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Abstract 

The diversity of a person’s B- and T-cell repertoires is both clinically important and a key meas-

ure of immunological complexity. However, diversity is hard to estimate by current methods due 

to inherent uncertainty in the number of B- and T-cell clones that will be missing from a blood or 

tissue sample by chance (the missing-species problem), inevitable sampling bias, and experi-

mental noise. To address these problems we developed Recon, a maximum-likelihood method 

that reconstructs the clone-size distribution of an overall repertoire from measurements on a 

sample. Recon improves over previous work, enabling highly accurate estimates of overall di-

versity by any measure, including species richness and entropy, even at 0.03x coverage, with 

error bars. It also enables power calculations, allowing robust comparisons of diversity between 

individuals and over time. We apply Recon to in silico and experimental immune-repertoire se-

quencing datasets as proof of principle for measuring diversity in large, complex systems. 
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Introduction 

Recent technological advances are making it possible to study B- and T-cell repertoires in un-

precedented detail1. Of special interest is repertoires’ diversity, defined as the number of differ-

ent B- or T-cell receptors on cells present in an individual, tumor (e.g., tumor-infiltrating lympho-

cytes), tissue (e.g., peripheral blood, bone marrow), or cell subset (e.g., IgG+ B cells specific for 

influenza). This interest follows from observations that immune repertoire diversity correlates 

with successful responses to infection, immune reconstitution following stem-cell transplant, the 

presence or absence of leukemia, and healthy vs. unhealthy aging2-5. The reliability of such ob-

servations depends on the ability to measure diversity, and differences in diversity, in the overall 

population (tumor, tissue, etc.) accurately and with statistical rigor from clinical and experimental 

samples. Similar requirements arise in the study of cancer heterogeneity, microbial diversity, 

and high-throughput sequencing, as well as outside of biology.6-9 However, measuring diversity 

is complicated, for two reasons. 

First, diversity may mean many things. Conventionally, it refers to the number of different spe-

cies in a population, a measure known as species richness. An example is the number of B-cell 

clones in an individual, where “clone” denotes cells with a common B- (or T-)cell progenitor. 

However, diversity can refer to several different measures that capture different features of the 

size-frequency distribution of species in the population. The Berger-Parker index (BPI), e.g., 

measures the dominance of the single largest clone (Fig. 1).10 Several diversity measures have 

been used for immune repertoires. These include species richness, Shannon entropy (hence-

forth “entropy”), and the Simpson and Gini-Simpson indices11-14. Species richness is unique in 

that it takes no account of how common or rare each species is. In contrast, entropy and other 

measures systematically down-weight smaller clones to different extents. Species richness, en-

tropy, the Gini-Simpson index, BPI, and other measures are related through a mathematical 

framework described by Hill15,16. Using simple mathematical transformations, this framework al-
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lows each measure to be interpreted as the “effective number” of species of a given frequency, 

facilitating comparisons among different measures (Fig. 1b). For example, entropy, convention-

ally measured in bits, is converted into an effective number via exponentiation. Thus in the 

overall repertoire in Fig. 1, the effective number of clones is 7.4 by entropy and 2.9 by BPI (Fig. 

1b). Different measures provide complementary information: e.g., two repertoires can have the 

same species richness but different entropies or BPIs (species richness and BPI bracket the Hill 

measures; Fig. 1d).10 Thus, no single measure is likely to capture all the features of interest in a 

given repertoire. Consequently, methods for estimating diversity should provide complementary 

measures. 

Second, the diversity of a sample (e.g. a blood sample) can differ markedly from the diversity of 

the overall repertoire from which it derives (e.g., the circulation). Although blood or tissue sam-

ples may contain many thousands of B or T cells, these are still only a fraction of the billions of 

cells in an overall repertoire. Consequently, some clones in the overall repertoire, especially 

small clones, usually go unsampled and thereby undetected in measurements of samples (Fig. 

1a). Sample diversity therefore usually underestimates true diversity. This is called the missing-

species problem (Fig. 1b)17. Weighted measures are less sensitive to missing species than spe-

cies richness, since they down-weight the small clones that are most likely to be missing (Fig. 

1b). However, use of weighted measures such as  entropy as a substitute for species richness 

has potential drawbacks. First, it is unclear what information is lost by ignoring small clones. Se-

cond, for sample diversity measured by a weighted measure to be an accurate reflection of 

overall diversity, clone sizes—the number of cells per clone—in the sample must reflect clone 

sizes in the overall population; however, this is biased by sampling noise for many clone sizes. 

Note that sampling noise is intrinsic to sampling, and will affect measurements even for meth-

ods that can count every cell in a sample and perfectly assign sequences to clones. Conse-

quently, depending on the distribution and measure, sampling can still misrepresent overall di-
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versity, even with weighted measures (Fig. 1b and below). 

Sampling noise is compounded by experimental error. Quantitation error due to inaccurate cell 

counts, amplification dropouts, and jackpot effects; sequence errors from amplification and se-

quencing; and annotation errors introduced during data processing add experimental noise to 

sample measurements. Required are methods that are robust not only to missing species and 

sampling noise, but to experimental noise as well. 

Existing attempts at estimating the number of missing species have limitations. Fisher’s gamma-

Poisson mixture method, a parametric method that has been used on T-cell repertoires, in-

volves a divergent sum that can result in large uncertainties in the number of missing clones 

and thereby overall species richness18,19. Moreover, because Fisher’s method does not output 

overall clone sizes, it does not produce weighted measures. A nonparametric method by Chao, 

based on the Good-Turing estimator, avoids divergent sums and has been widely used in ecol-

ogy; however, like Fisher’s method, it provides only species richness20,21. So does extrapolating 

from curve fitting, which in addition is somewhat arbitrary13,14,22,23. Nonparametric approaches 

using maximum likelihood provide additional measures, but existing implementations either do 

not scale to complex populations like repertoires, risk overfitting or getting trapped in local max-

ima, or make restrictive assumptions about the clone-size distribution of the overall repertoire 

and therefore are not generalizable24-26. Moreover, because a higher-likelihood fit can often be 

had by adding small clones, previous approaches yield unbounded estimates for species rich-

ness, which are impractical27. 

We solve these problems with Recon—reconstruction of estimated clones from observed num-

bers—a generalized, high-performance, modified maximum-likelihood method that makes no 

assumptions about clone sizes in the overall repertoire, estimates any diversity measure, and 

leads naturally to sensible error bars that facilitate practical, statistically reliable comparisons 
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between samples, including between individuals and over time, for complex populations. 

Results 

Description. Recon is a modified maximum-likelihood method based on the expectation-

maximization (EM) algorithm6,28. Briefly, an initial description of the overall distribution is refined 

iteratively based on agreement with the sample distribution, adding parameters as needed until 

no further improvement can be made without overfitting (Fig. 1c). The result is the overall clone-

size distribution that, if sampled randomly, is statistically most likely to give rise to the sample 

distribution, given the above constraints (Fig. S1). The only assumptions Recon makes are that 

the overall repertoire is large relative to the sample and is well mixed. 

The input is the observed clone-size distribution in a sample, provided as list of clone sizes and 

counts. This is easily generated from sequence data by counting clones that have the same 

number of sequences in the dataset for (at least semi-)quantitative sequencing. Recon outputs 

(i) the overall clone-size distribution; (ii) the diversity of the overall repertoire as measured by 

species richness, entropy, or other Hill measure, with error bars; (iii) the number of missing spe-

cies, with error bars; (iv) the minimum detected clone size (below); (v) the diversity of the sam-

ple repertoire, for comparison; and (vi) a resampling of the overall distribution for comparison to 

the sample. Recon can be run on tumor clones, microbial species, sequence reads, or other 

(including non-biological) populations. Recon can also generate tables for power calculations 

and experimental design. 

Recon marks five improvements over previous approaches. First, to avoid dependence on initial 

conditions or becoming trapped in local maxima, Recon “scans” a large number of initial condi-

tions in each iteration of the algorithm. We verified that scanning produces substantially better 

estimates of overall clone sizes, missing species, and diversity measurements (Fig. S3). Se-
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cond, it optimizes the average of the two best fits in each round (reminiscent of genetic algo-

rithms). Third, it includes a check to prevent overfitting due to sampling noise. Fourth, it makes 

no assumptions about the overall clone-size distribution, making it widely applicable. And fifth, it 

improves over previous maximum-likelihood models in handling uncertainties, for example re-

garding bounds on overall diversity estimates.  

Previous models overestimate species richness when coverage is low, as small clones added to 

the estimate result in overfitting of the sample distribution—in the limit leading to an estimate 

with infinite infinitesimal clones. Recon uses discrete clone sizes, which in the worst case en-

sures that estimates are bounded by the number of cells in the overall repertoire (clones cannot 

outnumber cells). Recon’s use of both a noise threshold and the corrected Akaike information 

criterion provide tighter bounds, rejecting additional clones unless their expected contribution to 

the sample rises above sampling noise (by 3 standard deviations in our implementation) and 

outweighs the penalty of additional parameters. The trade-off is that for each sample, there is a 

minimum clone size that Recon can detect: if ≤1, Recon’s species-richness estimate will include 

clones represented by just a single cell in the overall repertoire, if there are any; if >1, there may 

be clones in the overall repertoire that are too small to detect, although for a given sample, the 

smallest clones detected may be the smallest clones there are. In this case, U (Online Methods) 

gives an upper bound on species richness that includes clones that may be “hiding.” See Sup-

plementary Information for details. 

Validation. We validated Recon on in silico repertoires that spanned a range of previously es-

timated overall diversities (10,000-10 million clones) and clone-size distributions: from steep, 

i.e., dominated by small clones, to flat exponentials; reciprocal-exponential distributions that de-

rive from a generative model; and multiple bimodal distributions of small and large clones, with 

and without simulated experimental noise (Online Methods). These repertoires served as gold 

standards. We sampled a known number of cells from each, for a range of sample sizes 
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(10,000-1 million cells). We used Recon to reconstruct overall repertoires from each sample. 

We then compared the diversity of the reconstructed overall repertoire with the true overall di-

versity and sample diversity. We measured diversity by species richness, entropy, Simpson In-

dex, and BPI (Fig. 1b). 

First we compared sample diversity with overall diversity (Fig. 2a). For a given sample size, 

higher overall diversity means lower clonal coverage (the number of cells in the sample per 

clone in the overall repertoire). For each repertoire, the error, measured as the difference be-

tween sample and overall diversity, grew as coverage fell below 1x, because samples cannot 

contain more clones than cells. Consequently, for species richness, sample diversity underesti-

mated true diversity by 50% at 1x coverage, 10 fold at 0.1x coverage and 30 fold at 0.03x cov-

erage. The weighted measures performed little better, even for the flattest clone-size distribu-

tions that we tested, partly due to the absence of clones large enough to dominate these reper-

toires (e.g., leukemic clones; Figs. 2 and S2). We concluded that sample diversity is generally 

an unreliable proxy for true diversity below 1x coverage in the absence of dominant clones. 

In contrast, Recon’s estimates of overall diversity showed excellent agreement with true diversi-

ty even at <1x coverage, across the range of diversity measures (Fig. 2a, lower panels). For 

species richness, Recon’s estimates were accurate to within 1% of the true diversity at 10x cov-

erage, 10% at 3x coverage, and 50% at just 0.03x coverage—at which there is just one cell in 

the sample for every 30 clones in the overall repertoire. Error for entropy and other weighted 

measures was lower. Comparison of the top and bottom panels in Fig. 2a and Fig. S2a-c vali-

dates Recon’s performance. 

Next we compared Recon to Chao’s estimator20,21, asking which method provided better esti-

mates of true species richness for samples of exponentially and bimodally distributed reper-

toires, with and without noise. Although both methods performed well, Recon outperformed 
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Chao throughout, with estimates that were as close or closer than Chao’s for 64% of exponen-

tial repertoires and 80% of bimodal distributions without noise, and 97% of repertoires with 

noise (Fig. 2b-c, S2d-g). Because Chao outputs only species richness, entropy and other diver-

sity measures could not be compared. An alternative method that does output other measures 

could not be compared because computationally it does not scale above hundreds of clones 

(with millions of parameters, it would also risk overfitting)25,26. 

Re-sampling from a reconstructed repertoire makes it possible to test for self-consistency by 

comparing the clone-size distribution of the new sample to that of the original sample. As ex-

pected, we found good agreement between predicted and observed frequencies of clone sizes 

(Fig. 3). This included agreement on the number of missing clones. Because our gold-standard 

distributions were pre-defined, numbers of missing clones were known to us (though unknown 

to Recon). Recon’s ability to estimate them accurately contributed to the accuracy of its overall 

diversity estimates. Of note, the number of missing clones depended strongly on the number of 

singlets and doublets in the sample: large singlet-to-doublet ratios, with enough of both for low 

sampling noise, gave more accurate estimates. 

Error bars and power calculations. Detecting reliable differences in overall diversity requires 

bounds. Recon outputs two types of bounds: error bars for the effective number of clones great-

er than or equal to a minimum detected clone size, described below, and an species-richness 

upper bound for all clones, U (Supplementary Information). 

For error bars, we sampled each gold standard systematically for a range of coverage and 

sample sizes ≤10 million cells. For each, we used Recon to estimate overall diversity as a func-

tion of coverage. Because higher coverage produces better estimates, the resulting error profile 

can be represented as a funnel plot that converges to the true overall diversity (Fig. 4a). The 

funnel’s upper and lower bounds correspond to the largest and smallest values of estimated di-
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versity that are consistent with the true diversity. For wider error bars, we used the proportional 

error of the worst fit at each level of coverage to define the bounds, making each funnel sym-

metric. In this way, error profiles were made for each gold standard, a separate profile for each 

diversity measure. 

To make an error bar for an overall diversity estimate, Recon finds the true diversity for which 

the estimated diversity is at the lower bound, and the true diversity for which it is at the upper 

bound. These respectively define the upper and lower error bars (Figs. 4b, 4c). Combining error 

profiles across all samples suggests that 1x coverage generally produces error bars of ±20% for 

overall species richness (Fig. 4d), consistent with our validation (Fig. 2). 

We used this error-bar framework to build tables for estimating the coverage required to detect 

differences between two samples. Specifically, given an order-of-magnitude estimate of the 

overall diversity for two samples, we determined the minimum sample size for which error bars 

for overall diversity estimates from these samples would not overlap at detection thresholds 

ranging from 10% to 5 fold (Table 1). This is the minimum sample size required to reject the null 

hypothesis that two estimates that differ by a given amount are actually from the same overall 

repertoire, at a confidence level of p~0.05 (Supplementary Information). While detecting larger 

differences requires fewer cells, for a given overall diversity there is a minimum sample size be-

low which the number of non-singlets is expected to be too small for Recon to run (Table 1). So  

an experiment designed to detect a 20% (1.2x) difference in species richness between two 

samples, in which the samples are drawn from overall repertoires that have ~1 million clones, 

will require at least 485,204 cells from each sample for analysis. This is the number of cells in 

the sample that are in small (≤30 cells) clones that Recon requires to perform reconstruction; if 

300,000 of the 485,204 cells in a sample belong to a single large clone, e.g. because of leuke-

mia, the remaining 185,204 cells of the non-leukemic clones will be sufficient to detect a 40% 

difference in the species richness of the non-leukemic portion of the repertoire, but not ≤30%. 
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To further test Recon and our error-bar framework, we ran it on a sample distribution previously 

identified as causing difficulties for overall species-richness estimation by multiple existing 

methods, corresponding to an overall population of ~3,000 species sampled at ~0.8x coverage 

(Supplementary Information)27. Three- and four-point mixture models, a logit normal model, a 

log-gamma model, and a beta model gave estimates of 2,930-3,494, with non-overlapping error 

bars. Recon gave an estimate of 3,006, with error bars of 2,790-3,277, bracketing most of the 

other estimates, suggesting Recon can resolve other methods’ inconsistencies in difficult cases. 

Experimental data. We applied Recon to six experimental datasets: four of paired heavy-and-

light chain and two of heavy chain (Online Methods). We used the authors’ clone definitions—

clusters of reads with ≥96% nucleotide identity in heavy-chain complementarity determining re-

gion 3 (CDRH3)29 or reads with identical CDRH3s and VH annotations 31—with the caveats that 

clone assignment is difficult, some cells may not have been sequenced, artifacts are possible, 

and sequencing is only semi-quantitative. Because such datasets reflect the current state of the 

field and are used for diversity measurements, we treated them as (imperfect) samples and 

used Recon to estimate diversity for the corresponding overall repertoires (Table 2). 

Resampling showed good fits (Fig. 5). For four of the six repertoires, we found that most clones 

were missing from the sample (i.e., enough sampling would have approximately doubled the 

number of clusters). Entropy was almost identical between samples and overall repertoires, re-

sulting from very large clones and/or PCR jackpot effects that contribute disproportionately to 

the entropy calculation. In these datasets, overall species richness captures information lost 

during sampling that entropy does not. 

Availability. Recon is available subject to license agreement at 

http://arnaoutlab.github.io/Recon. 
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Discussion 

High-throughput technologies enable highly detailed descriptions of B- and T-cell repertoires. 

That these descriptions are generally of samples, and not e.g. blood or tissue repertoires over-

all, may seem an inconsequential distinction when samples contain many cells. However, it is 

critical for estimating overall diversity. Unless the number of cells in a sample exceeds the num-

ber of clones in the overall repertoire by ~3-10-fold (Fig. 3), sample and overall diversity may 

bear little relation (Figs. 2a, S2a-c). This discrepancy is not a technological shortcoming but an 

inherent constraint of random sampling: smaller clones will be missed and larger clones over-

counted (Fig. 1a). In humans, overall repertoires may contain many millions of clones. Because 

routine blood samples rarely contain more than a few million B and T cells of any sort combined, 

they are too small for sample diversity to serve as a reliable proxy for overall diversity. Thus 

conclusions drawn only from sample diversity measurements warrant caution. 

This caveat applies for all diversity measures. Entropy, often used to measure sample diversity 

in immune-repertoire studies, is less prone to undercounting. However, in our validation reper-

toires even BPI, the Hill measure least prone to undercounting and most robust to missing spe-

cies, underestimates overall diversity by an order of magnitude for levels of coverage encoun-

tered in experiments (Figs. 2, S2); it is unsurprising, then, that sample entropy can also under-

estimate overall entropy in these repertoires (Figs. 2, S2). Additional caveats apply to experi-

mental datasets. Insufficient read clustering will overestimate species richness. For clone sizes 

defined proportional to the number of reads, PCR jackpot effects can produce artificially large 

“clones,” overestimating entropy. These biases, not mutually exclusive, may explain some of the 

differences between species richness and entropy in the experimental datasets we studied (Ta-

ble 2). Better quantitation (e.g., via barcoding and robust clonality modeling) would mitigate the-

se biases but not the bias intrinsic to sampling, which Recon addresses. 
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Recon outperforms previous approaches at estimating species richness even for large, complex 

clone-size distributions and in the presence of experimental noise (Figs. 2, 3, S2). Moreover it 

performs as well for entropy and BPI (Figs. 2a, S2a-c)—measures that Chao, Fisher’s method, 

and others do not provide. This is an important improvement, since species richness marks but 

one end of the spectrum of Hill measures (BPI marks the other, with entropy between). Until it is 

clearer how different measures correspond to specific biological and clinical processes of inter-

est, single measures may mislead (Fig. 1d). Recon offers investigators the full suite. 

Error bars and power tables are necessary steps toward being able to test for such correspond-

ences and evaluating diversity as a biomarker. Recon’s error bars and tables for entropy, BPI, 

and other measures mean differences can be assessed for any measure or noise level. Recon’s 

error bars perform well by practical tests, bracketing the number of missing species (Fig. 3) and 

squaring previous models27. Its power tables offer guidance for sample requirements and sug-

gest expected limitations for different studies. For example, measuring the species richness of 

naïve repertoires of ~107 clones30,31 will likely require phlebotomy or apheresis samples; even 

then, detecting 5-fold differences is probably the limit (Table 1). Meanwhile, measuring diversity 

for effector/memory subsets should require only routine blood draws (2-6mL), which should de-

tect sub-fold differences. For marrow, spleen, tumor, granuloma, or abscess samples, the inves-

tigator must decide whether the sample is well mixed, a Recon requirement. 

High-throughput technologies hold much promise for measuring diversity in repertoires, cancer, 

and other complex populations, but current limitations warrant caution. Because most sequenc-

ing experiments are still only semi-quantitative, the number of reads does not always reflect the 

number of cells. Chimerism and sequencing/annotation errors mean not all clusters are clones. 

Incomplete cell lysis and sequencing inefficiencies can underestimate sample size. These limi-

tations affect the calculation and interpretation of diversity estimates and upper bounds; the ex-

amples we have shown should be interpreted accordingly, even as they illustrate application of 
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our method. Our results suggest that overcoming these limitations will improve our understand-

ing of diversity, a defining characteristic of complex systems. 
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Online Methods 

Core algorithm. Mathematically, the problem is to find the B- or T-cell clone-size distribution in 

the individual (the “parent” or “overall” distribution) that is most likely to give rise to the clone 

size distribution that is observed in the sample (the sample distribution) (Fig. 1). From the parent 

distribution, we can then calculate overall diversity according to any diversity measure in the Hill 

framework. The core of our method is the expectation-maximization (EM) algorithm, in which a 

rough approximation of the parent distribution is refined iteratively until no further improvement 

can be made without overfitting28. 

The EM algorithm begins by assuming a parent distribution in which clones are all the same 

size, taken from the mean of the observations. To perform the fit, we need to know not just the 

observed clone frequencies but also the number of missing species, which is unknown and 

therefore must first be estimated. Following previous work32, we estimate the number of missing 

species by calculating the expected clone size distribution for a (Poisson) sample of the parent 

distribution (see “Sampling” below) and applying the Horvitz-Thomson estimator 33. We then fit 

the clone size of the parent distribution using maximum likelihood, recalculate the number of 

missing species, and repeat these steps until a self-consistent number of missing species is ob-

tained. This completes the first iteration of the algorithm, yielding the uniform parent distribution 

that is most likely to give rise to the sample distribution. 

In the second iteration, we refine this uniform parent distribution by adding a second clone size. 

We estimate the number of missing species for this new two-size distribution, fit the two clone 

sizes and their relative frequencies by maximum likelihood, and, as in the first iteration of the 

algorithm, repeat until there is no further improvement32. The result is the two-clone-size parent 

distribution that is most likely to give rise to the sample distribution. 

In subsequent iterations, we continue to refine the parent distribution by adding clone sizes and 
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refitting as above, iterating until no more clone sizes can be added without overfitting (using the 

corrected Akaike information criterion as a stop condition). The result is the desired MLE. Note 

that whereas the sample distribution generally traces out a smooth curve, the MLE parent distri-

bution is spiky, reflecting the resolution limits the information about the parent distribution con-

tained in the sample distribution. 

Sampling. We assume that each clone in the individual contributes cells to the sampled popula-

tion according to a Poisson distribution. This will be true if (i) clones are well mixed in the blood 

or evenly distributed in the tissue being sampled, (ii) the parent population is sufficiently large 

that the Poisson estimate for the probability of e.g. a singleton contributing >1 cell is negligible, 

and (iii) no single clone is a large fraction (~30% or more) of the parent population. In practice, 

condition (iii) is satisfied by counting large clones directly (see “Fitting”). 

Fitting. The largest clones may be represented by hundreds or even thousands of cells in a 

sample. For such large clones, sampling error is small: the relative size of the clone in the sam-

ple and in the individual will be about the same. As a result, clones that are large enough to 

have sufficiently small sampling error do not have to be fit by EM, and instead can simply be 

added to the MLE. We found that using a threshold of 30 cells, and therefore applying EM only 

to clones that contribute ≤30 cells to the sample and then adding larger clones back to the re-

sulting MLE gives results that are indistinguishable from applying EM on the entire sample dis-

tribution, but with vast gains in speed. 

Scanning. In the standard EM algorithm, the exact sizes and frequencies of clones in the final 

MLE can vary depending on the sizes and frequencies used at the start of each iteration, reflect-

ing different relative maxima. To find global maxima, we developed a “scanning” approach in 

which we applied EM to many starting clone sizes and frequencies (110 in our implementation), 

ranking results by maximum likelihood (after first adjusting likelihoods according to the number 
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of ways to choose clones in each distribution; see Supplementary Information). In each round 

we perform an additional fit with starting clone sizes and frequencies at an average of the two 

top-ranked results. We then select the resulting best-ranked fit from the 110 starting points. 

Diversity measures. Species richness, entropy, the Gini-Simpson Index, BPI, and indeed many 

other diversity measures are related to each other through the mathematical framework of the 

so-called Hill numbers15,34. These form a series in which the index reflects the extent to which 

counts are weighted toward large clones. Species richness, in which large and small clones are 

counted equally and so large clones are unweighted, has an index of zero and is denoted !!  

(pronounced “D-zero”). Other measures, or simple mathematical transformations thereof, corre-

spond to larger indices; these include entropy (ln( !)! ), the Simpson Index (1 !! ), and BPI 

(1 !! ). 

We calculated !! , !! , !! , and !!  for sample and overall distributions from in silico-sampled 

synthetic gold-standard distributions (see “Validation” below and in the main text) and from sev-

eral published data sources (see “Experimental Data” in the main text). These !!  are a function 

of frequencies of clone frequencies !!, where i ranges over each clones and the frequencies are 

normalized to !!! = 1, defined as ! ! =! !!!!
!

!/(!!!)34. 

We calculated !!  by simply counting the number of different clones, !!  according to 

exp!(− !! ln !!)! !, !!  according to the definition, and !!  as the reciprocal of the frequency of 

the largest clone (the above definition reduces to these expressions for the value ! = 0 and in 

the limits ! → 1 and ! → ∞). 

Validation. We validated our method by generating a wide range of biologically plausible syn-

thetic parent distributions of 109 cells in silico, sampling from these distributions to produce 

samples of different known sizes, using the samples to estimate overall diversities according to 
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the above measures, and comparing these estimates against the (known) calculated diversities 

of the original parent distributions. We studied three families of test distributions in detail: expo-

nential distributions (of the form ! ! ∝ !!!", where ! denotes clone size, ! !  is the frequency 

of clones of that size, and ! is a parameter that controls the steepness of the distribution), which 

are simple distributions that describe the shape of observed sample distributions phenomeno-

logically, “reciprocal-exponential” distributions (! ! ∝ !
!!!!"), which are the analytical solution to 

a simple biologically plausible model of the dynamics of most B- and T-cell clones, and bimodal 

distributions with the largest clones an average multiple of the size of the smallest clones (e.g. 

20x). We tested these distributions systematically by varying the steepness from very steep 

(s=1.2) to nearly flat (s=0.12) and different multiples for the bimodal distributions, encompassing 

the a range of biologically plausible clone-size distributions, with and without noise. For distribu-

tions with noise, noise added to each count n with mean of zero and standard deviation 

1.22· !. 

Error bars. Error bars define the range of overall diversity values that, given the inevitable error 

involved in reconstructing parent distributions from samples of a given size, are consistent with 

our algorithm's estimate. We determined error bars for each diversity measure (species rich-

ness, entropy, etc.) as follows (Fig. 4). First, we generated an in silico parent population with 

known diversity. Second, we took samples of this known distribution at systematically increasing 

sample sizes and, for each sample size, used our algorithm to estimate the overall diversity 

(Fig. 4a). These steps resulted in a reference table for how error falls with increasing sample 

size for a given level of diversity. Given a test sample, its coverage, and the overall diversity by 

a given measure (estimated from our algorithm), we can then look up (or interpolate) the largest 

and smallest diversity values that are consistent with the estimate (Fig. 4b, c). These upper and 

lower bounds define the desired error bar (and error bars). We note that estimates are more ac-

curate for more peaked clone-size distributions, and that most real-world distributions are no-
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ticeably peaked. Nevertheless we chose to study the flatter in silico parent distribution in detail, 

in order to provide wider error bars. 

Experimental datasets. We found and downloaded six publically available datasets. Four were 

from paired heavy-and-light-chain sequencing experiments: two of IgG+ B cells (from two sub-

jects), one of memory B cells post-influenza vaccination, and one of tetanus-toxoid-specific 

plasmablasts29. Following that study’s methods, we clustered reads with ≥95% heavy-chain 

complementarity-determining region 3 (CDR3) nucleotide identity (the study treated clusters as 

clones). The other two datasets were of pooled PCR of heavy-chain genomic DNA from bone-

marrow plasma cells from a healthy subject and non-myeloma plasma cells from a subject with 

multiple myeloma, with clones defined as sequences with identical CDR3s at the amino acid 

level and identical VH nucleotides35. We estimated the total number of IgG+ B cells, post-

vaccination memory B cells, tetanus-specific plasmablasts (and plasma cells), bone-marrow 

plasma cells in a healthy patient, and non-myelomatous plasma cells to be 75 million, 260 mil-

lion, 3.5 million, 6 million, and 3 million, respectively, for N (See below)36-41. 

Minimum detected clone sizes and upper bounds (U). The smallest clone size in the recon-

structed clone-size distribution is described by two parameters: the mean number of cells that 

each clone of this size contributes to the sample, mmin, and the fraction of all clones that are of 

this size, wm. The size of this smallest detectable clone in the overall repertoire is mmin scaled to 

the total number of cells: mminN/S. This is Recon’s minimum detected clone size. It is possible 

that there are clones smaller than this size in the overall repertoire, but because they contribute 

a mean of zero cells to the sample they are not detected and therefore do not contribute to 

Recon’s estimate of overall species richness. An upper bound on species richness that includes 

clones smaller than the minimum detected clone size, U, is obtained by assuming that all cells 

in clones that could be smaller than this are singlets: U = RmaxwmmminN/S, where Rmax is Recon’s 

upper error bar estimate of overall species richness (Supplementary Information). We calculated 
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these quantities for our validation and experimental data. 
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Table and Figure Legends 

Table 1. Power calculations. Table entries give the minimum number of cells that must be ana-

lyzed in order to be able to detect a given fold-difference in species richness between two sam-

ples at p=0.05 (row headings), given an expected overall species richness (column headings). 

As noted in the main text, these numbers exclude cells that might belong to large clones (here, 

of clone size ≥30 in the sample). Minima required for reliable reconstructions are in gray. See 

Supplementary Information for details. 

Table 2. Diversity estimates for experimental datasets from humans. Summarized are Recon’s 

estimates of overall diversity for six datasets; its estimate of the number of missing species; 

comparisons to sample diversity, for species richness and entropy (given as effective numbers; 

2bits); the minimum detected clone size (see main text); and upper bound for species richness 

that includes potential “hiding” clones. Cell-surface phenotypes were as follows: IgG+ B cells, 

IgG+CD2-CD14-CD16-CD36-CD43-CD235a-; post-vaccination memory B cells, 

CD19+CD3−CD27+CD38int; tetanus-specific plasmablasts, 

CD19+CD3−CD14−CD38++CD27++CD20−; plasma cells, CD138+. See references for details. 

Figure 1. Overall repertoires vs. samples. (a) shows an overall repertoire (top left) and a reper-

toire from a random sample of this repertoire (top right), together with respective clone-size dis-

tributions from the overall repertoire and sample (bottom). Each circle denotes a cell; different 
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colors denote different clones. Note that five clones are missing from the sample entirely, repre-

sented by the open red circle at a clone size of zero in the sample clone-size distribution. (b) 

Sample diversity underrepresents overall diversity across a range of diversity measures. (c) 

Recon reconstructs the overall repertoire by estimating the number of missing clones and itera-

tively updating until the predicted clone size distribution in the sample (red crosses) matches the 

observed clone-size distribution in the sample (open circles), stopping short of overfitting. (d) 

Different diversity measures are complementary. Repertoires R1, R2 and R3 each have a total 

of 7 cells. R1 and R3 have the same species richness but different inverse Berger-Parker index 

(inv. BPI); R2 and R3 have the same Berger-Parker index but different species richness. 

Figure 2. Recon vs. other methods. (a) the sample diversity (top) and Recon’s estimate (bot-

tom) of overall diversity as a function of the actual overall diversity for three different sample 

sizes—10,000 cells (filled circles), 100,000 cells (small open circles), and 1 million cells (large 

open circles)—for a representative gold-standard distribution without noise (given in Fig. S2e, 

left panel; see Fig. S2 for additional examples). Coverage is defined as sample size/overall di-

versity; for a fixed sample size, coverage falls as overall diversity increases. The red line repre-

sents zero error; the further the points fall off the line, the larger the error. Left-to-right: species 

richness, entropy, and the inverse Berger-Parker index. For a given sample size, Recon’s esti-

mates remain accurate for overall diversities approximately 30 times larger than the sample size 

(0.03x coverage). In contrast, sample diversity is accurate only until overall diversity is approxi-

mately equal to the sample size (1x coverage; see Fig. 4d). (b) Comparison of Recon and 

Chao’s species-richness estimates for a variety of validation repertoires showing the percent in 

which Recon or Chao were closer to the true value. (c) Representative comparison of species 

richness estimates by Recon and Chao’s estimator in the presence of noise for four overall rep-

ertoires of species richness from 300,000 to 10 million clones at constant sample coverage of 

0.3x. Each violin plot shows a kernel density estimate from fits to 100 realizations of the noise 
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with mean 0 and standard deviation 1.22· ! on each count. Circles indicate estimates without 

noise. The true diversity of each overall repertoire is shown by a red bar. 

Figure 3. Predictions vs. simulated observations, in silico gold standards. Shown are fits to ob-

servations from representative gold-standard distributions of the shape shown in Figure S2e, left 

panel. Left-to-right: overall distributions with increasing numbers of clones. Top-to-bottom: in-

creasing sample size measured in coverage of the number of clones in the overall population. 

Open black circles denote observed clone-size distributions, which was the input data given to 

Recon. The open red circle denotes the number of missing clones, which was not known to 

Recon. Red crosses denote Recon’s prediction of the clone-size distribution in the sample, 

based on its reconstruction of the clone-size distribution of the overall repertoire. This includes a 

prediction for the number of missing clones, plotted as the number of clones of size zero, with 

error bars as shown.  

Figure 4. Error bars. (a) shows a schematic representation of Recon’s diversity estimates (open 

circles) from a single gold-standard in silico repertoire with overall diversity d for many different 

sample sizes. These results are used to make error bars as follows. Given a test sample, Recon 

first estimates the overall diversity, dR, and the coverage (=sample size/dR). (b) Recon then 

looks up the maximum (d⊕) and minimum (d⊖) diversities that are consistent with its estimate 

(dR); schematically, this is where the edges of the funnel plots for d⊕ and d⊖ intersect. (c) Higher 

coverage gives smaller error (arrows). (d) Combining the results from all gold-standard reper-

toires into a single plot suggests the rule of thumb that 1x coverage gives error bars of 20% for 

species richness. Shown are results for sample sizes ≤10 million cells (which corresponds to all 

the B or T cells in 10-50ml of blood), the range for which our implementation of Recon is opti-

mized. We repeated this process separately for entropy and other measures.  
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Figure 5. Predictions vs. observations, experimental data. Shown are Recon’s estimates of 

overall diversity for six experimental datasets. These included (a, b) immunoglobulin heavy 

(IgH)- and light-chain (IgL) paired-chain sequencing experiments from IgG+ B cells from the 

blood of two different subjects, (c) pooled-DNA IgH sequencing experiments on the bone-

marrow plasma cells from a healthy adult, (d) IgH+L of post-vaccination memory B cells, (e) 

IgH+L tetanus toxoid-specific plasmablasts, and (f) pooled-DNA IgH sequencing experiments on 

the bone-marrow plasma cells from a multiple myeloma patient (only the non-myeloma cells). 

Details, including references, are presented in Table 2.  

Figure S1. The Recon algorithm. Steps in the flowchart are as described in the main text, 

Online Methods, and Supplementary Information. 

Figure S2. Recon diversity vs. other estimates showing fits to additional gold standard reper-

toires plotted as for Figure 2. (a)-(c) Comparisons of sample diversity (top) to Recon diversity 

(bottom) plotted as in Figure 2a for (a) a steep exponential clone size distribution (b) a bimodal 

distribution in which the overall distribution contains a population of small clones and a popula-

tion 31 times as large and (c) a bimodal distribution in which the overall distribution contains a 

population of small clones and a population 20 times as large. (d)-(g) Comparison of species 

richness estimates by Recon (middle) and Chao’s estimator (right) shown as in Figure 2b for an 

example additional gold standard overall distributions (left) for (d) a steep exponential clone-size 

distribution, (e) a shallow exponential clone-size distribution, (f) a bimodal distribution in which 

the overall distribution contains a population of small clones and a population 31 times as large, 

and (g) a bimodal distribution in which the overall distribution contains a population of small 

clones and a population 20 times as large. 

Figure S3. Scanning. Probability densities of the ratio of estimated missing species/true missing 

species demonstrating the benefit of using additional starting points. Fits using, in each round of 
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fitting, 2 starting weights (green), 2 starting means (black) and 110 combinations of starting 

weights and means (yellow) show that multiple starting point result in a sharper peak of the 

probability distribution function (pdf) near 1.0, and diminished trapping in local minima away 

from 1.0. Pdfs are plotted using Gaussian kernel density estimates over 800 samples from gold-

standard distributions (see main text).  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 13, 2015. ; https://doi.org/10.1101/024612doi: bioRxiv preprint 

https://doi.org/10.1101/024612


! 24"

 

References 

1 Georgiou, G. et al. The promise and challenge of high-throughput sequencing of the 

antibody repertoire. Nat. Biotechnol., 32, 158-168 (2014). 

2 Gibson, K. L. et al. B-cell diversity decreases in old age and is correlated with poor health 

status. Aging Cell 8, 18-25 (2009). 

3 Wang, C. et al. Effects of Aging, Cytomegalovirus Infection, and EBV Infection on Human B 

Cell Repertoires. J. Immunol. 192, 603-611 (2014). 

4 Jiang, N. et al. Lineage structure of the human antibody repertoire in response to influenza 

vaccination. Sci. Transl. Med. 5, 171ra119 (2013). 

5 Ademokun, A. et al. Vaccination-induced changes in human B-cell repertoire and 

pneumococcal IgM and IgA antibody at different ages. Aging Cell 10, 922-930 (2011). 

6 Bunge, J., Willis, A. & Walsh, F. Estimating the Number of Species in Microbial Diversity 

Studies. Annu. Rev. Stat. Appl., Vol 1 1, 427-445 (2014). 

7 Daley, T. & Smith, A. D. Modeling genome coverage in single-cell sequencing. 

Bioinformatics. 30, 3159-3165 (2014). 

8 Daley, T. & Smith, A. D. Predicting the molecular complexity of sequencing libraries. Nat. 

Meth. 10, 325-327 (2013). 

9 Horswell, S., Matthews, N. & Swanton, C. Cancer heterogeneity and "the struggle for 

existence": diagnostic and analytical challenges. Cancer Lett. 340, 220-226 (2013). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 13, 2015. ; https://doi.org/10.1101/024612doi: bioRxiv preprint 

https://doi.org/10.1101/024612


! 25"

10 May, R. M. in Ecology and Evolution of Communities (ed J. M. M. L. D. Cody)  (Harvard 

University Press, 1975). 

11 Sherwood, A. M. et al. Tumor-infiltrating lymphocytes in colorectal tumors display a diversity 

of T cell receptor sequences that differ from the T cells in adjacent mucosal tissue. Cancer 

Immunol. Immun. 62, 1453-1461 (2013). 

12 Robert, L. et al. CTLA4 blockade broadens the peripheral T-cell receptor repertoire. Clin. 

Cancer Res. 20, 2424-2432 (2014). 

13 Arnaout, R. et al. High-resolution description of antibody heavy-chain repertoires in humans. 

PLoS ONE 6, e22365 (2011). 

14 Laydon, D. J. et al. Quantification of HTLV-1 clonality and TCR diversity. PLoS Comput. 

Biol. 10, e1003646 (2014). 

15 Hill, M. O. DIVERSITY AND EVENNESS - UNIFYING NOTATION AND ITS 

CONSEQUENCES. Ecology 54, 427-432 (1973). 

16 Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 

2427-2439 (2007). 

17 Bunge, J. & Fitzpatrick, M. Estimating the Number of Species: A Review. J. Am. Stat. Assoc. 

88, 364-373 (1993). 

18 Fisher, R. A., Corbet, A. S. & Williams, C. B. The Relation Between the Number of Species 

and the Number of Individuals in a Random Sample of an Animal Population. J. Anim. Ecol. 

12, 42-58 (1943). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 13, 2015. ; https://doi.org/10.1101/024612doi: bioRxiv preprint 

https://doi.org/10.1101/024612


! 26"

19 Robins, H. S. et al. Comprehensive assessment of T-cell receptor beta-chain diversity in 

alphabeta T cells. Blood 114, 4099-4107 (2009). 

20 Chao, A. & Lee, S. M. ESTIMATING THE NUMBER OF CLASSES VIA SAMPLE 

COVERAGE. J. Am. Stat. Assoc. 87, 210-217 (1992). 

21 Chao, A. NONPARAMETRIC-ESTIMATION OF THE NUMBER OF CLASSES IN A 

POPULATION. Scand. J. Stat. 11, 265-270 (1984). 

22 Warren, R. L. et al. Exhaustive T-cell repertoire sequencing of human peripheral blood 

samples reveals signatures of antigen selection and a directly measured repertoire size of at 

least 1 million clonotypes. Genome Res. 21, 790-797 (2011). 

23 Klarenbeek, P. L. et al. Human T-cell memory consists mainly of unexpanded clones. 

Immunol. Lett. 133, 42-48 (2010). 

24 DeWitt, W. et al. Replicate immunosequencing as a robust probe of B cell repertoire 

diversity. arXiv:1410.0350v1 (2014). 

25 Norris, J. L. & Pollock, K. H. Nonparametric MLE under two closed capture recapture 

models with heterogeneity. Biometrics 52, 639-649 (1996). 

26 Norris, J. L. & Pollock, K. H. Non-parametric MLE for Poisson species abundance models 

allowing for heterogeneity between species. Environ. Ecol. Stat. 5, 391-402 (1998). 

27 Link, W. A. Nonidentifiability of population size from capture-recapture data with 

heterogeneous detection probabilities. Biometrics 59, 1123-1130 (2003). 

28 McLachlan, G. J. & Krishnan, T. The EM algorithm and extensions. 2nd edn. (Wiley-

Interscience, 2008). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 13, 2015. ; https://doi.org/10.1101/024612doi: bioRxiv preprint 

https://doi.org/10.1101/024612


! 27"

29 DeKosky, B. J. et al. High-throughput sequencing of the paired human immunoglobulin 

heavy and light chain repertoire. Nat. Biotechnol. 31, 166-169 (2013). 

30 Wiegel, F. W. & Perelson, A. S. Some scaling principles for the immune system. Immunol. 

Cell Biol. 82, 127-131 (2004). 

31 Zarnitsyna, V. I., Evavold, B. D., Schoettle, L. N., Blattman, J. N. & Antia, R. Estimating the 

diversity, completeness, and cross-reactivity of the T cell repertoire. Front. Immunol. 4, 485 

(2013). 

32 Bohning, D. & Schon, D. Nonparametric maximum likelihood estimation of population size 

based on the counting distribution. J. R. Stat. Soc. Ser. C.-App. 54, 721-737 (2005). 

33 Armitage, P. & Colton, T. Encyclopedia of biostatistics. 2nd edn (John Wiley, 2005). 

34 Leinster, T. & Cobbold, C. A. Measuring diversity: the importance of species similarity. 

Ecology 93, 477-489 (2012). 

35 Tschumper, R. C. et al. Comprehensive assessment of potential multiple myeloma 

immunoglobulin heavy chain V-D-J intraclonal variation using massively parallel 

pyrosequencing. Oncotarget 3, 502-513 (2012). 

36 Perez-Andres, M. et al. Human peripheral blood B-cell compartments: a crossroad in B-cell 

traffic. Cytom. Part B.-Clin. Cy. 78 Suppl 1, S47-60 (2010). 

37 Lavinder, J. J. et al. Identification and characterization of the constituent human serum 

antibodies elicited by vaccination. Proc. Natl. Acad. Sci. U S A 111, 2259-2264 (2014). 

38 Rajkumar, S. V. et al. International Myeloma Working Group updated criteria for the 

diagnosis of multiple myeloma. Lancet Oncol. 15, e538-548 (2014). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 13, 2015. ; https://doi.org/10.1101/024612doi: bioRxiv preprint 

https://doi.org/10.1101/024612


! 28"

39 Hindorf, C. et al. EANM Dosimetry Committee guidelines for bone marrow and whole-body 

dosimetry. Eur. J. Nucl. Med. Mol. I. 37, 1238-1250 (2010). 

40 Galotto, M. et al. Stromal damage as consequence of high-dose chemo/radiotherapy in 

bone marrow transplant recipients. Exp. Hematol. 27, 1460-1466 (1999). 

41 Terstappen, L. W., Johnsen, S., Segers-Nolten, I. M. & Loken, M. R. Identification and 

characterization of plasma cells in normal human bone marrow by high-resolution flow 

cytometry. Blood 76, 1739-1747 (1990). 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 13, 2015. ; https://doi.org/10.1101/024612doi: bioRxiv preprint 

https://doi.org/10.1101/024612


Table 1 

   10,000   30,000   100,000  1 million 3 million 

1.1 21,490 59,565 175,656 2,734,933 7,922,299 

1.2 14,142 29,638 73,197 485,204 1,813,627 

1.3 14,142 24,495 44,721 248,742 746,381 

1.4 14,142 24,495 44,721 141,421 420,253 

1.5 14,142 24,495 44,721 141,421 244,949 

2 14,142 24,495 44,721 141,421 244,949 

5 14,142 24,495 44,721 141,421 244,949 
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Table 2 

    Species richness  Entropy (eff. no.) 
Min clone 
size, cells 

 

Subset Source Method Cells Sample Overall Missing 
species Sample Overall Upper bound, 

clones 

IgG+ B cells, 
 individual 122 

healthy 
adult 

IgH+L 
single-

cell 
61,000 2,759 

6,357 
(5,569-
7,527) 

3,598 
(2,810-
4,768) 

696 
700 

(700-
700) 

300 2 million 

IgG+ B cells, 
individual 222 

healthy 
adult 

IgH+L 
single-

cell 
47,000 2,211 

6,770 
(5,335-
9,174) 

4,559 
(3,124-
6,963) 

345 
348 

(347-
348) 

400 4 million 

memory B 
cells (IgG, IgM, 

and IgA)22 

healthy 
adult 

vaccinee 

IgH+L 
single-

cell 
8,000 336 516 180 21 21 20,000 10 million 

tetanus toxoid-
specific 

plasmablasts22 

healthy 
immunized 

adult 

IgH+L 
single- 

cell 
2,000 159 706 547 3.5 3.5 200 100,000 

bone-marrow 
plasma cells24 

healthy 
adult 

IgH 
pooled 
DNA 

25,943 14,337 
36,276  

(29,347-
46,143) 

21,939 
(15,010-
31,806) 

13.44 
14.39 

(14.33-
14.46) 

80 3 million 

non-tumor 
plasma cells24 

multiple 
myeloma 
patient 

IgH 
pooled 
DNA 

30,426 325 530  205 0.51 0.53 200 70,000 
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diversity measure overall sample ratio

species richness 10.0 5.0 2.0x
exp(entropy)   7.4 4.5 1.7x
inverse Simpson index   5.6 4.2 1.3x
inverse Berger-Parker index 2.9 2.7 1.1x
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distribution
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Kaplinsky et al., Supplementary Information 
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3. Power calculations for species richness 

1. Detailed description of the Recon algorithm 

Overview. The problem is, given the observation of the clone size distribution in a sample, to 

reconstruct the number of clones of each size in the parent or overall population from which a 

sample was taken (e.g. memory B cells in the peripheral blood). 

By clone size we mean the number of cells that make up a clone. A clone made up of a single 

cell has clone size 1, while a clone made up of a million cells has clone size one million. 

By the clone size distribution we mean the number of clones of each size (Fig. 1a). For the 

sample we use the notation ni, where i indexes the clone size and ni is the number of clones of 

that size. Thus n1 is the number of clones represented in the sample by a single cell, n2 the 

number of clones represented by 2 cells, and so forth. The number of clones that are present in 

the parent distribution but missing from the sample is represented by n0, as they are represent-

ed by 0 cells in the sample. These are the missing species. 

Experimentally observed clone size distributions are described by a sampling distribution from 

the parent population. The overall strategy of the Recon algorithm is to find a maximum-

likelihood estimate (MLE) for parameters of a model describing the sampling distribution. The 

form of the model has an immediate interpretation in terms of the clone size distribution of the 

parent population. 
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Recon is based on a mixed-Poisson model for the contribution of each clone in the parent popu-

lation to the sample: 

!! = !! !!"#$$"% !; !!!
!

= ! !!
!!exp −!!

!!!
 

where wj are weights and mj are Poisson parameters. The weights wj give the proportion of 

clones in the parent population with clone size j. 

The parameters mj give the mean number of cells a clone of size j contributes to a sample and 

are referred to as means below. They correspond to clone sizes in the parent population: 

Clone&size&!!in#parent#=#number#of#cells#in#parent#population#×#!!/!sample'size 

The parameters therefore give a complete description of the clone-size distribution in the parent 

population. 

If there are k different sizes in the parent population, so that the index j ranges from 1 to k, then 

there are a total of 2k-1 independent parameters, consisting of k independent sizes mj and k-1 

independent weights wj, which sum to 1. 

Assuming that the sample comes from a well mixed parent population, such as blood, this gives 

rise to a sampling distribution: 

  ! !!, !!, !!… = (!total!/!!! !!! !!!… )×(!!
!!!!

!!!!
!! … )    (1) 

Where ntotal is the sum of all ni. 
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The Recon algorithm addresses three fundamental problems in the search for parameters which 

maximize the likelihood (1) given the data ni. 

First is the need to determine the number of different clone sizes, k. This is addressed by start-

ing with a homogeneous population in which all clones are the same size and refining the de-

scription of the population by adding clone sizes (incrementing k by 1) until no better fit can be 

obtained. A better fit must both (i) improve the fit by an amount that is larger than expected vari-

ation from sampling noise and (ii) improve the corrected Akaike Information Criterion (AICc). 

This loop is described in Steps 2, 7 and 8 below. 

Second is that the likelihood is a non-linear function of the parameters and has local minima, 

whereas a global minimum is desired. In practice, for some fits, the AICc allows 20 or more pa-

rameters; searching such a high dimensional space requires a careful strategy to find a global 

minimum. To handle this problem, in Recon each step of the fit is run many times (110 in our 

implementation) from different starting points. These multiple different starting points often result 

in finding multiple local minima, from which the global minimum is selected. This loop is de-

scribed in Steps 3 and 6 below. 

Third, the likelihood of the data can be calculated directly from the 2k-1 parameters of the 

mixed-Poisson distribution model given only the number of unseen species, n0. Thus, the num-

ber of missing species must be jointly modeled as an additional parameter. 

In order to handle this problem an expectation maximization (EM) approach (see references in 

main text) is used in which an expected value of n0 is obtained from the remaining parameters 

and parameters are then refitted until self consistent values of parameters and of n0 are ob-

tained. This loop is described in Steps 4 and 5 below. 

These three nested loops are shown in the flowchart in Fig. S1. 
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Step 1: Separate large from small clones. To simplify our calculations of n0, the first step 

splits the observed clone size distribution into large clones and small clones. Our implementa-

tion uses a threshold of 30 cells. 

Consider repeated sampling of the parent distribution. Any clone in the parent population that is 

large enough to contribute 30 cells to a sample will essentially always be represented in the 

sample; i.e., it will never contribute to the number of missing clones, n0. Furthermore, the sam-

pling error on such large clones will be relatively small, and the size of the clone in the parent 

population will scale linearly with the number of clones in the sample. 

The main work of reconstruction must then be applied to the remaining small clones, whose 

contribution to the observed sample is less than 30 cells, and which correspond to clones in the 

parent population that are small enough to include clones that will contribute no cells to the 

sample and thus affect n0. The remaining reconstruction steps are applied only to these small 

clones. 

Step 2: Determine mean observed clone size. The mean size of all observed clones contrib-

uting to the fit (i.e. clones contributing less than 30 cells) is calculated. This is used to set the 

scale for initial guesses of clone sizes in step 3. 

The initial parameters for the fit are set to empty lists of weights and means. This is recorded as 

the current best fit. 

Step 3: Add a clone size to the parent distribution. Next, the algorithm adds a new distinct 

clone size to the parent population, in such a way that the new distribution maximizes the log 

likelihood. Because there are multiple maxima in the likelihood, this fitting (Steps 3-5) will be 

repeated for each of many starting points for the new clone size added to the same current best 
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fit  in an attempt to find the best possible improvement. We used 110 starting points in our im-

plementation. 

Except on the first iteration of the fit, the weight of the new clone size is selected from the list of 

starting weights (Table S1). On the first iteration of the fit the newly added clone size is the only 

clone size, so the weight is 1.0. The mean for the new population is calculated by selecting a 

starting scale factor (Table S2) and multiplying by the mean size of the small clones. 

Table S1: Starting weights  Table S2: Starting scale factors  

0.05  0.001  

0.1  0.02  

0.2  0.07  

0.25  0.3  

0.3  0.6  

0.4  0.9  

0.5  1.1  

0.6  1.2  

0.7  1.3  

0.9  1.4  

0.95    
 

The number of missing species is updated as  

!! = !!"#/(1 − !!) 

where nobs is the number of small clones observed in the sample (i.e. the sum of ni for 0<i<30).  

 

Step 4: First EM step. Given the estimate of n0, Recon maximizes log P, where P is given by 

Eq. (1) above: 

! !!, !!, !!… = (!total!/!!! !!! !!!… )×(!!
!!!!

!!!!
!! … ) 
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The ni for i>0 are the observed number of clones represented by i cells in the sample, ntotal is the 

sum of all ni including n0, and the pi are the probabilities of a randomly selected clone giving rise 

to exactly ni cells in the sample, as calculated from the mixed-Poisson model. In our implemen-

tation this is carried out using the L-BFGS-B minimization method from the scipy.optimize li-

brary. 

Step 5: Second EM step. A new value for n0 is estimated according to: 

!! = !!"#/(1 − !!) 

. 

This new value of n0 is used to find maximum likelihood values for the parameters.  

If the newly estimated value of n0 is equal to the old value of n0 then there has been no im-

provement, and so EM for the corresponding starting point is completed. 

If instead the newly estimated value of n0 differs from the old value of n0 then Step 4 is repeated 

using the new estimate and starting from the parameter values given by the fit for the old n0 es-

timate. This ensures that the end result of EM is a set of parameters that maximize likelihood 

and produce a self-consistent estimate for n0. 

The result is added to a list of possible best fits. As shown in Fig. S1, the algorithm returns to 

Step 4 until all starting points have been tried and the list of possible best fits contains 110 en-

tries. Note that at this point the current best fit is not yet updated.  

6: Compare the multiple minima that arise from the different starting points. After all 110 

fits, each starting from different initial parameters, are complete, the MLE from among these 110 

fits is selected. 
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The likelihood minimized in Step 4 treats n0 as data, and maximizes likelihood given that data. 

However, solutions from different starting points will arrive at differing self-consistent values of 

n0. In order to compare these solutions n0 must be treated as a parameter rather than as data. 

Treating n0 as data we use Eq. (1) above. For practical purposes, since the n do not depend on 

the parameters, we maximize 

log(!!
!!!!

!!!!
!! … ) = !! log !!

!

!!!
 

Because the pi are known functions of the mixed-Poisson model parameters this is a straight-

forward procedure. 

In contrast, treating n0 as a parameter we have the likelihood to be maximized: 

!! !!, !!, !!,… !!) =
!obs!

!!! !!! !!!…
×(!!!

!!!!!
!!!!!

!! … ) 

Here the p’i are not equal to pi, (as can be seen e.g. by considering normalization) and depend 

on n0. It is not straightforward to calculate the p’i from the mixed-Poisson model parameters. 

In order to calculate P’ in terms of the mixed-Poisson model parameters we write log P’ in terms 

of log P: 

! !!, !!, !!… = !total!
!!! !!"#!

!!!
!! !(1 − !!)!obs !

!obs!
!!! !!! !!!…

× !!!
!!!!!

!!!!!
!! …

= !total!
!!! !!"#!

!!!
!! ! 1 − !! !obs !!′ 

Then 

log! = log !total!
!!! !!"#!

+ !! log !! + !obs log 1 − !! + log!′ 
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so  

log!′ = log! − log !total!
!!!!!"#!

− !! log !! − !obs log 1 − !! .! ! ! (2) 

Taking the log of Eq. (1) we can write 

log! = log !total!
!!! !!! !!!…

+ !! log !! + log !!
!!!!

!!!!
!! … . 

Substituting this expression for log P into Eq. (2) we find: 

log!′ = log !obs!
!!! !!! !!!…

− !obs log 1 − !! + log(!!
!!!!

!!!!
!! … ) 

The first term on the right does not depend on parameters, so in order to maximize P’ we select 

the fit giving the maximum value of: 

log(!!
!!!!

!!!!
!! … ) − !obs log 1 − !! . 

Because this is written in terms of the pi  it can be evaluated in terms of the mixed-Poisson 

model parameters, so it is straightforward to maximize. Note that directly comparing the log like-

lihoods treating n0 as data between fits that have different values of n0 is in practice misleading, 

and leads to a severe bias against large values of n0.  

The 2 fits with the highest log likelihoods are passed to Step 7 

Step 7: Fit a best average starting point 

The starting weights that led to the two best fits are averaged together to produce the best av-

erage starting weights.  The starting means that led to the two best fits are averaged together to 

produce the best average starting means.  The best average starting weights and means are 

then fit using Steps 4 and 5 of the algorithm. 
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The  log likelihood of the resulting fit is computed as in Step 6. 

The resulting 111 fits ordered from highest to lowest log likelihood is passed to Step 8 as the list 

of candidate best fits. 

Step 8: Check sampling noise and minimum clone size. If an estimate of the number of cells 

in the parent population is available then it is possible to set a minimum size for clones in the 

parent population—namely 1 cell. However, in general such estimates may not be available, 

and the Recon algorithm does not rely on such information. 

If there is no restriction on the minimum clone size then the algorithm can produce a perfect fit 

to n1 in the observed clones by fitting a large number of clones, each of which contributes an 

unrealistically small fraction of a clone to the observed distribution. It is therefore necessary to 

introduce a minimum mean clone size.  

The expected number of cells contributed to n1 by the clones with the smallest m parameter in 

the candidate best fit is compared against the expected noise in n1 arising from the remaining 

clones. In our implementation, the noise threshold on the remaining clones is calculated as 

three times the standard deviation from Poisson sampling.  

If the contribution from the smallest clones in the candidate best fit with the highest log likeli-

hood is larger than this noise threshold then it is passed to Step 8. 

Otherwise, it is removed from the list of candidate best fits and the next candidate best fit is 

tested until a fit is found for which the contribution from the smallest clones is larger than the 

noise threshold. This fit is then passed to Step 9. 

Step 9: Test for improvement of the AICc. The AICc is defined as 

AICc = 2! − 2 ln!! + 2! ! + 1 /(! − ! − 1) 
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Where q = 2k-1 is the number of parameters and N is the number of observations. N is taken as 

the number of distinct clone sizes that being fitted, which in the case of Recon is the number of 

small clone sizes, which is 29 in our implementation. 

The new AICc of the new candidate best fit is compared against the AICc of the current best fit. 

Note that in this step the candidate best fit has two more parameters (one weight and one popu-

lation size) than the current best fit. This is what necessitates the use of the AICc. (In previous 

steps, comparisons were made only between fits with the sample number of parameters, so a 

simple log likelihood comparison sufficed.) 

If the candidate best fit is not an improvement then the algorithm exits with the current best fit as 

its final result. 

Otherwise the algorithm records the candidate best fit as the new current best fit and returns to 

Step 3 to search for a further improvement with additional parameters. 

2. Upper bound on species-richness estimates 

Any reconstruction of missing species using a small sample from a large population suffers from 

a fundamental limitation. Species that are too rare to have an appreciable chance of appearing 

in the sample cannot be estimated based upon the sample. As shown by Mao and Lindsay, this 

results in upper confidence intervals for the missing species that are formally infinite.  

As discussed, Recon addresses this problem by only estimating those species that are large 

enough to have an appreciable chance of influencing the sample distribution in a meaningful 

way. (Note that while mixing distributions are often approximated as continuous, in reality they 

are discrete, so smallest fitted population will often be practically meaningful.) In many cases 

this estimate will be of interest. 
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But this still leaves the estimate for all species unbounded. The number of individuals in a popu-

lation is of course an upper bound for the number of species. In many cases of interest, such as 

analysis of immune repertoires, it is relatively easy to obtain reasonable estimates of the total 

number of individuals. For example, an estimate of total cells can be obtained by scaling a cell 

count against total tissue or blood volume, e.g., 1010 B cells in the body. 

Below we show how the Recon fit can be combined with an estimate of the number of all indi-

viduals in a population to get a sharper upper bound on the number of all species. 

Recon produces an overall clone-size distribution. The smallest clone size in this distribution is 

described by two parameters: the fraction of all clones that are of this size, wmin, and a mean 

number of cells that it contributes to the sample, mmin. Clone sizes smaller than this contribute a 

mean of zero cells to the sample; however, it is possible that there are smaller clones in the 

parent population, clones so small that they both do not contribute to the sample and are invisi-

ble to our algorithm. Recon’s estimate of the number of missing clones would not count such 

clones because it is not necessary to assume that they exist in order to obtain the observed 

sample clone-size distribution. However, if they were to exist, they would result in an undercount 

of the species richness in the parent. The goal in this section is to bound this potential under-

count. One can then test its plausibility, as described in the main text. 

The maximum undercount Umax, and therefore the desired upper bound, is obtained for the case 

that all the cells in clones smaller than mmin are actually singlets. How many would that be? The 

answer is given by 

Umax = RwminmminN/S 

where R is (Recon’s upper bound of) the overall species richness estimate, N is the total num-

ber of cells in the overall repertoire, and S is the sample size. Note the ratio S/N is the fraction 
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of cells in the overall population that are sampled; scaling mmin by S/N (yielding mmin*N/S) thus 

gives the smallest clone size in the overall repertoire that Recon can distinguish from singlets. 

Error bars on R and uncertainty in N contribute to uncertainty in the upper bound. Because gen-

erally N > R, upper bounds are larger than Recon’s estimates. We note, however, that in our 

experimental datasets (see main text) comparison of upper-bound estimates to the error ex-

pected given the coverage (S/Umax) excludes Umax as a plausible estimate, given the observed R 

(Fig. 4d). 

An example of a limiting case will illustrate how the formula for Umax works. Suppose an organ-

ism contains N = 1010 B cells, and further suppose that every one of these is a distinct clone, so 

that each clone in the parent is made up of 1 cell. If a sample of S = 106 cells is taken, then the 

observed clone size distribution will consist of 106 singletons, i.e. n1 = 1,000,000 and remaining 

ni = 0. The best that Recon could do here would be to take a single population (that is w =1.0) 

and note that the mean contribution, m, of each clone in the overall repertoire must be less than 

10-3.  

The value of m comes from the fact that no clone is observed twice, so that  (10-3)2 * S < 1.  

Note that in fact the true mean contribution of each clone to the sample is 10-4. Taking m = 10-3 

will result in a severe undercount, but is all that can be said with confidence given the sample 

size. 

The unseen species estimated by Recon will be given by  

!! =
!!"#
1 − !!

. 

In this example !!"# = S = 106. Recon’s estimate of p0 will be given by 1-p>0, where p>0 is the 

chance that a clone contributes to the sample. Therefore the estimate of 1- p0 will be p>0 = 10-3. 
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Again, the true value of p0 is much greater, but this is the best estimate possible given the sam-

ple. This results in an estimate 

!! =
10!
10!! = !10

! 

The estimate of the species richness R is then S + n0, which is approximately 109. In this ex-

treme case, Recon therefore underestimates the true species richness by a factor of 10. 

However, the formula for Umax is able to recover the true population. Since Recon fits only a sin-

gle weight and mean, wmin = w = 1.0 and mmin = m = 10-3. Then 

!!"# = !
10!!×!1.0!×!10!!!×!10!"

10! = !10!". 

As expected, in this case Recon adds no further constraint. If every individual in the sample is 

from a different species then the only sensible upper bound for the number of species is N. 

Now consider a case in which S = 106 cells are again sampled, but now the observed distribu-

tion has n1 = 900,000, n2 = 35,640, n3 = 6,667, n4 = 1,500, n5 = 400, n6 = 100, n7 = 10, n8 = 5, n9 

= 1 and remaining ni = 0..  

In this case the sample contains 944,323 clones. Recon fits 19,919,406 missing species for a 

total richness of 20,863,729 detectable clones. The wmin of the fit is 0.252 and the mmin is 0.041. 

The upper bound is now: 

!!"# = !
2.09!×!10!!×!0.252!×!0.041!×!10!"

10! = !2.16!×!10!. 

The upper bound of N can therefore be usefully reduced by a factor of almost 5.  
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3. Power calculations for species richness 

To obtain the minimum number of cells suggested to power an experiment detecting a specified 

difference, we required a number of cells sufficient to separate the expected sample means by 

at least one error bar, where the error bar is calculated as described in the main text. 

If experimentally reconstructed missing species from multiple identical samples with identical 

true overall diversity are taken to be normally distributed, then our calculation corresponds to a 

t-test at p=0.05 using our error bar as an estimate of the 3 times the standard deviation of this 

distribution. 
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Fig. S2d-f
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Fig. S3
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