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Abstract 

Differentiating pluripotent cells from fibroblast progenitors is a potentially 

transformative tool in personalized medicine. We previously identified relatively 

greater success culturing dura-derived fibroblasts than scalp-derived fibroblasts 

from postmortem tissue. We hypothesized that these differences in culture 

success were related to epigenetic differences between the cultured fibroblasts 

by sampling location, and therefore generated genome-wide DNA methylation 

and transcriptome data on 11 intrinsically matched pairs of dural and scalp 

fibroblasts from donors across the lifespan (infant to 85 years). While these 

cultured fibroblasts were several generations removed from the primary tissue 

and morphologically indistinguishable, we found widespread epigenetic 

differences by sampling location at the single CpG (N=101,989), region (N=697), 

“block” (N=243), and global spatial scales suggesting a strong epigenetic 

memory of original fibroblast location. Furthermore, many of these epigenetic 

differences manifested in the transcriptome, particularly at the region-level. We 

further identified 7,265 CpGs and 11 regions showing significant epigenetic 

memory related to the age of the donor, as well as an overall increased 

epigenetic variability, preferentially in scalp-derived fibroblasts -83% of loci were 

more variable in scalp, hypothesized to result from cumulative exposure to 

environmental stimuli in the primary tissue. By integrating publicly available DNA 

methylation datasets on individual cell populations in blood and brain, we 

identified significantly increased inter-individual variability in our scalp- and other 

skin-derived fibroblasts on a similar scale as epigenetic differences between 
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different lineages of blood cells. Lastly, these epigenetic differences did not 

appear to be driven by somatic mutation - while we identified 64 probable de-

novo variants across the 11 subjects, there was no association between mutation 

burden and age of the donor (p=0.71). These results depict a strong component 

of epigenetic memory in cell culture from primary tissue, even after several 

generations of daughter cells, related to cell state and donor age. 

 

Introduction 

 DNA methylation (DNAm) at CpG dinucleotides plays an important role in 

the epigenetic regulation of the human genome, contributing to diverse cellular 

phenotypes from the same underlying genetic sequence. For example, DNAm 

levels at particular genomic loci can accurately classify different tissues (1) and 

even underlying cell types within tissues (2). These stable cell type- and tissue-

discriminating loci appear to represent only a subset of "dynamic" CpGs, 

approximately 21.8%, actively involved in regulation of gene expression (3). 

Changes in these epigenetic patterns across aging have been extensively 

studied (4), particularly in large studies of whole blood (5-7), but subsets of these 

age-associated CpGs appear tissue-independent (8). 

 These epigenetic barcodes also play an important role in cellular 

reprogramming (the conversion of somatic cells to pluripotent stem cells), a 

powerful and promising experimental system in biology, genetics and 

personalized medicine (9). This epigenetic reprogramming of somatic cells to 

induced pluripotent stem cells (iPSCs) induces demethylation (10) followed by 
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specific patterns of subsequent DNA methylation that can reflect the original 

somatic tissue (11). Fibroblasts are one of the most popular cell types for 

generating iPSCs (12), particularly from skin, given the relative ease of access to 

these cells, although other skin-derived cell types such as keratinocytes from the 

same individual generate similar iPSC cell lines (13). Skin, however, is perhaps 

the most susceptible tissue source in the body to environmentally induced insult, 

particularly through sunlight and chemical exposures, which can induce changes 

in epigenetic patterns (14). The epigenetic “memory” of source tissue for iPSC 

characterization has been well characterized (11). 

 In our previous work, we successfully cultured fibroblast lines from the 

dura mater of postmortem human donors, a source location largely protected 

from environmental insult with slowly dividing cells (15). We compared these 

cultured fibroblast lines to those derived from scalp samples from the same 

individuals, and found that the rate of culture success was higher for dura-

derived fibroblasts; in some cases only the dura fibroblasts from an individual 

would culture. While the resulting cultured cells from these two sampling 

locations were largely morphologically indistinguishable (see Figure 1 in Bliss et 

al, 2012), we hypothesized that increased culture success might have a strong 

epigenetic component. Previous reports have indicated that cultured cells have 

largely stable epigenomes, with the exception of a small number of loci (16). We 

therefore sought to characterize the methylomes and transcriptomes of 

fibroblasts from these two sampling locations – scalp and dura – from donors 

across the lifespan.  
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Here we identify several components of epigenetic “memory” in cultured 

fibroblasts after multiple passages (i.e. splitting and continuing to grow) where 

primary tissue originated from two locations in the body. The strongest epigenetic 

memory was related to sampling location in the body, as we identified 

widespread DNAm differences at local and regional spatial scales preserved 

through identical culturing processes. We further find increased stochastic 

epigenetic variability in cultured fibroblasts from the scalp compared to dura. This 

increased variability manifested in significant increased quantitative pairwise 

epigenome-wide distances in a combined analysis with publicly available DNAm 

data on skin fibroblasts (17), pure cell populations from peripheral blood (18), 

and cells from the dorsolateral prefrontal cortex (19). Another component of 

epigenetic memory was related to the age of the donor, including a subset of 

CpGs that displayed location-dependent changes through aging. The epigenetic 

differences between these fibroblasts appear to occur largely through epigenetic-

dependent mechanisms, as there were few differences in coding sequence 

across the fibroblasts from the two locations within the same individual. These 

results demonstrate the effect of epigenetic memory in cultured fibroblasts by 

sampling location and donor age in morphologically indistinguishable cells.  

 

Results 

 We measured DNA methylation (DNAm) levels from scalp- and dura-

derived cultured fibroblasts in 11 postmortem donors (22 samples) from across 

the lifespan, ranging from early infancy to 85 years (S1 Fig., S1 Table), using the 
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Illumina HumanMethylation450 microarray (Illumina 450k) (20). After data 

processing, normalization, and quality control with the minfi package (21), we 

obtained normalized data on 21 samples (one dura sample with lower quality 

was removed prior to across-sample normalization) across 456,513 probes 

(probes with single nucleotide polymorphisms, SNPs, at the target CpG or single 

base extension site were removed, as were probes on the sex chromosomes, 

see Methods).  

 

Strong components of epigenetic memory by primary cell sampling 

location  

 We first characterized differences in DNAm levels from cultured fibroblasts 

derived from different locations (scalp versus dura). Many probes, targeting 

individual CpGs, were differentially methylated between scalp- and dura-derived 

fibroblasts – 101,989 (22%) at genome-wide significance (false discovery rate, 

FDR < 5%, see Methods). These significant DNAm differences between cultured 

fibroblasts from the scalp and dura were large in magnitude, with 57,704 probes 

having differences in DNAm levels greater than 10%, and 23,752 with differences 

greater than 20% (Fig. 1A). The directionality of these DNAm differences were 

balanced, with approximately equal proportions of CpGs showing increased 

versus decreased methylation in cultured fibroblasts from scalp compared to 

dura. These differentially methylated probes (DMPs) were widely distributed 

across the genome, as 18,551 genes (defined by UCSC knownGene database, 

see Methods) had at least one DMP within 5 kilobases (kb). These widespread 
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single CpG differences manifest as the largest component of variability in the 

entire dataset, as the first principal component (Fig. 1B, explaining 38% and 

62.3% of the variability before and after surrogate variable analysis, SVA (22)) 

represents the sampling location of these cultured fibroblasts, suggesting a 

strong epigenetic memory of original cell location. 

Since these differentially methylated CpGs tended to cluster in a smaller 

number of genes, we further identified 697 differentially methylated regions 

(DMRs) at stringent genome-wide significance (family-wise error rate, FWER < 

10%) – these regions were identified based on adjacent probes showing 

directionally-consistent differences in DNAm > 10% between groups (23) (see 

Methods). For example, we identified a region of 24 contiguous probes 

hypermethylated in scalp-derived fibroblasts within the gene RUNX3 – a tumor 

suppressor that plays an integral role in regulating cell proliferation and the rate 

of apoptosis (24) (Fig. 1C, see S2 Fig. and S2 Table for all significant DMRs). 

Regional differences, particularly in CpG island shores, previously have been 

shown to better distinguish tissues and cell types (1) and correlate with 

neighboring gene expression levels (21) than individual CpGs. Unlike at the 

single CpG level, which had balanced directionality of differential methylation, the 

majority of DMRs had higher DNAm levels in fibroblasts derived from scalp 

compared to those derived from dura (N=414, 59.4%). Using gene sets defined 

by biological processes (25), these neighboring genes (within 5 kb) were strongly 

enriched for morphogenesis (including morphogenesis of the epithelium), 

developmental processes, cell differentiation, and epithelium and connective 
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tissue development, among other more general gene sets (all p < 10-8, S3 

Table).  

In addition to the extensive differential methylation at both the CpG and 

regional level, we identified 243 long-range regions with consistent significant 

methylation change (FWER < 10%), called “blocks” (26), using an algorithm 

adapted from whole genome bisulfite sequencing (WGBS) data to Illumina 450k 

(21). A representative significant block is shown in Fig. 1D (see S3 Fig. for all 

significant blocks at FWER < 10%). Blocks have now been identified across 

many cancer types (27), and tend to associate with higher order chromatin 

structure including nuclear lamin-associated domains (LADs) (28) and large 

organized chromatin K9 modification (LOCKs) (26). The 243 significant blocks in 

our data represent 41 Mb of sequence and contain 298 annotated genes. These 

blocks contain 41 of the significant DMRs that differentiate sampling location of 

the fibroblasts, and more interestingly, every block overlaps at least one 

“dynamic” cell/tissue DMR identified using WGBS data from Ziller et al (2013) (3).  

While these cultured fibroblasts were several generations/passages 

removed from the primary tissue and morphologically indistinguishable, we 

nevertheless found widespread epigenetic differences by sampling location of the 

primary fibroblasts at varying spatial scales, suggesting a strong epigenetic 

memory of the original cell location.  

 

Epigenetic memory related to original cell location manifests in the 

transcriptome 
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 We next sought to determine the functional correlates of the widespread 

epigenetic differences identified between scalp- and dura-derived fibroblasts by 

performing RNA sequencing (RNA-seq) on polyadenylated (polyA+) mRNA from 

the same cultured samples (see Methods). Briefly, we aligned the reads to the 

transcriptome using TopHat (29) and generated normalized gene counts (as 

fragments per kb per million mapped reads, FPKM) based on the Illumina 

iGenome hg19 annotation using the featureCounts software (30). A median of 

88.0% (interquartile range, IQR: 85.5% – 88.8%) of reads mapped to the 

genome, of which a median of 84.7% (IQR: 84.4%–85.5%) mapped to the 

annotated transcriptome (see S1 Table for sample-specific percentages). We 

identified 11,218 expressed genes with average FPKM expression greater than 

1.0. Initial clustering of the FPKM values separated the fibroblast samples by 

location in the first principal component (PC), which explained 35.4% of the 

variance (S4 Fig.), mirroring the first principal component of the DNAm data (Fig. 

1B). Differential expression analysis of the RNA-seq data, independent of the 

results from the epigenetic analyses above, identified many genes that differed 

by the source of the primary fibroblast – 5,830 genes at FDR < 5%. These genes 

were strongly enriched for signaling and cell communication, cell proliferation, 

apoptotic processes, and epithelium development and morphogenesis via gene 

ontology (GO) analysis (all p < 10-8, S4 Table).  

 We next used the gene expression data as a functional readout of the 

differentially methylated loci identified between fibroblasts cultured from scalp 

and dura. The majority of significant DMPs (76,971/101,989, 75.47%) were 
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inside or near (within 5kb of) a UCSC annotated gene, and 28.2% 

(21,742/76,971) were significantly associated with gene expression levels (at p < 

0.05). This percentage of DMPs with significant expression readout was elevated 

(34.9%) among those DMPs with larger DNAm differences by sampling location 

(greater than 10% difference in DNAm levels). These DMPs were strongly 

significantly enriched among the CpG sites that associated with expression levels 

at the p < 0.05 (48,062 probes within 5kb of genes, odds ratio, OR=3.99, p < 

2.2x10-16) and FDR < 0.05 (6,559 probes within 5kb of genes, OR=19.54, p < 

2.2x10-16) significance thresholds.  

Similarly, 587/697 (84.2%) DMRs were in or near (<5kb) genes, and many 

had DNAm levels that were significantly associated with gene expression levels 

(306/587, 52.1% at p < 0.05). For instance, a DMR overlapping an intronic 

sequence of the SIM1 gene (Fig. 2A) was unmethylated with low corresponding 

expression of the gene in the cultured fibroblasts from dura, and highly 

methylated with corresponding high expression levels of the gene in the scalp-

derived fibroblasts (Fig. 2B and S2 Table). This is in line with previous reports 

suggesting that gene body methylation levels positively associate with local gene 

expression (31), unlike CpG island shore methylation that tends to be negatively 

associated with gene expression levels (1). Of the 478 unique genes in or within 

5kb of DMRs, the expression of 235 (49.2%) of them was significantly correlated 

with DNAm (p < 0.05). These 235 unique genes tended to exhibit stronger 

differential expression between the scalp- and dura-derived fibroblasts (median 

fold change = 1.59, IQR = 1.23-2.68) than individual CpG results, in line with 
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previously published findings (21). GO analysis on expression-associated genes 

proximal to DMRs revealed enrichment for multiple important biological 

processes such as connective tissue development, epithelium morphogenesis 

and development, cell differentiation (specifically including epithelial cell 

differentiation), and cell proliferation (specifically including epithelial cell 

proliferation), among other more general sets (all p < 10-8, see S5 Table). 

Lastly, we found that the majority of differentially methylated blocks 

contained at least one gene differentially expressed between scalp- and dura-

derived fibroblasts. While the majority of blocks contained at least one gene 

(N=188/243, 77.4%), 63.8% (N=120/188) had at least one gene that was 

differentially expressed (at p < 0.05). For example, one of the blocks, 

hypermethylated in scalp-derived fibroblasts, overlaps the HOXB gene cluster 

(Fig. 3A). In this block, expression levels of the HOXB genes are significantly 

greater in fibroblasts cultured from scalp than those from dura (Fig. 3B). 

Similarly, the 188 significant blocks contained 298 unique genes, and 126 of 

them (42.3%) were differentially expressed (at FDR < 0.05) which is a higher 

proportion than the rest of the transcriptome (0.42 vs. 0.32, p=3.79x10-9). These 

results suggest that epigenetic memory related to original cell location do largely 

read out in the transcriptome, particularly among regional changes in DNAm 

related to fibroblast sampling location.  

 

Increased stochastic variability in scalp-derived fibroblasts 
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We hypothesized that scalp-derived fibroblasts might have more variable 

levels of DNAm than dura-derived fibroblasts, given the chronic exposure to 

environmental factors (e.g. sunlight, chemicals) in the primary tissue across the 

lifespan. At the individual CpG level, we tested for differences in variance 

between the scalp- and dura-derived fibroblasts independent of the underlying 

mean methylation levels (32) (see Methods section). While only two probes 

reached genome-wide significance (at FDR < 0.05) for differences in variance, at 

marginal levels of significance (p < 0.05), fibroblasts cultured from scalp had 

more variable DNAm levels than fibroblasts cultured from dura 

(N=13,169/16,330, 80.6%).   

 We next sought to characterize epigenome-wide patterns of DNAm across 

these fibroblasts in the context of other diverse cell types. After downloading and 

normalizing Illumina 450k data from sorted blood (18) and frontal cortex (19), as 

well as skin-derived fibroblasts (17) and melanoma samples (SKCM) from the 

Cancer Genome Atlas (TCGA) (33), we computed epigenome-wide Euclidean 

distances between and across each of the 11 cell types (see Methods section). 

We noted that these cell types largely cluster by tissue source (brain, blood, and 

fibroblasts in the first two principal components and largest dendrogram splits, S5 

Fig.).  

The inter-individual epigenomic distances, and their variability, were much 

greater in the scalp-derived (as well as skin-derived) fibroblasts than dura-

derived fibroblasts (p=1.34x10-9 and p=1.77x10-14 respectively, see Fig. 4). The 

distances within scalp- and skin-derived fibroblasts were significantly larger than 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 25, 2015. ; https://doi.org/10.1101/025288doi: bioRxiv preprint 

https://doi.org/10.1101/025288
http://creativecommons.org/licenses/by/4.0/


 14

those calculated within pure blood and cortex cell types (p-values range from 

1.04x10-21 to <10-100). Interestingly, the inter-individual distances between 

fibroblasts cultured from scalp samples were greater than the distances between 

different cell types within a blood cell lineage (e.g. natural killer cells versus 

CD4+ T-cells) and similar to distances across lineage (e.g. natural kill cells 

versus monocytes). Note that comparing inter-individual distance between two 

cell types (e.g. scalp- versus dura-derived fibroblasts) reflects the extensive 

differential methylation between these two cell types (see Fig. 1) - the inter-

individual distances are large but the variability in distances was low. 

As another example, the distances across scalp-derived fibroblasts were 

less than comparing inter-individual variability between neurons and non-neurons 

(via NeuN+ sorting), which reflects the extensive methylation differences 

between these two cell types (19). As expected, we found the greatest 

epigenome-wide distances and largest inter-individual variability in the melanoma 

samples (26, 32), which highlights the relative scale of these epigenome-wide 

distances (ranging from pure cell types to cancer). These increased epigenomic 

distances may relate to the rate of cell division, which is non-existent in neuronal 

cells (34) and infrequent in T-lymphocytes at the population level (35). The 

increased epigenetic variability in the scalp samples was further not associated 

with differences in donor age (p > 0.05, S6 Fig.), suggesting increased epigenetic 

stochastic variability in scalp- (and skin-) derived fibroblasts.  

 

Epigenetic memory related to donor age 
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 We hypothesized that a subset of this increased variability might result 

from age-related divergence in DNAm at individual loci that were differential by 

sampling location, such that young donors would have lesser difference in DNAm 

levels, and older donors would have larger differences in DNAm. By fitting linear 

models on the difference in DNAm levels across sampling location as a function 

of donor age (see Methods), we identified 7,265 CpGs associated with diverging 

DNAm levels across aging (at FDR < 10%, S7 Fig.). These loci appeared to be 

clustered into representative patterns of their age-related changes (Fig. 5). The 

majority of these CpGs had significant age-related changes in fibroblasts derived 

from the scalp (64.0%), but not dura (17.4%), and the magnitude of change 

across age was larger in scalp-derived fibroblasts – the average change in 

percent DNAm per decade of life was 3.13% (IQR = 1.81%-4.29%) in fibroblasts 

derived from scalp compared to 1.13% (IQR = 0.295%-1.61%) in those from the 

dura mater. 

 A subset of these CpGs showing sampling location-dependent age-related 

changes associated with nearby gene expression levels. Most of the probes 

(N=5,185/7,265, 71.4%) were annotated to 3,553 unique genes (within 5kb) and 

21.8% of these (N=775/3,555) showed significant correlation between DNAm and 

gene expression (p < 0.05). These DNAm associated genes were enriched for 

multiple general developmental processes including cell development, 

morphogenesis, and differentiation (all p<10-8, S6 Table). Several of the age-

related CpGs showing expression association were within genes that are 

involved in cell proliferation and apoptosis. For instance, DNAm levels at two 
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significant probes inside the gene TEAD1, which regulates notochord 

development and cell proliferation (36), were significantly associated with gene 

expression levels (p=8.60x10-4 and 0.045, respectively). Another significant 

DNAm-expression pair (p=0.02) was located in AVEN, a gene shown to inhibit 

Caspase activation in apoptosis (37). These results suggest altered regulation of 

DNAm levels across aging occurs primarily in fibroblasts derived from scalp but 

not from dura, perhaps through altered cell proliferation and apoptosis, and 

possibly reflecting greater exposure to environmental agents that can affect the 

epigenome.  

 

Epigenetic memory related to sampling location and age do not implicate 

genetic mosaicism 

 Lastly, we characterized the expressed sequences of the scalp- and dura-

derived fibroblasts within each individual to examine the extent of genetic 

mosaicism, which may contribute to differences in DNAm through changing the 

underlying genetic sequence in the fibroblasts taken from scalp. De novo variants 

were called directly from the RNAseq data, and after filtering by many quality 

metrics (see Methods) we identified 64 high-confidence candidate variants that 

were discordant by sampling location in at least a single individual (S7 Table), 

including 22 annotated coding variants (13 synonymous and 9 non- synonymous) 

(38). We found no association between coding variant burden and subject age 

(p=0.71, S8 Fig.). These results suggest that many of the location- and age-

associated DNAm differences are not due to somatic mosaicism and likely arise 
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through epigenetic mechanisms that are maintained through cell culture and 

multiple passages.  

 

Discussion 

 Here we interrogated the epigenomes and transcriptomes of pairs of 

fibroblasts cultured from scalp and dura mater taken from the same individual, in 

a subject cohort that ranges in age across the human lifespan. These cultured 

fibroblasts, generations removed from the primary tissue of origin, and with 

indistinguishable morphology, still maintained strong components of epigenetic 

“memory” related to sampling location (scalp versus dura) and differential 

changes in DNAm levels across aging. The widespread differences in DNAm 

levels by sampling location were identified at many spatial scales, including 

single CpGs, differentially methylated regions, blocks, and globally. Furthermore, 

many of these differences in DNAm levels manifested in the transcriptome, 

showing significant corresponding differences in expression for genes most 

proximal to these epigenetic changes. The genes with differences in expression 

and DNAm levels by sampling location were previously implicated in processes 

relating to cell proliferation and apoptosis, which likely relate to the function of the 

fibroblasts in the primary tissue. One might have predicted this outcome, as 

fibroblasts in the scalp, including those that are cultured turnover much more 

rapidly than those in the dura mater (15).  

 Another component of epigenetic memory in these cultured fibroblasts 

was related to ages of the donors, where age-related changes occurred 
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differentially by sampling location. These age-associated loci can be clustered 

into general patterns of epigenetic changes by age and location, all showing 

significant interaction between donor age and sampling location. While some 

patterns were expected, such as divergence in DNAm levels from similar levels 

at birth (clusters 1, 4, 5, and 7), several other clusters showed an unexpected 

convergence in DNAm across aging (clusters 2 and 3). We do note that the 

elderly donor (age 85) is influential in both the statistical discovery at individual 

loci and in some of the subsequent clusters – larger sample sizes can hopefully 

further define and replicate these observations. Also, while the fibroblasts were 

analyzed from some subjects with psychiatric disorders, almost all comparisons 

between scalp and dura sampling locations, and differential changes with age 

were naturally matched within an individual, reducing the potential impact of 

diagnostic confounding. Furthermore, a larger sample size would likely identify 

significant divergence in DNAm at the region level – while we found 7,265 

individual CpGs, we found very few DMRs at global significance (6 and 11 DMRs 

at FWER ≤ 10% and 20% respectively). The region-finding approach has been 

shown to be statistically conservative (23) and the identification of these 

differential age-related changes by sampling location was based on number of 

donors (N=10), not the number of observations (N=21).  

 These age-related changes in cultured fibroblasts are one of the first 

examples, to our knowledge, of genome-wide significant age-related changes in 

a pure cell population that is many mitoses and passages from the original donor 

cells. Many papers have identified widespread age-related changes in 
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heterogeneous cell populations, like blood (5, 7), brain (39), and other tissue 

types (8), which may result in false positives when the underlying cellular 

composition changes across aging (4). Other papers have used individual cell 

populations to validate age-associated loci identified in homogenate tissue at 

marginal significance (40) or have identified age-related changes in targeted 

approaches at limited number of loci (41).  

Similarly, these fibroblasts cultured from the scalp and dura mater were 

the first example, again to our knowledge, of morphologically indistinguishable 

cells with vastly different epigenomic profiles. Using epigenomic distances, these 

two cohorts of fibroblasts were more different in their DNAm patterns than 

different lineages of blood cells, while less different that neuronal versus non-

neuronal cells from the frontal cortex (Fig. 4); the cells underlying each 

comparison have very different morphologies and cellular function. Furthermore, 

the majority of differences in DNAm levels between scalp- and dura-derived 

cultured fibroblasts appeared to be determined early in development, prior to 

early infancy in this sample, and remained stable throughout the lifespan. Of the 

101,989 significant DMPs for sampling location, 98,461 (96.5%) were not 

associated with differential age-related changes. These findings demonstrate 

strong components of epigenetic memory related to cell location and aging in 

fibroblasts cultured from the scalp and dura mater from postmortem human 

donors.  

There are important implications from this study for the field of 

regenerative medicine. If fibroblasts are going to be the source for iPSCs, and 
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ultimately differentiated tissues, the source of these fibroblasts, and their 

epigenetic characteristics, may be an important consideration. For example, 

these differences in cellular states in cultured fibroblasts may relate to the 

number of cell divisions, as skin and scalp fibroblasts have a much quicker 

turnover than fibroblasts in the dura (15). The extent of cell division could relate 

to the epigenomic distances between and across the diverse cell types we have 

analyzed. Further research may better determine the extent of epigenetic 

memory of cell state of fibroblasts cultured from different locations after the 

generation of iPSCs and subsequent differentiation into new cell types. As the 

field of regenerative medicine advances, our study demonstrates that deciding 

upon the source of fibroblasts from an individual to generate new tissues and 

organs may be an important consideration. While it was shown that 

transcriptional variability by tissue of origin was low in iPSCs [13], it was also 

demonstrated that the DNAm landscape in iPSCs differs greatly by tissue or 

origin, and this phenomenon may explain the propensity of iPSCs derived from 

different somatic tissues to differentiate into different lineages [11]. 

 

Methods and Materials 

Human Tissue Collection 

Human dural and scalp fibroblasts on which the methylation and gene 

expression studies were performed were obtained from fibroblast cell lines 

derived from human post mortem scalp and dura mater tissues. For this study, 

tissues from 11 individuals were used, with the ages of individuals ranging from 
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0.1 to 85 years of age (see S1 Table for additional demographics). The post-

mortem tissues from 2 of the subjects were collected by the Lieber Institute for 

Brain Development (LIBD) and the tissues from the remaining 9 subjects were 

collected by National Institute for Mental Health (NIMH) (Clinical Brain Disorders 

Branch (CBDB), Division of Intramural Research Programs (DIRP)). The NIMH 

tissues were collected from two medical examiners (Washington, DC office and 

Commonwealth of Virginia, Northern District office); the LIBD tissues were 

obtained the Office of the Chief Medical Examiner (Baltimore, MD). A preliminary 

neurological or psychiatric diagnosis was given to each case after demographic, 

medical, and clinical histories were gathered via a telephone screening on the 

day of donation. For each case, the postmortem interval (PMI) (the time (in 

hours) elapsed between death and tissue freezing) was recorded. (See Tbl. 1 for 

PMIs and demographics for every subject used in this study). Every case 

underwent neuropathological examinations to screen for neurological pathology. 

Additionally, the medical examiner’s office performed toxicology analysis of every 

subject’s blood to screen for drugs.  

Dura and scalp tissue were collected at the time of autopsy. From the 

autopsy room, the tissues were transported in separate bags: one containing 

cerebral dura mater and the other a 1 in X 1 in scalp segment with hair attached. 

Both bags were transported on wet ice to the lab, where the culture procedure 

was immediately started. 

 

Scalp and Dura Tissue Cultures 
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The dura culture medium was prepared out of 1X DMEM (Ref#11960-044, 

GIBCO) with 10% by volume fetal bovine serum, 2% by volume 100X GlutaMAX 

(Cat#: 35050, GIBCO), 1% by volume Penicillin-Streptomycin/Amphotercin 

solution (Ref# 15140-122, GIBCO), and 1% by volume Gentamicin solution (Cat# 

17105-041, Quality Biological). This culture medium was used in all subsequent 

steps of the dura culturing procedure. The scalp culture medium used for all 

subsequent steps of the scalp culturing procedure was made the same way 

except without the 1% Gentamycin. A rinsing solution was prepared out of 1X 

PBS (pH 7.2) (Ref# 21-040-CV, Corning Life Sciences), 1% by volume Penicillin-

Streptomycin/Amphotericin solution (Ref# 15140-122, GIBCO), and 1% by 

volume Gentamicin (Cat# 17105-041, Quality Biological). 

The dissected scalp sample was washed with the rinsing solution three 

times, the fat tissues were cut away, and all hair was plucked out with forceps. 

The scalp sample was then placed epidermis side down on a dish and floated 

with Dispase II enzyme solution (2.4 units of the Dispase II enzyme per mL of 

PBS, Dispase II enzyme: Cat#17105-041, GIBCO). (Dispase II enzyme is a 

proteolytic enzyme used to separate the dermis from the epidermis by cleaving 

the zone of the basement membrane.) The dish was covered with parafilm and 

foil, and placed in a 37oC incubator for 24 hours. After the 24-hour period, the 

epidermis was peeled away from the dermis. The dermis was washed with the 

rinsing solution, dried, and cut into 2-3 mm2 pieces. The pieces were placed in a 

Falcon Easy Grip tissue culture 35×10 mm dish and one drop of scalp culture 
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medium was added to each piece of scalp. The dish was placed in the incubator 

at 37oC and 5% CO2 for culturing. 

 A similar procedure was followed for the dura samples. Dura samples 

were washed with the rinsing solution three times. Then, a few 2-3 mm2 pieces 

were cut from the dura mater and placed together in an Easy Grip cell culture 

35×10 mm dish. One drop of dura culture medium was added to each dura piece. 

The culture dish was then placed in an incubator (at 37oC and 5% CO2) for 

culturing. The medium of each culture was changed to fresh medium 2-3 times 

per week to promote growth of the fibroblasts. On average, fibroblast cells 

started to proliferate at 7-14 days, however some samples took longer (up to 3 

weeks). 

 

Fibroblast Cell Cultures 

The dura and scalp tissue cultures were monitored under a phase-contrast 

microscope. When the fibroblast growth reached 90-95% confluence, 1 mL of a 

0.25% trypsin solution (Cat#T4049, Sigma) was added to each culture dish, and 

the cells were incubated for 5 to 8 min. Then, 1mL of media was added to each 

dish stop the enzymatic reaction. Next, the contents of each culture dish were 

transferred into separate 15 mL Falcon conical tubes and 8mL of media was 

added to each tube. The conical tubes were centrifuged for 5 min at 1100 rpm. 

The supernatant was discarded, 5mL of fresh media was added to each conical 

tube, and the contents of the tubes were transferred onto separate 25 cm3 cell 

culture Easy Flasks (Thermo Scientific, Cat# 156367), where they were kept in 
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cultures for 3-5 days in an incubator (at 37oC and 5% CO2). When the cells 

reached 90-95% confluence, the cells from each 25 cm3 flask were transferred 

onto two 75 cm3 cell culture easy flasks (Thermo Scientific, Cat# 156499) and 

kept in cultures for continued growth. When the cells reached 90-95% 

confluence,  

they were incubated with 3 mL of 0.25% trypsin solution for 5 to 8 min, after 

which 3mL of fresh culture media was added to stop the enzymatic reaction. 

Then, the contents of the flasks were transferred into separate 15 mL Falcon 

conical tube and 4mL of media was added to each tube. The tubes were 

centrifuged (5 min, 1100 rpm), the supernatant was discarded and the pellets 

containing the fibroblasts were removed from the centrifuge tubes and 

transferred to cryoTube vials (Cat#375418, Thermo Scientific). 0.5 mL of 

recovery cell culture freezing medium (Cat#12648-010, GIBCO) was added to 

each vial, after which the vials were insulated with Styrofoam and placed into a -

80oC freezer. Later, the tubes were transferred to a -152oC liquid nitrogen 

freezer. 

These frozen dura and scalp fibroblast cells were then used generate 

DNA methylation and gene expression levels. 

 

DNA Methylation Data Generation 

DNA methylation landscapes of the dura- and scalp-derived fibroblasts 

were analyzed using the Illumina HumanMethylation 450 BeadChip array 

(“450k”). The 450k array interrogates >485,000 DNA methylation sites (probes) 
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and measures the proportion DNA methylation at each target site (the 450k array 

interrogates both CpG and CH sites). The microarray preparation and scanning 

were performed in accordance with the manufacturer’s protocols. The resulting 

data from the 450k consists of R(ed) and G(reen) intensities using two different 

probe chemistries (20), which we converted to M(ethylated) and U(nmethylated) 

intensities using the minfi Bioconductor package (21). One dura sample had 

lower median probe intensities and was removed prior to normalization and 

downstream analyses. After quality control (QC), the M and U intensities were 

normalized separately across samples using stratified quantile normalization 

(21). Probes containing common SNPs (based on dbSNP 142) at the target CpG 

or single base extension site, and probes on the sex chromosomes were 

removed, leaving 456,513 probes on 21 samples for analysis.  

 

Differential methylation analysis  

We determined differential methylation using linear modeling on the 

normalized DNAm levels, using the model: 

��� �  �� � ����	� � 
���
� � ���                                 (1) 

where ���  is the normalized proportion methylation at probe � and sample �, �� is 

the proportion methylation in the fibroblasts sampled from the dura mater, �� is 

the difference in methylation in the scalp-derived fibroblast, and ��	� is the 

sampling location represented by a binary variable (Dura=0, Scalp=1). These 

statistical models were adjusted for surrogate variables (6 SVs) estimated using 

surrogate variable analysis (SVA) (22). 
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Differentially methylation probes (DMPs) were identified by fitting Eq. 1 to 

each probe, and obtaining the corresponding moderate t-statistic and p-value 

using the limma package (42). P-values were adjusted for multiple testing using 

the false discovery rate (FDR) (43) and significant probes were called were FDR 

< 0.05. Principal component analysis (PCA) was performed after regressing out 

the surrogate variables from the DNAm levels of each probe, preserving the 

effect of fibroblast sampling location. Finding differentially methylated regions 

(DMRs) involves identifying contiguous probes where � � 0 using the 

bumphunter Bioconductor package (version 1.6.0) (23), here requiring |�| � 0.1 

(argument: cutoff=0.1) and assessing statistical significance using linear 

modeling bootstrapping with 1000 iterations (argument: nullMethod=’bootstrap’ 

and B=1000). DMRs were called statistically significant when the family wise 

error rate (FWER) ≤ 0.1. We identified blocks using the same model as above 

using the blockFinder function in the minfi package (21), which collapses nearby 

CpGs into a single measurement per sample, and then fits Eq.1 above, only here 

� represents probe group, not probe. Here we again required at least a 10% 

change in DNAm between groups and assessed statistical significance using the 

FWER based on 1000 iterations of the linear model bootstrap.  

 

RNA extraction and sequencing 

 RNA was extracted from the cultured dura and scalp fibroblasts with the 

RNeasy kit (Qiagen), in accordance with the manufacturer’s protocol. RNA 

molecules were treated with DNase, polyadenylated (polyA+) RNA was isolated, 
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and resulting sequencing libraries were constructed using the Illumina TruSeq 

RNA Sample Preparation Kit (v2) and sequenced on an Illumina HiSeq 2000. We 

note that while all samples were run on the same flow cell, the samples were 

somewhat imbalanced by lane – however, the first PC of the expression data did 

separate perfectly by sampling location. Sample-specific information on reads 

and alignments are available in S1 Table.  

 

RNA-seq data generation 

Resulting reads were mapped to the genome using TopHat2 (29) using 

the paired-ends procedure (we used the option --library-type fr-firststrand). Gene 

counts relative to the UCSC hg19 knownGene annotation were calculated using 

the featureCounts script of the subread package (version 1.4.6) (30). There were 

23,710 genes in this annotation, and we dropped 305 genes that were annotated 

to more than 1 chromosome. Of the remaining 23,405 genes, 18,316 genes had 

non-zero expression counts in at least one sample.  Counts were converted to 

FPKM (fragments per kilobase per million reads mapped) values to allow 

comparisons across genes with different lengths and libraries sequenced to 

different depths. These FPKMs were transformed prior to statistical analysis: 

��������� � 1�. The log transformed FPKM values were used in all subsequent 

analyses.  

 

RNA-seq data analysis 
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Differential expression for sampling location was identified using Eq. 1 

above, where ��� represents transformed expression (rather than DNAm) levels, 

and different SVs (N=4) were calculated from the expression data. We carried 

out gene ontology analysis on the differentially expressed genes with the 

GOstats package (44). Transformed FPKMs were used to assess functional 

significance of differentially methylated features. We mapped the DMPs to genes 

in the UCSC knownGenes (hg19) and determined which DMPs exhibit 

correlation between DNAm and gene expression with the Matrix EQTL package 

(45). We used Pearson's Chi-squared test with Yates' continuity correction to 

examine whether DMPs are more likely to exhibit correlations between DNAm 

and gene expression than non-DMPs. We then mapped significant DMRs to 

genes expressed in the RNA-seq data (e.g. showing non-zero expression levels 

in ≥ 1 samples), and correlated the average DNAm level within the DMR to the 

transformed expression level. When multiple genes were within or near a DMR, 

we retained the gene (and its correlation) with the largest absolute correlation. 

We carried out gene ontology analysis for the genes proximal to DMRs with the 

GOstats package. For each significant block, we found the UCSC annotated 

gene(s) containing within the block and their evidence for differential expression 

as calculated above. We used Pearson's Chi-squared test with Yates' continuity 

correction to test whether differentially expressed genes were enriched in blocks 

compared to the rest of the transcriptome. 

 

Processing of public data and distance calculations 
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 We performed a second larger data processing and normalization 

procedure on our scalp- and dura-derived fibroblasts after adding data from skin 

fibroblasts (GSE52025) (17), pure populations of blood (18) and prefrontal cortex 

cells (19) from the FlowSorted.Blood.450k and FlowSorted.DLPFC.450k 

Bioconductor packages respectively, and then melanoma data from TCGA (33). 

The M and U channels were combined across all experiments and then 

normalized with stratified quantile normalization as described above. We then 

dropped the probes on the sex chromosomes as well as probes that are common 

SNPs (based on dbSNP 142) as described above. Within the normalized data, 

we then calculated all pairwise Euclidean distances on the proportion methylation 

scale, and selected specific comparisons to display in Fig. 4. 

 

Differential variability and age related changes by tissue type 

 We calculated differential variability between scalp and dura CpG DNAm 

levels using the Levene test (46) and subsequent p-values were adjusted for 

multiple testing using the FDR. We filtered out the 101,989 genome-wide 

significant probes showing mean methylation differences by sampling location, 

as there is a strong mean-variation relationship in DNAm data due to being 

constrained within 0 and 1 (e.g. gaining methylation from an unmethylated state 

or losing methylation from a fully methylated state increases variance).  

 We tested for probes that showed differential age-related divergence in 

DNAm by fibroblast sampling location. First, we calculated the difference in 

DNAm between scalp- and dura-derived fibroblasts from the same individual at 
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every probe (creating a 456,513 probe by 10 individual matrix). We then 

computed 3 surrogate variables (the number estimated by the SVA algorithm) for 

a statistical model with donor age, and fit the following linear model: 

Δ��� �   � � !�"�#� � 
��
�
� � ���                                  (2) 

where Δ��� is the difference in DNAm levels between scalp and dura for probe � 

and individual �,  � is the difference in DNAm levels at birth, "�#� is the age of the 

donor, and !� is the change in the difference of DNAm per year of life. We then 

generated a Wald statistic and corresponding p-value for !� and adjusted for 

multiple testing via the FDR. Post hoc age-related changes, e.g. the change in 

DNAm levels per year of life, were calculated within the scalp and dura samples. 

We then associated expression of nearby genes (within 5kb) with the DNAm 

levels at the probes showing significant age-by-location effects and performed 

gene ontology on the significant genes with the GOstats package (44). 

 

Variant calling 

We called expression variants directly from the RNA sequencing 

alignments using samtools (version 1.1) and mpileup across all samples (47). We 

then filtered variants in the resulting variant call format (VCF) file based on 

coverage (<20), variant distance bias (p<0.05), read position bias (p<0.05), 

mapping quality bias (p<0.05), base quality bias (p<0.05), inbreeding coefficient 

binomial test (p<0.05), and homozygote bias (p>0.05). The resulting 64 high 

quality variants were annotated with SeattleSeq138 (38). 
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Study approval 

For every subject from whom the post-mortem tissues were collected, 

informed consent was obtained verbally from the legal next-of-kin using a 

telephone script, and was both witnessed and audiotaped, in accordance with the 

IRB approved NIMH protocol 90-M-0142 and the Department of Health and 

Human Services for the State of Maryland (protocol # 12-24). 

 

Data Availability  

DNA methylation data in both raw and processed forms will be deposited 

on the Gene Expression Omnibus (GEO), accessing number pending. RNA 

sequencing reads will be deposited on the Short Read Archive (SRA, BioProject: 

PRJNA286856) and the genes counts will be deposited on GEO.  

 

Figure Captions 

Fig. 1. DNA methylation patterns in dura- and scalp-derived fibroblasts.  

(A) Histogram of difference in DNAm levels at CpGs/probes between scalp and 

dura derived fibroblasts (on the proportion methylation scale). (B) The first 

principal component (PC1) of the DNAm data plotted against fibroblast sampling 

location (scalp versus dura). (C) Example significant differentially methylated 

region (DMR) that overlaps the gene RUNX3, with DNAm levels on the y-axis 

and genomic coordinates on the x-axis. (D) Example significant DNAm block, 

with DNAm levels on the y-axis and genomic coordinates on the x-axis. Gene 
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annotation panels in C and D are based on Ensembl annotation – dark blue 

represents exons and light blue represents introns. 

 

Fig. 2. Regional DNA methylation changes manifest in the transcriptome.  

(A) Plot of the DNAm levels (proportion methylation) of an example significant 

DMR, which overlaps the gene SIM1. (B) Plot of the average DMR DNAm levels 

versus the expression level of SIM1, showing high positive correlation 

(p=4.67x10−8). 

 

Fig. 3. Long-range DNA methylation changes manifest in the transcriptome.  

(A) Plot of the DNAm levels (proportion methylation) of a significant DNAm block 

overlapping genes in the HOX family. Y-axis: proportion DNAm levels, x-axis: 

genomic coordinates on chromosome 17. (B) Corresponding expression levels of 

the HOX genes within the DNAm block are more highly expressed in the scalp. 

Y-axis: log2 transformed fragments per kilobase per million mapped (FPKM), x-

axis: sampling location. 

 

Fig. 4. Increased epigenome distances within scalp-derived fibroblasts.  

Y-axis: epigenome (Euclidean) distance between pairs of samples stratified by 

cell and tissue types. CD4T: CD4+ T-cell, NK: natural killer cell, Mono: monocyte, 

NeuN+: neuronal DLPC cell, NeuN-: non-neuronal DLPFC cell. 
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Fig. 5. Representative patterns of age-associated changes in DNAm by 

sampling location.  

Y-axis: mean-centered DNAm levels, y-axis: sample age, p-value represents the 

statistical interaction between sampling location and age on DNAm levels. N: 

number of CpGs in the cluster. 

 

Supporting Information 

S1 Fig. Experimental setup.  

We took dura and scalp samples from 11 donors ranging from 0.1 to 85 years of 

age. We then extracted and cultured fibroblasts from these samples, and 

performed genome-wide DNA methylation and RNA sequencing procedures on 

these fibroblasts. 

 

S2 Fig. DMR plots.  

DNA methylation levels (proportion methylation) of all 697 significant DMRs 

(FWER < 10%). 

 

S3 Fig. DNA methylation “blocks” plots.  

DNA methylation levels (proportion methylation) of all 243 significant differentially 

methylated blocks (FWER < 10%). 

 

S4 Fig. Principal Component Analysis Plots.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 25, 2015. ; https://doi.org/10.1101/025288doi: bioRxiv preprint 

https://doi.org/10.1101/025288
http://creativecommons.org/licenses/by/4.0/


 34

The first principal component (PC1) of the gene expression data plotted against 

fibroblast sampling location (scalp versus dura). The first PC of the gene 

expression data mimics the first PC of the DNAm data; both represent sampling 

location. 

 

S5 Fig. Clustering analysis on DNAm data from cells of different tissues.  

(A) PC1 with respect to PC2 of the DNAm data from the following cells: various 

cells of the blood; neuronal (NeuN+) and glial (NeuN-) cells from the DLPFC; 

cultured fibroblasts derived from skin, dura mater, and scalp; cells from a primary 

solid skin tumor. (B) Cluster dendrogram constructed from the DNAm data from 

the cells in panel A. 

 

S6 Fig. Epigenomic distance within scalp-derived fibroblasts with respect 

to age differences between subjects. 

 

S7 Fig. Age related DNAm divergence.  

DNAm plotted with respect to age for all 7,265 CpGs significantly associated with 

diverging DNAm levels across aging (at FDR < 10%). 

 

S8 Fig. Number of coding variants with respect to subject age. 

 

S1 Table. Tissue donor demographics and RNAseq read alignment data. 
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S2 Table. Information on significant DMRs (FWER < 10%). 

 

S3 Table. DMR Gene Ontology.  

Gene Ontology on genes that overlap or are proximal to (within 5kb) of significant 

DMRs (FWER < 10%). 

 

S4 Table. Gene Ontology on genes differentially expressed between scalp- 

and dura-derived fibroblasts (FDR < 5%). 

 

S5 Table. DMR Gene Ontology.  

Gene Ontology on genes that overlap or are proximal to DMRs (within 5 kb) and 

exhibit significant correlation between gene expression and DNAm (p < 0.05). 

 

S6 Table. Gene Ontology on genes whose expression is correlated with 

nearby diverging DNAm CpGs. 

Gene Ontology on genes that overlap or are proximal to (within 5kbs) of CpGs 

that exhibit location-dependent age-related changes (FDR < 10%) and 

demonstrate correlation between DNAm and expression (p < 0.05).  

 

S7 Table. Candidate exonic variants between scalp- and dura-derived 

fibroblasts. 
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