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Bacteria that are subjected to ribosome inhibiting antibiotic drugs show an interesting behavior:
Although the drug slows down cell growth, it also paradoxically increases the cell’s concentration
of ribosomes. We combine a prior nonlinear model of the energy-biomass balance in undrugged
E. coli cells (Maitra and Dill, PNAS 2015 ) with Michaelis-Menten binding of drugs that inactivate
ribosomes. Predictions are in good agreement with experiments on ribosomal concentrations and
synthesis rates vs. drug concentrations and growth rates. The model indicates that added drug
drives the cell to overproduce ribosomes keeping roughly constant the level of ribosomes producing
ribosomal proteins, an important quantity for cell growth. The model also predicts that ribosomal
production rates should increase, then decrease with added drug. This model gives insights into
cellular driving forces and suggests new experiments.

1. INTRODUCTION

Drugs, such as chloramphenicol, act to reduce bacte-
rial cell growth rates by inhibiting bacterial ribosomes,
thereby reducing the cell’s production of proteins. What
actions does the cell invoke to counter the drug? On the
one hand, there is often a good understanding of how the
drug binds at its ribosomal site [1–3] and it is sometimes
known how that binding interferes with protein elonga-
tion [4–7]. It is also sometimes known how drugs sensi-
tize local networks to evoke adaptive responses [8–11].
On the other hand, there is usually less understanding
of what global stresses the drug trigger, how it shifts the
balances of energy and biomass, or of what homeostatic
condition the cell might be trying to preserve.
There are various approaches to cell-level modeling.

One approach models the dynamics of the cell’s net-
works of biochemical reactions [12–14]. Even in an or-
ganism as simple as a bacterium, there are very many in-
terconnected web of reactions, making it complicated to

ATP 

G
LU

C
O

SE
 

nr#PROTEIN+

ma Ja 

mr Jr 

mp Jp 

R act 

P Ø 

λ

X 

J-x 

R in 
J+x 

Figure 1: Minimal kinetic model of E. coli . The model
expresses the dynamical fluxes (arrows) and concentrations
of active ribosomes (R

act

), non-ribosomal proteins (P) and
a lumped internal energy (ATP). Symbol ) shows a posi-
tive feedback mechanism for ribosomal autosynthesis, a key
controller of growth behavior. Antibiotic inhibitor molecules
are represented by X. X bind reversibly with active ribosomes.
While in bound-form, R

in

, the ribosomes are inactivated, and
they do not translate proteins. P degrades with a rate con-
stant �. The cell grows exponentially with a specific growth
rate of �.

model. Another approach has been Flux-Balance Analy-
sis [15, 16], which gives solutions by linearizing the forces
around some given homeostasis point. Here, however, we
are interested in how those homeostasis points themselves
are shifted by the drug. Homeostasis is a fundamentally
nonlinear phenomenon, describing the cell’s return to a
stable state after a perturbation. Like the Le Chatelier

Principle in physics [17], homeostasis describes a pro-
cess resembling a marble rolling back to the bottom of a
well after being pushed, like a well-bottom of an energy
function. Here, we treat the nonlinearities and feedbacks
that are needed to explore how the homeostasis balance
is tipped by the drug. But to do this in a way that can
give simple insights, we use a reduced (‘minimalist’) de-
scription of the bacterial cell [18]. We use this model to
study the response of E. coli to chloramphenicol.

Our goal here is a quantitative description of the
energy-limited cell in the absence or presence of vary-
ing amounts of drug, in terms of the physico-chemical
processes of the undrugged cell developed recently [18].
(By energy limited, we mean cells that are growth lim-
ited by a sugar source, such as glucose, rather than by
amino acids, for example). Our minimal model expresses
the dynamical concentrations and fluxes of three internal
cell components – ribosomal protein, nonribosomal pro-
tein, and internal energy (lumped into a single category
we call ATP), as a function of external sugar, such as
glucose. We previously found that healthy E. coli under
good growth conditions (speeds up to one duplication per
hour) have achieved an evolutionary balance [18]. On the
one hand, the cell invests energy and biomass in increas-
ing its ribosome concentration because that increases the
cell’s growth speed. On the other hand, too much en-
ergy and biomass devoted to producing ribosomes leads
to starving the cell’s ability to take in food and convert
it to ATP. In the present paper, we ask how drugging the
cell a↵ects its balance of energy and biomass.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 3, 2016. ; https://doi.org/10.1101/024703doi: bioRxiv preprint 

https://doi.org/10.1101/024703
http://creativecommons.org/licenses/by-nc-nd/4.0/


2

2. A MINIMAL MODEL OF E. COLI IN THE
PRESENCE OF DRUGS

We model the energy-limited growth of E. coli using
three rate equations: for energy (ATP concentration, A)
and ribosomal (R

act

) and nonribosomal protein concen-
trations (P) as functions of time t [18]:
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where the fluxes are defined as:
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Here, J
a

is the rate of glucose conversion for ATP gener-
ation, J

p

and J

r

are the respective rates of synthesis of
nonribosomal proteins and ribosomes. k

r

, k
p

and k

a

(G)
are the respective rate constants for ribosomal biogene-
sis, protein translation and energy generation. The units
of rates and rate constants are ‘mM per hour’ and ‘per
hour’ respectively. m

a

is the moles of ATP per mole
of glucose generated, and, m

r

and m

p

are the respec-
tive moles of ATP consumed per unit mole of ribosome
(⌘ M

r

g ribosomal proteins) and nonribosomal proteins
(⌘ M

p

g) synthesized. Our work is not the first to model
the biomass balance in bacteria; see [19–25]. What is new
here, we believe, is the coupling between the biomass and
energy balance; also see [26].
The functional forms in Eqs. (5), (6), (7) reflect wild-

type regulatory mechanisms that coordinate the synthe-
ses of ribosomal and non-ribosomal proteins, which are
complex [27, 28] and depend on the cell’s energy status.
To capture these dependencies, we adopt the undrugged
cell functions [18]:
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defin-
ing the non-linearities in the respective pathways. In ad-
dition, here we consider the e↵ects of drug X as shown

in Fig. 1. X is an antibiotic drug that targets ribosomes.
There is a broad class of natural and synthetic bacterio-
static antibiotics of this type, such as chloramphenicol,
that target protein synthesis. The present model is in-
tended as a general description of that class of drugs [3].
We assume X permeates passively from the extracellu-
lar medium into the cytosol through the cell membrane.
We assume free drug concentrations outside and inside
the cell are equal, a reasonable approximation for E. coli
based on similar values of drug binding kinetics from in

vivo and in vitro measurements, see Ref. [29, 30].
The binding of X to the ribosomes, which occurs with

rate constant k+x

, halts peptide-chain elongation, as rep-
resented by the following dynamics:
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Here, J+x

is the rate at which ribosomes become inacti-
vated due to binding with the drug and J�x

is the rate
of unbinding. R

in

is the concentration of ribosomes that
have been inactivated by binding to the drug, and R

act

,
as noted above, is the intracellular concentration of active
ribosomes. So, R

act

+ R

in

is the total concentration of
ribosomes in the cell. x is the extracellular concentration
of drugs.
A key quantity in the present model is the fraction of

ribosomes that are active ↵(x), for a given drug concen-
tration x. We assume steady state, so we set dR

in

/dt = 0
in Eq. (13). We also assume that the rate constant for
drug-ribosome unbinding is much faster than dilution,
k�x

� �. So, we get:
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For the equilibrium dissociation constant of chloram-
phenical, we use (k�x

/k+x

) ⌘ K

d

⇠ 3 µM [29]. ↵ = 1
represents the situation of no drug. Increasing drug con-
centration decreases ↵ towards zero.
The fraction of all proteins (by mass) that are active
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And, the fraction of all proteins that are all ribosomes
(active plus inactive) is:
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The last equality in Eq. 18 expresses how the ribosomal
content of the cell depends on its growth rate � and other
properties. And, then the fraction of active ribosomes
devoted to translating ribosomal proteins is:

�
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= �
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�
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. (19)
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Figure 2: E. coli physiological correlations. (A) Growth
rate vs. extracellular glucose concentration from simulation
for antibiotic (chloramphenicol) concentrations of 0, 2.1 and
6.4 µM. (B) Dependence of growth rate, �, on antibiotic con-
centration, x. Line is the numerical solution of the ODE
model, with G = 0.08 mM, red. Red solid circles are experi-
mental data [10, 32] of E. coli grown on glucose+M63.

Further, the rate of ribosome synthesis, J
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⌘ M

r

J
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/⇢,
in units of g of ribosomal protein per g of total protein
per hour can be computed as (see S.I.):
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Under growth conditions in the absence of drugs, ↵ = 1,
and f
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[18] the rate of ribosome synthesis is given
as, using Eq. (18) and Eq. (20):
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3. THE DRUGGED CELL OVERPRODUCES
TOTAL RIBOSOMES TO MAINTAIN

SUFFICIENTLY MANY ACTIVE RIBOSOMES

Here we describe the model predictions. We solve
ODEs (1)-(14) under steady-state conditions for di↵er-
ent concentrations of glucose and antibiotic drug. Fig. 2A
shows that the model predicts Monod-like behavior [31]
of growth rate vs. glucose concentration under di↵er-
ent drug concentrations. As expected, the model pre-
dicts that increasing drug leads to diminishing maximum-
growth rates.
Fig. 3 shows that the model is consistent with exper-

iments indicating how added drug stimulates total ri-
bosome production even as it reduces the cell’s growth
rate [10, 33]. The black line shows that, for undrugged
cells, ribosomes become upshifted relative to other pro-
tein biomass with increasing cellular growth rate. The
red line and data points show that the added drug does
two things: it increases the ribosomal fraction while si-
multaneously reducing the growth rate.
Our result reduces to the linear model of Scott et al

[10] in the limit of zero degradation. To see this, note
that (see SI),
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Figure 3: E. coli ribosomal protein fraction vs growth
rates. Numerical solutions of the ODE model, with in-
creasing glucose concentrations in mM: G =0.04 (blue), 0.05
(green), 0.08 (red), 0.125 (purple), and, antibiotic concentra-
tions x = 0 ! 25 µM shown by arrows. Circles are exper-
imental data [10, 32] of E. coli grown on glucose+M63 at
di↵erent dosage of chloramphenicol marked in µM . Black
line is theory, Eq. (18) with f

p

= f

1
p

= 0.7, k0
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= 9.65 h�1,
� = 0.1 h�1, and ↵ = 1, absence of drugs.
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Figure 4: E↵ect of ribosomal inhibitors on cellular
homeostasis. Lines are scaled numerical solutions of the
ODE model, with G = 0.08 mM. (Orange) Active ribosomes,
[↵(x)/↵(x = 0)], as a function of drug concentration x. (Red)
Total ribosomes, [�

tot

(x)/�
tot

(x = 0)]. (Black) The frac-
tion of active ribosomes that are producing ribosomal proteins,
[�

rr

(x)/�
rr

(x = 0)]; Eq. (19). Also see Fig. S2–S4.
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) are constants denoting the respec-
tive gram-weights of ribosomal and nonribosomal pro-
teins synthesized per mole of ATP. Setting ✏
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⇠ 0 and
� ⇠ 0 gives �

tot

⇠ 1 � �/�

a

, which is just the linear
relationship of Scott et al. [10].

What is the cell ‘trying to achieve’ under the burden
of the drug? As noted above, the e↵ect of the drug is to
decrease substantially the fraction of useful ribosomes;
see the quantity ↵ in Fig. 4. However, Fig. 4 also shows
that there is remarkable relative constancy in two other
quantities, �

tot

and �

rr

, independent of the concentra-
tion of drug. Ribosomes make either ribosomal or non-
ribosomal proteins. �

rr

is the fraction of active ribosomes
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that are producing other ribosomes (see the double arrow
in Fig. 1; see also Fig. S2–S4. And, �

tot

is the fraction of
all proteins that are ribosomal. The constancy of these
quantities suggests that the cell senses and regulates how
many of its proteins are ribosomes, or how many are ribo-
somes producing other ribosomes. Such processes may be
mediated by ppGpp, the molecule that provides stringent
control of ribogenesis in the presence of antibiotic stress
[27, 34]. To our knowledge, �

rr

has not been measured
experimentally.

4. THE DRUG SHIFTS THE PRODUCTION
RATE OF RIBOSOMES. BUT, IT HAS LITTLE
EFFECT ON ENERGY FLOW FROM GLUCOSE

TO ATP.

In this section, we get further insights from looking at
two additional properties of the model. First, in Fig. 5,
we go beyond concentrations of ribosomes and consider
the rate of production of ribosomes, J

fr

= � · �
tot

(�)
[Eq. (20)], which we also call ribosomal flux. We find
(see below) that while high drug concentrations increase
the numbers of ribosomes, it also reduces the rates of
ribosome production. Second, Fig. 6 shows that added
drug reduces the growth rate by reducing the catabolic
conversion of glucose to ATP. Here are the details.
First, focus on the black line in Fig. 5. According to the

model, under the no-drug condition, the ribosomal pro-
duction rate should scale as the square of the growth rate,
J

fr

⇠ � · �/(k0
p

f

1
p

) / �

2, since �

tot

/ �. Fig. 5 shows a
log-log plot. The black line shows the square-law predic-
tion for undrugged cells. The data points shown in gray
lay along this black line, indicating that the model pre-
dicts well the ribosomal production rates of undrugged
cells growing at di↵erent speeds.

Next, focus on the red points in Fig. 5. The datapoints,
containing the circled numbers 2 - 12 µM, show the ef-
fects of increasing amounts of drug at fixed nutrients.
Following the red line toward the left, which describes
increasing drug concentrations, shows how the drug re-
duces the growth rate while it also reduces the production
rate of ribosomes. The experimental datapoints are from
ref. [10]; also see SI.
Finally, the blue line on Fig. 5 makes an interesting

prediction, for which there are no experiments yet as far
as we know. The blue line represents cell growth un-
der low nutrients, 0 < � . 0.8 h�1. The blue line has
curvature. This shows that while ribosomal fluxes are in-
creased by small amounts of added drug, those fluxes are
decreased by larger amounts of drug due to the reduction
of cell growth at high drug concentrations.
We can draw another inference by comparing the blue

and black lines on Fig. 5. Those two lines intersect
around � = 0.35 1/h, defining the point of no drug.
From this point, there are two ways to increase the ri-
bosomal flux, J

fr

(the y-axis). You can either give the
cells more food (leading to the black line, increasing J

fr
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Figure 5: E↵ect of ribosomal inhibitors on ribosomal
activity. The symbols show the rate of ribosomal synthesis
J

fr

= M

r

J

r

/⇢ vs. specific growth rate of E. coli converted
from experimental � � k data. Chloramphenicol concentra-
tions (µM) marked inside the circles. Nutrients: M63+gluc
(red) at T=37 C; Scott et al. [10, 32]. Gray filled circles
are experimental data [10, 32] in the absence of drugs. Blue
line; ODE model prediction at constant G = 0.04 mM and
chloromaphenicol varied between x = 0 ! 15 µM shown by
arrow. The black line is theory, Eq. (21), in the absence of
drugs with f

p

= f

1
p

= 0.7, � = 0.1 h�1, k0
p

= 9.65 h�1. Also
see S.I. Fig. S1.
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Figure 6: E↵ect of ribosomal inhibitors on rate of en-
ergy metabolism. Predictions of rate of energy metabolism
vs. growth rate � from ODE model under variation of glu-
cose, G = 0 � 1 mM and no-drugs (black line). Prediction
at G = 0.04 mM (red line) under variation of drugs from
x = 0 ! 15 µM shown by the arrow. Increase in drug concen-
tration reduces both rates of growth and energy generation.

to the right) or give them drugs (leading to the blue line,
increasing to the left). It suggests there are (at least)
two signals that increase cellular ribosome fluxes: a sig-
nal about energy availability, and a signal about numbers
of active ribosomes.
Related to that point, Fig. 6 shows the prediction of

�

a

(1��), which is a measure of the energy flux in the con-
version of glucose to ATP, m

a

k

a

(G)·P . Fig. 6 shows that
there is a single universal relationship between that en-
ergy flux and growth rate, irrespective of whether growth
is controlled by drugs or food. This indicates the nature
of feedback in the cell. It is not simply the energy in-
flow (input) that dictates the growth rate (output). The
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growth rate is also a controller of the energy influx. This
is interesting in the context of drugs, which can more
strongly a↵ect the growth rate dependence of the rate
of ribosomal synthesis than energy influx. As far as we
know, there are no experiments that bear on this predic-
tion.

5. DISCUSSION

This model makes some predictions that have not yet
been tested experimentally. We hope experimentalists
will make such tests, to give deeper insights into these
nonlinear behaviors, and to ultimately lead to improved
models. Current experiments on drugged and undrugged
bacteria are run on di↵erent food sources and in di↵er-
ent media. Deeper tests of our model could come from
studies that fix the types of nutrient and media, and vary
only the food concentrations. In addition, a key variable
here is �

a

, the cell’s conversion e�ciency of sugar to in-
ternal energy, such as ATP. It would be valuable to have
measurements of: glucose and oxygen uptake rates, ATP
production rates (m

a

J

a

), ATP concentrations, and ribo-
some production rates (J

r

), key glycolytic, TCA cycle,
and fermentation enzyme concentrations as a function of
external glucose and antibiotic concentrations.
Somewhat di↵erent models are those of Elf et al. [35]

and Deris et al. [36], who consider bistabilities of cells
resulting either from membrane properties or drug resis-
tance. Other models focus on mechanisms of microscopic
control of ribosome synthesis, such as the “stringent re-
sponse”, a negative feedback mechanism triggered when
some of cell’s excess usable energetic molecules are con-
verted to unusable ppGpp as response to endogenous lim-
itations of aminoacids [21, 28, 37]. Because of its simplic-
ity, the present treatment could be extended to explore
other factors that are of interest, such as cellular geom-
etry (surface-volume considerations), multi-drug e↵ects

[38], or drug-dependent cellular multistabilities that lead
to antibiotic resistance and persistence [35, 36].

6. CONCLUSIONS

Here, we model the balance of energy, ribosomes and
nonribosomal proteins in E. coli cells in the presence
of chloramphenicol, an antibiotic drug. We suppose
that chloramphenicol binds to ribosomes and inactivates
them, in a Michaelis-Menten fashion. We combine
this binding-induced inactivation of ribosomes with a
three-component dynamical model of E. coli’s energy,
ribosomal and non-ribosomal protein biomass as a
function of growth rates, previously validated against
experiments on undrugged bacteria. The present model
gives quantitative predictions for how the cell’s growth
rate decreases with drug, and how the total ribosomal
fraction of protein increases with drug. And, it predicts
that adding drugs to slow-growing cells leads to first
increasing the rate of ribosomal synthesis, then a
decrease as the cell gets sicker. We show the model
agreement with data. But, more important are the
insights the model gives about how the cell responds to
drug: what varies and what stays constant. We find that
while drugging the cell reduces the concentrations of
active ribosomes, it also stimulates more total ribosome
production, holding relatively constant the ribosomal
production of ribosomes, a key quantity the cell uses to
toggle between growth and self-protection.

Author Contributions A.M. and K.A.D designed
research; A.M. performed research; A.M. and K.A.D
analyzed data; and A.M. and K.A.D. wrote the paper.

Acknowledgement We appreciate support from the
Laufer Center at Stony Brook University.

[1] J. Poehlsgaard and S. Douthwaite, Nature reviews. Mi-
crobiology 3, 870 (2005), ISSN 1740-1526.

[2] T. Tenson and A. Mankin, Molecular microbiology 59,
1664 (2006), ISSN 0950-382X.

[3] D. N. Wilson, Nature reviews. Microbiology 12, 35
(2014), ISSN 1740-1534.

[4] C. Kurland and O. Maaloe, J. Mol. Biol. 4, 193 (1962).
[5] R. Co↵man, T. Norris, and A. Koch, J Mol Biol. 60, 1

(1971).
[6] D. Drainas, D. Kalpaxis, and C. Coutsogeorgopoulos,

European J. Biochemistry 164, 53 (1987).
[7] T. Siibak, L. Peil, L. Xiong, A. Mankin, J. Remme, and

T. Tenson, Antimicrobial Agents and Chemotherapy 53,
563 (2009), ISSN 00664804.

[8] C. Tamae, A. Liu, K. Kim, D. Sitz, J. Hong, E. Becket,
A. Bui, P. Solaimani, K. P. Tran, H. Yang, et al., Journal
of Bacteriology 190, 5981 (2008), ISSN 00219193.

[9] M. A. Kohanski, D. J. Dwyer, and J. J. Collins, Nature

reviews. Microbiology 8, 423 (2010), ISSN 1740-1534.
[10] M. Scott, C. Gunderson, E. M. Mateescu, Z. Zhang, and

T. Hwa, Science 330, 1099 (2010).
[11] P. Nonejuie, M. Burkart, K. Pogliano, and J. Pogliano,

Proceedings of the National Academy of Sciences of the
United States of America 110, 16169 (2013), ISSN 1091-
6490.

[12] H. Kitano, Nat. Rev. Molec. Cell. Biol. 7, 6511 (2006).
[13] M. Domach, S. Leung, R. Cahn, G. Cocks, and M. Shuler,

Biotechnol. Bioeng. 26, 203 (1984).
[14] C. Chassagnole, N. Noisommit-Rizzi, J. W. Schmid,

K. Mauch, and M. Reuss, Biotechnology and Bioengi-
neering 79, 53 (2002), ISSN 00063592.

[15] J. D. Orth, I. Thiele, and B. O. Palsson, Nature biotech-
nology 28, 245 (2010), ISSN 1546-1696.

[16] J. Edwards and B. Palsson, Proc. Natl. Acad. Sci. USA
97, 5528 (2000).

[17] K. Dill and S. Bromberg, Molecular Driving Forces: Sta-

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 3, 2016. ; https://doi.org/10.1101/024703doi: bioRxiv preprint 

https://doi.org/10.1101/024703
http://creativecommons.org/licenses/by-nc-nd/4.0/


6

tistical Thermodynamics in Chemistry and Biology (Gar-
land Science, 2003).

[18] A. Maitra and K. A. Dill, Proc. Natl. Acad. Sci. USA.
112, 406 (2015).

[19] CN. Hinshelwood, J. Chem. Soc. pp. 745–755 (1952).
[20] H. Bremer and P. Dennis, Modulation of chemical com-

position and other parameters of the cell by growth rate.
In Escherichia coli and Salmonella., FC Neidhardt, ed
(American Society for Microbiology Press, Washington
DC, 1996).

[21] M. Scott, S. Klumpp, E. Mateescu, and T. Hwa, Mol.
Syst. Biol. 10, 747 (2014).

[22] AG Marr, Microbiol. Rev. 55, 316 (1991).
[23] D. Molenaar, R. van Berlo, D. de Ridder, and B. Teusink,

Mol. Syst. Biol. 5, 323 (2009).
[24] A. Zaslaver, S. Kaplan, A. Bren, A. Jinich, A. Mayo,

E. Dekel, U. Alon, and S. Itzkovitz, PLoS Comput. Biol.
5, e1000545 (2009).

[25] E. Bosdriesz, D. Molenaar, B. Teusink, and F. J. Brugge-
man, FEBS Journal 282, 2029 (2015), ISSN 1742-4658.

[26] A. Y. Weisse, D. A. Oyarzún, V. Danos, and P. S. Swain,
Proceedings of the National Academy of Sciences USA
112, 1038 (2015).

[27] G. B. M Nomura, RL Gourse, Annu. Rev. Biochem. 53,
75 (1984).

[28] JJ Lemke, P Sanchez-Vazquez, HL Burgos, G Hedberg,

W Ross, RL Gourse , Proc. Natl. Acad. Sci. USA. 108,
5712 (2011).

[29] RJ. Harvey, AL. Koch, Antimicrob Agent Chemotherapy
18, 323 (1980).

[30] O. Lewinson, J. Adler, G. J. Poelarends,
P. Mazurkiewicz, A. J. M. Driessen, and E. Bibi,
PNAS 100, 1667 (2003).

[31] A. L. Koch, Journal of theoretical biology 98, 401 (1982),
ISSN 0022-5193.

[32] To get �, the (rRNA/protein) ratio from Ref. [10] is
scaled by a factor of 0.46 [20].

[33] P. Dennis, Journal of Molecular Biology 108, 535 (1976).
[34] K. Potrykus, H. Murphy, N. Philippe, and M. Cashel,

Environmental Microbiol. 13, 563 (2011).
[35] J. Elf, K. Nilsson, T. Tenson, and M. Ehrenberg, Phys.

Rev. Lett. 97, 258104 (2006).
[36] J. B. Deris, M. Kim, Z. Zhang, H. Okano, R. Hermsen,

A. Groisman, and T. Hwa, Science (New York, N.Y.)
342, 1237435 (2013), ISSN 1095-9203.

[37] B. P. English, V. Hauryliuk, A. Sanamrad, S. Tankov,
N. H. Dekker, and J. Elf, Proceedings of the National
Academy of Sciences of the United States of America
108, E365 (2011), ISSN 1091-6490.

[38] T. Bollenbach, S. Quan, R. Chait, and R. Kishony, Cell
139, 707 (2009), ISSN 1097-4172.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 3, 2016. ; https://doi.org/10.1101/024703doi: bioRxiv preprint 

https://doi.org/10.1101/024703
http://creativecommons.org/licenses/by-nc-nd/4.0/


1

Supporting Information

Modeling the overproduction of ribosomes when antibacterial drugs act on cells
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1. RATE OF RIBOSOME CREATION

Here, we derive an expression for the rate of total ribosome production. Ribsomal inhibitors such as chloramphenicol
reduce the cell’s growth rate by reducing the active fraction of ribosomes. Adding Eq. (2) and Eq. (13) and setting
the sum to zero gives

� = ↵k

r

f

r

(A), (S1)

showing how the cell’s growth rate is reduced with ↵, the ribosomal inactivation fraction in Eq. 16.
Here, we express the rate of ribosome synthesis, J

fr

, in units of g of ribosomal protein per g of total protein, to get
the points on Fig. 5 as computed from experimental data �

tot

� �:

J

r

= R

act

· k
r

f

r

; from Eq. (5) (S2a)

=
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) ; using Eq. (16) (S2c)

= � · (R
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) ; using Eq. (S1) (S2d)
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) +M
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(S2f)

via Eqs. (S2d) and (4)

= ��

tot

(S2g)

Under growth conditions without antibiotics, the flux for ribosomal synthesis is:

J

fr

= �

�+ �

�+ � + k

0
p

f

1
p

. (S3)

obtained from substituting Eq. (18) with ↵ = 1, f
p

= f

1
p

into Eq. (S2g).

2. ENERGY BALANCE

Next, we look at the energy balance. At steady state, Eqs. (1), (2), (3) are set to zero, leading to the expression,

�

a

=
(�+ �)(�+ ↵�

p

f

p

)

↵�

p

f

p

(S4)

In addition, we now show how our model leads to the linear dependence of ribosomal content on growth rate described
by Scott et al. [10]. We derive another expression for �

tot

from Eqs. (18) and (S4) by eliminating ↵k

0
p

f

p

:

�
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(�;�
a

) =
�
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� � � �
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� � + �✏
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=
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Setting ✏

rp

⇠ 0 and � ⇠ 0 gives �
tot

(�) ⇠ 1� �/�

a

.
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Table S1: Structural, Rate and Bioenergetic Constants.
Physical constants Symbol Value
Protein density ⇢ 0.25 g cm�3

Molec. wt. of ribosomal proteins (RP) per ribosome M

r

7336 aa ⇥ 110 g/mol/aa = 806960 g mol�1

Molec. wt. of a non-ribosomal protein (NRP) M

p

325 aa ⇥ 110 g/mol/aa = 35750 g mol�1

Molecules of ATP produced per glucose molecule m

a

30
Molecules ATP consumed to create one ribosome m

r

(7336 aa ⇥ 6) + (4566 nu ⇥ 10) ⇠ 89700
Molecules of ATP consumed to create one NRP m

p

325 aa ⇥ 6 = 1950
Rate of NRP elongation per ribosome, 20 aa/s k

0
p

20 ⇥ 3600 (aa/h)/7336 aa ⇠ 10 aa/h/(RP aa)
Non-ribosomal protein degradation rate � 0.1 NRP per total NRP per h

Derived constants Symbol Value
Max no. of protein molecules translated per hr per ribosome (capacity) k

p

M

r

k

0
p

/M

p

= 215 h�1

NRP translation rate per ribosome scaled by pathway e�ciencies �

p

("
r

/"

p

)k0
p

⇠ 5 h�1

Max no. of ribosomes synthesized per hr per ribosome (= �

p

) k

r

5 h�1

Ribosomal pathway e�ciency, g of RPs synthesized per mol ATP "

r

M

r

/m

r

⇠ 9 g mol�1

Protein pathway e�ciency, g of NRPs per mol ATP "

p

M

p

/m

p

⇠ 18 g mol�1

Relative pathway e�ciency between P– and R– pathways "

rp

("
p

� "

r

)/"
r

⇠ 1

Table S2: Parameters of E. coli ODE numerical model obtained from fit of the model to data.
ODE model Parameters Symbol Value
A�nity constant between nonribosomal proteins and glucose for glucose transport D

g

0.07 mM
Number of glucose molecules metabolized to ATP per hr per protein molecule k

1
a

120 h�1

A�nity constant between proteins and ATP for ATP generation D

a

4.0 mM
ATP concentration threshold for ribosome synthesis D

r

0.18 mM
Max fraction of ribosomes translating RPs f

1
r

0.2
Max fraction of ribosomes translating NRPs f

1
p

0.7

Table S3: Interaction parameters of E. coli and Chloramphenicol.
ODE model Parameters Symbol Value
Regulatory parameter of f

p

D

p

0.02 mM
Regulatory parameter of f

p

D

pp

1/15 mM�1

Rate constant of chloramphenicol molecules to bind with a ribosome k+x

9 h�1
µM�1

Ribosome-drug unbinding rate constant k�x

30 h�1
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Figure S1: E↵ect of ribosomal inhibitors on ribosomal activity. (A) The black line is theory, Eq. (S3), in the absence
of drugs with f

p

= f

1
p

= 0.7, � = 0.1 h�1, k0
p

= 9.65 h�1. Solutions of ODE cell model at glucose concentrations G=0.04
mM (blue) and 0.08 mM (red), respectively, under increasing chloramphenicol concentrations, x = 0� 15 µM, shown by arrow.
(B) Ribosomal activity vs. chloramphenicol concentration from ODE model at G=0.04 mM (blue) and 0.08 mM (red). (C)
Ribosomal activity vs. ribosomal protein fraction from ODE model at G=0.04 mM (blue) and 0.08 mM (red).
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Figure S2: E↵ect of ribosomal inhibitors on cellular homeostasis. (A) Solid circles are experimental data of ribosomal
protein fraction �

tot

of E. coli grown on glucose+M63 [10, 32]. Lines are numerical solutions of the ODE model, with glucose
concentration G = 0.08 mM. Orange, ↵, active fraction of ribosomes independent of G and dependent hyperbolically on
chloramphenicol concentration x; see Eq. (16). Red solid line, total ribosomal protein fraction, �

tot

= M

r

[R
act

+R

in

]/[M
r

(R
act

+
R

in

) + M

p

P ], at di↵erent dosage of chloramphenicol, x. Red dotted line, �
act

= ↵�

tot

= M

r
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act

/(M
r

(R
act

+ R

in

) + M

p

P );
Eq. (17). (B) �

rr

= �

tot

�

act

, fraction of active ribosomes devoted to ribosomal autosynthesis, from model for G = 0.04 mM
(blue), 0.08 mM (red), 0.125 mM (purple).
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Figure S3: E↵ect of ribosomal inhibitors on cellular homeostasis. Numerical solutions of the ODE model under
varying concentrations of ribosomal inhibitors x and fixed glucose concentrations: (A) G = 0.08 mM, (B) 0.125 mM. Solid
lines, total ribosomal protein fraction, �

tot

(x,G)/�
tot

(x = 0, G). Black dashed lines, [�
rr

(x,G)/�
rr

(x = 0, G). Dotted lines,
�

act

(x,G)/�
act

(x = 0, G); from Eq. (17). Dot-dashed lines, ↵, active fraction of ribosomes; see Eq. (16).
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Figure S4: Relative change in ribosomal protein fractions with change in inhibitor concentrations. A comparison
of the quantities �

x

ln↵(x), �
x

ln�
tot

(x), �
x

ln�
act

(x) and |�
x

ln�
rr

(x)| where �
x

⌘ @

@x

obtained from model at fixed glucose
concentrations: (A) G = 0.08 mM, and (B) G = 0.125 mM. These plots show that the quantity �

rr

⌘ �

tot

�

act

is more tightly
regulated compared to the other quantities under antibiotic stress.
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