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Abstract  24 

The demographic history of most species is complex, with multiple evolutionary 25 

processes combining to shape the observed patterns of genetic diversity. To infer this 26 

history, the discipline of phylogeography has (to date) used models that simplify the 27 

historical demography of the focal organism, for example by assuming or ignoring 28 

ongoing gene flow between populations or by requiring a priori specification of 29 

divergence history. Since no single model incorporates every possible evolutionary 30 

process, researchers rely on intuition to choose the models that they use to analyze their 31 

data. Here, we develop an approach to circumvent this reliance on intuition. PHRAPL 32 

allows users to calculate the probability of a large number of demographic histories given 33 

their data, enabling them to identify the optimal model and produce accurate parameter 34 

estimates for a given system. Using PHRAPL, we reanalyze data from 19 recent 35 

phylogeographic investigations. Results indicate that the optimal models for most 36 

datasets parameterize both gene flow and population divergence, and suggest that species 37 

tree methods (which do not consider gene flow) are overly simplistic for most 38 

phylogeographic systems. These results highlight the importance of phylogeographic 39 

model selection, and reinforce the role of phylogeography as a bridge between population 40 

genetics and phylogenetics. 41 
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Phylogeographic investigations operate at the scale where population-level processes 46 

begin to form phylogenetic patterns. As such, the field can act as a bridge between 47 

population genetics and phylogenetics (Avise et al. 1987), and provide valuable 48 

information about the early stages of speciation (Moritz 1994). While early 49 

phylogeographic studies were conducted largely from a phylogenetic perspective 50 

(Crandall and Templeton 1996; Sullivan et al. 2000), the incorporation of coalescent 51 

theory (Kingman 1982) has provided a theoretical basis for incorporating population 52 

level processes such as gene flow, genetic drift, and population size change into empirical 53 

investigations. This expansion of the evolutionary processes considered by 54 

phylogeography has improved the discipline immensely, with recent studies providing 55 

clear examples of the importance of processes such as range expansion and gene flow 56 

(e.g., Khatchikian et al. 2015; Weir et al. 2015). However, increasing the complexity of 57 

the historical models considered by phylogeographic research has an associated cost; in 58 

general, analytical solutions are not available for these models, and thus complex 59 

computational machinery such as Markov chain Monte Carlo (MCMC) are required to 60 

estimate parameters that quantify processes such as gene flow.  61 

Researchers can choose among a wide range of software packages that implement 62 

powerful phylogeographic models; however, due to their inherent complexity, most of 63 

these methods impose limits on the parameter space under consideration. For example, 64 

the classic island model (Wright 1931) can be used to estimate gene flow using several 65 

methods. The popular program Migrate-n (Beerli and Felsenstein 2001) allows 66 

researchers to estimate rates of gene flow among n populations, but assumes that allele 67 

coalescence among populations is due to migration (i.e., it does not consider the temporal 68 
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divergence among populations). This assumption is counter to those of species tree 69 

methods which estimate the branching history among populations, but under the 70 

assumption of no gene flow (see Edwards 2009). Because many phylogeographic 71 

investigations are concerned with both processes, so researchers have turned to isolation-72 

with-migration (IM) models (Nielsen and Wakeley 2001), particularly IMa2 (Hey and 73 

Nielsen 2007; Hey 2010), which considers multiple populations. Such models approach 74 

the phylogenetic models that have long been applied to phylogeographic datasets, and 75 

may be particularly well suited to incipient phylogenetic systems (Hey and Nielsen 76 

2004). However, IMa2 still imposes an important limit on the historical demography of 77 

the focal system; it does not infer the relationships among lineages. Given theoretical 78 

findings that demonstrate how gene flow can decrease the accuracy of species tree 79 

inference (Eckert and Carstens 2008; Leaché et al. 2014), an ideal method would estimate 80 

gene flow in addition to the pattern and timing of population isolation.  81 

Phylogeographic methods derive signal from patterns of genetic variation inherent 82 

to the empirical data. Parameters estimated from the data are thus contingent on the 83 

parameterization of the model used to estimate a particular set of parameters, and 84 

consequently conflicting inferences can follow from analysis of the same data using 85 

different models (i.e., differing sets of parameters). Consider the example of Myotis 86 

lucifugus, a vespertillionid bat distributed throughout most of North America. Several 87 

subspecies of this bat have been described, and species delimitation analyses indicate that 88 

these subspecies are independent evolutionary lineages (Carstens and Dewey 2010; Fig. 89 

S1). However, analysis of these data using an n-island model (Migrate-n) support gene 90 

flow among 3 of the 4 subspecies (Table S1), while analyses using an IM model produce 91 
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substantial estimates of gene flow among diverging lineages (Carstens and Dewey 2010). 92 

Thus, M. lucifugus subspecies are inferred to be independent evolutionary lineages if 93 

species tree models are used to analyze the data, or populations within a species that 94 

exchange alleles when an n-island model is used to analyze the data. Parameter estimates 95 

using an IM model suggest that both processes (i.e., gene flow and population 96 

divergence) are important, but this also suggests the possibility that estimates of lineage 97 

phylogeny could be mislead by not accounting for gene flow. While assessing the extent 98 

of gene flow among populations has long been a critical aspect of speciation research 99 

(Dobzhansky 1937; Mayr 1963), results such as these are difficult to resolve unless the 100 

statistical fit of the underlying models can be evaluated. Absent a framework for 101 

evaluating model fit, researchers have been forced to reconcile conflicting parameter 102 

estimates on a post hoc basis (Koopman and Carstens 2010).  103 

 In this report, we introduce a novel method (PHRAPL) that calculates the 104 

approximate likelihood of a large number of demographic models given the data, and 105 

demonstrate that it provides a suitable framework for assessing the statistical fit of the 106 

models commonly used in phylogeographic research. PHRAPL compares the topology of 107 

gene trees estimated from empirical data to those simulated under various demographic 108 

models. It then approximates the probability of the data given those demographic models 109 

by calculating the proportion of times that simulated gene tree topologies match the 110 

empirical topologies (O’Meara 2010), and adopts a multiple model inference framework 111 

(Burnham and Anderson, 2004) to quantify the support for each model in the comparison 112 

set. When applied to empirical systems such as Myotis, it enables researchers to identify 113 

which parameters are essential to estimate. PHRAPL is also likely to be useful as a tool 114 
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for data exploration, particularly in systems that lack previous phylogeographic 115 

investigation. 116 

To date, phylogeographic inference has been almost entirely based on a 117 

qualitative interpretation of parameters that were estimated using models that were 118 

selected based on the intuition of the researchers. Consequently, it is not clear if and how 119 

incorrect phylogeographic model choice has misled researchers. To explore this question, 120 

we reanalyze recently published data (Table S2) and compare the demographic models 121 

selected by PHRAPL to those chosen by researchers.  122 

 123 

Methods 124 

 125 

Description of the phylogeographic approximate likelihood method. 126 

PHRAPL inputs gene tree topologies (without branch lengths) estimated from empirical 127 

data, as well as an association file that maps sampled individuals to populations. It 128 

assumes that recombination within genes can be ignored and that gene trees from 129 

different genes are effectively unlinked. The maximum number of free parameters (which 130 

determines the size of the set of possible models) must also be defined, either by the user 131 

or automatically. PHRAPL then creates a list of the possible demographic histories that 132 

can describe these populations. All models contain some combination of parameters that 133 

describe the time of population coalescence (t) and/or the migration rate (M = 4Nm) 134 

among some number of populations. Models with any combination of migration rates are 135 

possible; for example, one possible model could parameterize gene flow from population 136 

A to B as parameter M1, gene flow from population C to B and C to A as M2, and set all 137 
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other migration rates set to zero. In addition, users can apply filters to simplify model 138 

space: for example, one can limit models to a maximum of two different population sizes, 139 

consider only models in which all populations coalesce, and so forth. While any 140 

restriction of model space is an exchange of generality for computational efficiency, such 141 

restrictions allow for flexible incorporation of existing knowledge, and enables 142 

researchers to use PHRAPL in either a completely agnostic manner or as a tool to 143 

evaluate specific biogeographic hypotheses. The current implementation of PHRAPL 144 

assumes constant population size during a given time interval (i.e., between population 145 

splitting events), but future implementations could relax this assumption to allow 146 

exponential population growth or decline. Once the complete list of models is specified 147 

by PHRAPL, each is converted into a command for the program ms (Hudson 2002), 148 

which is then used to simulate gene trees under the various models with particular 149 

numeric values of parameters. Log-likelihoods are approximated from the proportion of 150 

simulated topologies that match the observed ones, described in more detail below. 151 

Rather than a full optimization search of parameter space, we present in this paper 152 

analyses that were conducted using a grid of parameter values. This was found in initial 153 

explorations to be more efficient than optimization (Fig. S2) and provides a better sense 154 

of the confidence intervals of parameter values than can be achieved with typical 155 

numerical optimization. Note that both a grid and continuous parameter optimization are 156 

available as options to users, although we recommend seeding optimization searches with 157 

values obtained from a preliminary grid search. Preliminary searches using a coarse grid 158 

(i.e., with large increments between proposed values) may be used to construct finer grids 159 

for subsequent analyses. In addition, if the optimal value is found to be at the extreme 160 
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edge of a grid, further searches should be conducted to include more extreme values. 161 

Although the grid is composed of discrete values, parameter estimates from a given 162 

model are obtained by model averaging across the grid, and thus parameter estimates are 163 

continuous and not confined to taking on values included in the grid. Because the size of 164 

the grid rapidly expands with additional parameters, the coarseness of the grid must be 165 

balanced with desired model complexity, and it will be computationally difficult to 166 

search over using either a grid or optimization for models with large numbers of 167 

parameters (e.g. > 10).   168 

PHRAPL is written in R, and is available at https://github.com/bomeara/phrapl . 169 

 170 

Strategies for increasing the efficiency of calculating approximate likelihoods of 171 

demographic models 172 

One obvious challenge for PHRAPL is effectively searching the large set of possible 173 

gene trees. For just seven sampled alleles, there are 10,395 binary gene trees; this number 174 

increases to >1021 trees when 20 alleles are sampled and would exceed the square of the 175 

number of atoms in the universe when more than 100 alleles are sampled. On the surface, 176 

this would seem to preclude a method that calculates probability based on the proportion 177 

of gene trees that match a given history, but PHRAPL uses several strategies to 178 

circumvent this difficulty.  179 

 First, when comparing the empirical gene tree to the simulated gene trees, 180 

PHRAPL assumes that samples from within a population are interchangeable, and then 181 

corrects for this assumption. This allows PHRAPL to switch labels within a population: if 182 

the observed gene tree is (((A1,A2),A3),(B1,C1)), where letters indicate populations, and 183 
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numbers indicate alleles sampled from that population, the simulated gene tree 184 

(((A3,A2),A1),(B1,C1)) matches the observed gene tree except for the switching of the 185 

labels within population A. Thus, when scoring matches, PHRAPL automatically 186 

considers all possible assignments of individual labels within populations and corrects for 187 

the number of such samplings (for example, in this case, there are six possible assignment 188 

permutations of labels A1, A2, and A3, so these are all tried and a match is counted as 189 

1/6 of a possible match, as the expectation is that 1/6 of the simulations would result in a 190 

perfect match). This removes the stochastic factor of intrapopulation labeling on 191 

detecting matches, and results in a more efficient matching algorithm, particularly as the 192 

number of samples increases.  193 

 Second, although there may be millions of possible gene trees under a given 194 

demographic history, these do not occur at equal probability. For example, in cases of 195 

small populations that have been isolated for many generations, congruence between the 196 

gene tree and population tree occurs at a relatively high frequency (Hudson and Turelli 197 

2003), so many gene trees will have the same interpopulation branches, leaving only 198 

intrapopulation disagreements. This non-uniform distribution of gene tree probabilities 199 

(Degnan and Salter 2005) enables a far more efficient PHRAPL inference: the main 200 

differences between models will come in the relative probabilities of fairly common 201 

trees, rather than in the relative probabilities of trees in the tail, so PHRAPL can achieve 202 

reasonable degrees of accuracy in assessing model fit with a feasible number of 203 

simulations. 204 

 Third, we implement subsampling of individuals within putative populations, 205 

which has been shown to be an effective strategy for estimating species trees from 206 
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phylogeographic data (Hird et al. 2010). Even with full resolution, having tens to 207 

hundreds of samples within a population may not provide much more information than 208 

having fewer samples because most coalescent events occur very recently in the tip 209 

populations, but will require far greater computation time. PHRAPL randomly samples 210 

individuals from all populations (with number of samples per population and number of 211 

replicates specified by the user) and then analyzes these subsampled gene trees against 212 

the model set. Multiple sampling strategies are possible, although preliminary 213 

explorations have shown that subsampling three or four alleles per population yields the 214 

best balance between adequate information content and computational efficiency.  215 

 Finally, given that the approximate likelihood is calculated by counting matches, 216 

with a finite number of simulated trees there is some probability that none of them have 217 

matched a particular observed tree. This produces a point estimate of the likelihood of the 218 

model equal to zero, or a log likelihood of negative infinity. In practice, we know that all 219 

gene topologies have a nonzero, albeit sometimes very small, probability, but having one 220 

or more negative infinities in the log likelihood prevents the calculation of the overall 221 

AIC. Put another way, our estimate of the probability of a gene tree naturally comes from 222 

the maximum likelihood estimate of the probability of successes in a binomial 223 

distribution, but this estimate prohibits calculation of the approximate likelihood if it is 224 

exactly zero. We thus incorporate this small bit of prior information. Absent data, we 225 

expect the probability that an observed tree will match a given random tree is just one 226 

over the number of possible random trees with the same number of tips. We chose to give 227 

the prior a small weight: though we simulate thousands of trees, by default (this can be 228 

adjusted by the user) the prior only has as much weight as 100 additional simulated trees 229 
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(nEq). In practice, this gives the approximate likelihood a tiny nudge away from exactly 230 

zero in the case of no matches, making the log likelihood finite, while having little effect 231 

in cases where there are observed matches. Our overall estimate of the likelihood of a 232 

gene tree G given the model (including parameters) M is not simply the number of 233 

matches (nMatch) divided by the number of simulated trees (nSim) but rather comes from 234 

a beta-binomial distribution: 235 

α = (nEq – 1) ÷ nPossibleTrees 236 

β = nEq – α – 1 237 

P(G | M) = (nMatch – α) ÷ (nSim +α + β) 238 

The effect of this change is relatively minor. Given 20 taxon gene trees, 10,000 simulated 239 

trees, and five gene trees that match, respectively, 1, 2, 0, 3, 0 times, this changes the 240 

likelihood estimate for each gene tree from 0.000100, 0.000200, 0.000000, 0.000300, and 241 

0.000000, to 0.000099, 0.000198, 1.195e-24, 0.000297, and 1.195e-24, resulting in finite 242 

log-likelihoods and calculable approximate likelihoods. 243 

 244 

Demographic histories and model space. 245 

One challenge to phylogeographic model selection is defining the complexity of the 246 

model space. The possible number of topologies for n sampled populations is slightly 247 

higher than the number of resolved and unresolved phylogenetic trees for the same 248 

number of OTUs (the difference comes from allowing histories with at least some non-249 

coalescing populations as in a typical island population model). This number grows 250 

factorially with n, and can be large, even with only a few free parameters. For example, 251 

an empirical dataset with 3 populations, up to 2 population divergence events, and 1 252 
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migration rate would have 1,462 possible histories. To reduce the complexity of model 253 

space, constraints can be added; for example users can specify that population merging is 254 

to occur only between geographically proximate populations. At most, there will be n-1 255 

possible free parameters for divergence times, 2n-2 possible population sizes at nodes 256 

(including terminal nodes) (not 2n-1, as the initial population size is fixed in all the 257 

models), 2 𝑖
2

!
!!!  possible migration rates, and 2n-1 possible population growth rates. 258 

This explicit focus on the number of free parameters has an auxiliary benefit: since the 259 

number of possible parameters scales with the number of loci and the number of samples, 260 

users should explore tradeoffs in resource allocation and may be discouraged from 261 

proposing overly-complex demographic scenarios, a common problem in 262 

phylogeography (Knowles and Maddison 2002).  263 

 While PHRAPL is not essentially a Bayesian approach, it shares some similarities 264 

with approximate Bayesian computation (ABC; Beaumont et al. 2002), which has also 265 

been applied to phylogeographic model selection (e.g., Fagundes et al. 2007; Peter et al. 266 

2010). In the absence of an analytical solution, both rely on data simulated under specific 267 

demographic scenarios, and evaluate these data by comparing them to the observed data. 268 

However, PHRAPL uses likelihood rather than a Bayesian criterion. It thus seeks the 269 

model (i.e,. demographic history + parameter estimates) that maximizes the probability of 270 

the data, rather than integrating over parameter space to calculate posterior probability. In 271 

ABC, prior beliefs about the distribution are required for parameter values (in some 272 

cases, these could be set to uninformative priors), and in some cases the priors can affect 273 

the final results (e.g., Oaks et al. 2013). PHRAPL does not use priors, but does require 274 

some specification of the region of parameter space to explore. PHRAPL also differs 275 
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from ABC in how it evaluates similarity between the simulated and the observed data. 276 

ABC approaches typically use a variety of summary statistics and require specification of 277 

an epsilon value to describe how close a simulated value has to be to an empirical value 278 

to count as a “match”. PHRAPL uses discrete gene topologies in effectively the same 279 

way, as a summary statistic, but does not require specification of an epsilon value 280 

because topology is a discrete parameter. We have observed that log-likelihoods 281 

calculated using PHRAPL are generally good approximations of analytical log-likelihood 282 

estimates (Fig. S3), at least for those demographic models which have analytical 283 

solutions. Finally, PHRAPL is explicitly tailored for model selection. It calculates AIC 284 

scores for each model (Akaike 1973) and then applies information theory (Burnham and 285 

Anderson 1998) to assess the relative support of these models given a particular dataset. 286 

This enables model selection from a large set of demographic models, an objective that is 287 

empirically difficult when using ABC for model choice (Pelletier and Carstens 2014).  288 

 289 

Analyses with simulated data 290 

We tested the performance of PHRAPL using simulated datasets for which the 291 

underlying history is known. We focused on four demographic histories (Fig. 1) each 292 

consisting of three populations: an isolation only (IO) model, isolation with migration 293 

(IM) model, n-island migration only (MO) model, and a mixed (MX) model which was 294 

intermediate to IM and MO models and included one population coalescent event, with 295 

migration between some, but not all populations. For IO and IM models, we considered 296 

three divergence depths (shallow, medium, and deep), yielding eight histories (Fig. 1). 297 

Under each history we simulated gene trees using ms for five different dataset sizes (1, 5, 298 
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10, 50, and 100 loci), with 20 replicates for each treatment (for a total of 480 datasets). 299 

Parameter values span an order of magnitude of migration rates and divergence times and 300 

were chosen to reflect the breadth of variation commonly observed within 301 

phylogeographic datasets. 302 

 We analyzed these simulated datasets against two different model sets. First, we 303 

assembled a small model set (11 models) containing (i) the full true underlying models 304 

(four models), (ii) a set of simplified IM, MO, and MX models (three models, which are 305 

identical to the full true models except that they include only a single shared migration 306 

rate), and (iii) IO and IM models that reflect alternative branching histories (four 307 

models). Secondly, we analyzed simulated datasets against a large model set consisting of 308 

a filtered set of all possible demographic models that include one, two, or three free 309 

parameters (maxK = 3). To reduce model space we assumed a shared, constant 310 

population size across populations, set the maximum number of migration parameters to 311 

one, and considered only models in which migration parameters were symmetric between 312 

populations (e.g., if there is migration from population A to population B, there must also 313 

be migration from B to A). For three populations, the three available free parameters 314 

could thus be allotted to zero, one, or two possible population coalescence events and/or 315 

to one possible migration rate, in all possible combinations. After adding in three missing 316 

full models from the small model set, this yielded a total of 81 models. We also repeated 317 

all the above analyses (for 10 replicates and for only three of the five dataset sizes) using 318 

genealogies inferred from sequence data, which we evolved along all simulated 319 

genealogies using Seq-Gen (Rambaut and Grassley 1997; Figs. S4-S5). These analyses 320 
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were designed to assess how the stochastic process of mutation influences PHRAPL 321 

inferences.  322 

For each dataset, model, and value combination in the specified parameter grid, 323 

we simulated 10,000 gene trees. For the grid, we considered seven values of time to 324 

population coalescence (t) (0.30, 0.58, 1.11, 2.12, 4.07, 7.81, and 15.00) and six values of 325 

migration rate (M) (0.10, 0.22, 0.46, 1.00, 2.15, 4.64). For each simulation, the 326 

approximate log-likelihood of a dataset under a given model was calculated using the 327 

mean log-likelihood across subsampled trees for a given locus, and summing these across 328 

loci. We performed PHRAPL analyses on 10 iterative subsamples of each dataset, 329 

subsampling 4 individuals per population (resulting in 12 tip trees). 330 

 331 

Analyses with empirical data 332 

Data were kindly provided by the corresponding authors of 19 recently-published 333 

phylogeographic investigations (Barker et al. 2012, Camargo et al. 2012, Harrington and 334 

Near 2012, Hung et al. 2012, Jackson and Austin 2012, Muir et al. 2012, Werneck et al. 335 

2012, Carstens et al. 2013, Dhami et al. 2013, Duvernell et al. 2013, Fernandez-336 

Mazuecos and Vargas 2013, Hamback et al. 2013, Leaché et al. 2013, Reilly et al. 2013, 337 

Satler et al. 2013, Talavera et al. 2013, Tsai and Carstens 2013; Wielstra et al. 2013, 338 

Giaria et al. 2014, Halas and Simons 2014; see Table S2 for specifications of included 339 

datasets). We selected studies (i) that were published or in press between January 2012 340 

and October 2013; (ii) that used *BEAST (Heled and Drummond 2010) or IMa2 (Hey 341 

2010), two of the most commonly applied methods for inferring evolutionary parameters 342 

of interest in phylogeographic datasets; (iii) that used sequence data from multiple loci 343 
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that were either available to us from the authors or from public databases; (iv) that 344 

analyzed their data using three defined lineages (to allow for the same, moderately sized 345 

model set to be used for all datasets); and (v) sampled four or more individuals per 346 

population. If a dataset lacked an outgroup sequence, we obtained one from GenBank. If 347 

needed, datasets were aligned using MUSCLE (Edgar 2004). For each dataset and locus, 348 

we estimated a maximum likelihood tree using the rapid hill-climbing algorithm (10 349 

replicate searches) and GTRGAMMA model implemented in RaxML-HPC v7.2.6 350 

(Stamatakis 2006).  351 

We analyzed each empirical dataset using the larger (81) model set used for the 352 

simulated data, except we removed the three models that contained more than one 353 

migration rate (for a total of 78 models). 200 subsample iterations were used for each 354 

dataset, with three individuals per population subsampled for each iteration (i.e., nine tip 355 

trees), as this yielded better AIC consistency across replicate runs of these datasets than 356 

was observed by subsampling four (Figs. S6-S7). The number of trees simulated per 357 

cycle was set to 100,000. The parameter grid was identical to that used for the simulated 358 

datasets, except that we added one additional migration rate (4Nm = 10). Parameter 359 

estimates for mtDNA were scaled to account for their ¼ effective population size.  360 

In addition, we analyzed the Myotis dataset (Carstens and Dewey 2010) that 361 

contained four populations (one corresponding to each subspecies) using 216 total 362 

models. These models were filtered to include only those with a fully resolved population 363 

history, but varied in topology and presence and direction of migration. 364 

 365 

Results and Discussion 366 
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Performance with simulated datasets 367 

At moderate to deep levels of divergence, PHRAPL is generally accurate at identifying 368 

the 'true' model (i.e., the model used to generate the data), although in some cases, this is 369 

contingent upon sampling many loci (Fig. 2). In cases where the generating model does 370 

not have the highest AIC score, this model is often ranked second-best and is surpassed 371 

by a model with a similar set of parameters. As with many phylogeographic methods, the 372 

accuracy of PHRAPL improves as the size of the dataset increases. While we report 373 

results for up to 100 loci, PHRAPL scales efficiently with genomic datasets because the 374 

gene trees estimated from 100s to 10,000s of loci are compared to the same simulated 375 

gene tree distributions to calculate the approximate likelihood. Performance decreases 376 

slightly when using gene trees estimated from simulated sequence data rather than the 377 

original genealogies, particularly in the case of isolation only datasets (Figs. S4-S5). 378 

Parameter estimates are generally accurate (Figs. S8-S9 and Table S3), with the 379 

exception of estimates of migration between ancestral populations, which were typically 380 

overestimated. We suspect that ancestral migration is difficult to estimate in general, as 381 

more recent events tend to erase this history. 382 

 The number of models considered by a PHRAPL analysis also affects accuracy, 383 

particularly for IM models or IO models with shallow divergence, where accuracy 384 

declines with increases in the number of models considered by the analysis. Due to the 385 

nature of the model space, our large model set is predominately composed of IM models 386 

with subtle differences among migration matrices. Thus, with fewer loci or less time for 387 

lineage sorting, it becomes a challenge to consistently distinguish among models that 388 

include slight variations on the true migration scheme. We suggest that users evaluate 389 
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parameter estimates in such cases. For example, although IM models were incorrectly 390 

inferred for many shallow isolation only datasets (although usually with the correct 391 

population topology; Fig. 2A), the estimated migration rates in these models were 392 

generally near zero (Fig. S8-S9 and Table S3). In practice, such a result would likely lead 393 

researchers (albeit in a circuitous way) to the correct inference (i.e., that migration is not 394 

very important for these datasets). The similarity in parameter values estimated using the 395 

small and large model sets (Fig. S8-S9) suggests that researchers do not necessarily need 396 

to identify the exact true model to accurately quantify the underlying processes. Rather, 397 

in keeping with the spirit of model-based inferences (e.g., Anderson 2008), it is perhaps 398 

best to view PHRAPL as a tool that is likely to identify the processes that have left a 399 

noticeable signal in the data. Parameters included in the models with the best AIC scores 400 

are those that reflect the dominant evolutionary processes that gave rise to the observed 401 

genetic patterns (Carstens et al. 2009). 402 

 The one scenario under which model inference was poor regardless of model set 403 

size was when the true model was an n-island model (Fig. 2C). In such a case, the models 404 

with the best AIC value usually included one or two divergence parameters in addition to 405 

full migration. This suggests that PHRAPL is biased towards IM models, which is 406 

worrisome for systems in which migration is so important as to have swamped out the 407 

genetic signal of the underlying divergence history. Phylogeography has been criticized 408 

for being overly reliant on tree thinking (Smouse 2008), and this aspect of PHRAPL's 409 

performance should be improved. Nevertheless, high accuracy in migration rate estimates 410 

was still observed for these datasets (Fig. S8-S9), so it is unlikely that researchers would 411 

ignore migration in such systems altogether. 412 
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When parameters are estimated using model averaging, PHRAPL is precise in 413 

most cases (Fig. S8-S9). The exceptions are the timing of divergence and gene flow 414 

among ancestral lineages. In both cases, PHRAPL tends to overestimate these values, 415 

suggesting that genetic data contains less information about earlier processes than about 416 

more recent ones. In light of these results, PHRAPL is best suited to be used as a tool for 417 

identifying the optimal model for a given empirical system. Users should devote more 418 

effort to parameter estimation after an optimal model is identified, either by using a finer 419 

parameter grid within PHRAPL or by analyzing their data using an alternative method 420 

that implements the chosen model(s) in a full probabilistic framework.  421 

Molecular systematists should be familiar with this relationship between model 422 

selection and parameter estimation; to estimate phylogenetic trees from sequence data 423 

researchers first use a program such as MODELTEST (Posada and Crandall 1998) to 424 

objectively choose a model of sequence evolution, and then other software to generate a 425 

precise estimate of the parameter in question (i.e., the phylogeny and branch lengths). 426 

However, it is worth noting that this workflow was not always in place. Prior to the 427 

widespread use of model selection, papers were routinely published that promoted 428 

unconventional relationships on the basis of phylogenetic trees that were likely poor 429 

estimates of the true parameter because they were estimated using inappropriate models 430 

(e.g., D’Erchia et al. 1996). In molecular systematics, parameters such as gamma for rate 431 

heterogeneity (Yang 1996) are important because they allow phylogeny (the true 432 

parameter of interest) to be estimated accurately, but are essentially nuisance parameters 433 

in terms of the inferences that result from the phylogeny estimate. In phylogeographic 434 

research, some parameters inherent to the models used to analyze the data are decidedly 435 
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not nuisance parameters, particularly those that model evolutionary processes such as 436 

gene flow, genetic drift, or population history.  437 

One criticism that could be made against PHRAPL is that it does not analyze all 438 

of the data. For example, it does not use raw gene sequences, nor does it use gene tree 439 

branch lengths. This is a compromise necessitated by its use of a discrete parameter to 440 

evaluate matches. In addition, it is often difficult to estimate a topology and branch 441 

lengths accurately using intraspecific data (Harding 1996), and thus branch length 442 

information would likely be noisy. Finally, there are the practical results: using just 443 

topologies, PHRAPL performs reasonably well in many cases. While we hope for 444 

methods in the future that can use more of the data, the results presented here suggest that 445 

topologies alone contain sufficient information to make inferences about important 446 

population-level evolutionary processes.  447 

 448 

Computation time required by PHRAPL 449 

The computational time requirements of PHRAPL are similar to those of other methods 450 

commonly used by phylogeographers. Using a single core, individual models required 2.3 451 

hours on average for the analysis of empirical data, resulting in a median time of 198 452 

hours (8.2 computer-days) for the total model set (78 models). However, variance around 453 

this value was high (2.6 to 31 computer-days). Notably, PHRAPL is a method that is easy 454 

to implement in parallel because only the input data are shared between models, and 455 

substantial time savings can be accomplished by analyzing models across multiple cores 456 

on a single computer or split across several computers. 457 

 458 
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Empirical studies 459 

The reanalysis of recently published data suggests that the process of gene flow has been 460 

underappreciated by phylogeographic investigations. It is almost always implicated as an 461 

important evolutionary process by PHRAPL (Fig. 3 and Fig. S10), despite the fact that 462 

many of the original studies only considered species tree models (Table S2). Note that 463 

while the number of possible IM histories is inherently much larger than the number of 464 

MO and IO histories (90% of the model set was composed of IM models, whereas IO and 465 

MO models made up only 5% each), we normalized the model class probabilities 466 

depicted in Fig. 3 based on the frequency of each model class to account for this bias. 467 

The absence of support for isolation only models among empirical datasets suggests that 468 

reliance on species tree approaches (in our sample, the most commonly applied model to 469 

phylogeographic systems) may fail to account for important evolutionary processes. 470 

Moreover, parameter estimates of non-migration parameters can be affected when 471 

migration is ignored. For each of our 20 empirical datasets (including Myotis), there were 472 

four tree structures (polytomy and all three resolved trees) that were analyzed with and 473 

without migration. In 79 out of these 80 examples, the no-migration model had 474 

divergence times lower, often much lower, than the divergence times in the best fitting 475 

corresponding migration model. Over all the 80 pairs, the median branch length under a 476 

no-migration model was just 13% of the corresponding branch length for the best 477 

migration model. Thus, for empirical datasets, ignoring migration can have a significant 478 

effect on the resulting inference, even if it is not a parameter of interest per se.  479 

Results from Myotis lucifigus mirror those seen in the analysis of the other 480 

empirical data. Of the 216 models included in the analysis, roughly 98.5 of the total 481 
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model probability was represented by isolation-with-migration models (Table 1). The 482 

inferred topology matches the topology estimated using *BEAST (not shown), but gene 483 

flow is clearly a process that should be considered to understand the evolutionary history 484 

of this group. These results imply either that species delimitation approaches such as BPP 485 

(Yang and Ranalla 2010) and spedeSTEM (Ence and Carstens 2011) can accurately 486 

delimit lineages in the presence of moderate gene flow, or that they falsely delimit 487 

lineages by treating all shared polymorphism as the product of ancestral lineage sorting. 488 

Differentiating these scenarios would require a more nuanced understanding of both the 489 

timing of diversification and gene flow than can likely be provided by the PHRAPL 490 

analysis of the data analyzed here. 491 

 492 

Conclusion 493 

Our reanalysis of 20 empirical datasets highlights the utility of phylogeographic model 494 

selection by demonstrating that the intuition of researchers (inclusive to some of the 495 

authors of this paper) is sometimes flawed in choosing the models used to analyze data 496 

from empirical systems. Optimal models for most datasets parameterize both gene flow 497 

and population divergence, suggesting that species tree methods (which do not consider 498 

gene flow) are over-simplifications for phylogeographic systems. Phylogeography has 499 

long been promoted as a 'bridge' between population genetics and systematics (Avise et 500 

al. 1987), but the reliance on the species tree has constrained the field to one side of this 501 

continuum. For the first time, PHRAPL enables researchers to select demographic 502 

models without relying on their intuition about the processes likely to be important to 503 

their systems. By allowing a direct probabilistic assessment of nearly any coalescent 504 
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model to the empirical data, PHRAPL represents a substantial addition to the 505 

methodological toolbox available to phylogeographers. 506 
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Figure Legends 703 

 704 

Fig. 1. Histories used for simulation testing. Four types of histories were simulated, each 705 

involving three populations: A: isolation only models, which exhibit two collapse events, 706 

t1 and t2 (three time depths were simulated; times are given in units of 4N); B: isolation 707 

with migration models (migration rates above arrows are given in units of 4Nm); C: a 708 

migration only model; and D: a mixed model, which includes one collapse event and 709 

migration in some, but not all directions. 710 

 711 

 712 

Fig. 2. PHRAPL results from analysis of four types of simulated models (depicted in Fig. 713 

1. A: isolation only; B isolation with migration; C: migration only; D: mixed). Results are 714 

shown for the entire model set (81 models) and for a reduced model set (11 models). 715 

Black bars give the proportion of 20 replicate analyses in which the true model garnered 716 

the highest AIC weight; grey bars give the proportion where the true model garnered the 717 

second highest AIC weight. 718 

 719 

 720 

Fig. 3. Triangle plot showing the weighted probabilities from PHRAPL analysis of 19 721 

datasets. Each of the three vertices represents a commonly used approach to 722 

phylogeographic data analysis. The top corresponds to IMa2 (Hey 2010), the lower right 723 

to Migrate-n (Beerli and Felsenstein 2001) and the lower left to a species tree analysis 724 

(i.e., *BEAST; Heled and Drummond 2010). The probabilities of each analysis are 725 
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shown decreasing from the respective vertex in increments of 0.1. Weighted probabilities 726 

were corrected for the unevenness of the model space in respect to the three model 727 

classes such that a dataset with equivalent probability for each of the models would 728 

appear in the center of the triangle (marked with a small yellow circle). Results indicate 729 

that there is very little support for the isolation-only model in these phylogeographic 730 

investigations. Percentages at the triangle tips give the proportion of the empirical studies 731 

that applied the corresponding model to the data. 732 

 733 

Table 1. Model selection results in Myotis lucifugus. Data from 4 subspecies (alacensis, 734 

carissima, lucifugus, relictus) were analyzed using PHRAPL and 216 models. Shown are 735 

the model (letters with 'M' represent models that included migration among the identified 736 

subspecies), the topology of the population tree, the number of parameters (K), the 737 

Akaike Information Criterion (Akaike 1973) score (AIC), and the model likelihood 738 

(Burnham and Anderson 1998). Subspecies are identified using the first letter of 739 

subspecies names.  740 

 741 

model	
   topology	
   K	
   AIC	
   wAIC	
  
c	
  -­‐	
  l	
  M	
   (((a,l)r)c)	
   4	
   123.23	
   0.405	
  
c	
  -­‐	
  r	
  M	
   (((a,l)r)c)	
   4	
   123.51	
   0.352	
  
a	
  -­‐	
  c	
  M	
   (((a,l)r)c)	
   4	
   126.11	
   0.096	
  
a	
  -­‐	
  c	
  -­‐	
  l	
  M	
   (((a,l)r)c)	
   4	
   126.72	
   0.071	
  
a	
  -­‐	
  l	
  M	
   (((a,l)r)c)	
   4	
   127.06	
   0.060	
  
species	
  tree	
   (((a,l)r)c)	
   3	
   129.87	
   0.015	
  
symmetric	
  M	
   (((a,l)r)c)	
   4	
   135.03	
   0.001	
  

 742 
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