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Summary8

1. The partitioning of biomass into leaves and stems is one of the most uncertain and influential com-9

ponents of global vegetation models (GVMs). Although GVMs typically assume that the major10

woody plant functional types (PFTs) differ in biomass partitioning, empirical studies have not been11

able to justify these differences. Here we test for differences between PFTs in partitioning of biomass12

between leaves and stems.13

2. We use the recently published Biomass And Allometry Database (BAAD), a large database includ-14

ing observations for individual plants. The database covers the global climate space, allowing us to15

test for direct climate effects in addition to PFT.16

3. The leaf mass fraction (LMF, leaf / total aboveground biomass) varied strongly between PFTs (as17

defined by deciduous vs. evergreen and gymnosperm vs. angiosperm). We found that LMF, once18

corrected for plant height, was proportional to leaf mass per area across PFTs. As a result, the PFTs19

did not differ in the amount of leaf area supported per unit above ground biomass. We found only20

weak and inconsistent effects of climate on biomass partitioning.21

4. Combined, these results uncover fundamental rules in how plants are constructed and allow for22

systematic benchmarking of biomass partitioning routines in GVMs.23

Keywords: allocation, plant allometry, biomass estimation, specific leaf area, dynamic global vegetation24

model25
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Introduction26

The partitioning of forest biomass among leaves and stems strongly influences the productivity and car-27

bon cycle of the world’s vegetation (Ise et al., 2010; De Kauwe et al., 2014; Friend et al., 2014). Biomass28

stored in woody stems has a long residence time (Luyssaert et al., 2008), whereas leaf biomass turns over29

quickly, entering the soil carbon cycle where the majority of carbon is released back to the atmosphere30

(Ryan & Law, 2005). Globally, forests store approximately 360Pg of carbon in living biomass (Pan et al.,31

2011), equivalent to almost 40 years of current anthropogenic CO2 emissions (Friedlingstein et al., 2014).32

Reducing uncertainties about biomass partitioning and carbon residence times in GVMs is therefore a33

priority for understanding the effects of climate and other environmental change on the global carbon34

cycle (Friend et al., 2014; De Kauwe et al., 2014; Negrón-Jurez et al., 2015).35

Perhaps the biggest challenge for GVMs is to capture the combined responses of the more than 250,00036

plant species comprising the world’s vegetation. While most plants have the same basic resource require-37

ments and physiological function, large differences exist among species in the amount of energy invested38

in different tissues (leaves, stems, roots). The approach taken by most GVMs for dealing with this func-39

tional diversity is to consider only a few archetypal plant functional types (PFTs) (Harrison et al., 2010;40

Wullschleger et al., 2014), assumed to differ in key physiological attributes. While GVMs assume or pre-41

dict differences in biomass partitioning between PFTs (Notes S1), these differences are poorly constrained,42

due to limited available data. Moreover, there is little consensus on how biomass partitioning and allo-43

cation (see Methods for terminology) should be modelled in GVMs (Franklin et al., 2012; De Kauwe et al.,44

2014; Friend et al., 2014). These shortcomings largely reflect the lack of suitable datasets of global scope45

with which models can be tested, constrained and compared (Wolf et al., 2011).46

In this paper we are primarily interested in the distribution of biomass (’partitioning’) between leaves47

and woody stems, an important component of the residence time of carbon in ecosystems (Friend et al.,48

2014). Previous work based on either whole stands (O’Neill & DeAngelis, 1981; Enquist & Niklas, 2002;49

Reich et al., 2014) and or a mix on stand– and individual-based measurements (Poorter et al., 2012, 2015),50

reported differences between angiosperms and gymnosperms in the amount of leaf biomass per unit51

above-ground biomass (the ’leaf mass fraction’, LMF). Poorter et al. (2012) and Enquist & Niklas (2002)52

attributed higher LMF in gymnosperms to longer leaf lifespan (LL) compared to typical angiosperms, but53

this begs the question whether differences in LMF are also apparent between deciduous and evergreen54

functional types within angiosperms. It is also unknown whether PFTs with higher leaf biomass also55

have higher total leaf area, which is relevant because leaf area drives total light interception and thus56

productivity. Some oft-cited studies have also assumed that gymnosperms carry more leaf area than57

angiosperms (Chabot & Hicks, 1982; Bond, 1989).58

Little is known about global-scale patterns in LMF and LAR in relation to climate. It can be expected that59

biomass partitioning is correlated with precipitation or mean annual temperature because smaller-scale60
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comparisons have shown responsiveness of biomass partitioning to environmental drivers (Berninger &61

Nikinmaa, 1994; Callaway et al., 1994; Delucia et al., 2000; Poyatos et al., 2007). Moreover, a recent study by62

Reich et al. (2014) demonstrated that stand-scale biomass partitioning was related to mean annual temper-63

ature across diverse forest stands. Indeed, many GVMs assume that climate affects biomass partitioning64

within a given PFT, often through soil water stress or other abiotic stress factors (see Notes S1). Again,65

however, these models do not agree on the degree of plasticity in biomass partitioning, or which climate66

variables it should respond to.67

Despite considerable advances in theory underlying allometric scaling in plants (Enquist, 2003; West et al.,68

1999; Savage et al., 2010) we do not yet have a clear understanding of potential differences between PFTs in69

terms of biomass partitioning. Instead, most previous work has focussed on understanding size-related70

shifts in biomass partitioning, as governed by constraints including hydraulic supply and mechanical71

stability (Savage et al., 2010). Rather than to advance a specific model of biomass partitioning or alloca-72

tion, our view is that a broader evidence base is needed first to elucidate patterns between PFTs. This73

should enable those building GVMs to refine algorithms and parameter values to more closely match74

the observations. Here, we use a unique, new database (Falster et al., 2015) (Fig. 1) to establish general75

rules on how biomass partitioning differs among three dominant woody PFTs across the globe: ever-76

green gymnosperms, evergreen angiosperms, and deciduous angiosperms. A recent compilation of plant77

biomass data (Poorter et al., 2015) speculated that differences between gymnosperms and angiosperms78

in distribution of biomass between leaves and stems is related to differences in leaf mass per area. Here79

we can directly test this hypothesis as our database, unlike those of Enquist & Niklas (2002), Reich et al.80

(2014), and Poorter et al. (2015), includes many observations of leaf area as well as leaf mass measured on81

the same plants.82

A second objective was to study relationships between biomass partitioning and climate variables or83

biome at a global scale. The dataset includes observations of biomass and size metrics for individual84

plants, compiled from 175 studies across nine vegetation types (Fig. S1), across the three major biomes85

(boreal, temperate and tropical). In this paper we focus on field-grown woody plants, spanning the entire86

size range of woody plants (0.01 - >100 m height). One key challenge is thus to account for the very87

large size variation commonly found in any allometric variable (Niklas, 1994). We do this by fitting a88

semi-parametric data-driven statistical model, i.e. one that does not assume a particular functional form,89

thereby allowing us to study PFT patterns at a common plant height.90
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Materials and Methods91

Terminology92

The terms ’partitioning’ and ’allocation’ have been used in various ways, confusing comparisons between93

studies (Litton et al., 2007). Here, we define biomass partitioning as the actual distribution of biomass be-94

tween compartments (e.g., leaves vs. stems), and biomass allocation as the proportion of net primary95

production (NPP) that is allocated to some compartment. The two processes are different because of con-96

tinuous turnover of biomass, which differs strongly between compartments. We may write (McMurtrie97

& Wolf, 1983),98

dMi

dt
= aiNPP − τiMi

where Mi is the biomass in some compartment (leaves, stems or roots) remaining on the plant, ai the99

annual allocation of NPP to that compartment, and τi the annual turnover (or loss) of compartment i100

from the plant. It is thus easy to see that partitioning (Mi/MT , whereMT is total biomass) can be different101

from allocation (ai) because turnover (τi) differs between leaf and wood biomass. Here, we present data102

on biomass partitioning, which can inform models of allocation only when estimates of turnover are103

available.104

Data105

We used the recently compiled Biomass And Allometry Database (BAAD) (Falster et al., 2015), which106

in total includes records for 21084 individuals. The database has very limited overlap (n = 261, 1.7 %)107

with the recent large compilation of Poorter et al. (2015) and differs in that measurements are all for108

individual plants (where Poorter et al. (2015) included many stand-based estimates converted back to109

invididuals). In this paper we restrict our analysis to records that include leaf mass (MF ), leaf area (AF ),110

above-ground woody biomass (MS), plant height (H), and stem area measured at ground level (AS), or at111

breast height (typically 1.3m) (ASbh) (n=14860). The database contains many more variables, for example112

root biomass for a much smaller subset of studies. Here we limit the analysis to patterns in aboveground113

biomass distribution. For each analysis, we used different subsets of the data because not all variables114

were measured in each study. Sample sizes by PFT are summarised in Table 1. We excluded glasshouse115

and common garden studies, including only field-grown woody plants (including natural vegetation,116

unmanaged and managed plantations). We considered three PFTs : evergreen angiosperms, evergreen117

gymnosperms, and deciduous angiosperms. We excluded deciduous gymnosperms because few data118

were available. All locations were further separated into boreal (including sub-boreal), temperate, and119

tropical biomes. To assess the coverage of the global climate space by the dataset, we extracted mean120
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annual temperature and precipitation from Worldclim (Hijmans et al., 2005), excluding areas without121

woody vegetation (taken from the global land cover database GLC-SHARE (Latham et al., 2014)).122

For the above-ground biomass pools, we calculated the leaf mass fraction (MF /MT , where MT is total123

above-ground biomass) and leaf area ratio (AF /MT ). These variables are related by,124

LMF =
MF

MT
=

(
MF

AF

)(
AF

MT

)
= LMA × LAR.

We only used LMA directly estimated for the harvested plants (typically for a subsample of leaves, see125

Falster et al. (2015) for details on the methods for each contributed study). For conifers, leaf area was126

converted to half-total surface area using the average of a set of published conversion factors (Barclay127

& Goodman, 2000), with different conversion factors applied to pines (Pinus spp.) and non-pines. This128

conversion was necessary because half-total surface area is most appropriate for comparison to flat leaves129

(Lang, 1991; Chen & Black, 1992). Stem cross-sectional area was measured either at breast height and/or130

at the base of the plant. For the subset of the data where both were measured, we estimated basal stem131

area (AS) from breast height stem area (ASbh) using a non-linear regression model, as follows.132

Using the subset of data where basal stem diameter (AS) and diameter at breast height (ASbh) were mea-133

sured (a total of 1270 observations covering the three major PFTs), we developed a non-linear model to134

predict AS when only ASbh and plant height (H) were measured. We fit the following equation, using135

non-linear regression.136

DS = DSbhH
a/(H −Hbh)

a

where DS is the basal stem diameter (m), DSbh stem diameter at breast height, Hbh the height at which137

DSbh was measured (typically 1.3 or 1.34m), and a was further expressed as a function of plant height:138

a = c0H
c1 .

The estimated coefficients were c0 = 0.424, c1 = 0.719, root-mean square error = 0.0287.139

Data analysis140

We used generalised additive models (GAM) to capture the relationships between biomass and plant size141

variables, and to estimate variables and their confidence intervals such as LMF at a common plant height.142

In all fitted GAMs, we used a cubic regression spline. For the smoothed term in the model (plant height),143

we used up to 3 or 4 degrees of freedom, which resulted in biologically realistic smoothed relationships.144

Within the GAM, we used a penalised regression smoother (Wood, 2006) to allow the final degree of145
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smoothness to be estimated from the data. In all fitted GAMs, we used species-dataset combination as a146

random effect. All variables (except MAP and MAT) were log-transformed prior to analysis.147

Variance explained by quantitative climate variables (MAP and MAT) were tested with GAMs where148

variables were sequentially added to the model, and the explained variance (R2) calculated. For the test149

of biome effects on biomass partitioning, we used a linear mixed-effects model (because two factors and150

their interactions were tested), again with species-dataset as the random effect. We calculated the R2 for151

linear mixed-effects models for the fixed effects only (Nakagawa & Schielzeth, 2013).152

Despite the exceptional size of our dataset, the strong size-dependence of LMF still hinders comparisons153

across climatic gradients, due to the small sample size available within each species or site when sampling154

at a common height. To study climate effects on biomass partitioning, we therefore further decomposed155

LMF as the product,156

LMF =

(
MF

AS

)(
AS

MT

)
. (1)

This decomposition showed that the vast majority of size-related variation was captured byAS/MT alone,157

indicating that comparisons among MF /AS could be made without needing to compare at a common158

height. A similar decomposition of LAR as the product of AF /AS and AS/MT produced the same out-159

come. We therefore analysed for climatic effects on MF /AS and AF /AS in two ways: with quantitative160

variables (mean annual precipitation, MAP; mean annual temperature, MAT), and by biome (tropical /161

temperate/ boreal), a simple classification taking into account both MAT and MAP (Fig. S1). In both162

cases we used PFT and plant height as covariates varying across climate space.163

All analyses were conducted in R v3.2.0 (R Core Team, 2015). GAMs were fitted using mgcv package164

(Wood, 2006). The code to replicate this analysis are available on GitHub at http://github.com/RemkoDuursma/baadanalysis.165

Results166

The raw data in Fig. 2 show a steeper increase of woody aboveground biomass (MS) with plant height167

compared to foliage biomass (MF ). As a result, LMF decreased with plant height, with the three plant168

functional types clearly differing in LMF across nearly the entire size range (Fig. 3a). When we corrected169

for plant height by estimating LMF at a common plant height, we found that LMF was proportional to the170

average leaf mass per area (LMA) across the three PFTs (Fig. 3b). As a consequence, LAR was invariant171

between PFTs, because LAR = LMF / LMA (Fig. 3c and Fig. S2).172

Mirroring the results for LMF, we found that the amount of leaf mass per unit stem area (MF /AS) differed173

among the three PFTs, that these differences were also proportional to LMA (Fig. 3d), and that PFTs were174

similarly invariant in the amount of leaf area per unit stem area (AF /AS) (Fig. 3e).175
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The above results highlight how LMA drives differences in biomass partitioning among dominant woody176

PFTs. To assess whether LMA could replace PFT when predicting biomass partitioning, we fit a linear177

mixed-effects model to LMF and MF /AS using PFT and plant height (and the quadratic term) as predic-178

tors (and all interactions). We then replaced PFT with LMA, and found that the model with LMA could179

explain almost as much variation in LMF as the model with PFT (R2 = 0.74 with PFT vs. 0.62 with LMA),180

likewise for MF /AS (R2 = 0.29 vs. 0.28).181

There was considerable variation in all studied variables between species within PFTs (Fig. 4). To182

understand whether we can improve on a PFT-based classification by including other traits that affect183

biomass partitioning, we decomposed MF /AS into LMA (MF /AF ), and the ratio of leaf area to stem184

cross-sectional area (AF /AS):185

MF

AS
=

(
MF

AF

)(
AF

AS

)
. (2)

The ratio MF /AS is relevant because plant leaf mass is frequently estimated from AS with allometric186

equations (Shinozaki et al., 1964; Chave et al., 2005), using records of stem diameter commonly recorded187

on long-term monitoring plots. The correlation between MF /AS and LMA was found to hold also within188

PFTs (Fig. 5a), explaining 30% of the variation in MF /AS across species. The regressions across species189

by PFT were broad and overlapping, with a more general relationship extending across the entire LMA190

axis. A larger fraction of the variation in MF /AS was explained by species-level differences in AF /AS191

(Fig. 5b). As previously noted, AF /AS does not differ systematically among PFTs (Fig. 3e), but does vary192

close to two orders of magnitude across species. In Fig. 5b, the separation among PFTs in MF /AS arises193

due to differences in LMA.194

We found that decomposing LMF and LAR as shown in Eq. 1 was very useful to study climate effects195

because the second term (AS/MT ) absorbed nearly all of the size-related variation in LMF (Table 2 and196

Fig. S3) and is otherwise fairly conserved across PFTs (Fig. S3). As shown in Fig. 5b and Fig. 3d, the197

term MF /AS exhibits comparable differences between PFTs to LMF, but unlike LMF, MF /AS is nearly198

independent of plant height (Table 2). MF /AS is thus a useful proxy for LMF that can be compared199

across species and sites.200

Regardless of how we analysed the data, we found only weak climatic effects on biomass partitioning201

within PFTs (Fig. 6). Biome consistently explained very little variation when added to a statistical model202

in addition to PFT and plant height (R2 increased by only 0.01 - 0.06, see Table 2). Likewise, we found203

weak and inconsistent effects of climate variables (MAP and MAT) (Fig. 6b-c). These variables explained204

little variation when added to a statistical model in addition to PFT and plant height (R2 increased by205

0.01 and 0.11, respectively, see Table 2).206
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Discussion207

We found that PFTs differed in LMF, and that LMF was proportional to LMA. This conclusion was par-208

ticularly strong across the three PFTs studied, but it also held across species within PFT. The implication209

is that the amount of leaf area supported per unit biomass (leaf area ratio, LAR) does not differ between210

PFTs. This result seems robust, as our data include individual plants spanning the entire size range of211

woody plants in natural forests (0.1-100m) (Fig. 3a). Previous studies have demonstrated a large differ-212

ence in LMF between angiosperms and gymnosperms (Poorter et al., 2012, 2015), but have not been able213

to explain these differences in terms of leaf traits. We show that LMA – a central trait of the leaf economics214

spectrum (LES) (Wright et al., 2004) – explains differences in LMF in a consistent manner.215

We found that, as expected, plant size strongly influences LMF (Fig. 3) and LAR (Fig. S2) (see also Poorter216

et al. (2012, 2015)). It is thus necessary to correct for plant size when comparing biomass partitioning pa-217

rameters, as has been noted many times (McConnaughay & Coleman, 1999). We used a semi-parametric218

approach to account for plant size, which has the advantage that it does not require an a priori assump-219

tion on the functional relationship. This was useful because both LMF and LAR showed very non-linear220

patterns with plant height, even on a logarithmic scale, consistent with recent other results (Poorter et al.,221

2015).222

The finding that LMF is proportional to LMA across PFTs implies that LAR does not differ systematically223

between PFTs. One explanation for this pattern lies in the strong positive correlation between LMA and224

leaf lifespan (LL) (Wright et al., 2004). Both Poorter et al. (2012) and Enquist & Niklas (2002) explained225

higher LMF in gymnosperms by higher LL; plants simply maintain more cohorts of foliage, but this226

explanation demands that all else is equal. Yet it is not self-evident that everything else is indeed equal,227

that is, annual production of foliage could differ between PFTs. Nonetheless, further supporting this228

explanation, Reich et al. (1992) showed a positive correlation between LL and total stand leaf biomass229

across diverse forest stands. Another, not mutually exclusive, possible explanation is that plants may230

allocate biomass in a manner that targets a more constant LAR rather than LMF. Canopy size scales with231

MT (Duursma et al., 2010), and a larger canopy means higher light interception per unit total biomass232

(Duursma & Mäkelä, 2007). It can thus be argued that an optimal LAR exists that balances investment in233

supporting woody biomass (reflected by MT ) and the efficiency of foliage in terms of light interception.234

We found that patterns in MF /AS across PFTs mirrored those of LMF (Fig. 3). Because LMF may be235

decomposed into the terms MF /AS and MT /AS (eq. 2), this result suggests that MT /AS does not vary236

between PFTs (see also Fig. S3). If this result holds, it means that aboveground biomass may be estimated237

across PFTs with a single equation that does not differ between PFTs. For tropical forests, Chave et al.238

(2005) showed that aboveground biomass can be estimated as,239

MT = FρASHT
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where F is a form factor, and ρ wood density (kg m3). After rearranging, this equation predicts that240

MT /AS is proportional to plant height. We found some support for this prediction (Fig. S3), suggesting241

further improvements could be made by incorporating this dependence. It is timely to use database242

made public by Falster et al. (2015) (BAAD) and Poorter et al. (2015) to develop more general equations to243

estimate individual plant aboveground biomass across the globe.244

We found that climate did not appreciably affect biomass partitioning between leaves and stems. This245

finding is in contrast with a recent study where LMF was found to increase with MAT across the globe246

(Reich et al., 2014). One explanation for this difference is that our measurements were taken on individual247

plants, whereas in Reich et al. (2014) they were on whole stands. This suggests climatic effects on stand-248

level biomass partitioning occur primarily by altering the size-distribution and stand density (number of249

individuals per unit area), rather than partitioning within individual plants. With the caveats that there250

is still variation between species and studies unaccounted for (Fig. 4), and that coarse climate variables251

such as MAT and MAP may mask small-scale climate effects on biomass partitioning, our results strongly252

suggest the effects of PFT are stronger than any direct climate effect on biomass partitioning within indi-253

vidual plants (Table 2).254

Our results indicate that it is possible to integrate a key leaf trait with whole-plant modelling of biomass255

partitioning. Indeed, nearly as much variation was explained across species when using LMA instead of256

PFT in a statistical model. This is surprising because LMA only captures one aspect of functional differen-257

tiation among PFT – leaf morphology (but including correlated effects on leaf lifespan and photosynthetic258

capacity via the leaf economics spectrum (Wright et al., 2004)). We thus show that in a PFT-based classi-259

fication, LMA is a good first estimate of biomass partitioning, however, more variation can be explained260

by another trait (AF /AS), which varies appreciably between species. These results suggest promising261

avenues for parameterising and simplifying biomass partitioning routines in GVMs.262

Overall, our results establish general patterns about plant construction and thus lay an empirical base263

against which models can be benchmarked. A recent study compared allocation routines in a number of264

leading ecosystem models (De Kauwe et al., 2014), and recommended constraining allocation by observed265

biomass fractions instead of using constant allocation fractions. Based on our findings, a first approxima-266

tion within GVMs would be to assume leaf area to stem cross-sectional area a parameter that does not267

vary between PFTs (notwithstanding effects of plant height on this variable), and vary biomass alloca-268

tion accordingly. LMA, already a parameter in most GVMs, then gives the ratio of leaf biomass to stem269

area. Some models already incorporate a similar algorithm (see Notes S1), while other algorithms may be270

tuned to yield similar patterns between PFTs as we have presented. In any case, the growing availability271

of large datasets on stand biomass and individual plant construction (Falster et al., 2015) suggest the time272

is ripe for rigorous benchmarking (Abramowitz, 2012; De Kauwe et al., 2014) of GVMs against empirical273

data.274
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Tables280

Table 1 Sample sizes used in the analyses of the four variables considered in the study by plant func-

tional type (PFT, DA = deciduous angiosperm, EA = evergreen angiosperm, EG = evergreen gym-

nosperm) and biome. Sample sizes denote number of individuals, with number of unique species in

parentheses.

Variable PFT boreal temperate tropical Sum

MF /MT DA 184 (4) 1975 (94) 162 (14) 2321 (112)

EA 1271 (68) 1674 (169) 2945 (237)

EG 669 (7) 1222 (24) 1891 (31)

Sum 853 (11) 4468 (186) 1836 (183) 7157 (380)

AF /MT DA 1452 (68) 35 (7) 1487 (75)

EA 1124 (59) 1320 (112) 2444 (171)

EG 321 (7) 573 (15) 894 (22)

Sum 321 (7) 3149 (142) 1355 (119) 4825 (268)

MF /AS DA 308 (6) 2067 (93) 162 (14) 2537 (113)

EA 1094 (59) 1696 (173) 2790 (232)

EG 1010 (10) 1896 (31) 2906 (41)

Sum 1318 (16) 5057 (183) 1858 (187) 8233 (386)

AF /AS DA 1572 (70) 35 (5) 1607 (75)

EA 970 (54) 1370 (120) 2340 (174)

EG 458 (8) 1139 (21) 1597 (29)

Sum 458 (8) 3681 (145) 1405 (125) 5544 (278)
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Table 2 Explained variance by plant functional type (PFT), plant height (H) and climate variables (either

biome (B), or MAP and MAT) for five whole-plant variables. For the analysis with biome, each variable

was added to a linear mixed-effects model, using species within dataset as a random effect. TheR2 shown

is that explained by the fixed effects only. All fixed effects were highly significant (P <0.001). In addi-

tion to the fixed effects shown, all interactions were added to each of the models. For the analysis with

continuous climate variables MAP and MAT, each variable was added as a smooth term in a generalized

additive model (GAM), with the exception of PFT (a categorical variable). Note that explained variance

for the linear mixed-effects model and GAM is not necessarily the same even with the same predictors,

due to different methods for fitting and estimating the explained variance.

Mixed-effects model Predictors

Variable H H, PFT H, PFT, B

Leaf mass fraction(MF /MT ) 0.65 0.75 0.76

Leaf area ratio(AF /MT ) 0.69 0.69 0.75

Leaf mass / stem basal area(MF /AS) 0.01 0.25 0.29

Leaf area / stem basal area(AF /AS) 0.01 0.03 0.05

Leaf mass per area(MF /AF ) 0.13 0.60 0.66

GAM Predictors

Variable H H, PFT H, PFT, MAT, MAP

Leaf mass fraction(MF /MT ) 0.65 0.76 0.74

Leaf area ratio(AF /MT ) 0.69 0.71 0.73

Leaf mass / stem basal area(MF /AS) 0.03 0.24 0.25

Leaf area / stem basal area(AF /AS) 0.05 0.12 0.23

Leaf mass per area(MF /AF ) 0.12 0.47 0.61
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1 Figures281

(a)

H, height of plant

AS, stem area at base
ASbh, stem area at breast height

MS, Mass of stem

MT, total aboveground mass (MF + MS)

MF, mass of foliage

AF, area of foliage
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Fig. 1 Overview of the data. (a) Variables were measured on up to 14860 individual plants from 603

species. (b) Coverage of the dataset across global climate space. Grey hexagons indicate the number

of 0.5° cells with woody vegetation across the space. Colour symbols show the locations of sampled

individuals for three dominant woody functional types.
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Fig. 2 Raw data for leaf biomass (MF ) and total above-ground woody biomass (MS) for each of the

PFTs, as a function of total plant height (H). Each point is an individual plant. Sample sizes are listed in

Table 1
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Fig. 3 Dominant woody PFTs differ in leaf mass fraction due to underlying differences in leaf mass per

area. (a) Leaf mass fraction (MF /MT = leaf mass / above-ground biomass) by PFT. Each symbol is an

individual plant. Lines are generalised additive model fits. (b) and (c) Leaf mass fraction and leaf area

ratio (AF /MT ) at the average plant height in the dataset, estimated from panel (a). (d) Average leaf mass

per unit basal stem area, and (e) leaf area per unit basal stem area for the three major PFTs confirm that

the between-PFT variation in leaf mass fraction is due to leaf mass per unit basal area. Error bars are 95%

confidence intervals. Letters denote significant differences (at α = 0.05).
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Fig. 4 Plant functional types diverge strongly in mass-based partitioning, but converge in area-based

partitioning. Shown are histograms (as probability density functions) of leaf mass per area (MF /AF ), leaf

mass per unit basal stem area (MF /AS) and leaf area per unit basal stem area (AF /MS) grouped by the

three PFTs. Arrows indicate means by PFT. Colours as in Fig. 3.
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Fig. 5 Leaf and stem traits capture variation in biomass partitioning across species. Individual plant

data were averaged by species and study combinations. Lines are linear regressions with 95% confidence

intervals. Both regressions were significant (P<0.01). R2 for fitted relationships are 30.9% in panel (a)

and 66% in panel (b) (for a linear regression model including PFT as a factor variable).
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Fig. 6 Beyond influencing the distribution of PFTs, climate only modestly influences biomass partition-

ing. a) Leaf mass per unit stem cross-sectional area (MF /AS) for each PFT within three different biomes.

DA: deciduous angiosperms, EA: evergreen angiosperms, EG: evergreen gymnosperms. Error bars are

95% confidence intervals for the mean, estimated from a linear mixed-effects model using species within

study as the random effect. Letters denote significant differences (at α = 0.05). b-c) Relationships be-

tween climate and MF /AS within each PFT. Solid lines are generalised additive model (GAM) fits (with

a base dimension of 3); with grey areas indicating the 95% confidence interval around the GAM.
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Duursma RA , Mäkelä A. 2007. Summary models for light interception and light-use efficiency of non-306

homogeneous canopies. Tree Physiology, 27, 859–870. 6.307
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Supporting Information389

Additional supporting information may be found in the online version of this article.390

391

Fig. S1 Global coverage of the climate space by the dataset, labelled by vegetation type.392

Fig. S2 Leaf area ratio (AF /MT ) by PFT.393

Fig. S3 Relationship between above-ground biomass and basal stem area.394

Notes S1 Modelling of biomass partitioning in global vegetation models (GVMs)395
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