
© Oxford University Press 2005 1

SFS_CODE: More Efficient and Flexible Forward Simulations
Ryan D. Hernandez1,* and Lawrence H. Uricchio1,2
1Department of Bioengineering and Therapeutic Sciences; Institute for Human Genetics; Institute for Quantitative
Biosciences; University of California San Francisco, CA 94158.
2Current address: Department of Biology; Stanford University, CA 94305.

ABSTRACT
SUMMARY: Modern implementations of forward population genetic simulations are efficient
and flexible, enabling the exploration of complex models that may otherwise be intractable.
Here we describe an updated version of SFS_CODE, which has increased efficiency and in-
cludes many novel features. Among these features is an arbitrary model of dominance, the
ability to simulate partial and soft selective sweeps, as well as track the trajectories of muta-
tions and/or ancestries across multiple populations under complex models that are not possible
under a coalescent framework. We also release sfs_coder, a Python wrapper to SFS_CODE
allowing the user to easily generate command lines for common models of demography, selec-
tion, and human genome structure, as well as parse and simulate phenotypes from SFS_CODE
output.
Availability and Implementation: Our open source software is written in C and Python, and
are available under the GNU General Public License at http://sfscode.sourceforge.net.
Contact: ryan.hernandez@ucsf.edu
Supplementary information: Detailed usage information is available from the project website
at http://sfscode.sourceforge.net.

1 INTRODUCTION AND FEATURES
Efficient, highly flexible forward genetic simulations are essential components of several lines of re-
search. In population and evolutionary genetics, they are necessary to evaluate the robustness of theoret-
ical models (Bank et al. 2014); in association studies, they are crucial for measuring statistical power
(Uricchio et al. 2015); and future applications may include statistical inference (Buzbas & Rosenberg
2015).

SFS_CODE is a computationally efficient implementation of a population genetic forward simu-
lation. It has been used to understand the evolutionary forces driving patterns of genetic variation across
many species (e.g. humans, Drosophila, plants, and coral), characterize complex demographic models,
jointly model the effect of positive and negative selection, as well as designing statistical methods and
sequencing studies. Since its introduction, SFS_CODE has undergone extensive revisions, and continues
to be among the most efficient and flexible simulators available. Table 1 highlights novel features. In
particular, efficient conditional simulations are now possible (e.g., using --trackTrajectory to
retain simulations with specific terminal conditions, or --mutation to follow a specified trajectory).

We also introduced sfs_coder, a Python-based SFS_CODE interface that easily generates
command-lines for several models of human demography, selection, and genome structure, as well as
parses and analyzes SFS_CODE output, simulates selection-based phenotypes, and provides rescaling
methods for simulations of linked positive selection.

*To whom correspondence should be addressed.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 20, 2015. ; https://doi.org/10.1101/025064doi: bioRxiv preprint

https://doi.org/10.1101/025064
http://creativecommons.org/licenses/by/4.0/

R. D. Hernandez and L. H. Uricchio

2

Table 1. Key novel features added to SFS_CODE
Option Description
--sampSize Sample populations at defined

times
--selDistType Dominance, selection on stand-

ing variation
--rateClassLoci Locus-specific mutation rates
--admix Join multiple populations at spec-

ified time
--trackAncestry Report ancestry of each locus
--trackTrajectory Follow frequency trajectory of an

allele
--mutation Introduce mutations; follow

specified trajectory

See documentation for details

2 METHODS
Efficiency gains in SFS_CODE have been achieved by storing all unique haplotypes in a locus as a col-
lection of mutations in a randomized splay tree (a binary search tree that self-organizes upon accessing
an element with probability p; (Albers & Karpinski 2002)). Individuals in a population are then stored as
arrays of haplotypes across loci. Since many haplotypes are introduced and lost each generation,
SFS_CODE efficiently reuses lost haplotypes to reduce allocation and deallocation overhead.

While highly efficient for many use cases, these data structures can come at a cost when the num-
ber of unique haplotypes is large relative to the population size (e.g., long locus length or high muta-
tion/recombination rate). SFS_CODE therefore benefits if long chromosomes are partitioned into small-
er linked segments. The ideal partitioning depends on several parameters, and can be optimized heuris-
tically with simulations that have a short burn-in time using the Perl script optimizeLL.pl now in-
cluded in the distribution.

2.1 Comparing performance
We compared the run time of simulations using SFS_CODE to several other efficient forward simulation
programs that have recently been released: FFPopSim (Zanini & Neher 2012), fwdpp_ind (Thornton
2014), and SLiM (Messer 2013). Figure 1 shows the results, with the coalescent simulator ms (Hudson
2002) as a reference (which are often below scale as plotted). We varied the population size (N) and total
locus length (L) for two values of the mutation (θ) and recombination (ρ) rates (roughly corresponding
to human and Drosophila parameters). We find that for short loci, FFPopSim can be extremely effi-
cient, but it does not scale well with L. SFS_CODE (and the locus-optimized version) is often the most
efficient. For large L with unrealistically small N, forward simulations can be faster than the coalescent
simulator ms (which has ~exponential runtime in L with recombination; though see (Marjoram & Wall
2006)). All simulations were run on an Intel Xeon 2.66GHz CPU.

ACKNOWLEDGEMENTS
Funding: This work was supported by a grant from the National Institutes of Health (1R01HG007644)
and a Sloan Foundation Research Fellowship to RDH.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 20, 2015. ; https://doi.org/10.1101/025064doi: bioRxiv preprint

https://doi.org/10.1101/025064
http://creativecommons.org/licenses/by/4.0/

SFS_CODE: More Efficient and Flexible Forward Simulations

3

REFERENCES
Albers S, Karpinski M (2002) Randomized splay trees: theoretical and experimental results. Information

Processing Letters, 81, 213–221.
Bank C, Ewing GB, Ferrer-Admettla A, Foll M, Jensen JD (2014) Thinking too positive? Revisiting cur-

rent methods of population genetic selection inference. Trends Genet, 30, 540–546.
Buzbas EO, Rosenberg NA (2015) AABC: approximate approximate Bayesian computation for infer-

ence in population-genetic models. Theor Popul Biol, 99, 31–42.
Hudson RR (2002) Generating samples under a Wright-Fisher neutral model of genetic variation. Bioin-

formatics, 18, 337–338.
Marjoram P, Wall JD (2006) Fast "coalescent" simulation. BMC Genet, 7, 16.
Messer PW (2013) SLiM: simulating evolution with selection and linkage. Genetics, 194, 1037–1039.
Thornton KR (2014) A C++ template library for efficient forward-time population genetic simulation of

large populations. Genetics, 198, 157–166.
Uricchio LH, Torres R, Witte JS, Hernandez RD (2015) Population genetic simulations of complex phe-

notypes with implications for rare variant association tests. Genet Epidemiol, 39, 35–44.
Zanini F, Neher RA (2012) FFPopSim: an efficient forward simulation package for the evolution of

large populations. Bioinformatics, 28, 3332–3333.

1e
−0

7
0.

00
1

1
R

un
 T

im
e

(d
)

1000 10000 1e+05 1e+06 1e+07

θ=ρ=0.001

● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

10
50

1000

1e
−0

5
0.

01
1

1000 10000 1e+05 1e+06 1e+07

θ=ρ=0.005

N
=5

00

●

●

●

●

●

FFPopSim
fwdpp_ind
slim

SFS_CODE (opt)
SFS_CODE
ms

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

20
200

5000

1e
−0

5
0.

01
1

R
un

 T
im

e
(d

)

1000 10000 1e+05 1e+06 1e+07

● ●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ●

●

●

●

5
50

500

1e
−0

5
0.

01
1

1000 10000 1e+05 1e+06 1e+07

N
=1

,0
00

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

10
200

2000

0.
00

1
0.

1
10

R
un

 T
im

e
(d

)

1000 10000 1e+05 1e+06 1e+07

●
●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ●

●

●

10
100

0.
00

1
0.

1
1

10

1000 10000 1e+05 1e+06 1e+07

N
=1

0,
00

0

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

5
100

500

0.
00

1
0.

1
1

10
R

un
 T

im
e

(d
)

1000 10000 1e+05 1e+06 1e+07

L

●
●

●

●

●

●

●

● ● ●

●

●

●

● ●
●

●

5

50

0.
01

1
10

1000 10000 1e+05 1e+06 1e+07

L

N
=5

0,
00

0

●
●

●

●

●

●

●
● ●

●

●

● ●

●

5

50

Fig. 1. Mean run times
across simulators, repre-
senting 12.55 CPU years of
computation (10 iterations
per point). Each panel is a
function of simulated se-
quence length, with lower
(human; left) and higher
(Drosophila; right) mutation
(θ) and recombination (ρ)
rates. The coalescent simu-
lator ms is included in black
for reference. Dashed red
lines are a locus-optimized
version of SFS_CODE, with
the optimal number of loci
indicated in graph. Missing
points represent parameter
combinations that did not
complete within 14 days.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 20, 2015. ; https://doi.org/10.1101/025064doi: bioRxiv preprint

https://doi.org/10.1101/025064
http://creativecommons.org/licenses/by/4.0/

