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ABSTRACT

Heterogeneity across cancer makes it difficult to find driver genes with intermediate (2-20%) and low frequency (<2%)
mutations’, and we are potentially missing entire classes of networks (or pathways) of biological and therapeutic value.
Here, we quantify the extent to which cancer genes across 21 tumor types have an increased burden of mutations in their
immediate gene network derived from functional genomics data. We formalize a classifier that accurately calculates the
significance level of a gene’s network mutation burden (NMB) and show it can accurately predict known cancer genes
and recently proposed driver genes in the majority of tested tumours. Our approach predicts 62 putative cancer genes,
including 35 with clear connection to cancer and 27 genes, which point to new cancer biology. NMB identifies proportionally
more (4x) low-frequency mutated genes as putative cancer genes than gene-based tests, and provides molecular clues in
patients without established driver mutations. Our quantitative and comparative analysis of pan-cancer networks across 21
tumour types gives new insights into the biological and genetic architecture of cancers and enables additional discovery
from existing cancer genomes. The framework we present here should become increasingly useful with more sequencing

data in the future.

Introduction

Understanding which genes have causative roles in cancer will
lay the basis for precision medicine, diagnostics and the develop-
ment of therapeutics. The recent revolution of cancer-sequencing
studies has identified many new classes of cancer genes, hereby
pointing to new tumour biology>>. From these studies it is also
clear that high-frequency cancer genes have already been iden-
tified to a large extent, but that we are still missing many of the
genes hidden in the long tail of genes mutated at low frequencies'
of cancer genomes that can help us to understand the genetic
requirements of tumour formation. These genes may also point to
new pathways or networks of therapeutic or diagnostic relevance.

Because genes collaborate in functional molecular net-
works>#3 network-based analyses have been applied widely
in cancers to provide a molecular stratification of cancer patients*,
to predict disease outcome®”, to understand tumourigenesis® and
tumour-inducing viruses’, to predict carcinogenicity of chemi-

cal compounds'®, and to prioritize damaging effects of cancer
mutations'!. Several approaches have also been used to identify
oncogenic pathway modules'? 3.

Here, we sought to make four alternative analyses: First, to
make a comprehensive quantification and comparison of the ex-
tent to which the functional gene neighborhood of a large set of
established cancer genes, as well as genes emerging from the re-
cent onslaught of cancer sequencing studies across many different
tumour types, have an increased network mutation burden (NMB)
using pan-cancer mutation information from Lawrence et al. (Ref.
1). Gene-based tests like MutSigCV' calculate significances by
aggregating all mutations observed in a cohort across a gene and
tools like MutSigCL' and MutSigFN! look at clustering of muta-
tions and enrichment at likely functional sites, respectively (we
will refer to these three tools as the "MutSig suite’ hereafter). In
contrast, we wanted to provide an accurate statistic for the burden
of mutations across an index genes’ entire functional neighbor-
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hood (defined here as all genes that have a direct connection to
the index gene in the high confidence protein-protein interaction
network InWeb'#, while excluding the gene itself), and to use this
information to make statistically robust classifications of known
and recently proposed cancer genes. Second, we wanted to com-
plement and expand current sequencing results by testing whether
the NMB can provide an alternative approach to predict new pu-
tative cancer genes. Third, to ask whether the identification of a
putative cancer gene by proxy of its NMB could potentially over-
come some of the challenges of finding likely cancer genes with
intermediate and low frequency mutations in tumours. Fourth,
to test the ability of our method to suggest molecular clues as to
what drives cancer in patients with no known driver mutations.

Our underlying hypothesis is that summing up the mutations
in the neighborhood of a gene can increase the signal to find
important cancer genes that are mutated too rarely to be discov-
ered by current gene-based approaches such as the MutSig suite.
Towards this aim we develop an accurate statistical method to
calculate the significance level of the mutation burden of the
functional gene network of cancer genes. We use this method to
comprehensively explore and compare the genetic and functional
architecture of cancer networks in 21 tumour types. For 60%
of the cancer types we test, the NMB approach can accurately
recapitulate established driver genes based on either the muta-
tions observed in the corresponding tumour-type or by exploiting
pan-cancer mutation rates and significances. Using NMB, we
predict 62 putative cancer genes. The NMB approach finds pro-
portionally more (4x) low-frequency putative cancer genes than
gene-based tests and suggests molecular clues in patients with,
for example, colorectal cancer, kidney clear cell carcinoma and
prostate cancer that do not have mutations in established driver
genes.

Overall we harness the fundamental wiring of genes into func-
tional networks to develope a robust statistical framework that
complements gene-based tests to generate new hypotheses about
driver-gene candidates. Our approach should become increasingly
useful as more cancer genomes are sequenced in the future.

Results

Network Mutation Burden distinguishes true cancer
genes

For a given index gene the NMB is formalized into a score that
reflects the empirical probability of the observed mutation signal
aggregated across its first order biological network, excluding the
index gene itself, while normalizing for the number of genes in
this network (Methods). For this analysis we used the high con-
fidence subset of InWeb'# (a quality controlled protein-protein
interaction network) as it has already been used in dozens of
genetic studies including the 1000 Genomes Project'>). We con-
firmed that the NMB accurately calculates the significance level
of the mutation burden in the neighborhood of an index gene,
based on the fact that the majority of genes fit the null hypothesis
and lie on the diagonal in a Q-Q plot (Supplementary Figure 1).
By testing several permutation methods and alternative ways of
calculating the NMB we obtain similar results, supporting the bi-

ological and statistical robustness of the NMB concept and of our
chosen approach (Supplementary Note 1 and Supplementary
Figure 2).

To test if the NMB score can accurately classify cancer genes,
we curated four sets of genes linked to cancer and randomly chose
a set of genes for control purposes (Supplementary Note 2 and
Supplementary Table 1). Briefly, the sets were named Tier 1-
5, where Tier 1 genes are well established, or “’classic”, cancer
genes from the Catalogue of Somatic Mutations in Cancer, or
Cosmic, (e.g. TP53, BRCAI, and BRAF); Tier 2 genes are a set
of more recently identified cancer genes from the Sanger Gene
Census dataset in some cases with functional support (e.g. MLL2,
CDK12, and GATA2); Tier 3 genes are recently emerging cancer
genes that have been identified using conservative statistics in
cancer sequencing studies, but where the biological connection to
known cancer pathways is often unclear (e.g. ING1); Tier 4 are
suspected cancer genes with solid, but in some cases not entirely
conclusive statistical evidence from cancer sequencing studies
(e.g. EIF2S2), and Tier 5 is a random set of genes not linked
to cancers included as a control for cryptic confounders in our
analysis.

We tested whether the NMB score could accurately distin-
guish Tiers 1-5 from all genes covered by interactions in the
InWeb database that are not in Tiers 1-5 (which is conservative as
many of the genes not in Tier 1-5 may be genuine cancer genes
that have not yet been discovered). We were able to distinguish
genes in Tiers 1, 2 and 3 from other genes in InWeb with an area
under the receiver operating characteristics curve (AUC) of 0.86,
0.67, 0.75, respectively (Fig. 1a, Adj. P <0.05 for each of these
AUCs, using permuted networks Supplementary Figure 2). The
AUC for Tier 4 is insignificant (nominal P = 0.13), consistent
with the lower confidence that Tier 4 represents true cancer genes.
Tier 5 was indistinguishable from other InWeb genes (Fig. 1a,
AUC 0.49, nominal P = 0.81) as expected of a random set of
genes. The same analysis was repeated for all known pan-cancer
genes (Supplementary Table 2), yielding an AUC of (0.70, Adj.
P <0.05, not shown), where the lower AUC is to be expected as it
is a mix of genes from Tiers 1-4, with proportionally more genes
from Tier 4 (Supplementary Note 3).

Tier 1 genes are generally very well studied and have been
known for many years to be key drivers of tumourigenesis through
their participation in cellular networks involved in DNA re-
pair, cell cycle, proliferation and apoptosis. They also distin-
guish themselves by having the highest mutation frequencies and
most significant mutations across patients in 21 tumour types
(Supplementary Figure 3). Although we do not observe any
correlation between the number of interactions (termed “’degree”
hereafter) of a gene, its NMB significance, or its Tier membership
(Supplementary Figure 4) we quantified the potential effect of
study bias in Tier 1 genes on our results by canceling their influ-
ence on the NMB calculation and repeating the analysis (Fig. 1b
and discussed in detail in Supplementary Note 4). Although the
ability to classify Tier 1 genes is slightly decreased, there was no
general effect on the accuracy of the NMB classification on Tiers
2, 3 and 4, reflecting that the signal for genes in Tiers 2, 3 and 4
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Figure 1 | Network mutation burden distinguishes true cancer genes and is unaffected by potential ”’knowledge
contamination”. a) Genes from Tiers 1-5 are in this analysis defined as true positives and all other genes in InWeb (12,500 not in
Tiers 1-5) as true negatives. Genes in Tier 5 are random genes that are included as a control under the assumption that this gene set
should fit the null hypothesis and have an AUC 0.5. NMB scores for all genes are calculated using pan-cancer significances (described
in Methods), and used as a classifier. The areas under the receiver operating characteristics curve (AUCs) for Tiers 1,2,3, and 4 are
0.87, 0.67, 0.75, 0.55 (Adj. P <0.05 for Tiers 1,2 and 3). Genes from Tier 5 fit the null hypothesis (AUC 0.49, nominal P = 0.75). b)
Removing the effect of Tier 1 genes on the analysis has some impact on the classification of Tier 1 genes themselves, but not on the
other Tiers (fully drawn lines represent the results excluding Tier 1 genes shaded lines the original results for comparison). This
illustrates that well-established cancer genes are not driving the ability of the NMB score to correctly classify cancer genes.

is independent of the Tier 1 genes and not affected by study bias
or “knowledge contamination”. This observation is corroborated
by the fact that genes in Tiers 2, 3, and 4 have significant overall
connectivity to other genes in Tiers 2-4 and not just to genes in
Tier 1, hence the NMB signal in these tiers is independent of Tier
1 genes (Supplementary Figure 5).

Predicting sixty-two NMB-imputed cancer genes

We declared genes with a pan-cancer NMB significance at a
false discovery rate (FDR q <= 0.1) to be NMB-imputed cancer
genes (Fig. 2 and Supplementary Table 3). In addition to the
pan-cancer results, we performed the NMB analysis on muta-
tion data from each of the 21 tumours independently and also
declared genes with ¢ <= 0.1 in each of the individual cancers
NMB-imputed cancer genes (Fig. 2). We use the terminology
’NMB-imputed cancer genes’ to emphasize the fact that the signal
in our analysis is based on the network neighborhood of the gene
and not coming from the gene itself. Consequently, the NMB
significances are independent, and fully complementary, to the
gene-based methods (such as the MutSig suite).

We further constructed a dataset of all unique genes that were
significant in the pan-cancer analysis pooled with those signif-
icant in at least one of the 21 tumour types and called this set
the NMBS5000 set. In contrast to earlier observations of muta-
tion significances!, we do not detect more genes when using the
tumour-specific approach, which highlights the benefit of aggre-
gating patients with different tumour types into one pan-cancer
cohort to increase the statistical power to unravel new cancer
networks and biology. We note that although we are pooling data
from 22 tests, the vast majority of significant genes (85%) come
from the pan-cancer analysis alone so the true false discovery rate
of this pooled set should only be marginally higher than 0.1.

Our NMB5000 set comprises 62 NMB-imputed cancer genes.
To assess their validity and to link these genes to known cancer
biology we carried out a comprehensive literature review (see
Supplementary Note 5 and Supplementary Table 4 for details
and an extensive list of references on these genes). Briefly, we
divide the NMB5000 genes into five groups:

Group 1 (n = 12) contains genes that have strong statistical
genetic evidence linking them to human cancers through point mu-
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tations and short insertions and deletions. Seven genes (ERBB3,
EZH?2, PIK3CA, PIK3RI1, RASAI, SOS1, STK11) are in the Can-
cer5000 set previously published in Ref. 1 (Supplementary
Table 4). The convergence on seven genes between these two
independent methods (which is highly significant at P = 1.9e-5)
serves as an overall validation of the NMB approach (see Meth-
ods). The five remaining genes (ESRI, AFF2, AKT3, PIK3R2,
PIK3CB) serve as an additional validation of the NMB predic-
tions because they can also be considered a set of true positive
cancer genes independent of the Cancer5000 set. One example is
ESR1 which is significantly mutated in hormone sensitive breast
cancer. Another is AFF2, which plays an unknown role in can-
cers. Our analysis shows that the corresponding protein is in a
high-confidence network with PTEN, BRAF, KRAS, CTNNB1
and GRB2, which at the gene level have pan-cancer mutations at
varying levels of significance (Fig. 3a) which leads to an NMB q
= 0.07 for this gene. Interestingly, a recent study has identified
this gene as significantly mutated in breast tumours'®, and in
the same publication other members of the AFF2 network are
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linked to breast cancer. For example, PTEN is also significantly
mutated and KRAS and BRAF are amplified in 32% and 30%,
respectively, of the patients in this cohort through copy number
variants. Another interesting gene is PIK3CB which has a NMB q
=0.016 (Fig. 3b). PIK3CB has been suggested to play an impor-
tant role in PTEN-deficient tumours'”!® and it has been shown
that both in cell lines and in vivo down-regulation of PIK3CB
leads to the inhibition of tumour growth!'®. Furthermore, overex-
pression of PIK3CB can transform cells in vitro?®. In our analysis
the corresponding protein PIK3CB is in a network with KRAS,
ERBB2, EGFR, MTOR, PIK3R1, RAC1, AKT1 and HRAS. The
function of PIK3CB is suggested to be related to DNA synthe-
sis/replication and cell mitosis”! and there is further evidence that
mutational activation can enhance basal association with mem-
branes and thereby increase proliferation and survival®>. In a
recent study of advanced prostate cancer, PIK3CB was found to
harbour (likely activating) mutations as also be part of fusion-
events leading to increase expression®. In functional validation
experiments that we describe in a distinct manuscript (E. Kim,
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Figure 2 | Sixty-two NMB-imputed cancer genes. Genes are represented as individual dots and plotted along the x-axis by the

NMB q value from the most significant of 21 tumour types, and on the y-axis by the NMB q value when 4,724 tumours are analyzed as
a combined pan-cancer cohort. Significance at FDR q <= 0.1 is indicated on each axis by grey lines. Genes above the horizontal line
are significant in the pan-cancer analysis. Genes to the right of the vertical line are significant in at least one tumour type with the most
significant tumour type indicated by the node color. Genes in the upper right quadrant are significant in both the pan-cancer data and in

an individual tumour type.
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et al., in preparation), it has been shown that over-expression of
mutant alleles of PIK3CB (E497D and A1048V) identified in the
pan-cancer sequencing study! drives subcutaneous tumour for-
mation in mice further suggesting its likely causal link to human
cancer.

Group 2 (n = 8) contains genes with genetic evidence linking
them to cancer risk in patients, but which have not yet been iden-
tified to have point mutations in large cancer sequencing studies
(e.g., CBFA2T2, in which the t(8;21)(q22;q22) translocation is
one of the most common karyotypic abnormalities in patients
with acute myleoid leukemia). Another gene in this group is
E2F4 (Fig. 3c, NMB q = 0.03), which encodes a transcription
factor that plays a critical role in cell cycle regulation and binds
to three known tumour suppressors, pRB, p107 and p13. When
affected by microsatellite polymorphisms, E2F4 is linked to an
enhanced risk for developing breast cancer’®. Interestingly, it
has also been shown that loss of E2F4 can suppress tumouri-
genesis? while its expression is needed for the proliferation of
e.g. colorectal tumours?®. In our work we show that it is in a
network with e.g., MGA, which is associated with breast cancer!.
Interestingly, it has been shown in heterozygous Rb loss of func-
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tion mouse models that E2F4 loss suppresses the development of
both pituitary and thyroid tumours suggesting a direct regulatory
relationship between these proteins. Finally, the E2F4 network
contains SMAD4, which is found to be mutated in ~10-35% of
all colorectal cancers?’-%8.

Group 3 (n = 15) contains genes linked with strong func-
tional evidence to cancer processes and networks in animal or
cell models, but where human genetic data (mutations, copy num-
ber variants or karyotypic abnormalities) does not yet strongly
incriminate these genes in any patient. For example, ETV7 is
functionally linked to leukemia and accelerates lymphoma de-
velopment in transgenic mice?. Another candidate, PSEN], is
linked to the down-regulation of WNT. Loss-of-function muta-
tions in PSENI might lead to the over-activation of WNT and
promote tumourigenesis in colon cancer’’-3!,

Group 4 (n = 22) contains genes that have been linked to
cancer through e.g. aberrant expression, but where the direct
functional evidence is not as conclusive as in group 3 (e.g., BMX
which is upregulated in human prostate cancer). For example,
RUNX?2 (Fig. 3d, NMB q = 0.07) is a transcription factor mod-
ulating e.g. the activities of both RNA polymerases I and II*2.
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Figure 3 | Examples of NMB-imputed cancer genes. The first order network of a) AFF2 (dark grey with red border, NMB q =
0.07), b) PIK3CB (dark grey with red border, NMB q = 0.016), ¢) E2F4 (dark grey with red border, NMB q = 0.03), d) RUNX2 (dark
grey with red border, NMB q = 0.07), and e) MYO7A (dark grey with red border, NMB q = 0.06) that are significant in the NMB
analysis. Large nodes other than AFF2, E2F4, PIK3CB, RUNX2, and MYO7A are colored by the significance of the pan-cancer q
value of the corresponding gene, where light grey or no shading represents q close to 1 and red q << 1, with darker red representing
more significant q values as indicated. Small nodes represent genes with q = 1 or not annotated in the pan-cancer data. These examples
illustrate the diverse functional and genetic architectures of cancer networks that can lead to significant NMBs and highlight the
importance of considering, and normalizing for, these architectures in the process of calculating statistical significance
(Supplementary Note 1). Interactive networks with names and q values for all proteins can be seen on

http://www.lagelab.org.
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It is significant in the NMB pan-cancer analysis, but also in the
tumour-specific NMB analysis using only breast cancer data. As
for all genes in this group there is no direct genetic evidence for
its role in human cancer, but it has been shown that induction
of RUNX2 enhances tumour invasiveness in prostate cancer-3,
while silencing through siRNA prevents cell invasion for thyroid
cancer®* and colorectal cancer® cells. As expected, many pro-
teins in its neighbourhood (CBFB, KRAS, RB1, ARIDI1A and
AKT1) are associated with breast cancer'. Moreover, genes in
the neighbourhood of RUNX2 are significantly mutated in many
tumour types (seven, six, and six, for ARID1A, KRAS and RB1,
respectively), suggesting this is an important network across many
tumour types.

Group 5 (n=5) includes genes for which we could not find any
connection to cancer in the literature. One example is MYO7A
(Fig. 3e), which encodes an unconventional myosin, that is plays
a role in cell adhesion® and is most famous for its role in Usher
syndrome’’. Nonetheless nonmuscular myosins are known to be
involved in tumour progression, cancer cell invasion, and metas-
tasis®®, and in our work MYO7A is shown to physically interact
with e.g., the cadherin/catenins complex (Fig. 3e) leading to a
NMB q = 0.06. Specifically, MYO7A interacts with $-Catenin
(CTNNB1) and cadherin 1 (CDH1) in InWeb (source data from>").
Where somatic §-Catenin mutations are known to be involved in
colon and other cancers*, germline mutations in cadherin 1 are
known to be a major cause of familial gastric cancers*!'. Further
interactions of MY07A with RAC1 (a known Rho GTPase that
regulates the functions of the cadherin complex) strengthen this
link and suggests an interesting potential role for MY07A in tu-
mourigenic processes linked to the cadherin function and WNT
signaling.

The genetic architecture of cancer networks across 21
tumour types

The reason we only identify significant NMB-imputed genes in 4
out of 21 (<20%) of tumour types could either be that the genetic
data in the remaining 17 tumour types is not powered to lead to
NMB significances at a FDR <0.1 or it could indicate a funda-
mental difference between cancer types in terms of functional
and genetic architecture (i.e, that genes driving some cancers
form highly mutated networks that can be captured using func-
tional protein networks while others do not). To test these two
hypotheses we iterated over the 21 tumours and first calculated
tumour-specific NMB scores. Second, we defined a set of driver
genes known to be significant in that tumour type and for tumours
with more than four driver genes measured the performance of
the tumour-specific NMB in terms of distinguishing that set of
driver genes from all other genes represented in the InWeb net-
work. Third, we compared the performance of the tumour-specific
NMB to the performance of NMB scores derived from the 20
other tumours and from the pan-cancer data (Fig. 4).

For example, we assembled a set of driver genes from breast
tumours (BRCA) by identifying genes significantly mutated in
this tumour type in Ref. 1. We used mutation data from this
tumour type to derive NMBggrca scores and measured their

classification performance on the BRCA driver genes, which
they could accurately distinguish with an AUC = 0.76. This
result was compared to the ability of NMB scores derived
from the 20 other tumour types as well as the a pan-cancer
dataset calculated after excluding data from the BRCA cohort
(NMB an-cancer_minus.BRCA) t0 classify the BRCA driver genes
(Methods). The NMB pan_cancer-minus BRCA Scores increased the
ability to accurately classify BRCA driver genes slightly to an
AUC of 0.77, while the NMB scores derived from the 20 other
tumour types all performed worse on BRCA driver genes than
the NMBgRrca (Fig. 4, ranging from an AUC of 0.75 [bladder] to
an AUC of 0.47 [prostate], and median AUC = 0.69).

In 9 of 17 (or 53%) of tumour types we see that the tumour-
specific NMB approach can accurately classify genes significantly
mutated in that tumour type with an AUC >0.7 (Fig. 4). In 10 of
17 of tumours the NMB scores based on pan-cancer data (calcu-
lated excluding data from the tumour in question) outperforms
the NMB scores based on the specific tumour being tested (on
average the predictive power of the pan-cancer NMB is 8% better
than the tumour-specific NMB), and it is a consistent observation
that the tumour-specific NMB score is better at classifying driver
genes from the corresponding cancer than NMB scores derived
from any of the 20 other tumours as expected. Remarkably, close
to 60% (or 10 out of 17) of the tumour types the driver genes can
be classified with an AUC >0.70 either by the tumour-specific
NMB or the NMB a5-cancer_minus_x that excludes data from tumour
X being analyzed.

These observations highlight that, despite our inability to
measure significant genes in the 80% of tumours using the NMB
approach, there is clear evidence that driver genes across most
types of cancer sequenced to date assemble into networks that
have a non-random mutation burden and suggests a way to quan-
tify the pathway convergence across distinct tumour types. Our
results also stress the value of meta-analyzing multiple tumour
types into pan-cancer data sets to increase the statistical power to
find convergent pathways and networks that are of wide interest
to unraveling the biology across cancers.

NMB significances are independent of mutation fre-
quencies

Current statistical methods for identifying significant genes based
on cancer-sequencing data (e.g., the MutSig suite) have more
power to detect genes with high frequency mutations in cancer

patients versus those with intermediate and low frequencies'.

We hypothesized that significances assigned to index genes
based on the NMB method are not dependent on its mutation fre-
quency, because the signal is tallied across the gene’s first order
network and therefore is independent of mutation frequencies in
the index gene itself. In fact, the index gene may not be mutated at
all in any tumour sequenced to date. We plotted the distribution of
mutation frequencies as the function of P-values determined from
the pan-cancer data by the MutSig suite and NMB (Fig. Sa), and
confirmed that former are correlated with mutation frequencies
while the latter are not.
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Figure 4 | A quantitative analysis of cancer networks across 21 tumour types. In this figure, each box illustrates the results from
the tumour-specific NMB analyses of 17 tumour types that have at least four defined driver genes (first 17 boxes) or for pan-cancer
genes (last box). In each plot, for example for breast cancer [BRCA, second box], the AUC calculated with the NMB score
corresponding to mutation burdens from BRCA (NMBggrca) is indicated by the orange line. The ability to distinguish BRCA driver
genes using an NMB score derived from pan-cancer data calculated after excluding the BRCA data (NMB pan-cancer_minus_BRCA) 18
indicated with a dark grey curve. The lighter grey curves indicate the ability of NMB scores derived from the 20 other tumour types to
accurately classify BRCA driver genes. The difference in performance using NMB an-cancer_minus.BRcA and NMBpggrca (in this case
0.76-0.77 = -0.01) is indicated above the plot as the differential AUC (or dAUC). Although the pan-cancer data is better at classifying
BRCA driver genes than the BRCA-specific mutation data, the NMBpy c4 is better at classifying BLCA driver genes than NMB scores
derived from any of the 20 other tumor types (light grey curves, median AUC = 0.69).

To further explore this phenomenon, we plotted the relative  is mirrored in the NMB5000 vs. Cancer5000 sets, where the
proportion of high frequency, intermediate frequency, and low  proportions of low frequency genes are 15% vs. 4%, respectively
frequency genes amongst the candidate cancer genes predicted by  (Fig. Sb), suggesting that approaches like the NMB can com-
the MutSig suite and NMB both for the pan-cancer analysis, and  plement existing methods and contribute independent signal to
for the Cancer5000 and NMB5000 sets. Using the pan-cancer  finding potentially important cancer genes with low-frequency
data, the relative proportion of low frequency candidate cancer =~ mutations in the tail of mutation distributions from tumour se-
genes identified with the NMB approach versus the MutSig suite  quencing studies.
is more than three times higher (13% vs 4%). This enrichment
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Figure 5 | Network mutation burdens significances are independent of mutation frequencies. a) A box plot of the NMB (red)
and MutSig suite (blue) P values (x-axis) versus mutation frequency distributions (y-axis). Boxes represent median first and third
quartile of the frequency distribution for a given P-value bin (NMB values are permutation-based which limits us to deriving P >=
1.0e™6). In contrast to the MutSig suite, NMB P values are not correlated with mutation frequencies. b) The mutation frequency of all
(18,600) genes in the genome is shown in the left column colored as indicated in the legend. Columns two and three show that relative
to the total amount of genes classified as significant in the pan-cancer data, the NMB analysis (NMB-pc) identifies 3 times more genes
with low frequency mutations than the MutSig suite (MutSig-pc). These proportions are slightly higher when comparing the

NMB5000 and Cancer5000 data sets (columns four and five).

Networks lead to molecular clues in patients without
established driver mutations

In 17 of the 21 cancer studies recently described in Ref 1, there
is at least one patient that does not have mutations in the genes
established to be drivers in the cancer and publication in question.
To test if the NMB approach can contribute to providing molec-
ular clues in these patients, we downloaded the mutation pro-
files (Supplementary Table 5), and compared the proportions of
patient-derived mutations classified as damaging by PolyPhen2*?
in the NMB5000 gene set, to a random expectation (i.e., the same
proportions in all genes in the genome, Fig. 6a and b). We see a
significant enrichment of damaging mutations in the NMB5000
genes (P = 0.016 using Fisher’s exact test to make a categorical
comparison and P = 0.046 using a non-parametric two sample
Kolmogorov-Smirnov test to compare distributions of continu-
ous mutation scores). Moreover, the proportions of damaging
or deleterious mutations across NMB genes in patients without
known driver mutations are remarkably similar to the analogous
proportions in the Cancer5000 set (Fig. 6¢ and d), but, as ex-
pected, the results are many orders of magnitude more significant
due to many more genes in the Cancer5000 set.

The four NMB-imputed cancer genes with the highest ratio
of damaging to benign mutations in the patients are PIK3CA,
MYO07A, PIK3R5, and PDGFD (see additional details on specific
mutations, cancers, and these genes in Supplementary Table
6). PIK3CA is a well-known oncogene in breast cancer*?, which
showed damaging mutations in patients with colorectal cancer.

MY07A (Fig. 3d) is a gene not previously linked to cancer and has
damaging mutations in patients with colorectal cancer, esophageal
adenocarcinoma, kidney clear cell carcinoma, lung squamous cell
carcinoma, melanoma, and neuroblastoma. PIK3R5 is a sub-
unit in the Phosphoinositide-3-Kinase pathway linked to cancer
through several other members (Lawrence et al.') which has
damaging mutations in patients with kidney clear cell carcinoma,
neuroblastoma and prostate cancer. Lastly, PDGFD showed dam-
aging mutations in patients with colorectal and kidney clear cell
carcinoma.

Interestingly, of the five NMB-imputed cancer genes we point
to in Fig. 3, three are amongst the ten genes with the highest ratio
of damaging to benign mutations in patients (Supplementary Ta-
ble 6). In fact, MYO7A (Fig. 3e) has the next-highest proportion
(7 fold more damaging mutations than benign mutations) after
PIK3CA (with 8.5 fold more damaging than benign mutations).
The ratio for MY07A is significantly higher than we would expect
by random (nominal P = 0.0092 and adjusted P = 0.046 after cor-
rection for testing all five genes from Fig. 3, see Supplementary
Figure 6 for details). These observations make it an interesting
candidate to follow up in particularly colorectal and esophageal
cancers.

We further compared the ratio of damaging to benign mu-
tations in the 55 NMB5000 genes that do not overlap with the
Cancer5000 set to the distribution of the same proportions in 100
sets of 55 randomly chosen Cancer5000 genes (i.e., matched and
downsampled sets). Here, the proportion of damaging to benign
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Figure 6 | Cancer patients without established driver mutations are enriched for deleterious mutations in NMB5000 genes.
a) We compared the fraction of genes with damaging (i.e, probably damaging and possibly damaging pooled into one set) versus
benign mutations (as determined by PolyPhen2) in the NMB5000 genes on the background of all genes in the genome, and show a
statistically significant enrichment of damaging mutations in the NMB5000 set (P = 0.016, using Fischer’s exact test, NMB5000 is
indicated by dark red and all genes in the genome by light red). b) Using PolyPhen2, we transformed all mutations observed in the
NMB5000 set to continuous normalized scores of how much the mutation is predicted to affect gene function negatively (less
damaging to more damaging oriented left to right on the x-axis). When comparing to all genes in the genome, mutations in the
NMB5000 genes are significantly depleted for less damaging PolyPhen scores, and significantly enriched for more damaging
PolyPhen scores (P = 0.046, using a non-parametric two-sample Kolmogorov-Smirnov test, and histograms show the binned
proportions, the line the cumulative distributions of scores). For comparison, we show the results for the same analyses on the
Cancer5000 set in panels ¢) and d), respectively with Cancer 5000 significant genes in dark blue and the background genes in light
blue. While the trends and proportions of deleterious versus benign mutations observed in the Cancer5000 genes are similar to our
observations for the NMB5000 genes, thus supporting the cancer relevance of the NMB5000 set, the statistical significances levels are

higher due to more genes in the Cancer5000 set.

mutations is comparable to the expectation from Cancer5000
genes (i.e., within the 95% confidence interval of the mean, Sup-
plementary Figure 7). We repeated this analysis for each of
the five literature curation groups individually showing that the
proportions for Groups 1 and 5 are comparable to matched and
downsampled sets of Cancer5000 genes (within the 95% confi-
dence interval of the mean, Supplementary Figure 8). Together
this provides support for the cancer relevance of the 55 cancer
genes we identify exclusively through the NMB approach as well
as groups 1 and 5 even when they are considered as individual
sets.

Discussion

Here we quantify and compare the degree to which cancer genes
across 21 tumour types can be accurately classified based only
on the pan-cancer mutation burden in their first order functional
protein network (which excludes the gene itself). Data on so-
matic mutations was acquired from the exome sequences of 4,742
human cancers and their matched normal-tissue samples across
21 tumour types'. We found that very well established cancer

genes can be accurately classified based on their NMB score and
we show that it is a general principle across most cancers that
driver genes form networks that can be explored using protein-
protein interaction data. Our results indicate that network-based
approaches such as the NMB are a scalable and cost-efficient way
to extract more information from existing cancer geneomes in
a purely compuatational manner and that they can contribute to
a deeper understanding of tumour biology widely across indica-
tions.

To test the general applicability of our NMB approach and
to investigate if candidate cancer genes could be robustly pre-
dicted in a range of different functional genomics networks using
the statistical framework we have developed, we repeated our
analysis in gene networks based on mRNA coexpression, gene
coevolution profiles, cancer synthetic lethality relationships, and
cell perturbation profiles. While we observe the strongest sig-
nal in the protein-protein interaction network data from InWeb
(Fig. 1), there is evidence that significant cancer networks can
be detected in three of four networks using the NMB approach
(Supplementary Figure 6).

It is important to stress that our analysis does not guarantee
that a gene with a significant network mutation burden is a cancer
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gene which is why we coined the term NMB-imputed cancer gene.
However, we find conclusive evidence that cancer genes across 10
of 17 tumour types have a non-random mutation burden in their
immediate functional protein interaction neighborhood and that
this signal is strong and consistent enough to enable an accurate
classification of driver genes involved in many of these cancers.
We illustrate that this phenomenon is not significantly driven by
“knowledge contamination”, meaning that our approach performs
comparably even when the most established cancer genes (and
those with the highest mutation frequencies) are disregarded in
the calculation of NMB. Importantly, we observe a comparable
signal for very well established cancer genes and cancer genes
emerging from the newest unbiased cancer sequencing studies
that we know little about in terms of biology. While it is only
possible to classify the NMB-imputed cancer genes we point
to here as bona fide functional cancer genes based on rigorous
experimental follow-up analyses, we make a comprehensive com-
parison and quantification of the signal coming from the gene
network architecuture in cancers. We furthermore illustrate how
this principle can be leveraged into a robust statistical framework
that complements gene-based tests to generate new hypotheses
about possible driver genes from existing sequencing studies. Our
approach should become more and more powerful as sequencing
studies increase in size in the future and as functional genomics
networks increase improve in coverage and accuracy.

We predict 62 genes to have a significant mutation burden
in their functional molecular neighborhood. We call this set of
genes the NMBS5000 set and show it significantly converges of
the same genes as the Cancer5000 set from the recent MutSig
suite analysis'. One gene identified by our approach is PIK3CB
and in functional validation experiments (described E. Kim et
al., manuscript in preparation) we show that over-expression of
mutant alleles of PIK3CB (E47D and A1048V) identified in the
pan-cancer sequencing study (Ref. 1) drive subcutaneous tumour
formation in mice. This example demonstrates that combining
NMB predictions with follow-up experimental data can detect
novel cancer genes. Furthermore, our analysis suggests MY07A
as an interesting candidate cancer gene that potentially can play
arole in colorectal and esophageal cancers. The NMB5000 set
also contains genes known to play a role in cancers through
copy number changes (CCNEI, TFDP] in breast cancer), by fus-
ing with other genes (RAP1GDS]I in T-cell acute lymphoblastic
leukemia®*, CBFA2T?2 also known as MTGRI in Acute myeloid
leukemia®) or by being affected by microsatellite polymorphisms
(E2F4).

We further show that the significances assigned to individ-
ual genes by the NMB approach are independent of mutation
frequencies, a limitation of existing sequenced-based methods,
and we observe an enrichment of damaging mutations in clinical
samples for genes in the NMBS5000 set further supporting that
genes identified using this method are relevant to cancers and
point to new tumour-relevant biology. Simultaneously, our analy-
sis revealed 27 genes (or 44% of all NMB-imputed cancer genes)
that were not previously strongly linked to cancers (i.e., placed
in groups 4 and 5 of our literature review). These genes may

provide new clues towards a comprehensive understanding of
tumour biology. Towards this aim all network data are deposited
on http://www.lagelab.org as a resource for the com-
munity along with graphical displays of the individual networks,
null distributions of composite mutation burden for the network
in question, and mutation information on genes in the networks
that drive the NMB signal.

The methodological framework developed here is flexible
and could easily be extended to any user-defined functional
genomics network, but also to include many different types of
mutation data (e.g., structural variation) or to be integrated as
an independent signal with the MutSig suite of tools to increase
power to detect cancer candidate genes. We expect that with
better interaction networks and larger collections of sequenced
tumours, approaches leveraging the principles we describe and
quantify here will become increasingly powerful and applicable
for biological discovery in cancers.
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Methods

Calculating the network mutation burden. For a given index
gene the network mutation burden (NMB) is formalized into a
probabilistic score that reflects the index-gene-specific composite
mutation burden [i.e. the aggregate of single-gene MutSig suite
q values from Lawrence et al.'] across its first order biological
network and is calculated via a three-step process: First, we iden-
tify all genes it interacts with directly at the level of proteins,
only including high-confidence quality-controlled data from the
functional human network InWeb'* 4, where the vast majority
of connections stem from direct physical interaction experiments
at the level of proteins. Second, the composite mutation burden
across members of the resulting network is quantified by aggre-
gating single-gene MutSig suite q values from Lawrence et al.!
into one value ¢ using an approach inspired by Fisher’s method
for combining p-values:

k
¢ ~—2Y In(p;)
i=1

Where p; is the MutSig suite q value for gene i, and k is the
amount of genes in the first order network of the index gene (i.e.
the index gene’s degree). Third, by permuting the InWeb network
using a node permutation scheme, we compare the aggregated
burden of mutations ¢ to a random expectation. In this step, the
degree of the index gene, as well as the degrees of all genes in the
index gene’s network is taken into careful consideration. The final
NMB score of an index genes is therefore an empirical P value
that reflects the probability of observing a particular composite
mutation burden across its first order physical interaction partners
(at the level of proteins) normalized for the degree of the index
gene as well as the degrees of all of its first order interaction
partners. Because we are interested in estimating the mutation
burden independent of the index gene, this gene is not included in
the analysis and it does not affect the NMB calculation meaning
that for any given gene MutSig suite significances are indepen-
dent of NMB significances (i.e., the Cancer5000 gene set and the
NMB5000 gene set are independently predicted). We tried sev-
eral ways of calculating a networks composite mutation burdens
(step 2) and permutation methods (step 3) which all give similar
results (Supplementary Note 1 and Supplementary Figure 2)
illustrating the robustness of our approach.

Classifying cancer genes. For each gene represented in In-
Web (12,507 or 67% of the estimated genes in the genome), we
used the gene-specific NMB probability to classify it as a can-
cer candidate gene or not. True positive genes were defined as
the Tier 1-4 genes (described in the main text and Supplemen-
tary Table 1) pan-cancer genes from Lawrence et al'. Tier 5
(Supplementary Table 1) was included as a negative control.
True negatives were defined as all genes in InWeb that were not in
Tiers 1-5 which is likely conservative as many of these might be
yet undetected cancer genes. We used the NMB probability as the

classifier and calculated the AUC for each Tier. We used both a
node permutation scheme and a network permutation scheme (dis-
cussed in detail in Supplementary Note 1) to generate random
networks and repeated the analysis to assess the significance of
the reported AUCs. The results were not significantly influenced
by choice of permutation method supporting the robustness of the
NMB concept and our chosen approach (Supplementary Note 1
and Supplementary Figure 2).

Predicting new NMB-imputed candidate cancer genes.
To predict new NMB-imputed cancer genes we used a node
permutation scheme to create 10° permuted networks. NMB
probabilities were determined for every gene in InWeb that was
covered by interaction data. The FDR q values were calculated
as described by Benjamini and Hochberg based on the nominal
P values controlled for 12,507 hypotheses. We performed NMB
analyses with the pan-cancer q values, as well as q values from
each of the 21 tumour types for which they were available. As it
is a technical limitation of the NMB approach that it is currently
not possible to make 5.5 * 10° network permutations we could not
create a dataset where we correct for all 12,500x22 hypotheses
tested in the NMB5000 set. For that reason our work does not
have the equivalent of the Cancer5000-S (the stringent) set from
Lawrence et al.! where the control for all of the hypotheses is
carried out simultaneously.

Enrichment of deleterious mutations in patients without
established driver mutations. Genome variation data for pa-
tients was manually extracted from the variant calling tables
of TCGA sequencing studies (Supplementary Table 1). If a
patient group without known driver mutations was already de-
fined by the authors of the study, patients were extracted di-
rectly from the variant calling file (this was the case for rhab-
doid tumour, medulloblastoma and neuroblastoma). For stud-
ies with no predefined patient groups of this type, we identi-
fied patients similarly to the four articles above as those with
no damaging mutations (frame shift or missense) in any of the
genes significantly mutated in the article in question. Variants
from the studies were either aligned using NCBI Build 36 or
37 of the human genome depending. To translate coordinates
reported for build 36 to build 37, the tool liftOver from the
UCSC Genome Bioinformatics Site (http://hgwdev-kent.
cse.ucsc.edu/) was used. The ENSEMBL Variant Ef-
fect Predictor (http://www.ensembl.org/info/docs/
tools/vep/index.html) was used to analyze all reported
variants. Briefly, we extracted the precompiled PolyPhen2*>
(http://genetics.bwh.harvard.edu/pph2/) predic-
tions. For genes with multiple transcripts, we selected the most
damaging transcript effect for the analysis and P values were cal-
culated using a non-parametric two-sample Kolmogorov-Smirnov
and the Fisher’s exact test for distributions and mutation cate-
gories, respectively. The background distribution was defined as
all genes represented in InWeb, but not significant in the NMB
analysis.
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