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Abstract 

Urbanization results in pervasive habitat fragmentation and reduces standing genetic variation 

through bottlenecks and drift. Loss of genome-wide variation may ultimately reduce the 

evolutionary potential of animal populations experiencing rapidly changing conditions. In this 

study, we examined genome-wide variation among 23 white-footed mouse (Peromyscus 

leucopus) populations sampled along an urbanization gradient in the New York City 

metropolitan area. Genome-wide variation was estimated as a proxy for evolutionary potential 

using more than 10,000 SNP markers generated by ddRAD-Seq. We found that genome-wide 

variation is inversely related to urbanization as measured by percent impervious surface cover, 

and to a lesser extent, human population density. We also report that urbanization results in 

enhanced genome-wide differentiation between populations in cities. There was no pattern of 

isolation by distance among these populations, but an isolation by resistance model based on 

impervious surface significantly explained patterns of genetic differentiation. Isolation by 

environment modeling also indicated that urban populations deviate much more strongly from 

global allele frequencies than suburban or rural populations. This study is the first to examine 

loss of genome-wide SNP variation along an urban-to-rural gradient and quantify urbanization as 

a driver of population genomic patterns. 
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Introduction 

Humans exert an outsized influence on ecosystems (Vitousek et al. 1997) in the Anthropocene. 

This era began sometime between the late Pleistocene (Ellis et al. 2013; Ruddiman et al. 2015) 

and industrialization in the last few centuries (Steffen et al. 2007), but is always characterized by 

a global increase in human influence on biological and geochemical processes. Rapid 

urbanization is a key characteristic of the contemporary Anthropocene. The proportion of 

humans in cities increased from 16% to 50% in the last century, and is projected to reach 70% by 

2050 (Heilig 2011). Urban land conversion may occur at an even faster rate than population 

growth, thus resulting in accelerating encroachment of cities on reservoirs of biodiversity (Seto 

et al. 2012). Urban areas become ecologically homogeneous (Groffman et al. 2014) due to loss 

of vulnerable species that in turn enhances the probability of abrupt state shifts (Barnosky et al. 

2012). 

Most species are ‘urban avoiders’ that do not persist after urbanization, but ‘urban 

adapters’ and ‘exploiters’ are facultative or obligate users, respectively, of human-dominated 

habitats (Blair 2001; McKinney 2002). Although Blair’s (2001) conception of urban adapters did 

not explicitly include evolution after urbanization, local adaptation may have enhanced the 

ability of urban adapters to exploit human subsidies. Urban habitats are ‘novel ecosystems’ 

composed of unique ecological communities and processes (Hobbs et al. 2006; Hobbs et al. 

2009), and thus many species likely face new, strong selection pressures from urbanization. 

Humans have undoubtedly altered the evolutionary trajectory of crop, pest, and disease species 

(Palumbi 2001), but conclusive cases of human-driven evolution in organisms that are not human 

commensals or pathogens have been difficult to identify (Merilä and Hendry 2014) outside of a 

few recent examples (Donihue and Lambert 2014). 
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 Urbanization results in severe habitat fragmentation (Zipperer et al. 2012), a process that 

reduces genetic variation among animal populations (Keyghobadi 2007; Rivera-Ortíz et al. 

2014). Loss of variation may in turn reduce the evolutionary potential of populations 

experiencing rapidly changing ecological conditions (Etterson and Shaw 2001; Hoffmann and 

Sgrò 2011; Oakley 2013). Definitive evidence of adaptive evolution from standing variation in 

wild populations is still relatively scarce (Colosimo et al. 2005; Renaut et al. 2011; Domingues et 

al. 2012), but new user-friendly approaches to generating large population genomic datasets have 

improved prospects for quantifying and analyzing genetic variation in the wild (Narum et al. 

2013). Evolution can proceed at the nucleotide level through new mutations or changes in 

frequency of standing genetic variants (Orr 2005), but it is likely that standing variation is more 

important in cases of rapid evolution (Barrett and Schluter 2008). Results from laboratory 

experiments (Teotónio et al. 2009; Burke et al. 2010), ancestral variation in model organisms 

(Rockman 2008; Scarcelli and Kover 2009), humans (Pritchard et al. 2010), artificial selection in 

crops (Gibson and Dworkin 2004), viral pathogens (Pennings 2012), and invasive species 

(Prentis et al. 2008) all support this association. 

 Predicting the loci, genetic architecture, and additive effects involved in adaptive 

responses to urbanization will be difficult in most cases, but estimating genome-wide variation as 

a general proxy for evolutionary potential is a useful alternative. Measures of allelic diversity 

and heterozygosity from genome-wide markers have the advantages of accounting for traits 

influenced by many loci of small effect, and for predicting how much variation will be available 

for future adaptive responses to unknown selection pressures (Harrisson et al. 2014). One 

criticism of using genome-wide SNP datasets to estimate evolutionary potential is that many loci 

are not associated with functional genomic regions. However, average allele frequency 
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divergence  predicts the most extreme FST outliers, and the geographic structure of neutral and 

selected alleles is nearly identical, in humans (Coop et al. 2009). Genome-wide SNPs have also 

been successfully used to predict phenotypic improvement through “genomic selection” methods 

in artificially selected species such as livestock (Meuwissen et al. 2013). The increased 

accessiblity of genome-wide markers for non-model organisms thus provides many opportunities 

for measuring and predicting evolutionary potential in an urbanizing world (Harrisson et al. 

2014). Here, we examine genome-wide variation in white-footed mouse populations sampleed 

along an urban-to-rural gradient and robustly quantify urbanization as a driver of population 

genomic patterns. 

 Previous microsatellite-based analyses on this system showed substantial genetic 

structure between white-footed mouse populations in NYC’s forest fragments (Munshi-South 

and Kharchenko 2010). Park area, age, or the extent of habitat within parks did not explain levels 

of genetic variation among these populations (Munshi-South and Nagy 2014), but these studies 

focused exclusively on forest fragments within NYC that were highly isolated by surrounding 

urbanization. In a separate analysis we identified SNPs from transcriptomes sequenced from 

urban and rural populations, and found that population structure was greater among the urban 

than the rural populations (Harris et al. 2015). This analysis was limited to only six sampling 

sites, however, and SNPs from coding regions may often deviate from neutral expectations. In 

this study we expand these investigations using large, genome-wide SNP datasets, and include 

populations sampled along an urban-to-rural gradient spanning 142 km from the urban core to 

extensive, rural protected areas. We specifically used a double-digest RADseq protocol (Peterson 

et al. 2012) to generate over 10,000 SNPs for analyzing the population genomics of white-footed 

mice. 
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 Land use transformation and anthropogenic barriers may ultimately reduce gene flow 

between populations (Epps et al. 2007; Balkenhol and Waits 2009; Jha 2015), leading to greater 

genetic structuring and loss of genome-wide variation in urbanized areas. Several statistical 

approaches have recently been developed to investigate the influence of landscapes on genetic 

structure, although they vary in ability to distinguish between isolation-by-distance (IBD) and 

ecological factors.  Isolation-by-resistance (IBR) models examine the statistical association 

between genetic and ‘resistance’ distances, where the latter represent probabilities that 

individuals disperse between populations given the landscape ‘friction’ to dispersal (McRae 

2006). The friction values are inferred from empirical movement data or optimized using model 

selection approaches. One drawback of IBR is that resistance distances are calculated across all 

paths that individuals may take between populations, and thus are not truly independent from 

IBD. Isolation-by-environment (IBE) processes, in contrast, are characterized by positive 

correlations between environmental differences and genetic distances that are independent of the 

effects of geographic distance (Wang and Bradburd 2014). Both IBR and IBE patterns are 

influenced by the same biological processes that limit migration across landscapes (such as costs 

of movement or selection against dispersing genotypes), but IBE patterns are defined by their 

independence from IBD. 

 We previously reported that gene flow between populations of white-footed mice could 

be explained by IBR models based on patterns of urban vegetation cover in NYC 

(Munshi�South 2012). Here we investigate IBR in a much broader range of landscape 

conditions along an urban-to-rural gradient. In our earlier work we used partial Mantel tests and 

a causal modeling approach to identify ecological distances between populations (based on 

vegetation cover) that best explained gene flow after factoring out IBD (Cushman and Landguth 
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2010). While this approach can be successful for landscapes composed of high-contrast cover 

types (such as NYC), several authors have argued that partial Mantel tests have low statistical 

power and are prone to false positives (Legendre and Fortin 2010; Graves et al. 2013). Here we 

use a partial Mantel test for our IBR model, as well as a new statistical IBE approach to quantify 

the relative contributions of urbanization and IBD to genetic differentiation between white-

footed mouse populations (G. S. Bradburd et al. 2013). Specifically, we model the strength of 

covariance in allele frequencies between populations as a function of IBD and IBE due to 

urbanization of the landscape. 

 In this study, we test the following interrelated predictions about the population genomics 

of white-footed mice (Peromyscus leucopus Rafinesque) in the New York City (NYC) 

metropolitan area: 

1) Evolutionary potential as measured by genome-wide variation within populations is 

inversely related to urbanization of the surrounding landscape. 

2) Urbanization of the landscape results in greater genomic structure and differentiation 

between populations. 

3)  “Resistance distances” and “ecological distances” resulting from urbanization are better 

predictors of genetic differentiation than geographic distances between populations. 

 

 

Methods 

Study species and sampling sites 

White-footed mice are one of the most widespread and abundant small mammals in eastern 

North America, and occupy a broad range of forest, meadow, and secondary growth habitats. 
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They have served as model systems for population ecology for decades (Vessey and Vessey 

2007; Brunner et al. 2013) because of their ubiquity and easy trappability. Peromyscus spp. more 

broadly have emerged as model systems for the genomics of adaptation (Bedford and Hoekstra 

2015), and the first reference genomes are currently being assembled (Kenney-Hunt et al. 2014). 

 For this study, we sampled white-footed mice from 23 sites in the NYC metropolitan area 

(Table 1). The 12 sites within NYC limits were the same as in previous studies, although here we 

combined samples from Pelham Bay and Hunters Island in the Bronx, and Alley Pond and 

Cunningham Parks in Queens, because evolutionary clustering results showed that these pairs of 

sites were not strongly differentiated from each other (Munshi-South and Kharchenko 2010). 

These urban sites contained secondary forest typically dominated by oaks, hickories, maples, 

and/or tulip trees, with very thick understories composed primarily of invasive plants. Suburban 

and rural sites contained similar canopies but the understories were largely cleared of thick 

vegetation by rampant deer herbivory. 

 At each site, we trapped white-footed mice over a period of one to three nights using two 

or more 7x7 grids of Sherman live traps (9”x3”x3”). Traps within grids were placed 15 m apart, 

and grids were located several hundred meters apart to avoid trapping close relatives. We 

collected ear punches or tail clippings from up to 25 mice at each site, and stored the tissue in 

80% EtOH before transfer to a -20 C freezer in the laboratory. Animal handling procedures were 

approved by Fordham University’s Institutional Animal Care and Use Committee (Protocol No. 

JMS-13-03). 

 We chose sites that qualitatively represented typical urban (N = 12 sites), suburban (N = 

4), and rural (N = 7) sites in the NYC metropolitan area based on levels of development (Figure 

1). However, suburban counties adjacent to NYC have higher human population densities than 
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major cities in other parts of North America. To facilitate comparisons with other urban areas, 

we calculated the size of the human population and percent impervious surface in geographic 

buffers around each site as proxies for relative urbanization (Figure 1b). 

 We first incorporated GPS coordinates for our study sites into base layers (2010 

TIGER/Line® Shapefiles—County or States and equivalent) available from the US Census 

Bureau. Buffers were created in ArcGIS v10.1 (ESRI, Redlands, CA) around each site’s GPS 

coordinates with radii of 500 m, 1,000 m, 1,500 m and 2,000 m. These buffers were chosen 

because they are relevant to the typical lifetime dispersal distance of many white-footed mice; 

for example, no mice over a 40 year study of one woodlot dispersed to the nearest neighboring 

woodlot less than 1.5 km away (Vessey and Vessey 2007). To determine human population size 

inside each buffer, we used U.S. Census Blocks as these provide the smallest geographic unit 

with 100% census data. We first calculated the area of each census block and then intersected the 

census block and buffer layers. We interpolated human population size within each buffer based 

on the percentage of area for each census block that intercepted each buffer ([area of census 

block within buffer / area of census block] x population of census block). We then summed all of 

the interpolated population sizes that fell within each buffer. 

 To determine percent impervious surface within each study site buffer, we used the 2011 

Percent Developed Imperviousness layer from USGS National Land Cover Data (Xian et al. 

2011). We then calculated zonal statistics to measure the geometry of the raster file and 

summarize the cell values of the raster that fell within each buffer. From these data we calculated 

the average percent impervious surface within each landscape buffer for each site. 

 These estimates of impervious surface and human population size could be highly 

correlated at the different spatial buffers, so we calculated Pearson correlation coefficients 
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between all pairs of values (Table S1). To avoid including redundant information in downstream 

analyses, we removed any variables that exhibited r > 0.90 in pairwise comparisons with the 

other variables. The 1 km and 1.5 km buffers were removed because they were highly correlated 

with other estimates, and percent impervious surface and human population size estimated for 

the 500 m and 2 km buffers were retained. 

 

ddRADSeq, SNP genotyping, and population genomic statistics 

We generated SNP genotypes for 233 individuals using a double-digest RADseq protocol 

(Peterson et al. 2012). We aimed to obtain genotypes from 10 individuals from each site, but 

sample dropout due to poor DNA yield during library preparation resulted in variability in the 

sample size for each site (Table 1). In brief, we extracted DNA from tail snips or ear punches 

using Qiagen DNEasy tissue kits (Qiagen, Valencia, CA) with an RNAse treatment, and then 

digested 500-1,000 ng of DNA using the enzyme combination of SphI-HF and MluCI for one 

hour following the manufacturer’s instructions (New England Biolabs, Ipswich, MA). A Qubit 

2.0 fluorometer (Life Technologies, Norwalk, CT) was used to quantify DNA concentration at 

several steps in the library preparation. Next, digested DNA was cleaned with 1.5X AMPure XP 

magnetic beads (Beckman-Coulter, Brea, CA) and custom in-line ‘flex’ barcodes and P1/P2 

adapters were ligated to 200-400 ng of digested DNA for each sample (Peterson et al. 2012). Up 

to 48 individual libraries with unique barcodes were then pooled in equimolar amounts and 

cleaned with 1.5X AMPure XP beads. Next we selected DNA fragments of known sizes (376-

412 bp) from the pooled libraries using a Pippin Prep (Sage Science, Beverly, MA). We then 

conducted multiple PCR amplifications using 20 ng of size-selected DNA and Phusion High-

fidelity PCR reagents with manufacturers’ PCR conditions (New England Biolabs, Ipswich, 
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MA). This PCR step added a second, unique index sequence and Illumina sequencing primers to 

the pooled libraries so each individual sample contained a unique combination of the in-line 

barcode and index. We then pooled the PCRs for each size-selected library, cleaned the pools 

using 1.5X AMPure XP beads, and checked the libraries using an Agilent BioAnalyzer (Agilent 

Technologies, Santa Clara, CA) for DNA concentration and the correct distribution of fragment 

size. The libraries were sequenced using three lanes of Illumina HiSeq 2000 2x100 bp paired-end 

sequencing at the New York University Center for Genomics and Systems Biology (New York, 

NY, USA). 

 As an initial check on the quality of our Illumina sequence data, we analyzed the raw 

reads in FastQC (Andrews 2010). Subsequent demultiplexing, quality filtering and de novo SNP 

calling was conducted using the Stacks 1.21 pipeline (Catchen et al. 2013). First, we used the 

process_radtags script to filter out low-quality reads and demultiplex the remaining reads 

according to their unique combination of in-line barcode and index. Based on FastQC results, we 

trimmed all reads to 96 bp to remove poor-quality base calls at the ends of reads. Next, we 

concatenated the single- and paired-end reads for each individual into one fastq file because the 

two paired reads did not overlap and were not aligned to a reference genome. To identify RAD 

loci and call SNPs, we used the denovo_map.pl script in Stacks with default settings except for 

the minimum number of identical reads required to create a ‘stack’ (m = 7), number of 

mismatches allowed between RAD loci for a single individual (M = 3), and the number of 

mismatches allowed when building the catalog (n = 2). After building the initial catalog of loci, 

we used the populations script in Stacks to filter loci for those that occurred in at least 22 / 23 

sampling sites (p = 22) and in at least 50% of individuals at each site (r = 0.5). This script also 

produced genotype output in multiple formats (i.e. Genepop, Structure) with one randomly-
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selected SNP from each locus (--write_random_SNP), and generated summary statistics such as 

observed heterozygosity, nucleotide diversity, and pairwise FST between all populations (Table 

2). 

 We loaded the RAD loci and individual data from Stacks into a MySQL database and 

visualized the output using the Stacks webserver. Based on the results of the first pipeline run, 

we removed 26 individuals because their small number of reads resulted in very small SNP 

datasets and excessive missing genotypes compared to other samples. Highly related individuals 

in our dataset could also bias downstream analyses. We avoided relatives at our urban sites using 

relatedness values from previous microsatellite studies of the same individuals (Munshi-South 

and Kharchenko 2010). For the SNP dataset, we identified highly related individuals by 

calculating kinship coefficients in the software package KING (Manichaikul et al. 2010). 

Kinship analysis identified 16 pairs of individuals that were related at the half-sib level or 

greater. We removed one of the pair members from the dataset, resulting in a final dataset 

comprised of 191 of the original 233 individuals. We then re-ran the Stacks pipeline on the 

screened dataset of 191 individuals. 

 Besides the filters applied by Stacks and the removal of highly-related individuals, we 

also omitted outlier loci detected using the approach in BayeScan 2.1 (Foll and Gaggiotti 2008). 

Operating with default parameters and a False Discovery Rate < 0.01, we identified 200 outliers 

using BayeScan. Five of these outliers showed a signature of positive selection, whereas 195 

showed signatures of balancing selection. We omitted these outliers from the dataset because 

they did not fit assumptions of neutrality inherent to our downstream analyses. 

 

Modeling genome-wide variation within populations 
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We modeled four measures of genome-wide variation within populations against our two 

urbanization proxies to test the hypothesis that urbanization is associated with reduced genetic 

variation. Summary statistics for each population included observed heterozygosity (HO), 

nucleotide diversity (π), number of private loci, and the percent of polymorphic loci. We 

examined genetic (dependent) variables using seven candidate general linear models (GLMs) 

consisting of combinations of human population size and percent impervious surface estimated 

using different geographic buffers as described above (500 m and 2,000 m): an intercept-only 

model, four univariate models with one variable measured at one buffer size, and two bivariate 

models including both human population and impervious surface estimated for the same buffer 

size. Human population size and percent impervious surface were ln-transformed prior to 

analysis to improve normality. If a model performed substantially better than the intercept-only 

model, then we interpreted that result as evidence of a statistical effect of the urbanization 

variable(s) on genetic diversity within white-footed mouse populations. We calculated maximum 

likelihood estimates of model parameters for each model, and then ranked models using values 

of AICc, the corrected Akaike’s information criterion (Burnham and Anderson 2002). The 

relative quality of models was further assessed based on ΔAICc, and the relative weight (wi) of 

each model. For the best GLMs, we examined the statistical significance of the urbanization 

coefficients. We also examined scatterplots (Figure 2) and fitted regression lines to confirm that 

the model explained variation in the genetic parameter of interest. We conducted all statistical 

analyses in R 3.2.1 (R Development Core Team 2008), and used GLM regression in the 

AICcmodavg package for model selection (Mazerolle 2015). 

 

Genetic structure and population differentiation 
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To investigate whether urbanization results in greater genetic differentiation between 

populations, we used Discriminant Analysis of Principal Components (DAPC) in the R package 

adegenet (Jombart and Ahmed 2011) to identify evolutionary clusters among 191 white-footed 

mice. DAPC first reduces total genetic variation (i.e. variance in allele frequencies) into principal 

components, and then identifies discriminant functions that maximize differences between 

clusters while minimizing variation within clusters. We used cross-validation in adegenet to 

identify the optimal number of principal components. This procedure uses a randomly-generated 

training set and validation set of individuals to identify the optimal number of principal 

components that accurately predict group membership without overfitting. To visualize clusters, 

we used DAPC scatterplots and barplots (compoplot command in adegenet) to visualize 

membership of individuals in different clusters. Genome-wide SNP datasets often have power to 

discriminate between all groups, and results from analyses such as DAPC may reflect 

hierarchical structure. Thus, we ran DAPC on the full dataset as well as subsets of sampling sites 

to investigate hierarchical structure. 

 We also used the model-based evolutionary clustering approaches in fastSTRUCTURE 

(Raj et al. 2014) and ADMIXTURE (Alexander et al. 2009). fastSTRUCTURE uses approximate 

inference of the Bayesian model in the original STRUCTURE (J. Pritchard et al. 2000) whereas 

ADMIXTURE computes maximum likelihood estimates of parameters to estimate the most 

likely number of evolutionary clusters, K. We ran fastSTRUCTURE on our data for each value 

of K from 1-23 using the standard model with a simple prior. A fastSTRUCTURE script 

(chooseK.py) also calculate heuristic scores for detecting the range of the most likely values of 

K. After identifying likely values of K, we re-ran fastSTRUCTURE with the more 

computationally demanding logistic prior model on a smaller subset of K values. The most likely 
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values of K were determined in ADMIXTURE using its cross validation procedure (Alexander 

and Lange 2011). To compare clustering results from fastSTRUCTURE and ADMIXTURE, we 

used the CLUMPAK (Cluster Markov Packager Across K) web server (Kopelman et al. 2015) to 

align and visualize bar plots for both programs at multiple values of K. 

 

Landscape genomics 

To investigate IBD, IBR and IBE between white-footed mouse populations, we first tested for 

IBD using a Mantel test in the ecodist package in R. The data were bootstrapped 10,000 times to 

generate 95% confidence intervals for the Mantel P value. We then used the BEDASSLE 

package (Bradburd 2014) in R to estimate the relative contributions of IBD and IBE to genetic 

differentiation between the sampling sites. We computed allele counts and sample sizes for each 

population using the --counts function in VCFtools 0.1.12b (Danecek et al. 2011). We examined 

the following IBE models using BEDASSLE: 1) a simple binary matrix indicating whether the 

population was located in NYC or outside the city; and 2) a pairwise matrix of “resistance 

distances” calculated between populations using the IBR approach in Circuitscape 4.0 (McRae 

and Beier 2007). 

 Circuitscape calculates a pairwise matrix of resistance distances between populations 

based on the ability of a simulated electrical current to flow between adjacent landscape cells 

connected by resistors with user-defined resistance values. We used the 2011 Percent Impervious 

Surface layer from USGS National Landcover Data (Xian et al. 2011), and set the resistance 

value for each 30 m cell as equivalent to its percent impervious surface unless the cell exceeded 

70% impervious surface. For cells exceeding 70%, we set the resistance level to 100; in other 

words, any cell with greater than 70% impervious surface was assumed to be 100X more 
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resistant to migration than a cell with 1% impervious surface. The 70% cutoff for relatively high, 

quasi-barrier resistance was based on results of an earlier IBR analysis we conducted in NYC 

(Munshi�South 2012). To calculate resistance distances between all populations, we ran 

Circuitscape in pairwise mode with raster cells connected to all eight neighboring cells. The 

analysis also produced a cumulative current map to visualize hypothesized migration between all 

populations. As an initial check on the success of the resistance distances at explaining variation 

in pairwise FST, we conducted a partial Mantel test with 10,000 bootstraps in ecodist that 

factored out the effects of Euclidean geographic distance. We then used these resistance 

distances for the IBE model in BEDASSLE. 

 BEDASSLE uses a Markov Chain Monte Carlo (MCMC) approach, and includes several 

graphing functions for evaluating success of the MCMC posterior parameter estimation. To 

confirm adequate mixing and convergence of chains, we examined traces and marginal 

distributions for all parameters. We also examined acceptance rates for MCMC parameter 

estimation, and when these rates were too high or low we adjusted the tuning parameters and re-

ran the analysis for 5-10 million steps. For the final runs, we calculated the median and 95% 

credible intervals for the αE : αD ratio after discarding the first 20% as burn-in. This ratio 

represents the effect size of ecological distance relative to geographic distance. 

 The simple BEDASSLE model assumes identical variance of allele frequencies about the 

global mean allele frequency. However, populations deviate from the global mean for a number 

of demographic reasons (i.e. bottlenecks, inbreeding), and outlier populations can have a strong 

influence on posterior distributions. To account for this variation, BEDASSLE includes a beta-

binomial model that estimates an additional parameter, ΦK, that measures the strength of drift 

and lack of fit of each population to the model. To address population history, we also ran the 
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beta-binomial model for the two IBE scenarios above. For these models, we examined the 

posterior distributions of the ΦK values (recalculated as FK = 1 / 1+ ΦK) to identify outlier 

populations. 

 To test the relative fit of the models to our data, we generated 1,000 posterior predictive 

samples for each model and compared the simulated data to our observed data in BEDASSLE. 

BEDASSLE includes a function that randomly draws parameter values from the posterior 

distributions and simulates new datasets. These simulated datasets are then used to calculate FST 

between all pairs of populations. Simulated FST values can then be compared to the observed FST 

values to examine the models’ ability to describe patterns in the real data. 

 

 

Results 

ddRADSeq dataset and summary population genomic statistics 

Three lanes of Illumina HiSeq 2x100 PE sequencing produced a total of 1.16 billion reads, of 

which 936.64 million reads (80.9%) passed initial quality filters. Reads were filtered out due to 

ambiguous barcode sequences (56.3%), low quality scores (40.9%), and ambiguous RAD tags 

(2.8%). The catalog generated by STACKS included 880,898 RAD loci with at least 7X 

coverage, but this number was reduced to 14,930 after requiring loci to be present in 22 / 23 

populations and at least 50% of individuals within each population. All populations were well-

represented in the final dataset, with averages of 4 to 10 individuals genotyped per locus across 

the 23 populations (median = 6.6; Table 2). 

 For all loci that were polymorphic in at least one population, the major allele frequency 

(P) ranged from 0.894 to 0.957, and the average observed heterozygosity from 0.054 to 0.181 
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(Table 2). If all invariant positions are included, then the major allele frequency exceeded 0.999 

in all populations and the heterozygosity ranged only from 0.001 to 0.002 (Table S2). Nearly all 

of the populations located within NYC exhibited lower genetic variation than suburban or rural 

populations as measured by the percentage of polymorphic sites, numbers of private alleles, 

major allele frequency, observed heterozygosity, and nucleotide diversity (π). The only 

exceptions to these trends were relatively high diversity values for the Pelham Bay (PB) 

population in NYC, and low values for suburban Saxon Woods (SW), the rural Cary Institute 

(CIE) and Minnewaska Reserve (MR; Table 2). Excluding those four outliers, heterozygosity 

ranged from 0.054 to 0.117 in the urban populations and 0.158 to 0.181 in the suburban and rural 

populations. Nucleotide diversity similarly ranged from 0.066 to 0.116 in NYC and 0.138 to 0.15 

in the suburban and rural populations. 

 

Modeling urbanization and genome-wide variation within populations 

Sampling sites could be distinguished by their combinations of human population size and 

percent impervious surface (Figure 1b). The rural sites all clustered at very low values for both 

urbanization variables. Urban and rural sites exhibited little overlap in the scatterplot, with the 

exception of Fort Tilden (FT), Jamaica Bay (JB), and Pelham Bay in NYC. Figure 1b shows the 

relationship between the two urbanization variables measured for a 2 km buffer around sampling 

sites, but results were qualitatively similar for the 500 m buffer. 

 Model selection based on AICc confirmed that nearly all GLMs with one or more 

urbanization variables described variation in genomic diversity better than intercept-only models, 

except for human population size estimated at a 500 m buffer (Table 3). Impervious surface 

cover estimated at the 2 km buffer,was the highest-ranked model for all four genetic variables, 
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with the second best models all including both impervious surface cover and human population 

size at the 2 km buffer. The Akaike weights for the best models were all equal to or greater than 

0.55, and the delta AICc for moving from the second to third model were all greater than 3.0. 

Heterozygosity was negatively associated with percent impervious surface, with the exception of 

the outlier populations mentioned above (i.e. rural populations with low genetic diversity; Figure 

2a). Nucleotide diversity was also negatively associated with percent impervious surface, and 

exhibited the same outlier populations as the heterozygosity scatterplot (Figure 2b). The number 

of private alleles and percent polymorphic loci were negatively associated with percent 

impervious surface (Figure 2c,d). All urbanization coefficients from the top GLMs were also 

significant at P < 0.05, with the coefficients for nucleotide diversity and number of private 

alleles significant at P < 0.001. 

 

Genetic structure and population differentiation 

Pairwise FST calculated using STACKS ranged from a low of 0.033 between a rural (MH) and 

suburban (LCC) population, and a high of 0.145 between a suburban (MRG) and urban (RR) 

population. Most values were between 0.05 – 0.10. Some NYC populations exhibited many FST 

> 0.10, particularly RR and JB, as did one suburban population (MRG). A simple Mantel test 

revealed no significant IBD (Mantel r = 0.041, 95% CI = -0.046 – 0.124, P = 0.32). 

 Cross-validation identified N = 23 as the optimal number of principal components to 

retain for DAPC analysis (Figure S1). The first two discriminant functions distinguished two 

isolated NYC sites, Jamaica Bay (JB) and Fort Tilden (FT), from the other populations. 

Discriminant function three separates out a cluster of the other populations on Long Island (AP, 

FM, FP, KP, RR, WW), a cluster of NYC populations in the middle (IP, NYBG, PB, VC) with 
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suburban populations just below them (LCC, MRG, SW, CPV), and rural populations (CIE, 

CFP, HIP, HP, MH, MR) at the bottom (Figure 3a). This clustering largely recapitulates the 

spatial orientation of these populations along a north-south axis. One exception is the most urban 

population, Central Park (CP), which does not occur where it would be expected based on 

geography. This placement indicates that Central Park is one of the most isolated and unique 

NYC populations, along with Fort Tilden and Jamaica Bay. The DAPC compoplot (i.e. a barplot 

of membership probability) indicated that nearly all individuals could be assigned to their 

sampling site with high probability (Figure S2). 

 To clarify relationships between major clusters of sampling sites, we reran the DAPC 

analysis on two subsets: all populations on the mainland and Manhattan, and all populations 

located on Long Island. Twelve principal components were retained for the mainland-Manhattan 

analysis, and the scatterplot of the first two discriminant functions revealed a major, central 

cluster that recapitulated the geography of the populations. However, three isolated, urban 

populations were distinct from this cluster (Figure 3b): Central Park (CP), Inwood Hill Park (IP), 

and Van Cortland Park (VC). The Long Island analysis retained seven principal components, and 

confirmed that JB and FT are highly distinct populations, as well as the Ridgewood Reservoir 

(RR; Figure S3).  

 Both the heuristic analysis in fastSTRUCTURE (using the simple prior) and cross-

validation in ADMIXTURE identified K = 2 as the most likely number of evolutionary clusters 

among the 23 white-footed mouse populations we sampled. CLUMPAK confirmed that 

individual assignment to the two clusters was highly correlated across the two methods (r = 0.93; 

Figure 4a,b). One cluster (blue in Figure 4a,b) contained all the NYC populations on Long 

Island, the two populations on Manhattan (CP and IP), and three other suburban / rural 
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populations with atypically low genetic variation (CIE, MR, and SW). All other populations 

were assigned to the other cluster (orange in Figure 4a,b), except for WW located in rural Long 

Island which was an admixture of the two clusters in almost equal proportions. When we reran 

the fastSTRUCTURE analysis for K=1 – 4 using the more accurate logistic prior, the heuristic 

analysis identified K = 3 as the upper bound on the likely number of evolutionary clusters. 

Cross-validation in ADMIXTURE also identified K = 3 – 5 as only slightly worse than K = 2 

(Figure S4), so we created barplots for these numbers of evolutionary clusters. For K = 3, the 

blue cluster of urban Long Island, Manhattan, and outlier rural populations was maintained, but 

the other cluster was split into two largely based on location east or west of a north-south axis 

(Figure 4c). The fourth cluster in the K = 4 ADMIXTURE analysis included a new cluster 

(Figure 4d) with the two Manhattan populations, a Bronx population (NYBG), and a few distant 

populations adjacent to or west of the Hudson River (CFP and HIP). The additional cluster for K 

= 5 included two suburban populations in relative proximity (CPV and LCC; Figure 4e). 

 

Landscape genomics 

For the simple BEDASSLE model examining presence or absence in the city, the median αE : αD 

ratio was 7.14 and the 95% credible set was 6.90 to 7.36. The interpretation of this result is that 

being located in NYC has an impact of approximately 7 km of extra pairwise geographic 

distance on genetic differentiation. Comparison of posterior predictive samples for the simple 

and beta binomial model confirms that the latter is a much better fit to the data (Figure 5a,b). For 

the beta binomial model, the median αE : αD ratio was 0.006 and the 95% credible set was 0.0002 

to 0.038. This model indicates that presence in NYC has virtually no additional impact over 

geographic distance on genetic differentiation. However, values of Fk were elevated for most of 
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the urban populations (range in medians from 0.04 – 0.25; mean = 0.12) relative to the suburban 

(range = 0.01 – 0.06; mean = 0.03) and rural populations (range = 0.001 – 0.11; mean = 0.03), 

with the exception of two rural populations that also had high values (CIE and MR; Figure 5d). 

These Fk values indicate that the urban populations deviated substantially more from global 

allele frequency estimates than the suburban and rural populations. 

 Pairwise resistance distances from the IBR model (Figure S5) were significantly 

associated with FST, even after factoring out the effects of geographic distance (partial Mantel r = 

0.521, 95% confidence interval = 0.438-0.621, P < 0.0001; Table S3). The simple IBE model 

using resistance distances did not converge after trying many different combinations of prior 

values. The beta binomial model did converge, producing a median αE : αD ratio of 0.0001 and 

95% negligible impact on genetic differentiation compared to geographic distances, which 

contradicts the IBR results. Posterior predictive sampling indicated that this beta-binomial model 

performed moderately well, but systematically underpredicted observed FST < 0.05 (Fig. 5c). 

 

 

Discussion 

This study is the first to our knowledge to examine the influence of urbanization on genome-

wide SNP variation in a city-dwelling species. We found that populations of white-footed mice 

along an urban-to-rural gradient exhibit a negative correlation between genomic variation and 

urbanization in and around their habitat. Populations within NYC also exhibited greater genetic 

differentiation from one another than pairs of populations in rural areas. IBR and IBE models 

based on urbanization explained a greater proportion of pairwise population differentiation 

overall than IBD by some metrics. NYC populations deviated more strongly from global mean 
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allele frequencies than rural populations, indicating that urbanization has substantially altered the 

evolutionary trajectories of urban wildlife (Donihue and Lambert 2014).  

 Many recent studies have documented reduced migration and loss of heterozygosity at 

microsatellite loci among populations in urbanized landscapes (Gortat et al. 2014; Jha 2015; Barr 

et al. 2015). However, for logistical reasons the most variable microsatellite loci are often chosen 

for population genetic analysis, and thus may not represent unbiased samples of genome-wide 

diversity (Väli et al. 2008). Heterozygosity measured using microsatellites and traits related to 

fitness are also often weakly correlated, even though there is a publication bias towards reporting 

only high heterozygosity-fitness correlations (Chapman et al. 2009). New approaches such as 

ddRAD-Seq used here produce genome-wide SNP markers that are more appropriate for 

assessing genome-wide variation in relation to ecological factors such as urbanization. 

 Population genomic variation is key to understanding and predicting evolutionary 

responses to environmental transformation. While urbanization may not directly cause 

extinctions of most species, it is likely to decrease the evolutionary potential of populations. 

Results from native species in cities are few. Urban bobcats maintained variation at immune-

linked loci due to balancing selection from disease pressures, even after a population bottleneck 

and population subdivision by freeways (Serieys et al. 2015). Blackbirds colonizing cities also 

exhibited polymorphisms in a candidate behavioral gene that was strongly associated with urban 

habitats (Mueller et al. 2013), indicating that functional variation is important for the 

evolutionary success of urban wildlife. We previously identified candidate genes that may be 

under selection in urban white-footed mice (Harris et al. 2013), but our results here indicate that 

these populations have lost as much as half of their genetic diversity compared to nearby rural 

populations. While candidate genes of large effect may be relevant to understanding some 
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responses to landscape change, screening genome-wide variation offers many advantages for 

measuring evolutionary potential. Most adaptive traits are polygenic and influenced by many loci 

of small effect. Information on genome-wide variation will also capture cryptic variation and 

quantify the amount of standing variation available for responses to future change (Harrisson et 

al. 2014). Loss of standing variation will thus make it less likely that urban populations will be 

able to adapt to local conditions, or to global phenomena such as climate change (Franks et al. 

2014). Mutation is likely too slow of a process for rapid recovery of evolutionary potential in 

fragmented urban populations. However, increasing connectivity in cities would immediately 

boost genetic variation if migration between genetically differentiated populations could be 

reestablished.  

 

Modeling urbanization and genome-wide diversity 

We found that percent impervious surface cover, and to a lesser extent human population size, 

estimated at 2 km buffers around study sites were highly correlated with levels of genome-wide 

diversity. Gradient studies have predominated in urban ecology, but terms such as “urban” and 

“suburban” have been used in many different contexts without standardization (Magle et al. 

2012). Study sites are often defined based on subjective criteria, or chosen simply to represent a 

linear geographical gradient regardless of the actual pattern of urbanization (Ramalho and Hobbs 

2012). We advocate that future landscape genetics studies report percent impervious surface 

cover in and around study sites to facilitate comparisons between landscapes and species. 

Impervious surface and human population size are highly correlated, but humans may be present 

in large numbers outside of cities for recreation in protected areas (Monz et al. 2013). 

Impervious surface can be readily used to track urbanization over time, and has relevance to both 
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terrestrial and aquatic systems (Walsh et al. 2005). Extensive impervious surface in the form of 

roads, parking lots, and buildings characterizes all cities (Nowak and Greenfield 2012). Roads in 

particular have well-characterized negative impacts on the connectivity of wildlife populations 

(Balkenhol and Waits 2009; Benítez-López et al. 2010). Nearly 70% of global forest cover is 

now fragmented, and areas subject to urbanization and high-intensity agriculture are most 

severely affected (Haddad et al. 2015). Reporting measures of impervious surface cover will 

provide much needed standardization. We found that estimates for 2 km buffers were much 

better than 500 m buffers, although the spatial effects will likely vary for different species. In this 

case, 500 m was likely too small of a buffer to capture the extent of urbanization’s influence on 

study sites, whereas 2 km was near the maximum buffer size we could use around many of our 

study sites and still retain statistical independence from other study sites.  

 

Population structure and differentiation 

Urban and rural populations were differentiated from each other, with many FST > 0.10. Some 

populations within NYC had pairwise FST as high as urban-rural pairs that were much more 

distant, indicating that isolation within the city is quite high. Higher FST values reported here are 

similar to those reported for endangered beach mice (Austin et al. 2015) and Channel Island deer 

mice (Ozer et al. 2011) that recently experienced strong genetic drift from extirpations and 

translocations. The lack of IBD reported here, but moderate to strong genetic population 

differentiation, suggests that dispersal is limited by barriers and high landscape resistance rather 

than geographic distance. Thus, evolutionary clustering and IBE (Wang and Bradburd 2014; 

Sexton et al. 2014) are more appropriate models for understanding patterns of genome-wide 

diversity among these populations. 
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 Discriminant analysis of principal components, and two model-based clustering analyses, 

sorted individuals into 23 clusters that largely recapitulated geographic patterns. We identified 

one major split between Long Island and mainland populations, which historical demographic 

modeling indicated is likely related to glacial retreat and ecological succession in the region 

(Harris et al, unpublished manuscript). The other striking pattern was that several urban 

populations were outliers in their genetic divergence from the major clusters of sampling sites. 

Previous clustering analyses using microsatellites also identified most NYC sites as distinct 

populations (Munshi-South and Kharchenko 2010). SNPs evolve more slowly than 

microsatellites, and there is likely still considerable ancestral variation in isolated urban 

populations. These NYC populations may also not have reached linkage and Hardy-Weinberg 

equilibrium at many SNP loci because not enough generations have elapsed since isolation, or 

the populations have not reached mutation-migration-drift equilibrium. 

 

Landscape genomics 

Our IBR and IBE analyses produced mixed results. Overall, IBR and IBE modeling indicated 

that urbanization drives genetic differentiation to a greater degree than geographic distance 

alone. Although the relative influence of IBE to IBD was modest in the BEDASSLE analyses, 

urban populations deviated to a much greater degree from global allele frequencies than 

suburban or rural populations. The most likely explanation for this deviation is substantial drift 

due to inbreeding or bottlenecks in isolated urban habitats. This scenario generally conforms to 

the strong structure observed among some of the urban populations. However, other factors that 

caused these populations to deviate from the BEDASSLE model cannot be ruled out, such as 

unsampled environmental variables (Bradburd et al. 2013).  
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IBR modeling in Circuitscape confirmed that variation in percent impervious surface is 

highly associated with variation in pairwise FST, even after factoring out IBD. Partial Mantel 

tests have several known issues with false positives (Legendre and Fortin 2010), but we 

previously found that vegetation cover (typically the inverse of impervious surface in NYC) 

successfully described migration between populations using similar approaches (Munshi�South 

2012). The IBE models did not identify the same clear association between impervious surface 

and genetic differentiation. As above, the strong deviation of urban populations from the global 

mean allele frequencies indicated that the IBE model may have underperformed. Resistance 

distances from Circuitscape are integrated over all possible paths between points on the 

landscape, and thus BEDASSLE also counts geographic distance twice with unknown 

consequences when using resistance distances (G. Bradburd, personal communication).  

IBE is an active area of inquiry that holds great promise for understanding the processes 

that generate genetic variation. However, currently available approaches are relatively new, and 

several caveats apply to their application (Wang and Bradburd 2014). This study is the first use 

of BEDASSLE to model the relationship between genetic differentiation and human 

modification of the environment. In addition to the model adequacy issues raised above, some of 

the populations analyzed here may not have reached migration-drift equilibrium, or were 

dominated by idiosyncratic environmental processes. Previous BEDASSLE analyses that 

detected stronger IBE patterns were conducted over much larger geographic scales among much 

more strongly differentiated populations, such as sky island birds (Manthey and Moyle 2015), 

lizards occupying a SE Asian archipelago separated by deep ocean trenches (Barley et al. 2015), 

and a widespread bird occupying much of the Amazon basin (Harvey and Brumfield 2015). 
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These results suggest that the IBE model in BEDASSLE may currently be best suited to 

populations that are deeply diverged in both time and space. 

 

Conclusions & Future Research 

The results presented here demonstrate for the first time that urbanization is associated with a 

pervasive reduction in genome-wide variation among animal populations. Peromyscus spp. Are 

increasingly important models for investigating natural variation (Bedford and Hoekstra 2015). 

Given unchecked urbanization, particularly in the eastern United States, it is likely that many 

white-footed mouse populations in metropolitan areas have experienced similar declines in 

standing genetic variation. This study examined only a single urbanization gradient. Replicate 

analyses on white-footed mice in other metropolitan areas, and studies on additional taxa that 

may be isolated in urban fragments, are necessary to robustly establish a pattern of declining 

genome-wide variation in urbanizing landscapes. 

 Preliminary evidence indicates that some loci have experienced selective sweeps in urban 

white-footed mice (Harris et al. 2013), but the relative impacts of urbanization on historical 

demography and natural selection have not been fully disentangled for these populations. Using 

an expanded transcriptome dataset (Harris et al. 2015), we recently identified signatures of 

selection in NYC populations using an approach that accounts for historical demographic 

patterns (Harris & Munshi-South, unpublished manuscript). We identified dozens of candidate 

loci under selection that are associated with metabolic and immune processes. These patterns 

may reflect changes in diet and biotic pressures (i.e. disease and inflammation) in cities. Thus, 

the loss of genome-wide diversity documented here does not necessarily preclude local 

adaptation to highly altered, stressful urban environments. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/025007doi: bioRxiv preprint 

https://doi.org/10.1101/025007
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29

 Evolutionary potential of urban populations could be improved by restoring connectivity 

between urban forest patches. Enhanced gene flow between urban forests, as well as between 

urban and suburban areas, would increase overall genome-wide diversity (although may 

simultaneously break up local adaptation). Habitat networks that promote gene flow in cities can 

be constructed from even small gardens and green spaces not explicitly dedicated to biodiversity 

(Goddard et al. 2010; Vergnes et al. 2012). Microevolutionary processes are rarely integrated 

into urban conservation due to their perceived complex nature and variation between taxa, but 

could be useful metrics for assessing landscape connectivity (Stockwell et al. 2003; Kinnison et 

al. 2007). Converting “gray” infrastructure into “green” networks could also simultaneously 

address conservation goals while delivering co-benefits to humans in the form of biodiversity 

experiences (Tanner et al. 2014). A rich literature indicates that humans benefit in myriad ways 

from access to nature (Fuller et al. 2007), but integrative approaches to urban wildlife 

conservation are a major area for future growth (Shwartz et al. 2014). 

 

Data Archiving Statement 

The DNA sequencing reads will be deposited in NCBI’s Short-read Archive (SRA). Other data 

files will be deposited on Dryad. 
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Table 1. Characteristics of numbers of white-footed mice sampled at 23 locations along an urban-to-rural gradient. Human population 

size and percent impervious surface were measured at two buffer sizes around these sites: 500 m and 2.0km. 

Site Code Type N Latitude Longitude Human Population Size % Impervious Surface 
Alley Pond / Cunningham  AP City 13 40.747605 -73.742505 1298.3, 59880.1 21.2, 50.8 
Central Park CP City 9 40.798231 -73.956198 15908.3, 351698.8 48.6, 60.2 
Flushing Meadows FM City 10 40.721442 -73.830805 1577, 125893.1 32.3, 58 
Forest Park FP City 6 40.703356 -73.850889 268.3, 123722 6.8, 61.3 
Fort Tilden FT City 4 40.561031 -73.887552 17.2, 2357.5 5.5, 8.5 
Inwood Hill Park IP City 6 40.873295 -73.925005 1073.6, 121354.2 7.5, 30 
Jamaica Bay JB City 5 40.623063 -73.824582 0, 1438.4 3.6, 3.2 
Kissena Park KP City 9 40.746547 -73.811192 2039.9, 107273.1 28.5, 62.3 
NY Botanical Garden NYBG City 11 40.871613 -73.874079 6875, 256359.1 44.4, 60.9 
Pelham Bay PB City 11 40.879895 -73.804063 1.8, 3508.1 0, 9.5 
Ridgewood Reservoir RR City 10 40.687347 -73.88711 2725.8, 143223.9 21.7, 66.9 
Van Cortlandt Park VC City 6 40.902086 -73.882341 0, 77541.7 10, 27.7 
Pleasant Valley CPV Suburb 7 41.707149 -73.796406 45.7, 720 0.5, 1 
Louis Calder Center LCC Suburb 13 41.128624 -73.73042 235.8, 3118.6 3.1, 10.6 
Mianus River Gorge MRG Suburb 6 41.185234 -73.622813 76.4, 1681.4 0.3, 0.6 
Saxon Woods Park SW Suburb 7 40.988344 -73.753852 45.7, 8164.7 0.6, 17.6 
C. Fahnestock St. Park CFP Rural 9 41.468662 -73.843355 1.9, 56 0.1, 0.1 
Cary Institute CIE Rural 7 41.784468 -73.735476 5.6, 263.8 0.5, 1.3 
Highpoint State Park HIP Rural 8 41.262754 -74.703121 4.2, 157.5 0.8, 0.4 
Harriman State Park HP Rural 9 41.282946 -74.068317 0, 2.8 0.1, 0.2 
Cornwall, CT MH Rural 8 41.787584 -73.385292 5.7, 183.5 2.2, 0.9 
Minnewaska Reserve MR Rural 8 41.727843 -74.260149 0, 9 0, 0.1 
Wildwood State Park WW Rural 9 40.939296 -72.828573 13.1, 2080 0.9, 3.5 
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Table 2. Summary genetic diversity statistics calculated by STACKS for nucleotide positions 

that were polymorphic in at least one population. N = average number of individuals genotyped 

at each locus; Sites = number of polymorphic nucleotide sites across the dataset; %Poly = 

percentage of polymorphic loci; Private = number of variable sites unique to each population; P 

= average frequency of the major allele; Hobs = average observed heterozygosity per locus; π = 

average nucleotide diversity. 

Site Type N Sites %Poly Private P Hobs π 
AP City 10.4 14,859 0.388 154 0.944 0.080 0.089 
CP City 6.6 14,031 0.321 152 0.936 0.095 0.102 
FM City 7.7 14,812 0.229 90 0.953 0.061 0.071 
FP City 5.4 14,904 0.224 92 0.951 0.066 0.076 
FT City 3.7 14,880 0.235 78 0.948 0.082 0.086 
IP City 5.2 14,879 0.304 146 0.944 0.083 0.091 
JB City 4.3 14,750 0.230 54 0.952 0.075 0.079 
KP City 7.8 14,872 0.278 139 0.951 0.069 0.077 

NYBG City 7.9 12,657 0.321 138 0.925 0.117 0.106 
PB City 9.1 14,788 0.414 269 0.899 0.164 0.143 
RR City 7.7 14,648 0.209 88 0.957 0.054 0.066 
VC City 5.5 14,909 0.350 159 0.928 0.115 0.116 

CPV Suburb 6.0 14,712 0.383 273 0.903 0.164 0.142 
LCC Suburb 10.3 14,670 0.450 431 0.904 0.158 0.138 
MRG Suburb 5.1 14,830 0.371 198 0.903 0.165 0.146 
SW Suburb 5.7 14,698 0.303 126 0.945 0.081 0.090 
CFP Rural 7.0 14,814 0.380 269 0.914 0.141 0.122 
CIE Rural 5.6 14,393 0.300 134 0.946 0.078 0.088 
HIP Rural 7.0 14,886 0.416 515 0.910 0.148 0.129 
HP Rural 7.1 14,797 0.452 516 0.915 0.137 0.135 
MH Rural 6.9 14,906 0.432 362 0.894 0.181 0.150 
MR Rural 6.3 14,856 0.295 381 0.947 0.074 0.085 
WW Rural 6.6 14,630 0.327 131 0.920 0.132 0.113 
Mean  6.7 14,660 0.331 212.8 0.930 0.110 0.106 
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Table 3. Results of selection among general linear models describing the influence of percent impervious surface cover (imprv) and 

human population size (pop) at 500 m and 2 km buffer sizes on a) observed heterozygosity, b) nucleotide diversity, c) the number of 

private alleles within each population, and d) the percentage of polymorphic loci within each population. The best models were chosen 

based on the second-order Akaike Information Criterion (AICc), the rate of change in AICc (Δi), and the Akaike weights (wi). 

Models AICc Δi wi Models AICc Δi wi 
a) observed heterozygosity b) nucleotide diversity (pi) 
imprv2km -85.98 0.00 0.62 imprv2km -104.59 0.00 0.57 
pop2km + imprv2km -84.46 1.52 0.29 pop2km + imprv2km -103.55 1.04 0.34 
imprv500m -79.89 6.09 0.03 imprv500m -98.43 6.17 0.03 
pop2km -79.47 6.52 0.02 pop500m + imprv500m -98.36 6.23 0.03 
pop500m + imprv500m -78.95 7.04 0.02 pop2km -97.61 6.98 0.02 
intercept -78.57 7.41 0.02 intercept -96.94 7.66 0.01 
pop500m -76.65 9.34 0.01 pop500m -94.84 9.75 0.00 
c) number of private alleles d) percentage of polymorphic loci 
imprv2km 291.03 0.00 0.56 imprv2km -53.85 0.00 0.55 
pop2km + imprv2km 293.82 2.79 0.14 pop2km + imprv2km -51.37 2.49 0.16 
imprv500m 294.51 3.47 0.10 pop2km -50.09 3.76 0.08 
pop2km 294.67 3.64 0.09 intercept -49.89 3.96 0.08 
intercept 295.90 4.86 0.05 Imprv500m -49.82 4.03 0.07 
pop500m + imprv500m 296.25 5.22 0.04 pop500m + imprv500 -48.39 5.46 0.04 
pop500m 297.49 6.45 0.02 pop500m -47.63 6.22 0.02 
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Figure Legends 

Figure 1 

a. Geographic locations of the 23 sites at which we sampled white-footed mice for this study. 

The map contains land cover categories and impervious surface levels from the 2011 National 

Land Cover Database at 30 m resolution.  Red to purple colors represent increasing percentages 

of impervious surface cover. Site abbreviations correspond to Table 1. b. Scatterplot of percent 

impervious surface cover vs. human population size for the 23 sampling sites. Both variables 

were log-transformed to improve linearity, and were measured using 2 km buffers around study 

sites as described in the text. Red dots represent urban sites, green dots represent suburban sites, 

and black dots represent rural sites. 

 

Figure 2. Scatterplots and trend lines for best GLMs identified using AICc modeling that 

describe the relationship between urbanization and a) heterozygosity, b) nucleotide diversity, c) 

percent polymorphic loci, and d) number of private alleles for the 23 populations. Red dots 

represent urban sites, green dots represent suburban sites, and black dots represent rural sites. 

Site abbreviations correspond to Table 1. 

 

Figure 3. Scatterplots resulting from Discriminant Analysis of Principal Components (DAPC) 

for a) all 23 sampling sites, and b) a subset of sites occurring on Manhattan and mainland North 

America. Insets represent the eigenvalues of retained principal components (top left), and the 
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eigenvalues of discriminant functions portrayed in the scatterplots (bottom left). Site 

abbreviations correspond to Table 1. 

 

Figure 4. Bar plots resulting from evolutionary clustering analyses using a) fastSTRUCTURE 

assuming K = 2, and b) using ADMIXTURE assuming K= 2 – 5. Site abbreviations correspond 

to Table 1, and are ordered geographically in the bar plots. The first five sites are on Long Island 

(AP-WW), the next two on Manhattan (CP and IP), the next 10 east of the Hudson River (VC-

MH, organized from North to South), and the last three west of the Hudson River (HP-MR). 

 

Figure 5. Posterior predictive sampling with 1,000 simulated datasets in BEDASSLE, using 

pairwise FST as a summary statistic for a) the simple IBE model with presence in or outside NYC 

as the environmental variable; b) the beta binomial IBE model for presence in or outside NYC; 

and c) the beta binomial IBE model with resistance distances based on percent impervious 

surface as the environmental variable. d) Map of study sites with points scaled using the values 

of FK estimated by the beta binomial model in BEDASSLE. FK estimates the deviation of each 

population from global mean allele frequencies, and was highest for populations located within 

NYC. 
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List of Supplementary Information 

 

Table S1. Correlation coefficients calculated between % impervious surface and human 

population sizes calculated at buffers around study sites of 500 m, 1 km, 1.5 km, and 2 km. 

 

Table S2. Summary population genomic statistics calculated for all nucleotide positions (variant 

and fixed). 

 

Figure S1. Cross-validation (i.e. a-score optimization) to identify the optimal number of 

principal components to retain for DAPC without overfitting4 

 

Figure S2. Compoplot / bar plot result from DAPC analysis on all 23 populations. 

 

Figure S3. Scatterplot of first two discriminant functions from DAPC for populations on Long 

Island. 

 

Figure S4. Cross-validation of results from ADMIXTURE for K = 1 – 12. 

 

Table S3. Matrix of pairwise FST (above diagonal) and great-circle geographic distance (km; 

below diagonal) calculated between all pairs of 23 populations. 

 

Figure S5. Cumulative current map from isolation by resistance (IBR) modeling in Circuitscape. 

Lighter areas represent landscape cells with higher cumulative predicted current (i.e. higher 
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movement). All landscape cells with impervious surface % > 70% were assigned resistance = 

100, and all cells with impervious surface < %70 were assigned a resistance equal to their 

percent impervious surface (e.g. 50% impervious surface results in 50X higher resistance than 

1% impervious surface). 
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