals of 12 microarrays (three biological replicates, and the four

not-mixed parasite stages). These microarrays comprise 12,288 unique 70-mers designed

against open reading frames in the annotated CL Brener reference genome sequence. They

also contain 500 control oligonucleotides designed from Arabidopsis sequences. All of these

oligonucleotides were printed in duplicate. Further details about probe preparation, mi-

croarray hybridisation, and data acquisition can be found in [9], while the description of

the microarrays is available at http://pfgrc.tigr.org.

The probe intensity signals from the microarrays were subjected to the following nor-

malisation procedure. (i) The signal intensity of each probe was set at the average of

the signal intensities associated with a pair of replicate spots. (ii) The signal intensity

of a probe i was normalised against the average signal of control Arabidopsis probes in

order to obtain a signal relative intensity within the slide. The average signal of control

Arabidopsis probes is the arithmetic mean of a set of control probes with valid signals. Of

course, this set is the same in all microarray experiments. This normalisation procedure

has allowed us to integrate the expression data of all the microarrays. The signal relative
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intensity of the probe i recorded in one of the biological replicates, j = 1, 2, 3, at one

of the stages, α = 1, 2, 3, 4, was represented by y
αj

i . (iii) After within-slide replicates

processing, we averaged the relative intensity y
αj

i over all replicates belonging to the same

stage, i.e., ȳαi = 1/3
∑

j y
αj

i . Probes without a valid relative signal in all three biological

replicates were not considered in the subsequent analyses. As a result of this processing,

we obtained the relative intensity of 8904 probes at parasite’s four different stages. We

then considered the variable that describes the expression level of the probe i at stage α

as the quantity xαi = Loge[ȳ
α
i /〈ȳαi 〉α]. S1 Table lists all normalised expression levels, xαi ,

used in the following analyses, with their corresponding oligo IDs.

2.2 Clustering procedure

Instead of using each gene’s profile, many researchers have analysed the cell at a higher

level of abstraction. One way to do this is by grouping redundant genes, i.e. by clustering

co-expressed genes [10, 11], and using the average within each cluster as a variable. In

order to group the genes by similar activity profiles, we have applied an agglomerative

hierarchical clustering method; the Unweighted Pair Group Method with Arithmetic Mean

(UPGMA). The agglomerative process is stopped at a given number of clusters considered

suitable for our dataset. Since the suitable number of clusters, Nc, is not known, it has

to be computed beforehand. In order to do this, we repeated the clustering procedure

for several Nc values, and computed the Davies-Bouldin index (DBI) as a measure of the

clustering merit [11, 12]. The DBI is defined as:

E =
1

Nc

Nc∑
j=1

max {δk − δj}
||ck − cj||

, (1)

where δk = N−1k
∑

i ||xi− ck|| denotes the centroid intra-cluster distances of cluster k (Nk

being the number of genes belonging to cluster k); and ||ck − cj|| is the distance between

the cluster centroids. A low DBI value indicates a good cluster structure. It should be

noted that increasing Nc without penalty will always reduce the resulting index. Then,

the choice of Nc will intuitively strike a balance between the data compression and the

accuracy of the dimensionality reduction. S1 Fig. displays the DBI as a function of Nc

for the gene-expression profile under study. It can be seen that the DBI does not suffer

a significant reduction beyond Nc = 339. Thus, Nc = 339 was selected as the optimal
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number of clusters. The profiles of the 8,904 genes were grouped in 339 clusters, and the

intra-cluster average of the expression level (i.e. x̄αj = 〈xαi 〉i∈clusterj) was used in all of the

subsequent analyses. Fig. 1b displays a 2D array of the resulting average levels after the

dimension reduction process described above for the four stages of T. cruzi ’s life cycle.

The sets of genes belonging to each cluster are listed in S2 Table, and the intra-cluster

averages of the expression levels, x̄αj , for each cluster (rows) at each of the parasite’s stages

(columns) are listed in S3 Table.

2.3 Reverse engineering methods

Gene network dynamics. In this work, we have implemented a discrete-time linear

model [13–15] which has two advantages: it can take into account fluctuations, and its

parameter estimation does not involve intensive computational steps [16]. In this model,

the system’s state at time t is represented by an N -dimensional vector x (t), which rep-

resents the activity of the N nodes of the network. The temporal evolution of the gene

network is governed by:

xi (t+ ∆t) =
∑
j

wi,jxj (t) + θi + kµi + εi(t), (2)

where wi,j are the elements of the weighted connectivity matrix W, θi is a constant bias

term of gene i, and kµi determines the influence of the environmental cue µ on gene i.

We have considered four different cues corresponding to unknown external differentia-

tion signals. Thus, µ = 1, 2, 3, and 4 represent the external signals responsible for the

transitions to the amastigote, epimastigote, metacyclic tryp., and trypomastigote stages,

respectively. εi(t) is a noise term assumed to be Gaussian with mean equal to 0.

In order to simplify the notation for the parameter estimation procedure, we noticed

that the bias term and the environmental cues can be included in an extended version of

matrix W and of state vector x. Thus, the state of gene i is given by:

xi (t+ ∆t) = (wi,1, wi,2, . . . , wi,N , θi, k
µ
i ) · (x1, x2, . . . , xN , 1, 1) + εi, (3)

where µ corresponds to the acting environmental cue. This said, the same parameter

estimation method can be applied whether the environmental cues are present or not.
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Singular value decomposition (SVD). Linear models serve as the basis of all con-

tinuous gene-network approaches currently available to model typical time-course gene-

expression data sets (see [16] for a review). These data sets consist of M pairs of input-

output states, represented by D = {X,Y}. Matrix X is the N × M gene-expression

matrix at time t. The columns of matrix X labeled by index ν, xν , correspond to the

experiments, while the rows indicate individual genes. The same is valid for the gene-

expression matrix at time t + ∆t, Y. For a given D, the linear model must map each

gene-expression state to the consecutive state, i.e.:

yν = Wxν , ν = 1, . . . ,M. (4)

Therefore, in order to find the connectivity matrix, the predicted states from a given

input state xν of the training set must be as close as possible to the output state yν . An

alternative would be to minimise the cost function
∑

ν ‖Wxν−yν‖. A particular solution

with the smallest L2 norm is given in terms of the SVD of matrix XT (where superscript

T denotes the transpose matrix), i.e. XT = U ·S ·VT , where U is a unitary M×N matrix

of left eigenvectors, S is a diagonal N×N matrix containing the eigenvalues {s1, . . . , sN},
and V is a unitary N × N matrix of right eigenvectors [14, 17]. Thus, the solution with

the smallest L2 norm represented by WL2 is given by:

WL2 = Y ·U · diag(s−1j ) ·VT . (5)

Without loss of generality, all sj elements whose value is different from 0 were listed at

the end of diagonal matrix S, and the s−1j values in Eq. (5) were considered to be 0 if

sj = 0.

The smallest L2 norm solution cannot be unique. Assuming that xν are linearly in-

dependent, finding the unique solution requires that M ≥ N . Unfortunately, the inverse

problem in GRN involves M << N . Thus, the problem tends to be severely underde-

termined, and many solutions can then be consistent with data D. Therefore, all the

possible connectivity matrices that are consistent with Eq. (4) can be written in a closed

form as:

W = WL2 + C ·VT , (6)

where C is an N ×N matrix whose elements cij are 0 as long as sj 6= 0. Otherwise, they
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are arbitrary scalar coefficients. As it will be seen later, the degrees of freedom due to

this arbitrariness can be exploited to our benefit [14]. The solution offered by Eq. (5) is

implemented to embed the four steady states of T. cruzi into the dynamics of the model,

without considering the transitions between the states. Eq. (6) is used to uncover the en-

vironmental cues by means of using the information provided by the transitions between

the different stages of the parasite’s life cycle, and the connectivity matrix associated with

the steady states inferred in the previous step.

Embedding the steady states. In order to infer the parameter values of Eq. (4) that

allow the model to display the same set of steady states as the ones seen in the parasite, we

have constructed a training set of size M , represented by Dss. Different noise realisations

associated with the four stages were added to the steady states. Thus, the columns of

matrix X are given by:

xν = {x̄αj }+ {εij}, with j = 1, . . . , N and ν = 1, . . . ,M,

where α = 1, 2, 3, 4, and the superscript i denotes the noise realisations. In this work,

we have used 40 noise realisations for each steady state. Thus, M = 4 × 40 = 160. εj

is a Gaussian noise with mean equal to 0 and a small standard deviation (set at 1% of

the expression data). The columns of matrix Y (yν = {x̄αj } + {εi′j }) are defined in the

same way. We have expanded the size of the training set, thereby making the solutions

more robust against the fluctuations. This simple concept is similar to adding a Tikhonov

regularisation term in the optimisation process, which has been studied in several neural

network problems [18,19]. The constructed training set implies that if at a given time the

system is very close to one steady state, it will remain close to that steady state in the

next time-step as well (Fig. 2c).

In order to discriminate if an estimated matrix element should be 0 or another reliable

value different from 0, we have constructed not only a training set, Dss, but an ensemble

of training sets by means of using different noise realisations. For each training set we

have computed the minimal L2-norm solution. Different noise realisations give slightly

different solutions. Thus, the ensemble of solutions defines a probability distribution for

each weight, Pi,j(w). We then performed a location test for each distribution Pi,j(w), as

illustrated in Fig. 2d. This step consists of testing the hypothesis stating that the true
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Figure 2: Schema of the network inferring method. (a) The microarray data cor-
responding to the parasite’s four steady states are normalised. (b) The total of 8,904
gene-expression levels of each stage is reduced to 339 clusters representing the variables
of our systems. (c) An ensemble of 300 training sets including fluctuations around the
steady states is constructed from the steady states. Using singular value decomposition
(SVD), the minimal L2-norm solution for each Dss is determined. (d) A sparse connec-
tivity matrix, Wss, is derived from the probability distribution Pij(w) by using a pruning
method based on a location test. (e) A new training set is constructed from the transitions
between the amastigote (A), epimastigote (E), metacyclic tryp. (M) and trypomastigote
(T) stages. Intermediate states (small circles) between the stages are assumed to exist.
It is also considered that an unknown external cue (black arrow) is responsible for the
transitions. (f ) By means of using SVD, the L2-norm solution, WL2 , is determined. This
solution is in turn used to find another solution, Wt, which includes information concern-
ing the steady states. This procedure is used to infer the weighted links between genes,
wi,j, and to answer two questions: which genes are affected by the external cues, and how
they are regulated (up or down) by the environment.

mean value of Pi,j(w) differs from 0 at some magnitude (set at 0.0075). If the p-value as-

sociated with this test is greater than 0.01, the hypothesis is rejected, and wi,j is assigned
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0 value. Otherwise, wi,j is assigned the mean value of Pi,j(w). This procedure allows us

to obtain a sparse connectivity matrix, Wss, that is compatible with the steady states.

Embedding the transitions between the steady states. In order to extend our

analysis by including the environmental cues, we have used the extended versions of W

and x described by Eq. (3). To embed the transitions between the steady states, we have

considered that these transitions occur gradually and through the shortest possible path

between the steady states. Thus, if the system is in the steady state xα and is driven to

the steady state xβ due to an external cue µ = β, then the system performs a series of

small transitions between intermediate states represented by xα,β(t). These intermediate

states were constructed by means of a linear combination of the initial and final steady

states, i.e. xα,β(t) = ((ni − t) xα + t xβ)/ni with t = 0, 1, 2, . . . , ni. As it can be seen,

xα,β(0) and xα,β(ni) coincide with the steady states xα and xβ, respectively. Thus, using

these intermediate states, we constructed a new training set Dt, where the columns of

matrices X and Y are defined as follows:

xν = {x̄α,βj (t)}+ {εij}, yν = {x̄α,βj (t+ 1)}+ {εi′j },

where t = 0, 1, 2, . . . , ni − 1. We have used ni = 10, which implies 10 small transitions.

The pairs (α, β) correspond to the allowed transitions between the steady states; five

transitions in the case of T. cruzi. Again, εj is a Gaussian noise with mean equal to 0 and

a small standard deviation (set at 1% of the expression data). In all, four different noise

realisations were used, and the size of our training set, Dt, was in turn M = 200. We

then computed its smallest L2 norm solution, WL2 . However, since M < N , this solution

was not unique. In order to find a particular solution as close as possible to connectivity

matrix Wss, we used Eq. (6) and computed the elements of matrix Css that obey the

following equation:

Wss = WL2 + Css ·VT , (7)

where matrix Wss was padded with 0 values because WL2 includes four additional rows

and columns corresponding to the environmental cues that are not present in Wss. Eq. (7)

is an overdetermined problem that can be solved by applying the interior point method

for L1 regression [14]. The resulting c-values were then used to compute a new connec-

tivity matrix (Fig. 2f). This matrix, represented by Wt, is not only consistent with the

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 25, 2015. ; https://doi.org/10.1101/025510doi: bioRxiv preprint 

https://doi.org/10.1101/025510
http://creativecommons.org/licenses/by-nc-nd/4.0/


11

information of the environmental cues and transitions included in Dt, but it is also close

to Wss.

3 Results

3.1 GRN modeling

Key decisions in modeling a gene network system include the choice of variables and

the mathematical framework for representing the system dynamics. In this sense, several

regulatory network approaches such as Bayesian networks [20], Boolean networks [21], and

linear models [13, 15, 22] have been suggested. The model must be chosen based on the

available data and the ability to infer accurate-enough parameters. The more detailed

the model, the more experimental data required to make it work. For instance, when

choosing a linear model, in which the expression levels of N genes at time t determine the

changes of such expression levels at time t+ ∆t, the transition matrix must be computed

from N pairs of input-output data.

In this work, we have assumed that the system’s state is represented by x (t) –the

N-dimensional vector corresponding to the expression levels of N gene clusters measured

at time t. The GRN dynamics is modeled by a first order Markov model, where the future

state depends linearly on the present state and on external perturbations. Mathematically,

it is defined by the following equation:

xi (t+ ∆t) =
∑
j

wi,jxj (t) + θi + kµi + εi(t), (8)

where wi,j are the elements of the weighted connectivity matrix W, and indicate the type

and strength of the influence of gene j on gene i (wij > 0 indicates activation, wij < 0

indicates repression, and 0 indicates no influence). θi is a constant bias term to capture

the activity level of gene i in the absence of regulatory inputs. We have also added a term

indicating the influence of unknown external perturbations, or environmental cues; kµi ,

which is the influence of the environmental cue µ on gene i. Finally, εi(t) is a noise term

assumed to be Gaussian with mean 0. The next task in our work was to determine which

nodes were affected by external cues –even if those cues were unknown–, and how they were
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affected. To this end, we considered not only the expression-profile data set information

(x̄αj ), but also some a priori information associated with the following biological facts:

(i) the parasite’s life cycle has four stages, each of them associated with a measured

steady state; (ii) each steady state exhibits some level of noise or fluctuations; and (iii)

there are five possible transitions between these four stages. We have assumed that these

transitions are the result of different environmental cues acting on certain nodes of the

network. Following these facts, we implemented a two-step reverse engineering protocol

sketched in Fig. 2. First, we focused on embedding the four steady states into the

dynamics of the model, regardless of the transitions between these states. Second, we

concentrated on uncovering the environmental-cue effectors considering the transitions

between the parasite’s life cycle stages, while using the same connectivity matrix derived

in the previous step.

3.2 Modeling the steady states of T. cruzi

In order to infer connectivity matrix W, we have considered the linear model (Eq. (8))

without external perturbations, and have applied the singular value decomposition (SVD)

procedure over a training set, Dss, constructed as indicated in Methods. As a result, the

dynamical system, together with the derived matrix, has four basins of attraction which

correspond to each of the parasite’s stages. This means that whenever the system is in

a given basin, it will remain inside that basin as long as there are no external perturba-

tions. Fig. 3a depicts two trajectories (black lines) that illustrate the dynamics of our

model in the space spanned by the three principal components. This plot shows that the

trajectories fluctuate around the epimastigote and trypomastigote stages. The other two

stages, amastigote and metacyclic tryp., showed similar behavior (data not shown). Fig.

3b depicts the time course of the overlap between the state of the system at time t and

the epimastigote stage, and the overlap between the state of the system at time t and the

trypomastigote stage. Fig. 3c shows a 2D schematic illustration of the pseudo-potential

landscape with the four basins of attraction.

The elements of matrix W are continuous variables and, consequently, they are associ-

ated with not-null values. However, the statistical analysis of known regulatory networks

has revealed that such networks have a sparse nature, i.e. the number of actual edges in
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Figure 3: Stability of the steady states. (a) The plot shows the positions of the
four steady states of the parasite’s life cycle in the space spanned by the three principal
components. The black trajectories around the epimastigote and trypomastigote stages
are the result of simulations conducted using the model (Eq.(8)) without external cues.
A slightly perturbed steady state was used as the initial condition. The system fluctu-
ates around the corresponding steady state. The amastigote and metacyclic tryp. stages
showed similar behavior (data not shown). (b) Temporal behavior of the overlap between
the state of the system at time t and the epimastigote steady state (red) or the trypo-
mastigote steady state (yellow). (c) 2D projection of the pseudo-potential landscape with
the four basins of attraction corresponding to each of the parasite’s stages. The circular
black arrows represent the system’s fluctuation around the steady states, just as seen in
figure 3a.

a network is very small compared to the number of possible edges [23, 24]. Such sparsity

is difficult to obtain when dealing with continuous weights. Thus, the inferred matrix ele-

ments at the end of the reverse engineering process should be either 0 or another reliable
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value different from 0.

In the spirit of inferring a sparse weight matrix that allows the system to display the

four steady states, we have used a kind of bootstrap method. To this end, an ensem-

ble of 300 training sets was constructed by means of adding different noise realisations

to the steady states, as described in Methods. Using SVD we computed a solution for

each training set, obtaining a probability distribution for each weight, Pi,j(w). The next

step was to assign a value to each element of the connectivity matrix, while carefully

assessing the significance of the weight values. We performed a location test to prune the

non-significant weights, as illustrated in Fig. 2d, and constructed a sparse connectivity

matrix, Wss, which supports the data set. At the significance level of 0.01 there are

11,470 links between genes, i.e. around 10% of the elements of Wss are not null. Even

with this average node degree, the visualisation of the resulting network poses a challenge.

In order to overcome this difficulty, we have displayed only a small fraction of the nodes

(around 470 links with p-value less than or equal to 10−200). Fig. 4 shows the GRN. The

two weakly connected subnetworks seen in the graph reveal a modular organisation of the

network at the significance level used. As it will be seen later, one of these subnetworks

is linked to the parasite’s life cycle. The 11,470 links (all not-null elements of the matrix)

between genes are listed in S4 Table.

Extracting valuable information from a network made of 10,000 links is a complex

task. One way to overcome this problem is by considering only the more important

regulators of each steady state. Since the whole regulatory output of a gene depends

on the gene’s activity level, some genes can be important regulators in one state, while

their activity level in the other three states is low (i.e. xi ∼ 0). With this in mind, we

have constructed network plots that emphasise the most important links in each steady

state; that is to say, those links with |wi,jxj| ≥ 5% of |xi|. The plots in S2 Fig. depict

the link-derived networks for each of the parasite’s four stages: amastigote (S2a Fig.),

epimastigote (S2b Fig.), metacyclic tryp. (S2c Fig.), and trypomastigote (S2d Fig.). As

it can be seen, some clusters present regulatory activity only in one particular state. For

example, clusters 302, 308 and 333 only appear as relevant regulators in the metacyclic

tryp. state, the epimastigote state and the trypomastigote state, respectively. Other

clusters, however, are important regulators in all four steady states, as is the case of

clusters 326, 336 and 337. Detailed biological information about the genes belonging

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 25, 2015. ; https://doi.org/10.1101/025510doi: bioRxiv preprint 

https://doi.org/10.1101/025510
http://creativecommons.org/licenses/by-nc-nd/4.0/


15

Figure 4: GRN representation of the steady states of T. cruzi. The network edges
represent the regulatory links between the gene clusters, while the nodes represent the
clusters themselves. The labels inside the nodes correspond to the cluster IDs. Additional
information about the clusters can be found in tables S5 and S7. The regulatory links
indicate either the activation (arrows) or the repression (lines ending in circles) of the
clusters. A seven-node subnetwork that controls the dynamics of the parasite’s life cycle
is highlighted.

to the more relevant clusters is listed in S5 Table. After analysing the data obtained

for each of T. cruzi ’s four stages, we have found 47 clusters with important regulatory

activity. These clusters include a total of 68 genes: 25 encoding uncharacterised proteins,

and 43 coding for proteins with known functions. Among the latter, the most abundant

proteins are trans-sialidase (TS) (encoded by nine different genes), amastin (encoded by

five different genes), and mucin TcMUCII (encoded by four different genes).

Besides the main four basins of attraction linked to the known steady states displayed
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in Fig. 3, the system dynamics might include other basins of attraction not-linked to

known phenotypes. An exhaustive search for these spurious attractors was performed, and

another 20 small attractors where the system can be trapped were found. Fortunately,

these new basins of attraction disappeared once subjected to the effects of external cues.

3.3 Modeling the phenotypic transitions of T. cruzi

After embedding the steady states of the parasite into the GRN dynamics, our analysis

was extended to include the transitions that take place between those states as a result

of environmental cues. The fact that these transitions in the presence of a given external

perturbation occur gradually was taken into account. Since no data about the interme-

diate states between the steady states are available, we have constructed a training set,

represented by Dt, considering that the system performs transitions between the initial

and final steady states through the shortest possible path. For details about the construc-

tion of the training set, see Methods. As this training set has M < N , there exist infinite

solutions compatible with Dt. We have chosen the closest solution to the connectivity

matrix that uses nothing but the steady states information, i.e. the closest to Wss. Thus,

our connectivity matrix is represented by:

Wt = WL2 + Css ·VT , (9)

where WL2 is the corresponding minimal L2-norm solution obtained by SVD for Dt.

Matrix Css was computed by the interior point method as described in Methods. The

new connectivity matrix, Wt, is consistent with the information of the environmental

cues and transitions included in training set Dt. As Wt is also very close to Wss, it

consequently inherits the ability to support the multi-stability of the parasite’s life cycle.

In order to test the ability of the model (Eq. (8)) to emulate the observed dynamical

behavior, simulations under different external cues were performed. Each of these sim-

ulations was performed considering that the system is initially in one of the parasite’s

steady states, and that an external cue µ is acting. The simulations were performed by

running 12 iterations of the model (Eq. (8)), and recording the system’s state at each of

these 12 steps. The temporal evolution of the 339 variables of the system was compiled

in movies available as S1-S5 Movies. S1 Movie shows the simulated phenotypic transition

from the amastigote stage to the trypomastigote stage when external cue µ = 4 is acting.
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S2-S5 Movies, on their part, illustrate the modeling results of the remaining phenotypic

transitions. In all cases, the final state of the system is in agreement with the expected

state regarding the acting external cue. This agreement can be better appreciated when

using a principal component analysis procedure for dimension reduction. Fig. 5 depicts a

set of trajectories corresponding to four of the five phenotypic transitions in the 3D space

spanned by the main principal components. There are 20 alternative trajectories for each

simulated phenotypic transition. All of the trajectories for a given transition have the

same initial condition, are affected by the same external cue, but present particular noise

realisations. Hence, it can be said that the model is able to reproduce the dynamics of

T. cruzi ’s life cycle.

Figure 5: Representation of transitions between the steady states caused by
external cues. (a) The plot shows the trajectories of the system from an initial to a
final steady state under the influence of an external cue in the space spanned by the three
principal components. A slightly perturbed steady state was used as the initial condition.
Since amastigote-to-trypomastigote and trypomastigote-to-amastigote transitions over-
lap, only the first one is shown. Each trajectory has 10 intermediate states represented
by small circles. (b), (c), (d) and (e) 2D projections of the pseudo-potential landscapes
corresponding to the phenotypic transitions mentioned above.

In our model, the phenotypic transitions are caused by an environmental cue µ through

parameter kµi , i.e. the gene clusters associated with large positive (or negative) kµi values

are activated (or inhibited) by the acting external cue µ. kµ values are distributed around

0. In order to identify the key connections that modulate the network behavior under

external cues, we have selected those gene clusters with kµ values greater (lower) than

the 95th (5th) percentile of the distribution. These clusters are listed in S6 Table. A
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total of 166 externally regulated genes belonging to 86 different clusters were found.

While 73 of these genes encode uncharacterised proteins, the other 93 genes code for

proteins with known functions. Just as in the steady states, the most abundant proteins

are TS (encoded by 21 different genes), amastin (encoded by six different genes), and

mucin TcMUCII (encoded by five different genes). The difference, however, is that when

considering the transitions, these proteins act no longer as regulators, but they are up-

or down-regulated instead. According to their GO annotations, all of the TSs have exo-

alpha-sialidase activity. Uncharacterised proteins without GO annotations have been

analysed using the InterproScan software [25], and the results are summarised in S7

Table. According to this analysis, 39% of these proteins are membrane proteins. We have

also analysed the data corresponding to each type of host separately. In this sense, we

have found that those genes affected by the external cues leading to the parasite’s two

mammalian stages are inversely regulated, while those genes affected by the external cues

leading to the parasite’s two insect stages are equally regulated.

The next step in our analysis was to identify the module that controls the parasite’s life

cycle. This is a difficult task because it involves the isolation of a small subset of nodes

and regulatory connections out of a network of 10,000 links. In principle, the number

of possible subnetworks within a network of such a size is very large. Consequently, the

evaluation of the subnetworks’ dynamics is not possible. In order to solve this problem, we

reduced the search space. With this in mind, we considered only those circuits that involve

nodes with important regulatory roles. To this end, we have used the list of regulatory

clusters shown in S5 Table, and have written a script to search for cyclic graphs, i.e. closed

loops, containing such nodes in matrix Wt. With this set of modules, we then searched

for those subnetworks with the ability to emulate the parasite’s dynamics. At this point,

our model had to be simplified. In order to evaluate the dynamics of the system, we have

considered that variable xi is a Boolean variable, and that the system’s evolution is given

by:

xi (t+ ∆t) = Sign

(∑
j′

wi,jxj (t) + θi + kµi

)
, (10)

where index j′ in the sum runs only over the nodes belonging to the module under eval-

uation. The parameter values are taken from Wt, and listed in S8 Table.

As a result of the searching process, we were able to identify a seven-node module,

containing a total of nine genes. Fig. 6a illustrates the architecture of this subnetwork.
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The seven clusters forming the subnetwork are: 195, 214, 257, 259, 260, 332, and 334.

Relevant information about these clusters and their composing genes is shown in Table

1. Three of the nine genes code for uncharacterised proteins (Q4DTV8, Q4DVU8 and

Q4E589). According to their GO annotations, Q4DTV8 has hydrolase activity (acting on

carbon-nitrogen -but not peptide- bonds, in linear amidines), Q4DVU8 has transporter

activity, and Q4E589 has catalytic activity. The other six genes code for: an hexokinase

(Q4D3P5), a δ-1-pyrroline-5-carboxylate dehydrogenase (Q4DRT8), a quinone oxidore-

ductase (Q4DHH8), a glutamate dehydrogenase (Q4DWV8), a peptidyl-prolyl cis-trans

isomerase (Q4E4L9), and a metaciclina II (Q4E2M3).
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(a) (b)

Figure 6: Life cycle module. (a) Architecture of the seven-node subnetwork that
controls the dynamics of the parasite’s life cycle. The action of environmental cue µ = 4
is shown as an example. (b) Boolean dynamics of the life cycle module. The basin of
attraction of the seven-node module under the action of environmental cue µ = 4 is
shown. This external signal leads the network to the trypomastigote state. Here, the
nodes represent the module states and the edges represent the transitions. The module
states are characterised by the sign of the clusters, which in turn are arranged in box
according to their cluster IDs. Under the action of this perturbation, the final state is
always the trypomastigote stage (white box). Some states reach this final state by going
through different intermediate steps, while others (represented by the biggest circle) reach
it in only one step.

The identified subnetwork reproduces many important dynamical features observed in

the life cycle of T. cruzi. On the one hand, the phenotypic transitions from epimastig-

ote to metacyclic tryp., from amastigote to trypomastigote, and from trypomastigote to
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Table 1: Subnetwork information.

Cluster
ID

Gene ID Uniprot ID Putative function µ kµ coefficient

195
6382 Q4DTV8 hydrolase activity 3 -0.1805
6588 Q4D3P5 hexokinase 3 -0.1805

214 121 Q4DRT8 delta-1-pyrroline-5-
carboxylate dehydrogenase

2 0.4251

257 519 Q4DHH8 quinone oxidoreductase 2 0.2256
259 8762 Q4DVU8 transporter activity 2 0.3033

260
4053 Q4E589 catalytic activity 2 0.3479
5564 Q4DWV8 glutamate dehydrogenase 2 0.3479

332 4595 Q4E4L9 peptidyl-prolyl cis-trans
isomerase

3 -0.304

334 1518 Q4E2M3 metaciclina II 2 -0.2685
List of the clusters and genes forming the parasite’s life cycle subnetwork, the protein
function, the most relevant external cue, and the corresponding values of kµ coefficients
needed to reproduce the dynamical features of the system.

epimastigote are reproduced under the influence of the corresponding external cue. And

on the other, the phenotypic stages epimastigote, metacyclic tryp., and trypomastigote

correspond to steady states of the subnetwork’s dynamics. As an example of the subnet-

work’s dynamics, Fig. 6b illustrates the basin of attraction of the module under the action

of environmental cue µ = 4. This external signal leads the network to the trypomastigote

state. The figure shows that regardless of the initial state (there are 128 Boolean states),

the final stop of the trajectories in the Boolean space is always the trypomastigote stage.

Similarly, when the environmental cue is µ = 2 or µ = 3, the obtained basin of attraction

is the epimastigote or the metacyclic trypomastigote stage, respectively.

4 Discussion and Conclusions

One fundamental open question in systems biology is how cells that share the same genome

exhibit notably different gene-expression patterns or distinct phenotypes. This question is

closely related to the process of establishing cell fates during development. A widely used

picture to describe these phenomena is Waddington’s epigenetic landscape, a phenomeno-

logical metaphor which corresponds to an energy landscape with many local minimums

where the system moves regardless of whether environmental cues are present [26–28].
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Despite the simplicity and elegance of Waddington’s concept, it lacks quantitative mech-

anistic details. Given the significance of a quantitative understanding of cell phenotypic

transitions, many efforts have been made to develop predictive mathematical frame-

works [28–32]. Although some advances have been made for low dimensional systems,

the application of these mathematical frameworks to higher dimensional models remains

a theoretical challenge.

In this work, we have developed a reverse engineering approach to identify the gene

network structures responsible for the observed dynamical properties of a high dimensional

biological system. These dynamical properties include the steady states associated with

the stable phenotypes, and the phenotypic transitions observed in T. cruzi ’s life cycle.

We have assumed that each of the five phenotypic transitions occurs in response to the

external cue corresponding to the final state of the transition. For this reason, we have

modeled the life cycle of T. cruzi as if it were an open dynamical system. Our methodology

for embedding the observed expression patterns into the GRN dynamics adds several new

ingredients such as the use of an ensemble of noise-perturbed training sets, and a pruning

procedure to identify the significant network links. The information of the transitions

between the stable phenotypes was used to develop an optimisation procedure. This

reverse engineering procedure has been successfully used to identify one key network

module that explains three of the five phenotypic transitions.

Besides the development of a model with the ability to emulate the parasite’s dynamics,

the information presented in this work (S5 and S6 Tables) could be useful to assign

previously unknown putative functions to some genes. In this sense, our results suggest

that amastin genes could act as key regulators. This finding is consistent with a previous

study in which it is shown that amastin may increase T. cruzi ’s differentiation rates both

in the insect and in the mammalian hosts [33]. On the other hand, our finding of TS-

coding genes acting as regulators in the amastigote stage adds relevant information to the

resulting parasite state. Furthermore, we have found that these same TS-coding genes are

inhibited in the transitions leading to the amastigote stage, and activated in the transitions

leading to the trypomastigote stage. Considering that TS plays a key role in T. cruzi ’s

infectivity and that this enzyme is not present in mammals, TS constitutes a potential

target for the development of novel drugs to treat or prevent Chagas disease [34–36].

Finally, we have found four mucin genes belonging to the TcMUC family that act as

regulators both in the mammalian and in the insect parasite’s stages. It is known that
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this family of mucins is expressed only in the mammalian stages [37].

The present approach could be adapted to and useful for better understanding other

single cell parasites with multiple developmental stages such as T. brucei, P. falciparum

and Leishmania. Uncovering the core circuit that underlies the dynamics of these para-

sites’ life cycles could open the door to new possibilities: the development of applications

to reprogramme the parasites’ life cycles, and the finding of new therapeutic targets

against the parasites.
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Supporting Information

S1 Fig. Clustering and dimension reduction. Davies-Bouldin index (DBI) as a

function of the number of clusters, Nc, used in the clustering procedure. The arrow in

Nc = 339 indicates the optimal number of clusters used in subsequent procedures.

S2 Fig. Main regulatory clusters for each steady state. The plots represent the

networks derived from amastigote (a), epimastigote (b), metacyclic tryp. (c), and trypo-

mastigote (d) stages.

S1-S5 Movies. Transitions between the parasite’s stages. The animated matrix

plots show the evolution of the system from one of the initial phenotypic stages shown

in Fig 1b. The movies correspond to different system evolutions: from the amastigote

stage under the action of µ = 4 (S1 Movie), from the trypomastigote stage under the

action of µ = 2 (S2 Movie), from the epimastigote stage under the action of µ = 3 (S3

Movie), from the metacyclic tryp. stage under the action of µ = 1 (S4 Movie), and from

the trypomastigote stage under the action of µ = 1 (S5 Movie). Each movie is composed

of 12 frames; one for each step in the simulation. All simulations show a clear similarity

between the states associated with the last two frames and the corresponding target stage

indicated by µ.

S1 Table. Gene-expression profile of T. cruzi ’s life cycle. Log-norm expression

levels corresponding to 8,904 T. cruzi genes, obtained from microarray experiments as

indicated in Methods. The gene IDs listed in the first column correspond to our own gene

numbering. The second column lists the microarray oligo IDs. The last four columns cor-

respond to the gene-expression levels in each stage of the parasite’s life cycle: amastigote,

epimastigote, metacyclic tryp. and trypomastigote, respectively.

S2 Table. Cluster composition. Each row corresponds to one cluster ID and lists all

genes (gene IDs) belonging to that cluster.

S3 Table. Intra-cluster averages of the expression levels. Gene activity levels of

each cluster (rows) in each different stage (columns) used in all further modeling compu-
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tations.

S4 Table. Regulatory links. List of the 11,470 significant weights (at a significance

level of 0.01) needed for the maintenance of the parasite’s steady states. The first column

indicates the regulatory cluster IDs. The second column indicates the regulated cluster

IDs. The third column lists the mean values of each cluster, averaged over the ensemble

of 300 training sets. The fourth column lists the associated standard deviations. The last

column lists the p-values (the probabilities of the location test).

S5 Table. Main regulatory genes. List of the genes with important regulatory activ-

ity for the maintenance of the parasite’s steady states. The steady states are indicated

by a capital letter: amastigote (A), epimastigote (E), metacyclic tryp. (M) and trypo-

mastigote (T).

S6 Table. Main regulated genes. List of the genes regulated by the external cues

responsible for the transitions between the steady states.

S7 Table. Analysis of uncharacterised proteins. Result of the Interproscan analy-

sis of the uncharacterised proteins without GO annotations, listed in S5 and S6 Tables.

Uncharacterised proteins with no Interproscan information are listed at the end.

S8 Table. Regulatory links of T. cruzi ’s life cycle subnetwork. Estimated values

of parameters wi,j, θi, and kµi , extracted from matrix Wt.
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