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Bacteria that are subjected to ribosome inhibiting antibiotic drugs show an interesting behavior:
although adding drugs slows down cell growth, it also paradoxically increases the cell’s concentra-
tion of ribosomes. We combine a prior nonlinear model of the energy-biomass balance in undrugged
E. coli cells (Maitra and Dill, PNAS 2015 ) with Michaelis-Menten binding of drugs that inacti-
vate ribosomes. Predictions are in good agreement with experiments on ribosomal concentrations
and synthesis rates vs. drug concentrations and growth rates. The model indicates that the cell
overproduces ribosomes in order to maintain an essentially constant ratio of active ribosomes to
nonribosomal proteins, a key controller of cell behavior. The model also shows that drugged cells
tend to maintain patterns of energy influx rates (glucose → ATP) that are the same as when the
cells are undrugged. And, it predicts that adding drugs to slow-growing cells leads to a maximum
point in the rate of ribosome synthesis. This type of modeling can provide insights into cellular
driving forces that are difficult to measure.

1. INTRODUCTION

Drugs, such as chloramphenicol, act to reduce bacte-
rial cell growth rates by inhibiting bacterial ribosomes,
thereby reducing the cell’s production of proteins. What
actions does the cell evoke to counter the drug? On the
one hand, there is often a good understanding of how the
drug binds at its ribosomal site [1–3] and it is sometimes
known how that binding interferes with protein elonga-
tion [4–7]. It is also sometimes known how drugs sensi-
tize local networks to evoke adaptive responses [8–11].
On the other hand, there is usually less understanding
of what global stresses the drug trigger, how it shifts the
balances of energy and biomass, or of what homeostatic
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Figure 1: Minimal kinetic model of E. coli . The model
expresses the dynamical fluxes (arrows) and concentrations
of active ribosomes (Ract), non-ribosomal proteins (P) and a
lumped internal energy (ATP). Antibiotic inhibitor molecules
are represented by X. X bind reversibly with active ribosomes.
While in bound-form, Rin, the ribosomes are inactivated, and
they do not translate proteins. P degrades with a rate con-
stant γ. The cell grows exponentially with a specific growth
rate of λ.
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condition the cell might be trying to preserve.

There are various approaches to cell-level modeling.
One approach models the dynamics of the cell’s net-
works of biochemical reactions [12–14]. Even in an or-
ganism as simple as a bacterium, there are very many in-
terconnected web of reactions, making it complicated to
model. Another approach has been Flux-Balance Analy-
sis [15, 16], which gives solutions by linearizing the forces
around some given homeostasis point. Here, however, we
are interested in how those homeostasis points themselves
are shifted by the drug. Homeostasis is a fundamentally
nonlinear phenomenon, describing the cell’s return to a
stable state after a perturbation. Like the Le Chatelier
Principle in physics [17], homeostasis describes a pro-
cess resembling a marble rolling back to the bottom of a
well after being pushed, like a well-bottom of an energy
function. Here, we treat the nonlinearities and feedbacks
that are needed to explore how the homeostasis balance
is tipped by the drug. But to do this in a way that can
give simple insights, we use a reduced (‘minimalist’) de-
scription of the bacterial cell [18]. We use this model to
study the response of E coli to chloramphenicol.

Our goal here is a quantitative description of the
energy-limited cell in the absence or presence of vary-
ing amounts of drug, in terms of the physico-chemical
processes of the undrugged cell developed recently [18].
(By energy limited, we mean cells that are growth lim-
ited by a sugar source, such as glucose, rather than by
amino acids, for example). Our minimal model expresses
the dynamical concentrations and fluxes of three internal
cell components – ribosomal protein, nonribosomal pro-
tein, and internal energy (lumped into a single category
we call ATP), as a function of external sugar, such as
glucose. We previously found that healthy E. coli under
good growth conditions (speeds up to one duplication per
hour) have achieved an evolutionary balance [18]. On the
one hand, the cell invests energy and biomass in increas-
ing its ribosome concentration because that increases the
cell’s growth speed. On the other hand, too much en-
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ergy and biomass devoted to producing ribosomes leads
to starving the cell’s ability to take in food and convert
it to ATP. In the present paper, we ask how drugging the
cell affects its balance of energy and biomass.

2. A MINIMAL MODEL OF E. COLI IN THE
PRESENCE OF DRUGS

We model the energy-limited growth of E. coli using
three rate equations: for energy (ATP concentration, A)
and ribosomal (Ract) and nonribosomal protein concen-
trations (P) as functions of time t [18]:

dA

dt
= maJa −mrJr −mpJp − λA (1)

dRact

dt
= Jr − Jx − λRact (2)

dP

dt
= Jp − (γ + λ)P (3)

ρ = Mr(Ract +Rin) +MpP, (4)

where the fluxes are defined as:

Jr = kr ·Ract · fr(A). (5)

Jp = kp ·Ract · fp(A) (6)

Ja = ka(G) · P (7)

Here, Ja is the rate of glucose conversion for ATP gener-
ation, Jp and Jr are the respective rates of synthesis of
NRPs and ribosomes. kr, kp and ka(G) are the respective
rate constants for ribosomal biogenesis, protein transla-
tion and energy generation. The units of rates and rate
constants are ‘mM per hour’ and ‘per hour’ respectively.
Our work is not the first to model the biomass balance in
bacteria; see[19–25]. What is new here, we believe, is the
coupling between the biomass and energy balance; also
see [26].

The functional forms in Eqs. (5), (6), (7) reflect wild-
type regulatory mechanisms that coordinate the synthe-
ses of ribosomal and non-ribosomal proteins, which are
complex [27, 28] and depend on the cell’s energy status.
To capture these dependencies, we adopt the undrugged
cell functions [18]:

fr(A) =

{
0, ifA < Dr

f∞r ·
(
1− Dr

A

)
, ifA ≥ Dr

(8)

fp(A) = f∞p ·
A

Dp +A+DppA2
(9)

ka(G) = k∞a · fg(G) · fa(A) (10)

fg(G) =
G1.5

G1.5 +Dg
1.5 (11)

fa(A) =
Da

Da +A
. (12)

See S.I. for values of biophysical constants and parame-
ters. In addition, here we consider the effects of drug X

as shown in Fig. 1. X is an antibiotic drug that targets
ribosomes. There is a broad class of natural and syn-
thetic bacteriostatic antibiotics of this type, such as chlo-
ramphenicol, that target protein synthesis. The present
model is intended as a general description of that class
of drugs [3]. We assume X permeates passively from the
extracellular medium into the cytosol through the cell
membrane. We assume free drug concentrations outside
and inside the cell are equal, a reasonable approximation
for E. coli based on similar values of drug binding kinetics
from invivo and invitro measurements, see Ref. [29, 30].

The binding of X to the ribosomes, which occurs with
rate constant k+x, halts peptide-chain elongation, as rep-
resented by the following dynamics:

dRin

dt
= k+x · x ·Ract − k−x ·Rin − λRin (13)

Jx = k+x · x ·Ract − k−x ·Rin. (14)

Here, x is the extracellular concentration of drugs. Rin is
the concentration of ribosomes that have been inactivated
by binding to the drug, and Ract, as noted above, is
the intracellular concentration of active ribosomes. So,
Ract +Rin is the total concentration of ribosomes in the
cell. Jx is the overall rate at which ribosomes become
inactivated since (k+x · x ·Ract) is the rate of binding to
the drug and (k−x ·Rin) is the rate of unbinding.

A key quantity in the present model is the fraction of
ribosomes that are active α(x), for a given drug concen-
tration x. We assume steady state, so we set dRin/dt = 0
in Eq. (13). We also assume that the rate constant for
drug-ribosome unbinding is much faster than dilution,
k−x � λ. So, we get:

Ract

Rin
=
λ+ k−x
k+xx

(15)

⇒ α(x) =
Ract

Ract +Rin
=

1

1 + (k+x/k−x)x
. (16)

For the equilibrium dissociation constant of chloram-
phenical, we use (k−x/k+x) ≡ Kd ∼ 3µM [29]. α = 1
represents the situation of no drug. Increasing drug con-
centration decreases α towards zero.

The fraction of all proteins (by mass) that are active
ribosomes is

φac ≡
MrRact

Mr(Ract +Rin) +MpP
= αφtot. (17)

And, the fraction of all proteins that are all ribosomes
(active plus inactive) is:

φtot ≡
Mr(Ract +Rin)

Mr(Ract +Rin) +MpP
=

λ+ γ

λ+ γ + αk′pfp
. (18)

The last equality in Eq. 18 expresses how the ribosomal
content of the cell depends on its growth rate λ and other
properties. Further, the rate of ribosome synthesis, Jfr ≡
MrJr/ρ, in units of g of ribosomal protein per g of total
protein per hour can be computed as (see S.I.):

Jfr ≡MrJr/ρ = λφtot. (19)
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Figure 2: E. coli physiological correlations. (A) Growth
rate vs. extracellular glucose concentration from simulation
for antibiotic (chloramphenicol) concentrations of 0, 2.1 and
6.4 µM. (B) Dependence of growth rate, λ, on antibiotic con-
centration, x. Line is the numerical solution of the ODE
model, with G = 0.08 mM, red. Red solid circles are experi-
mental data [10, 32] of E. coli grown on glucose+M63.

Under growth conditions in the absence of drugs, α = 1,
and fp = f∞p [18] the rate of ribosome synthesis is given
as, using Eq. (18) and Eq. (19):

Jfr = λ · λ+ γ

λ+ γ + k′pf
∞
p

. (20)

3. THE DRUGGED CELL OVERPRODUCES
TOTAL RIBOSOMES TO MAINTAIN

SUFFICIENTLY MANY ACTIVE RIBOSOMES

Here we describe the model predictions. We solve
ODEs (1)-(14) under steady-state conditions for differ-
ent concentrations of glucose and antibiotic drug. Fig.
2(A) shows that the model predicts Monod-like behavior
[31] of growth rate vs. glucose concentration under dif-
ferent drug concentrations. As expected, the model pre-
dicts that increasing drug leads to diminishing maximum-
growth rates.

Fig. 3 shows that the model is consistent with exper-
iments indicating how added drug stimulates total ri-
bosome production even as it reduces the cell’s growth
rate [10, 33]. The black line in Fig. 3 shows that, for
undrugged cells, ribosomes become upshifted relative to
other protein biomass with increasing cellular growth
rate. The red line (and data points) show that added
drug does two things: increases the ribosomal fraction
while simultaneously reducing the growth rate.

What is the cell ‘trying to achieve’ under the bur-
den of the drug? Fig. 4 gives insights; it shows that
the cell maintains an essentially constant mass ratio,
Ract/(Ract + P ), of active ribosomes to useful proteins
(all proteins except inactive ribosomes). This is the ba-
sic quantity that controls the growth of the undrugged
cell. That is, the cell overproduces total ribosomes so as
to achieve sufficient active ribosomes in light of the in-
creasing numbers of inactive ribosomes that result from
increasing drug. To our knowledge, this ratio has not
been measured experimentally.
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Figure 3: E. coli ribosomal protein fraction vs growth
rates. Red line is the numerical solution of the ODE model,
with glucose concentration G = 0.08 mM and antibiotic con-
centration x = 0 − 15µM. Circles are experimental data
[10, 32] of E. coli grown on glucose+M63 at different dosage
of chloramphenicol marked in µM . Black line is theory, Eq.
(18) with fp = f∞p = 0.7, k′p = 9.65 h−1, γ = 0.1 h−1, and
α = 1, absence of drugs.
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Figure 4: Effect of ribosomal inhibitors on cellular
homeostasis. Solid circles are experimental data of ribo-
somal protein fraction φtot [10, 32] of E. coli grown on glu-
cose+M63. Lines are numerical solutions of the ODE model,
with G = 0.08 mM. Red line, total ribosomal protein fraction,
φtot = Mr[Ract +Rin]/[Mr(Ract +Rin) +MpP ], at different
dosage of chloramphenicol, x. Black line, MrRact/(MrRact +
MpP ) by mass. Orange, α, active fraction of ribosome inde-
pendent of G and dependent hyperbolically on chlorampheni-
col concentration; see Eq. (16).

4. THE DRUG SHIFTS THE PRODUCTION
RATE OF RIBOSOMES. BUT, IT HAS LITTLE

EFFECT ON ENERGY FLOW FROM GLUCOSE
TO ATP.

Fig. 5 illuminates the point from the perspective of
total production rates of ribosomes. Fig. 5 shows Jfr =
λ · φtot(λ), the relation between rate production of total
ribosomes and growth rate.

First, focus on the black line in Fig. 5. According
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Figure 5: Effect of ribosomal inhibitors on ribosomal
activity. The symbols show the rate of ribosomal synthesis
Jfr = MrJr/ρ vs. specific growth rate of E. coli converted
from experimental φ − k data. Chloramphenicol concentra-
tions (µM) marked inside the circles. Nutrients: M63+gluc
(red) at T=37 C from Scott et al. [10, 32]. Gray filled cir-
cles are experimental data [10, 32] in the absence of drugs.
Blue line; ODE model prediction at constant G = 0.04 mM
and chloromaphenicol varied between x = 0 − 15µM. The
black line is theory, Eq. (20), in the absence of drugs with
fp = f∞p = 0.7, γ = 0.1 h−1, k′p = 9.65 h−1. Also see S.I. Fig.
S1.

to the model, under no-drugs the ribosomal production
rate should scale as the square of the growth rate, Jfr ∼
λ · λ/(k′pf∞p ) ∝ λ2, since φtot ∝ λ. Fig. 5 shows a log-
log plot. The black line shows the square-law prediction
for undrugged cells. The data points shown in gray lay
along this black line, indicating that the model predicts
well the ribosomal production rates of undrugged cells
growing at different speeds.

Next, focus on the red points in Fig. 5. The datapoints,
containing the circled numbers 2 - 12 µM, show the ef-
fects of increasing amounts of drug at fixed nutrients.
Following the red line toward the left, which describes
increasing drug concentrations, shows how the drug re-
duces the growth rate while it also reduces the rate of
total ribosome production. The experiments are from
ref. [10]; also see SI.

Finally, the blue line on Fig. 5 makes an interesting
prediction, for which there are no experiments yet as far
as we know. The blue line represents cell growth un-
der low nutrients, 0 < λ . 0.8 h−1. The blue line has
curvature. Adding small amounts of drug increases the
total ribosome production rates; adding much more drug
leads to reduced rates of ribosome production because of
its bigger effect on reducing the cell’s growth rate.

Fig. 6 shows the prediction of λa(1 − φ), which is
a measure of flux of energy flow from glucose to ATP,
maka(G) ·P . Fig. 6 shows that the drugged cell is main-
taining this energy-flux correlation with growth rate at
undrugged-cell levels, even at different levels of drug. As
far as we know, there are no experiments that bear on
this prediction.
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Figure 6: Effect of ribosomal inhibitors on rate of en-
ergy metabolism. Predictions of rate of energy metabolism
vs. growth rate λ from ODE model under variation of glu-
cose, G = 0 − 1 mM and no-drugs (black line). Prediction
at G = 0.04 mM (red line) under variation of drugs from
x = 0→ 15µM shown by the arrow. Increase in drug concen-
tration reduces both rates of growth and energy generation.

5. DISCUSSION

We have shown here that this simple model is consis-
tent with measured ribosomal concentrations vs. growth
rate and drug concentrations. We would welcome ad-
ditional experiments. Current experiments on drugged
and undrugged bacteria are run on different food sources
and in different media. Deeper tests of our model could
come from studies that fix the types of nutrient and me-
dia, and vary only the food concentrations. In addition,
a key variable here is λa, the cell’s conversion efficiency
of sugar to internal energy, such as ATP. It would be
also valuable to have measurements of: glucose and oxy-
gen uptake rates, ATP production rates (maJa), ATP
concentrations, and ribosome production rates (Jr), key
glycolytic, TCA cycle, and fermentation enzyme concen-
trations as a function of external glucose and antibiotic
concentrations.

Somewhat different models are those of Elf et al [34]
and Deris et al [35], who consider bistabilities of cells
resulting either from membrane properties or drug resis-
tance. Other models focus on mechanisms of microscopic
control of ribosome synthesis, such as the “stringent re-
sponse”, a negative feedback mechanism triggered when
some of cell’s excess usable energetic molecules are con-
verted to unusable ppGpp as response to endogenous lim-
itations of aminoacids [21, 28, 36]. Because of its simplic-
ity, the present treatment could be extended to explore
other factors that are of interest, such as cellular geom-
etry (surface-volume considerations), multi-drug effects
[37], or drug-dependent cellular multistabilities that lead
to antibiotic resistance and persistence [34, 35].

6. CONCLUSIONS

Here, we model the balance of energy, ribosomes and
nonribosomal proteins in E. coli cells in the presence
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of chloramphenicol, an antibiotic drug. We suppose
that chloramphenicol binds to ribosomes and inactivates
them, in a Michaelis-Menten fashion. We combine this
binding-induced inactivation with a three-component dy-
namical model of E. coli’s energy, ribosomal and non-
ribosomal protein biomass as a function of growth rates,
previously validated against experiments on undrugged
bacteria. The present model gives quantitative predic-
tions for how the cell’s growth rate decreases with drug,
and how the total ribosomal fraction of protein increases
with drug. The main value of the model is not so much in

fitting data as in giving deeper mechanistic insights into
what the bacterium is ‘trying to achieve’ under increas-
ing drug perturbations. We find that while drugging the
cell causes dramatically lowered concentrations of active
ribosomes, it also stimulates more total ribosome produc-
tion, in an apparent effort to maintain a constant value of
the balance of active ribosome to nonribosomal protein,
a key quantity the cell uses to toggle between growth and
self-protection.
Acknowledgement We appreciate support from the
Laufer Center at Stony Brook University.
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1. RATE OF RIBOSOME CREATION

Here, we derive an expression for the rate of total ribosome production. Ribsomal inhibitors such as chloramphenicol
reduce the cell’s growth rate by reducing the active fraction of ribosomes. Adding Eq. (2) and Eq. (13) and setting
the sum to zero gives

λ(α) = αkrfr(A), (S1)

showing how the cell’s growth rate is reduced with α, the ribosomal inactivation fraction in Eq. 16.
Here, we express the rate of ribosome synthesis, Jfr, in units of g of ribosomal protein per g of total protein, to get

the points on Fig. 5 as computed from experimental data φtot − λ:

Jr = Ract · krfr ; from Eq. (5) (S2a)

=
Ract

Ract +Rin
· krfr · (Ract +Rin) (S2b)

= α · krfr · (Ract +Rin) ; using Eq. (16) (S2c)

= λ · (Ract +Rin) ; using Eq. (S1) (S2d)

⇒ Jfr =
MrJr
ρ

(S2e)

= λ · Mr(Ract +Rin)

Mr(Ract +Rin) +MpP
(S2f)

via Eqs. (S2d) and (4)

= λφtot (S2g)

Under growth conditions without antibiotics, the flux for ribosomal synthesis is:

Jfr = λ
λ+ γ

λ+ γ + k′pf
∞
p

. (S3)

obtained from substituting Eq. (18) with α = 1, fp = f∞p into Eq. (S2g).

2. ENERGY BALANCE

Next, we look at the energy balance. At steady state, Eqs. (1), (2), (3) are set to zero, leading to the expression,

λa =
(λ+ γ)(λ+ αλpfp)

αλpfp
(S4)

In addition, we now show how our model leads to the linear dependence of ribosomal content on growth rate described
by Scott et al. [10]. We derive another expression for φtot from Eqs. (18) and (S4) by eliminating αk′pfp:

φtot[λ;λa(G)] =
λa(G)− γ − λ
λa(G)− γ + λεrp

where εrp =
εp − εr
εr

(S5)

Setting εrp ∼ 0 and γ ∼ 0 gives φtot(λ) ∼ 1− λ/λa(G), giving the linear relationship of Scott et al. [10].
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Table S1: Structural, Rate and Bioenergetic Constants.

Physical constants Symbol Value
Protein density ρ 0.25 g cm−3

Molec. wt. of ribosomal proteins (RP) per ribosome Mr 7336 aa × 110 g/mol/aa = 806960 g mol−1

Molec. wt. of a non-ribosomal protein (NRP) Mp 325 aa × 110 g/mol/aa = 35750 g mol−1

Molecules of ATP produced per glucose molecule ma 30
Molecules ATP consumed to create one ribosome mr (7336 aa × 6) + (4566 nu × 10) ∼ 89700
Molecules of ATP consumed to create one NRP mp 325 aa × 6 = 1950
Rate of NRP elongation per ribosome, 20 aa/s k′p 20 × 3600 (aa/h)/7336 aa ∼ 10 aa/h/(RP aa)
Non-ribosomal protein degradation rate γ 0.1 NRP per total NRP per h

Derived constants Symbol Value
Max no. of protein molecules translated per hr per ribosome (capacity) kp Mrk

′
p/Mp = 215 h−1

NRP translation rate per ribosome scaled by pathway efficiencies λp (εr/εp)k′p ∼ 5 h−1

Max no. of ribosomes synthesized per hr per ribosome (= λp) kr 5 h−1

Ribosomal pathway efficiency, g of RPs synthesized per mol ATP εr Mr/mr ∼ 9 g mol−1

Protein pathway efficiency, g of NRPs per mol ATP εp Mp/mp ∼ 18 g mol−1

Relative pathway efficiency between P– and R– pathways εrp (εp − εr)/εr ∼ 1

Table S2: Parameters of E. coli ODE numerical model obtained from fit of the model to data.
ODE model Parameters Symbol Value
Affinity constant between nonribosomal proteins and glucose for glucose transport Dg 0.07 mM
Number of glucose molecules metabolized to ATP per hr per protein molecule k∞a 120 h−1

Affinity constant between proteins and ATP for ATP generation Da 4.0 mM
ATP concentration threshold for ribosome synthesis Dr 0.18 mM
Max fraction of ribosomes translating RPs f∞r 0.2
Max fraction of ribosomes translating NRPs f∞p 0.7

Table S3: Interaction parameters of E. coli and Chloramphenicol.

ODE model Parameters Symbol Value
Regulatory parameter of fp Dp 0.02 mM
Regulatory parameter of fp Dpp 1/15 mM−1

Rate constant of chloramphenicol molecules to bind with a ribosome k+x 9 h−1 µM−1

Ribosome-drug unbinding rate constant k−x 30 h−1
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Figure S1: Effect of ribosomal inhibitors on ribosomal activity. (A) The black line is theory, Eq. (S3), in the absence of
drugs with fp = f∞p = 0.7, γ = 0.1 h−1, k′p = 9.65 h−1. Solutions of ODE cell model at G=0.04 mM (blue) and 0.08 mM (red),
respectively, under increasing chloramphenicol concentrations, x = 0 − 15µM, shown by arrow. Black dashed line is maximal
ribosomal flux possible from the cell model across different glucose concentrations. (B) Ribosomal activity vs. chloramphenicol
concentration from ODE model at G=0.04 mM (blue) and 0.08 mM (red). (C) Ribosomal activity vs. ribosomal protein fraction
from ODE model at G=0.04 mM (blue) and 0.08 mM (red).
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