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ABSTRACT 
SUMMARY: Modern implementations of forward population genetic simulations are efficient 
and flexible, enabling the exploration of complex models that may otherwise be intractable. 
Here we describe an updated version of SFS_CODE, which has increased efficiency and in-
cludes many novel features.  Among these features is an arbitrary model of dominance, the 
ability to simulate partial and soft selective sweeps, as well as track the trajectories of muta-
tions and/or ancestries across multiple populations under complex models that are not possible 
under a coalescent framework. We also release sfs_coder, a Python wrapper to SFS_CODE 
allowing the user to easily generate command lines for common models of demography, selec-
tion, and human genome structure, as well as parse and simulate phenotypes from SFS_CODE 
output. 
Availability and Implementation: Our open source software is written in C and Python, and 
are available under the GNU General Public License at http://sfscode.sourceforge.net. 
Contact: ryan.hernandez@ucsf.edu 
Supplementary information: Detailed usage information is available from the project website 
at http://sfscode.sourceforge.net.  

1 INTRODUCTION  AND FEATURES  
Efficient, highly flexible forward genetic simulations are essential components of several lines of re-
search. In population and evolutionary genetics, they are necessary to evaluate the robustness of theoret-
ical models (Bank et al. 2014); in association studies, they are crucial for measuring statistical power 
(Uricchio et al. 2015); and future applications may include statistical inference (Buzbas & Rosenberg 
2015).  

SFS_CODE is a computationally efficient implementation of a population genetic forward simu-
lation.  It has been used to understand the evolutionary forces driving patterns of genetic variation across 
many species (e.g. humans, Drosophila, plants, and coral), characterize complex demographic models, 
jointly model the effect of positive and negative selection, as well as designing statistical methods and 
sequencing studies. Since its introduction, SFS_CODE has undergone extensive revisions, and continues 
to be among the most efficient and flexible simulators available. Table 1 highlights novel features. In 
particular, efficient conditional simulations are now possible (e.g., using --trackTrajectory to 
retain simulations with specific terminal conditions, or --mutation to follow a specified trajectory). 

We also introduced sfs_coder, a Python-based SFS_CODE interface that easily generates 
command-lines for several models of human demography, selection, and genome structure, as well as 
parses and analyzes SFS_CODE output, simulates selection-based phenotypes, and provides rescaling 
methods for simulations of linked positive selection. 
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Table 1. Key novel features added to SFS_CODE 
Option Description 
--sampSize Sample populations at defined 

times 
--selDistType Dominance, selection on stand-

ing variation 
--rateClassLoci Locus-specific mutation rates 
--admix Join multiple populations at spec-

ified time 
--trackAncestry Report ancestry of each locus 
--trackTrajectory Follow frequency trajectory of an 

allele 
--mutation Introduce mutations; follow 

specified trajectory  

See documentation for details 

2 METHODS 
Efficiency gains in SFS_CODE have been achieved by storing all unique haplotypes in a locus as a col-
lection of mutations in a randomized splay tree (a binary search tree that self-organizes upon accessing 
an element with probability p; (Albers & Karpinski 2002)). Individuals in a population are then stored as 
arrays of haplotypes across loci. Since many haplotypes are introduced and lost each generation, 
SFS_CODE efficiently reuses lost haplotypes to reduce allocation and deallocation overhead. 

While highly efficient for many use cases, these data structures can come at a cost when the num-
ber of unique haplotypes is large relative to the population size (e.g., long locus length or high muta-
tion/recombination rate).  SFS_CODE therefore benefits if long chromosomes are partitioned into small-
er linked segments.  The ideal partitioning depends on several parameters, and can be optimized heuris-
tically with simulations that have a short burn-in time using the Perl script optimizeLL.pl now in-
cluded in the distribution. 

2.1 Comparing performance 
We compared the run time of simulations using SFS_CODE to several other efficient forward simulation 
programs that have recently been released: FFPopSim (Zanini & Neher 2012), fwdpp_ind (Thornton 
2014), and SLiM (Messer 2013). Figure 1 shows the results, with the coalescent simulator ms (Hudson 
2002) as a reference (which are often below scale as plotted). We varied the population size (N) and total 
locus length (L) for two values of the mutation (θ) and recombination (ρ) rates (roughly corresponding 
to human and Drosophila parameters). We find that for short loci, FFPopSim can be extremely effi-
cient, but it does not scale well with L. SFS_CODE (and the locus-optimized version) is often the most 
efficient.  For large L with unrealistically small N, forward simulations can be faster than the coalescent 
simulator ms (which has ~exponential runtime in L with recombination; though see (Marjoram & Wall 
2006)). All simulations were run on an Intel Xeon 2.66GHz CPU. 
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Fig. 1.  Mean run times 
across simulators, repre-
senting 12.55 CPU years of 
computation (10 iterations 
per point). Each panel is a 
function of simulated se-
quence length, with lower 
(human; left) and higher 
(Drosophila; right) mutation 
(θ) and recombination (ρ) 
rates. The coalescent simu-
lator ms is included in black 
for reference.  Dashed red 
lines are a locus-optimized 
version of SFS_CODE, with 
the optimal number of loci 
indicated in graph. Missing 
points represent parameter 
combinations that did not 
complete within 14 days. 
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