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ABSTRACT 

Genetic differences in gene expression contribute significantly to phenotypic diversity and 

differences in disease susceptibility.  In fact, the great majority of causal variants highlighted by 

genome-wide association are in non-coding regions that modulate expression. In order to 

quantify the extent of allelic differences in expression, we analyzed liver transcriptomes of 

isogenic F1 hybrid mice. Allele-specific expression (ASE) effects are pervasive and are detected 

in over 50% of assayed genes. Genes with strong ASE do not differ from those with no ASE 

with respect to their length or promoter complexity. However, they have a higher density of 

sequence variants, higher functional redundancy, and lower evolutionary conservation compared 

to genes with no ASE. Fifty percent of genes with no ASE are categorized as house-keeping 

genes. In contrast, the high ASE set may be critical in phenotype canalization. There is 

significant overlap between genes that exhibit ASE and those that exhibit strong cis expression 

quantitative trait loci (cis eQTLs) identified using large genetic expression data sets. Eighty 

percent of genes with cis eQTLs also have strong ASE effects. Conversely, 40% of genes with 

ASE effects are associated with strong cis eQTLs. Cis-acting variation detected at the protein 

level is also detected at the transcript level, but the converse is not true. ASE is a highly sensitive 

and direct method to quantify cis-acting variation in gene expression and complements and 

extends classic cis eQTL analysis. ASE differences can be combined with coding variants to 

produce a key resource of functional variants for precision medicine and genome-to-phenome 

mapping. 

INTRODUCTION 

Genetic variation contributes greatly to phenotypic diversity and differences in disease 

susceptibility by altering the structure and expression levels of proteins. The analysis of complex 
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phenotypes in the pre-genomic era focused on coding variants, especially including nonsense, 

missense, and frameshift mutations. However genome-wide association studies conducted over 

the last decade have demonstrated that a great majority (>90%) of trait/disease-associated 

variants are located in non-coding regions. These non-coding variants primarily act by 

modulating gene expression, and they are the major cause of variation in susceptibility to 

complex diseases (MANOLIO et al. 2009; MAURANO et al. 2012; WARD and KELLIS 2012). 

Sequence variants that affect gene expression can act in cis or in trans. Cis-acting 

variants represent first-order local control of gene expression that is specific to each individual 

haplotype. For example, sequence variants in transcription factor binding sites may affect 

expression of cognate genes on the same chromosome. Cis-acting variants are key to 

understanding heritable variation in disease risk, and serve as direct targets for diagnosis and 

treatment of diseases. Cis-acting variants can, of course, also have second-order distal or trans 

effects. A small subset of cis-modulated transcripts consists of master trans-regulators (for 

example, transcription factors, miRNAs) that control the abundance of large numbers of 

downstream target genes on both sets of chromosomes. Hence, genome-wide identification of 

cis-modulated transcripts serves as an important molecular resource for reverse genetics studies 

that focus on downstream consequences of altered gene expression. 

Currently, two genome-wide approaches can be employed to identify cis-acting variation 

in expression. The first approach, known as expression quantitative trait locus (eQTL) mapping, 

performs classical genetic linkage analysis of expression usually for an entire transcriptome or 

proteome. This approach has been widely applied to study the effects of segregating variation on 

gene expression in yeast, mice, maize, and humans (BREM et al. 2002; CHESLER et al. 2005; 

CROWLEY et al. 2015; DAMERVAL et al. 1994; PEIRCE et al. 2003; SCHADT et al. 2003). The 
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largest study to date is the ongoing Genotype-Tissue Expression (GTEx) project that is 

generating a comprehensive resource of cis eQTLs for multiple tissues in a large human cohort 

(KEEN and MOORE 2015; LONSDALE et al. 2013). The second approach, widely used in studies of 

model organisms, exploits rtPCR or RNA-seq to assay allele-specific expression (ASE) 

differences in isogenic heterozygous (F1) individuals (BELL et al. 2013; CIOBANU et al. 2010; 

MCMANUS et al. 2010; ROZOWSKY et al. 2011; SZABO and MANN 1995). RNA-seq can reliably 

distinguish mRNAs transcribed from the alternative alleles, and can be used to detect unequal 

production of the two alleles. A major advantage of isogenic F1 hybrids is that they provide a 

way to control for environmental and trans-acting influences. Both alleles are present within an 

identical environment and subjected to the same genetic background and regulatory networks. As 

a result, any expression differences between alleles in an isogenic F1 can be confidently 

attributed to genetic or epigenetic regulatory variant acting in cis (DEVEALE et al. 2012; 

LAGARRIGUE et al. 2013; WANG et al. 2008).  

In this study we evaluate and compare the impact of cis-acting variation on expression in 

murine liver using both ASE and eQTL approaches. We exploit RNA-seq data from isogenic F1 

hybrids and array data from a large set of recombinant inbred strains of mice—the BXD cohort, 

and generate a molecular resource for genome-wide reverse genetics that focuses on downstream 

consequences of altered gene expression (CARNEIRO et al. 2009; LI et al. 2010). We address the 

following questions: 

 How do genes that exhibit ASE differ from those that do not? 

 How do the two approaches highlighted above compare in terms of detecting 

effects of local polymorphisms on expression? More specifically, are cis-

modulated transcripts identified by eQTL mapping also consistently detected by 
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ASE analysis? 

 How frequently do cis-acting variants that cause mRNA differences also cause 

differences in protein expression? 

RESULTS 

DBA/2J specific reference genome 

We identified ~4.46 m high confidence SNPs between C57BL/6J (B) and DBA/2J (D) genomes 

using 65-fold coverage next-generation sequencing data (Methods). We substituted these SNPs 

into the reference genome (GRCm38/mm10) to create a customized DBA/2J genome for RNA-

seq read alignment (see below). A total of ~1.7 m SNPs are located within coding genes based 

on RefSeq annotation (Table S1), including introns (95.59%), exons (2.30%), 3' UTRs (1.80%) 

and 5' UTRs (0.30%). These SNPs are distributed among 14,591 genes. SNPs in transcribed 

regions were used to discriminate between, and identify, the parental allelic origin (B vs D) of 

transcripts in isogenic F1 hybrids.  

Haplotype-aware alignment corrects for allelic bias in RNA-seq read alignment  

We downloaded paired-end liver RNA-seq reads for six biological replicates of 

C57BL/6JxDBA/2J F1 females (Methods). We adopted a haplotype-aware alignment approach 

and aligned ~350 m (~175 m paired-end) reads against both the B and the customized D 

genomes (Methods, Table S2). We used a SNP-directed approach to identify the allelic origin (B 

or D) of reads that aligned over heterozygous SNPs in the F1 samples. Only uniquely aligned 

reads were assigned to parental alleles. Approximately 0.27 m SNPs within genes (a great 

majority within exons) had at least one read.  

RNA-seq read alignment suffers from allelic bias that disfavors reads containing 

sequence variants relative to the reference genome (DEGNER et al. 2009; SATYA et al. 2012). 
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This bias generates lower read counts for non-reference alleles, and overestimates ASE 

differences. To evaluate bias, we examined allelic ratios—defined as the number of reads with 

the reference allele (B) divided by the total number of reads (B+D). In the absence of bias, this 

ratio will have a symmetrical distribution and a mean of 0.5. For each of the F1 samples, ratios 

were well balanced, with nearly equal numbers of SNPs with high B or high D expression (Table 

S3). Additionally, mean and median ratios were close to 0.5 (Table S3) indicating that the 

majority of SNPs exhibit small or undetectable ASE. We compared our results with a traditional 

approach involving alignment of reads against the reference genome and allowing for fewer 

mismatches (1 mismatch per 25 nt).  This produced an artifactually high number of SNPs with 

high B expression (~ 3,000 B vs ~400 D, two-sided binomial p < 10
-323

, Fig. 1A) compared to the 

dual genome alignment (~2,325 B vs ~ 2,300 D, two-sided binomial p value = 0.724, Fig. 1B). 

The mean and median of allelic ratios using the standard approach were also skewed—0.69 (high 

B) and 0.68, respectively. This illustrates that the haplotype-aware alignment workflow is highly 

effective in reducing allelic bias. 

High correlation of allelic ratios across biological replicates  

We calculated the correlation of allelic ratios with read depth ≥ 20 across all biological 

replicates.  Allelic ratios were highly correlated with an average Pearson correlation of 0.70 ± 

0.02 for all pairs of replicates (n = 15, Table S4, Fig. S1). We merged data from biological 

replicates, but to minimize variation across replicates, we discarded reads from replicate with 

highly discrepant ratio (Methods). More than 90% of SNPs had closely matched ratios across 

four or more replicates and were retained for further analyses.  We also checked the concordance 

of the polarity of ASE measured by neighboring but independent SNPs (<75 nucleotides). In the 

great majority of cases SNPs within the same genomic feature (5’ UTR, exon, intron and 3’ 
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UTR) were highly concordant. Only 136 (6%) of 2,234 genomic features contained SNPs with 

opposite ASE polarity and the great majority were in 3’ UTRs (n = 86). 3’ UTRs undergo 

extensive alternative processing (HILGERS et al. 2011; MIURA et al. 2013), and SNPs with 

opposite ASE polarity probably represent alternative polyadenylation sites (LI et al. 2010). The 

high correlation of allelic ratios across the replicates and the high concordance in polarity again 

demonstrate the accuracy of the haplotype-aware alignment workflow. SNPs located within copy 

number variants, large insertions and deletions or in close vicinity (< 75 nucleotides) to an indel 

can generate inaccurate ASE estimates due to alignment artifacts. They were removed from 

further analysis. Additionally, to ensure independent sampling we considered only one SNP of a 

SNP pair when SNPs were separated by less than 75 nucleotides. Of 21,166 SNPs with read 

coverage ≥ 30, ~25% (5,358) SNPs were removed for one of these reasons.  

ASE differences in liver are common 

We tested the null hypothesis of equal abundance of transcripts representing B and D alleles in 

isogenic F1 hybrids using a Chi-square Goodness of fit test (FDR < 0.1, Methods). On average 

we used ~650 reads per SNP to test for ASE. At a minimum threshold of 30 reads per SNP, we 

were able to test 15,808 SNPs in 3,589 genes (Table S5). We detected significant ASE in 5,298 

SNPs from 1,905 genes (Table S6, Table S7 Fig. 2).  Most of these SNPs are contained within 

coding exons (40%) and 3’ UTRs (40%) (Table S6). Seven percent are in introns and may 

represent unannotated exons or transcripts with unspliced or retained introns. We obtained 

comparable results when the minimum read threshold was increased to ≥ 60 (Table S6, 4,968 

SNPs in 1,791 genes) and when the FDR threshold was decreased to 0.05 (4,774 significant 

SNPs in 1,482 genes). Fifty-two percent (2,773 B vs 2,525 D) of SNPs have higher expression 

from the B allele. There is no difference in the distribution of average ASE effect sizes between 
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alleles (Fig. 3).  Over half of the SNPs with significant ASE differ by less than two-fold; one-

third differ 2–4 folds; and the remaining one-sixth differ more than 4-fold. We detected the 

known low D allele expression of aryl hydrocarbon receptor (Ahr)—a transcription factor that 

controls xenobiotic metabolizing enzymes (LIN et al. 2011). Similarly we also detected the 

known low B allele expression of alkaline phosphatase (Alpl)—a gene linked to 

hypophosphatasia (ANDREUX et al. 2012).  

Comparison between ASE and non-ASE genes  

Genes with high or low levels of ASE may differ in length, complexity of promoters, 

sequence variant density, or evolutionary history. To explore these differences we selected a 

subset of 418 genes with very high ASE ratios (>1.5 fold) and a subset of 465 genes with low or 

no ASE. All genes in both groups were required to have at least two independent SNPs that 

supported their categorization. We also required all SNPs to have more than 100 supporting 

reads—roughly the top ten percentile.  We defined each gene as the region between the 

transcription start site and 3’ UTR with 2 kb of flanking regions upstream and downstream. ASE 

genes do not differ from non-ASE genes in terms of total gene length or their 5’ or 3’ UTR 

length (Table 1). They also do not differ in numbers of protein-coding transcripts (isoforms) or 

numbers of exons per transcript (Table 1). However, ASE genes have a higher functional 

redundancy (number of paralogs) compared to non-ASE genes (1.5 fold, p < 10
-4

, Table 1).  

We also compared promoter complexity. There are no differences in the density of liver-

specific cis-regulatory elements defined using mouse ENCODE data (STAMATOYANNOPOULOS et 

al. 2012). Similarly, there are no differences in the density of transcription factor binding sites 

(TFBS) defined using a comparative genomic approach (DAILY et al. 2011) (Table 1). However, 

the subset of genes with no or low ASE are enriched (p < 10
-46

, hypergeometric test) in 
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housekeeping genes (EISENBERG and LEVANON 2013). In fact, nearly 50% of the non-ASE set 

are house-keeping genes. In contrast only 20% of the ASE set belong to this category.  

Another distinguishing characteristic of the two sets is their density of sequence variants. 

The mean density in the non-ASE set is significantly different from the ASE set (4.59 ± 0.02 

versus 8.20 ± 0.25 per Kb, p ~ 0.0, two-tailed t test). This marked difference suggests that genes in 

the non-ASE set are under comparatively stronger purifying selection.  

To test whether ASE and non-ASE sets are subject to different levels of purifying 

selection (the elimination of deleterious sequence variants) we compared the strength of selective 

constraint (GERP++ scores) on genomic regions across 33 mammalian species (COOPER et al. 

2005; DAVYDOV et al. 2010). The ASE gene set (201.33 ± 10.85) have significantly lower 

conservation scores than the non-ASE set (274.15 ± 13.26) indicating that they tolerate and 

accumulate more mutations; a subset of which are highly likely to modulate expression (p < 10
-4

, 

two-tailed t test, Table 1).  

To evaluate if genes in ASE and non-ASE sets belong to different functional categories, 

we compared them for overrepresented gene ontology and KEGG pathway terms using DAVID 

functional annotation tool (HUANG DA et al. 2009).  ASE genes are significantly enriched 

(Benjamini corrected p < 0.05) in genes associated with KEGG pathway terms including 

‘complement and coagulation cascades’, ‘retinol metabolism’, ‘metabolism of xenobiotics by 

cytochrome P450’, and ‘lipid, fatty acid and steroid metabolism’.  Non-ASE genes are enriched 

in genes with gene ontology (GO) terms representing broad functional categories such as 

‘macromolecule localization’, ‘catalytic activity’, and ‘ubiquitin mediated proteolysis’.  

To evaluate the effect of ASE on phenotypes we performed phenotype enrichment 

analysis (WENG and LIAO 2010) on mouse-mutant phenotypes (BLAKE et al. 2009) derived from 
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Mouse Genome Informatics (MGI, www.informatics.jax.org/phenotypes.shtml).  As noted 

above, ASE genes compared to non-ASE genes are enriched (unadjusted p < 0.01) for 

phenotypes including ‘abnormal gall bladder physiology’ (MP:0005085), ‘abnormal xenobiotic 

induced morbidity/mortality’ (MP:0009765), and ‘abnormal glucose homeostasis’ 

(MP:0002078). 

Identification of cis eQTLs  

We performed linkage-based eQTL mapping using a gene expression data set generated using 

liver samples from 40 BXD strains (Methods). Of the ~45,000 probe sets, we selected ~41,500 

that have a uniquely assigned gene identifier. This subset represents ~19,000 genes. Cis eQTLs 

were required to have LOD scores greater than 3 and LOD peaks within ± 5 Mb of their cognate 

gene. A LOD score ≥ 3 roughly corresponds to a nominal p value of < 0.001 and is widely used 

to indicate a high probability of linkage. We detected a total of 1,907 cis eQTLs corresponding to 

1,474 genes (Fig. 2, Table S8).  cis eQTLs with very high LOD scores (≥ 25) include Snx6, Adi1, 

Cfh, Fbxo39, and St3gal4.  

Variant overlapping probes cause spurious cis eQTLs 

SNPs and indels in probe sequences can influence hybridization kinetics and cause incorrect 

measurement of expression. Twenty-five percent of apparent cis eQTLs detected in the 

hippocampus are probably caused by variants in probes rather than by genuine differences in 

expression (CIOBANU et al. 2010). We identified 739 cis-modulated probe sets that overlap D 

variants. To evaluate how these variants affect the direction and size of additive effects for 

corresponding cis eQTLs, we compared cis eQTLs between probe sets with variants and probe 

sets without variants. Probe sets without variants were precisely balanced with respect to B 

versus D effects. In contrast probes with variants were highly imbalanced and ~70% were 
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associated with high B expression. Of 408 cis eQTL genes represented by probes with variants, 

193 could be compared with results from ASE analysis, and 149 genes showed the same 

direction of expression bias as ASE. A total of 1,215 genes were associated with cis eQTLs. 

Cis-modulated genes from ASE and eQTL mapping overlap  

We compared results from ASE with those from eQTL mapping. Of the 3,431 genes that were 

jointly tested, 1,808 (~50%) and 867 (~25%) were identified as cis-modulated by ASE and eQTL 

mapping, respectively.  Six hundred and eighty-three genes were jointly identified as cis-

modulated, a significant overlap (hypergeometric p < 10
-73

), and ~90% had the same effect 

polarity (Table S9). One thousand one hundred and twenty-five and 184 cis-modulated genes 

were exclusively identified by ASE and eQTL mapping respectively.  In other words, roughly 

80% of cis eQTLs also have ASE differences and ~40% of ASE differences are associated with 

cis eQTLs. To investigate discrepancies, we compared LOD scores of jointly identified cis-

modulated genes with those only identified by eQTL mapping. The joint set exhibit significantly 

higher LOD scores (p < 10
-5

) (Fig. 4). We further compared the RNA-seq read depth 

(expression) of these two groups and the joint set has significantly higher expression (three-fold 

difference, p = .03, Fig. 5). This suggests that the ASE analysis lacks adequate read depth 

(statistical power) to detect allelic differences corresponding to cis eQTLs with comparatively 

low LOD scores. We performed an empirical power analysis (Fig. 6) to illustrate dependency of 

ASE analysis on read-depth to detect allelic differences of different magnitudes. As expected, 

strong differences can be reliably detected with a relatively small number of reads and vice-

versa. The joint set also has higher allelic expression differences compared to 1,125 genes 

identified only by ASE (p < 10
-30

) (Fig. 7). We used a stringent LOD threshold ≥ 3 to define cis 

eQTLs and this will reduce the number of cis eQTLs corresponding to genes with low ASE. We 
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therefore performed single marker analysis at less stringent FDR < 0.1 (see Methods) to identify 

cis-modulated genes and compared them with the ASE gene set. The number of jointly identified 

genes increased from 648 (eQTL mapping, LOD ≥ 3) to 962 (single marker analysis, FDR < 

0.1), and those exclusively identified by ASE were reduced from 1,125 to 774. Thus a large 

fraction of disjoint between ASE and eQTL results are explained by the different statistical 

criteria we used to define both ASE genes and cis eQTLs.  

Genetic variants affecting transcript abundance and protein abundance show poor 

overlap 

We performed linkage based protein QTL (pQTL) mapping on liver proteomics data generated 

from a set of 38 BXD strains (WU et al. 2014). One hundred and seventy-two autosomal proteins 

involved in metabolism were quantified using a targeted mass spectrometry method. Only 7% (n 

= 12) are associated with cis pQTLs, including ABCB8, ACADS, ACOX1, ATP5O, BCKDHB, 

CAR3, DHTKD1, GCLM, MRI1, NNT, PM20D1, and TYMP (Fig. 2, where a cis pQTL must 

have a LOD > 2 located within  ±5 Mb of the parent gene). Not surprisingly, all of the cis pQTLs 

are also associated with significant ASE differences with matched polarity (Table S10). 

Similarly, 8 of these cis pQTLs are linked to cis eQTLs with high LOD scores and with matched 

polarity. However, 39 genes with significant ASE and 18 genes (Fig. 8) with significant cis 

eQTL are not associated with cis pQTLs. For example, Ddah1 has significant ASE (3–4 fold 

difference) and a strong cis eQTL (chr3:145 Mb, LOD ~ 14.5) favoring the B allele. However, 

the protein difference across BXDs does not map to the location of gene and protein difference 

between B and D alleles has a one-tailed p of 0.2—a reasonably strong negative result. This case 

is doubly interesting because variation in DDAH1 protein maps as a trans pQTL (Chr7: 27.85 

Mb, LOD ~ 2.5).   
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Majority of aberrant alleles do not affect expression severely 

Nonsense mediated decay (NMD) is a molecular surveillance mechanism that selectively 

degrades aberrant transcripts produced as a result of nonsense or splice-site variants (BAKER and 

PARKER 2004; LAREAU et al. 2007; ZHANG et al. 2009).  NMD of aberrant transcripts should 

result in extreme allelic ratios (close to zero or one). However, over two-thirds of nonsense 

variants (transcripts) in human cell lines escape NMD through unknown mechanisms 

(LAPPALAINEN et al. 2013). We measured allelic ratios for 12 nonsense variants (transcripts) and 

remarkably only two—Gbp11 (0.05, high D) and Mug2 (0.90, high B)—had extreme ratios 

across multiple SNPs. Interestingly, half of the stop codon losses identified in the B allele only 

add one to two amino acids to the variant proteins, including VMN2R79 (+1 amino acid), 

ADAM3 (+1), SPNS3 (+2), ZCCHC9 (+2), DLGAP5 (+2), and HOGA1 (+1). None of these 

transcripts have extreme allelic ratios. We found that a third of murine genes have one or more 

in-frame stop codons in close vicinity (<30 nucleotides) to the original stop codon. Tandem stop 

codons are also known to be conserved in yeast (LIANG et al. 2005), and may provide a 

safeguard against stop codon losses. We also evaluated 36 splice-site variants and only five of 

these transcripts, including Cyp2c39 (0.02), Arhgef10 (0.03), Pik3c2g (0.05), Lox14 (~0.9), and 

Rpsa (0.99) had extreme ratios. Splicing machinery may also use alternative splice sites in the 

close vicinity to the original splice site to prevent the production of aberrant transcripts.  For 

example, we found a polymorphism (rs33609674) within intron 1 of Hcfc1r1 that introduces a 

CAG splice acceptor site in the B allele. The acceptor site is located twelve nucleotides upstream 

of exon 2 of the D allele (Fig. S2) resulting in the addition of four amino acids and presumably 

no seriously aberrant transcript is produced in either case.  
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In conclusion a majority (> 85%) of presumed aberrant transcripts including nonsense 

and splice-site variants escape NMD. We speculate that the use of alternative stop codons or 

splice sites in the immediate vicinity of the primary mutation apparently prevents aberrant 

transcript production. 

Mechanistic insights into the basis of allele-specific expression—quantitative and 

qualitative differences  

Cis-acting variants affect expression in three major ways: (1) by modulating transcription rates 

and stability (mRNA abundance), (2) by modulating transcript processing (splicing and 

polyadenylation), and (3) by altering mRNA transport and storage (AN et al. 2008).  Allelic 

ratios of SNPs that represent different regions of a transcript can be collectively analyzed and 

compared to provide mechanistic understanding of these alternative mechanisms. Multiple SNPs 

that have the same polarity and roughly the same magnitude of effect suggest variants in 

enhancers or transcription-factor binding sites that control transcript levels globally. For 

example, Nnt, a gene linked to insulin hypersecretion in the D parent (ASTON-MOURNEY et al. 

2007), has a strong cis pQTL (LOD ~8) in liver with high expression of the D allele. All eight 

SNPs exhibit significant ASE and with the same polarity (Fig. 9A). Another example is Gclm, a 

gene involved in the metabolism of dietary lipid (KENDIG et al. 2011), that also has a strong cis 

pQTL (LOD ~5) in liver with high expression of the B allele. All five SNPs have ASE with the 

same polarity.  

Neighboring SNPs located within 5’ or 3’ UTRs that have opposite polarity suggest 

allele-specific differential usage of alternate transcriptional initiation or polyadenylation sites. 

One example is Txndc9, a gene linked with colorectal cancer in humans (LU et al. 2012). This 

gene has multiple transcripts with alternative polyadenylation sites as demonstrated by multiple 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 13, 2015. ; https://doi.org/10.1101/024588doi: bioRxiv preprint 

https://doi.org/10.1101/024588


16 
 

mRNAs in RefSeq and Ensembl gene models. Two SNPs located in exons 1 and 3 have 

significantly ASE with high B expression whereas eight SNPs located in the extended 3’ UTR 

(Fig. 9B) have high D expression suggesting allele-specific differences in 3’ UTR processing. A 

similar pattern is observed in array data: probe sets in coding exons have high B expression 

whereas those in the 3’ UTR have high D expression. The longer 3’ UTR of the D allele harbors 

putative binding sites (PhastCons > 0.5 and mirSVR score < -0.3 (BETEL et al. 2010)) for 

multiple miRNAs, including miR-539, miR-96, miR-129-5p, that may explain overall low 

expression of the D transcript. Another example is Slc38a3, a glutamine transporter involved in 

ammonigenesis (BUSQUE et al. 2014; BUSQUE and WAGNER 2009). GenBank and Ensembl gene 

models demonstrate multiple transcripts that use alternative transcriptional initiation sites. Four 

SNPs in exons and a SNP in 3’ UTR have high D expression. However, SNPs in the 5’ UTR 

have variable ASE (Fig. 9C). Two SNPs (rs30029220 and rs29646102) exclusive to the longer 5’ 

UTR have high D expression whereas a SNP (rs3672647) in the shorter 5’ UTR has high B 

expression suggesting that the D allele favors usage of transcript with the longer 5’ UTR. 

Finally, SNPs with opposite ASE polarity in different coding exons are probably caused 

by alternative exon usage or alternative splicing. For example, carbonic anhydrase 3 (Car3), a 

gene linked to adipogenesis (MITTERBERGER et al. 2012), has a strong cis pQTL (LOD ~5) with 

high expression of the D allele. Five SNPs located exclusively in a long isoform show significant 

ASE with high D expression: one SNP in the exon 6 and four SNPs in the 3’ UTR (Fig. 9D). In 

contrast, 5 SNPs located exclusively in the short isoform have high B expression. 

DISCUSSION 

Allele-specific expression differences are a major driver of phenotypic differences and variation 

in disease risk. We exploited RNA-seq and eQTL data sets to quantify the extent and intensity of 
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cis-acting variation in expression in liver. After correcting for alignment bias, we achieved the 

expected symmetrical distribution of allelic differences. Well separated SNPs within single 

exons are highly concordant both in strength and polarity of effects. Allelic ratios of SNPs also 

correlate well across biological replicates. The concordance between ASE and cis eQTLs is 

strong.   

Having dealt with these technical challenges, we were able to identify statistically 

significant ASE differences with minimum fold difference of 1.25x for nearly half of all assayed 

transcripts. This latter finding strongly supports recent work by Crowley and colleagues 

(CROWLEY et al. 2015) demonstrating pervasive and high levels of ASE in brain and other 

tissues. In each F1 strain contrast, they detected significant ASE in 50% or more of all tested 

genes/transcripts at an FDR of 0.05. In total, 90% of testable genes exhibited ASE effects in at 

least one pair of strains. Lagarrigue and colleagues (LAGARRIGUE et al. 2013) detected somewhat 

less pervasive ASE effects (~20%) in liver of C57BL/6JxDBA/2J F1 animals, but this is most 

certainly a matter of lower RNA-seq read depth (statistical power), and a higher fold difference 

(1.5x) criterion they used to identify ASE. Of 2,256 genes, they only observed 383 genes with 

significant ASE. We are now able to address three questions posed in the introduction.  

Highly conserved genes have low levels of ASE  

Do differences in the magnitude of ASE represent differences in complexity of expression 

control or in evolutionary history? To answer these questions we compared a group of genes 

with very low and very high ASE. We found no differences in the density of cis-regulatory 

elements, but genes with low ASE do appear to be under more intense purifying selection. Fifty 

percent of the non-ASE set are house-keeping genes (EISENBERG and LEVANON 2013) and are 

likely to evolve comparatively slowly (She et al. 2009; Zhang and Li 2004). In contrast, genes 
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with high ASE are likely to have higher functional redundancy as estimated indirectly by 

numbers of paralogs, and they are also enriched in tissue-specific functions. In our study of liver 

they are involved in the metabolism of lipids, fatty acids, and xenobiotics. We speculate that high 

gene sets with higher ASE may function in tissue-specific pathways that tend to retain both 

higher numbers of paralogs and be under less evolutionary constraint. The comparatively high 

range of variation in expression of these genes may be crucial to conferring greater physiological 

tolerance to noise and environmental challenges.  ASE may also be one of the genetic 

mechanisms that underlie the canalization of phenotypes (MASEL and SIEGAL 2009; 

WADDINGTON 1942).                                                                                                                                                                                                                                          

Genetic variants affecting transcript abundance and protein abundance show poor 

overlap 

Transcript abundance has been shown to correlate only modestly with protein abundance. 

(ALBERT et al. 2014; GHAZALPOUR et al. 2011; MAIER et al. 2009; SKELLY et al. 2013; WU et al. 

2014) and we add the corollary that genetic variants that affect transcript abundance and protein 

abundance show low concordance. As expected, there is considerable disparity in allelic 

variation detected at mRNA and protein levels (Fig. 8). A few of the cis eQTLs with very high 

LOD scores (≥10) but essentially no cis pQTLs (LOD score < 1) are Ddah1, Gadd45gip1 and 

Aldh4a1. Fu and colleagues suggested an increased buffering at the level of proteins and 

metabolites, such that only a few genetic variants modulate major phenotypic variation and 

majority of them remain silent (FU et al. 2009). Factors that are known to contribute towards the 

disparity between mRNA and protein levels include post-transcriptional and post-translational 

modifications (MAIER et al. 2009), differences in half-lives (SCHWANHAUSSER et al. 2011), 

variability in mRNA expression level due to changes in cell-cycle (CHO et al. 1998).                                                                                                                                                 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 13, 2015. ; https://doi.org/10.1101/024588doi: bioRxiv preprint 

https://doi.org/10.1101/024588


19 
 

Comparison between cis-modulated genes identified by ASE and eQTL mapping 

We found significant overlap in cis-modulated genes identified by ASE and eQTL analysis, 

despite substantial differences between methods and assays. Eighty percent of cis eQTL genes 

are also detected by ASE, and ~90% of them have the same polarity. The set of 683 genes 

identified by both methods have significantly higher LOD scores (Fig. 4) than the set of 184 

genes identified only by eQTL mapping. In our work, when ASE methods fail to detect known 

eQTLs, this is almost certainly due to inadequate read depth (statistical power). High sampling 

error in RNA-seq data will affect power of ASE analysis especially for genes with low 

expression (PANDEY and WILLIAMS 2014; TARAZONA et al. 2011). As shown in Fig.6, high read 

depth is required to detect small allelic difference. A small fraction of presumed cis eQTLs can 

be local trans eQTL effects of neighboring genes. 

The jointly identified set of ~650 genes has greater allelic differences than the set of 

1,125 genes identified only by ASE (Fig. 7). A large fraction of subtle allelic differences 

identified only by ASE may have been confounded by noise or epistatic trans-acting effects in 

the eQTL analysis. The small sample size of the BXD cohort used for the eQTL mapping may 

not have adequate statistical power to map weak cis eQTLs, especially in the presence of 

epistatic trans eQTLs. Additionally, the LOD threshold of greater than 3 used to define cis 

eQTLs may be too stringent in this particular context.   

To the best of our knowledge, Babak and colleagues (BABAK et al. 2010) were the first to 

compare F1-derived ASE results with eQTL results from F2 intercrosses for adipose and islets 

samples. They found an 80% overlap between genes exhibiting ASE and genes with cis eQTLs. 

Lagarrigue and colleagues (LAGARRIGUE et al. 2013) found a 60% overlap between the methods. 

Hasin-Brumshtein and colleagues (HASIN-BRUMSHTEIN et al. 2014) performed a similar 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 13, 2015. ; https://doi.org/10.1101/024588doi: bioRxiv preprint 

https://doi.org/10.1101/024588


20 
 

comparison in adipose tissue and reported relatively poor overlap (~20%), but as noted above, 

differences with our more concordant results are most likely cumulative result of differences in 

criteria and ratios of statistical power of ASE analysis using F1 hybrids and cis eQTLs analysis 

using large intercrosses.   

As highlighted in the introduction, it is now clear that most common variation in 

phenotype and disease risk are linked to variants that modulate patterns of gene expression. ASE 

is a sensitive and a cost-effective method to detect cis-acting differences in expression. 

Environmental and trans-acting factors are fully controlled in isogenic F1 individuals, and ASE 

analysis only requires a small F1 sample size. In this respect it has a clear advantage over eQTL 

analysis of segregating populations. However, many classical laboratory strains have been 

derived from ancestral stock with limited haplotype diversity. As a result, a large fraction of an 

F1 genome will be identical by descent (IBD) and genes in these regions cannot be interrogated 

using ASE.  

Linkage-based eQTL analysis adds two important dimensions to an ASE study. First, it 

makes it possible to assign causality to specific variants using high-resolution mapping 

populations (LI et al. 2010; WANG et al. 2012). Second, eQTL analysis makes it possible to 

study the downstream effects of differential expression. These downstream effects are detected 

as trans eQTLs of other mRNAs or proteins. 

ASE varies between different environments and genetic backgrounds  

Estimates of ASE and cis eQTL will vary as a function of genetic background (CROWLEY et al. 

2015), tissue (KEANE et al. 2011), environment (WU et al. 2014), and sex (MOZHUI et al. 2012). 

For example, cis eQTLs effects can be strongly dependent on diet. The cis eQTL associated with 

Ndusf2 increases from LOD score of 2 in a mouse cohort on a normal chow diet to a LOD score 
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of 6 in a cohort on a high fat diet (Wu et al. 2014).  For these reasons, one should not expect 

estimates of ASE in liver of one population or treatment to generalize. Nevertheless, many of the 

large ASE effects caused by strong cis-acting variants will often be well conserved across 

environments, cell types, and genetic backgrounds. For example, ASE effects due to copy 

number variants (DISTLER and PALMER 2012), retrotransposons disrupting 3’ UTRs (LI et al. 

2010), and nonsense mutations (WILLIAMS et al. 2014) will often produce strong and consistent 

ASE effects across many tissues and treatments.     

MATERIALS AND METHODS 

Genomic data for DBA/2J  

We downloaded paired-end sequencing data for DBA/2J from the European Nucleotide Archive, 

accession number ERP000044 (KEANE et al. 2011). Data consists of nine paired-end libraries 

sequenced on the Illumina GAII.  Read lengths vary between 54–76 nt. We also downloaded 

Illumina paired-end sequencing data from the Sequence Read Archive, accession number 

SRP001135 (WANG et al. 2010). These data consists of three libraries sequenced on the GAII 

with read lengths of 100 nt.  

DBA/2J genomic read alignment and variant calling  

Reads were trimmed to remove low quality bases and aligned to the C57BL/6J reference genome 

(mm10) using Burrows Wheeler Aligner (BWA) (LI and DURBIN 2010) (version 6.1).  Base 

quality scores were recalibrated at the lane level using Genome Analysis Toolkit (GATK, v2.7) 

‘TableRecalibration’ (MCKENNA et al. 2010). All lanes for each library were merged into one 

BAM file using Picard (version 1.8, http://picard.sourceforge.net/) and duplicates were flagged 

using ‘MarkDuplicates’. BAM files for each library were combined together to create a single 

master BAM file containing all D sequences. Finally, GATK ‘IndelRealigner’ was used to 
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realign reads near indels from the Mouse Genome Project (KEANE et al. 2011), as well as 

potential indels predicted by GATK. SNPs and indels were identified using the GATK Unified 

Genotyper and the default settings. An in-house Python script was used to remove low quality 

variants based on multiple criteria including strand bias, minimum read mapping quality, end 

distance bias, minimum and maximum depth, and proximity to indels 

(https://github.com/ashutoshkpandey/Variants_call/blob/master/Filter_GATK_vcf.py). Only 

homozygous SNPs and indels were retained. For CNV detection, we used copy number detector 

(cnD) at the default settings (SIMPSON et al. 2010). We used SnpEff (CINGOLANI et al. 2012) to 

annotate SNPs and indels against RefSeq gene models, and categorized them as nonsense, splice 

site, frameshift, or missense. 

RNAseq data for C57BL/6JxDBA/2J hybrids 

We downloaded paired-end RNA-seq data from the European Nucleotide Archive (accession 

number ERP000591) for liver of C57BL/6JxDBA/2J F1 female hybrids generated by crossing 

C57BL/6J females with DBA/2J males (KEANE et al. 2011). The data consist of transcriptome 

sequence from six biological replicates. We acquired a total of ~181 m read pairs (2x76 nt in 

length). We removed low quality reads and used the remaining ~173 m read pairs for alignment.  

RNA-seq read alignment 

We aligned RNA-seq reads to both the C57BL/6J reference genome (mm10 assembly) and the 

DBA/2J genome using “Splice Transcripts Alignment to a Reference” tool (STAR, version 

2.3.1a) (DOBIN et al. 2013) with the following parameters “--outFilterMultimapNmax 10 --

outFilterMismatchNmax 12”. Read pairs that were not aligned in concordance with the library 

design, in particular read strand, were removed. We allowed a maximum insert size of 300,000 

nucleotides (maximum intron length) to allow alignment of those read-pairs aligned to different 
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exons. We selected read pairs for which both reads were uniquely aligned and for which each 

had less than six mismatches. If one member of a read-pair could not be aligned then we retained 

the other member only if it could be aligned uniquely. 

Calculation of allelic ratio 

We used SAMtools (version 0.1.19) “pileup” function (LI et al. 2009) and an in-house Python 

(https://github.com/ashutoshkpandey/ASE_prealignment/blob/master/Allele_specific_SAM.py)  

script to assign reads to their parental allelic origin by comparing alignments to the C57BL/6J 

and the SNP-substituted DBA/2J genome. If reads were aligned to both genomes then we 

required them to map at the same locations. Those reads that overlapped SNPs were assigned to 

their parental allele origin. To ensure that differential expression was not due to amplification by 

PCR during library preparation, we removed all potential PCR duplicates except for the single 

read with the fewest mismatches using Picard’s MarkDuplicates tool (version 1.78).  We 

calculated allelic ratios for each SNP defined as the ratio of number of reads assigned to the 

reference allele (B) to the total number of aligned reads (B+D).  

Definition of ASE using chi-square test 

For each SNP we used an interquartile range (IQR) method to identify outlier allelic ratios from 

the set of F1 replicates.  Outlier ratios were located outside the [Q1 – 1.5(IQR) and Q3 + 

1.5(IQR)] range where Q1 and Q3 represent first and third quartiles and IQR is calculated as Q3 

– Q1. Reads from replicates showing concordant allelic ratios were merged and allelic ratios 

were recalculated. We used the chi-square goodness of fit test to determine allelic imbalances for 

a given SNP.  For a SNP showing an allelic imbalance, the ratio will deviate from 0.5. We 

defined genes as having an allele-specific expression difference if they contained one or more 
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SNPs with an allelic imbalance at an FDR threshold of less than 0.1 (BENJAMINI and HOCHBERG 

1995). We also required the expression fold difference to be >1.25. 

Array expression data and eQTL mapping 

We used an Affymetrix data set (Mouse 430 v2.0 array) consisting of liver gene expression data 

for 40 genetically diverse BXD strains (GeneNetwork.org accession GN310, 

http://genenetwork.org/webqtl/main.py?FormID=sharinginfo&GN_AccessionId=310). We 

performed robust multichip analysis (RMA) preprocessing and rescaled values to log2 and 

stabilized the variance across samples (GEISERT et al. 2009). We used QTL Reaper, mapping 

code that uses the method of Haley and Knott for eQTL analysis (HALEY et al. 1994), and a set 

of 3,200 markers. We excluded probe sets located on X and Y chromosomes (~2,500 probe sets). 

Locations of probe sets were identified using custom annotation files. Similarly, we performed 

pQTL mapping on expression data from 172 proteins (WU et al. 2014). This data can be 

downloaded from Genenetwork.org (accession GN490, 

http://www.genenetwork.org/webqtl/main.py?FormID=sharinginfo&GN_AccessionId=490). To 

identify Affymetrix probes that overlapped sequence variants, we first aligned probe sequences 

against the mouse reference genome (mm10) using BLAT (KENT 2002), and then compared 

genomic coordinates of probes for overlap with sequence variants. 

Comparison between ASE and non-ASE genes (URLs) 

We downloaded the liver-specific regulatory elements data from Ensembl Regulatory build 

(ftp://ftp.ensembl.org/pub/release-81/regulation/mus_musculus); see more details on this build 

here: http://www.ensembl.org/info/genome/funcgen/regulation_sources.html.  For TFBS 

comparison we used data from MotifMap—genome-wide maps of regulatory elements. The file 

was downloaded using the following link:   
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(http://www.igb.uci.edu/~motifmap/motifmap/MOUSE/mm9/multiz30way/MotifMap_MOUSE_

mm9.multiz30way.tsv.bz2).  A list of house-keeping genes was downloaded using the following 

link: http://www.tau.ac.il/~elieis/HKG.  In order to compare for the evolutionary conservation 

between the ASE and non-ASE genes, we used GERP++ scores for mouse 

(http://mendel.stanford.edu/SidowLab/downloads/gerp/mm9.GERP_elements.tar.gz). We 

downloaded M. musculus and H. sapiens paralog data from Ensembl BioMart 

(www.ensembl.org/info/data/biomart.html) (HAIDER et al. 2009; VILELLA et al. 2009). All the 

mm9 coordinates were converted to mm10 using UCSC liftOver utility. The counts/scores of cis-

regulatory elements, TFBSs, DBA/2J sequence variants, and GERP++ scores were normalized 

by gene length before comparison.   

Single marker analysis 

We performed single marker analysis as an alternative to eQTL mapping to identify cis-

modulation in expression. For each gene we selected its closest marker and classified BXDs by 

genotype (B allele or D allele) for that marker. We compared expression using a t-test and 

selected genes showing significant expression difference at an FDR of < 0.1. 
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TABLES 

 

Table1. Comparison between ASE and Non-ASE genes 

Category ASE (n=418) Non ASE (n=465) P-value 
Gene length (Kb) 58 ± 4 63 ± 3 0.31 

5’ UTR length (Kb) 0.23 ± 0.03 0.25 ± 0.01 0.15 

3’ UTR length (Kb) 1.80 ± 0.08 1.87 ± 0.06 0.54 

Transcripts (coding) per gene 1.50 ± 0.05 1.65 ± 0.06 0.10 

Exons per transcript 12.4 ± 0.37 12.9 ± 0.29 0.31 

Cis-regulatory elements per Kb  0.37 ± 0.01 0.34 ± 0.01 0.11 

Transcription factor binding sites per Kb 1.61 ± 0.07 1.70 ± 0.07 0.38 

Sequence variants per Kb 8.20 ± 0.25 4.59 ± 0.02 <0.001 

Paralogs per gene 5.31 ± 0.36 3.56 ± 0.22 <0.001 

Evolutionary conservation (GERP++ score) per Kb 201.33 ± 10.85 274.15 ± 13.26 <0.001 

 

FIGURES 

Figure 1 

Comparison of the allelic bias in read alignment between traditional and haplotype-sensitive 

approach.  Distribution of allelic ratios in (A) traditional and (B) haplotype-sensitive alignment.  

Figure 2 

CIRCOS plot showing distribution of cis-modulated genes. The outermost circle represents 

chromosomes. Moving in, the second circle represents a scatter plot of ~15,000 SNPs tested for 

ASE. The Y-axis represents the allelic ratio. SNPs with significant ASE are shown in red and 

blue, representing high expression of the B and the D allele respectively. Insignificant SNPs 

showing equal abundance of the B and the D allele are shown in green. These SNPs are located 

on or near the line representing an allelic ratio of 0.5. The third circle represents a scatter plot of 

~40,000 microarray probe sets tested for cis eQTLs. The Y-axis represents the LOD scores of 

probe sets measured at the nearest marker (cis LOD). Cis LOD (≥ 3) scores associated with high 

expression of the B and the D allele are shown in red and blue respectively. Cis LOD scores of 

less than 3 are shown in green. The innermost circle represents a scatter plot of ~200 proteins 
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tested for cis pQTLs. The Y-axis represents the LOD scores of proteins measured at the nearest 

marker (cis LOD). Chromosomes X and Y were excluded.  

Figure 3 

Distribution of allelic ratios. The left boxplot labelled as “B>D” represents SNPs with high 

expression of the B allele (left Y-axis).  The right boxplot represents SNPs with high expression 

of the D allele (right Y-axis). The Y-axis represents allelic ratios. Outliers are not shown. 

Figure 4 

Comparison of LOD scores from jointly identified cis-modulated genes (ASE and eQTL 

mapping, left boxplot) with those only identified using eQTL mapping (right boxplot). The Y-

axis represents LOD scores. Outliers are not shown. 

Figure 5 

Comparison of RNA-seq read depth (log10) from jointly identified cis-modulated genes (ASE 

and eQTL mapping) with those only identified using eQTL. 

Figure 6 

Empirical determination of read depth required to detect allelic differences of a given size. Each 

circle represents a SNP. The X-axis represents the measured fold-difference and the Y-axis 

represents RNA-seq read depth (log10) for a given SNP. SNPs exhibiting ASE at an FDR 

threshold of ≤ 0.2 have been plotted as circles. Red circles represent SNPs with ASE at an FDR 

threshold of ≤ 0.01. The red and blue circles, combined, represent SNPs with ASE at an FDR 

threshold of ≤ 0.05. Similarly, red, blue and yellow circles, combined, represent SNPs with ASE 

at an FDR threshold of ≤ 0.1.  
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Figure 7 

Comparison of absolute allelic differences from jointly identified cis-modulated genes (ASE and 

eQTL mapping, left boxplot) with those only identified using ASE (right boxplot). Outliers are 

not shown. 

Figure 8 

Comparison of cis-acting variation at transcript versus protein levels. The X-axis and Y-axis 

represent LOD scores for genes and cognate proteins measured at their closest markers (cis 

LOD). A LOD of 2 (dashed line) roughly corresponds to a nominal p < 0.01. 

Figure 9 

Schematic examples of genes potentially associated with different categories of cis-regulatory 

mechanisms. The Y-axis shows the allelic ratios of SNPs located within the gene. An allelic ratio 

greater than 0.5 (dashed line) represents high expression of the B allele.  Examples of allele-

specific regulation of (A) overall gene expression, (B) 3’ UTR processing, (C) 5’ UTR 

processing, and (D) isoform usage. 

Figure S1 

Pearson correlation of allelic ratios between two biological replicates (ERR032205 and 

ERR032206). 

Figure S2 

Alternative splice site usage between B and D alleles due to a polymorphism (rs33609674, 

CAG/CGG) that results in gain of splice acceptor site (solid triangle) in the B allele. The B allele 

uses an acceptor site (solid triangle) located in intron 1 of the D allele. As a result, the B 

transcript has 4 additional amino acids (SLSP) in the beginning of exon 2. Expression data from 
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the striatum of the B (top track) and D (bottom track) alleles confirms the use of an alternate 

splice-site. 

FIGURES 

 

Figure 1 

Comparison of the allelic bias in read alignment between traditional and haplotype-sensitive 

approach.  Distribution of allelic ratios in (A) traditional and (B) haplotype-sensitive alignment.  
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Figure 2 

CIRCOS plot showing distribution of cis-modulated genes. The outermost circle represents 

chromosomes. Moving in, the second circle represents a scatter plot of ~15,000 SNPs tested for 

ASE. The Y-axis represents the allelic ratio. SNPs with significant ASE are shown in red and 

blue, representing high expression of the B and the D allele respectively. Insignificant SNPs 

showing equal abundance of the B and the D allele are shown in green. These SNPs are located 
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on or near the line representing an allelic ratio of 0.5. The third circle represents a scatter plot of 

~40,000 microarray probe sets tested for cis eQTLs. The Y-axis represents the LOD scores of 

probe sets measured at the nearest marker (cis LOD). Cis LOD (≥ 3) scores associated with high 

expression of the B and the D allele are shown in red and blue respectively. Cis LOD scores of 

less than 3 are shown in green. The innermost circle represents a scatter plot of ~200 proteins 

tested for cis pQTLs. The Y-axis represents the LOD scores of proteins measured at the nearest 

marker (cis LOD). Chromosomes X and Y were excluded.  

 

Figure 3 

Distribution of allelic ratios. The left boxplot labelled as “B>D” represents SNPs with high 

expression of the B allele (left Y-axis).  The right boxplot represents SNPs with high expression 

of the D allele (right Y-axis). The Y-axis represents allelic ratios. Outliers are not shown. 
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Figure 4 

Comparison of LOD scores from jointly identified cis-modulated genes (ASE and eQTL 

mapping, left boxplot) with those only identified using eQTL mapping (right boxplot). The Y-

axis represents LOD scores. Outliers are not shown. 
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Figure 5 

Comparison of RNA-seq read depth (log10) from jointly identified cis-modulated genes (ASE 

and eQTL mapping) with those only identified using eQTL. 
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Figure 6 

Empirical determination of read depth required to detect allelic differences of a given size. Each 

circle represents a SNP. The X-axis represents the measured fold-difference and the Y-axis 

represents RNA-seq read depth (log10) for a given SNP. SNPs exhibiting ASE at an FDR 

threshold of ≤ 0.2 have been plotted as circles. Red circles represent SNPs with ASE at an FDR 

threshold of ≤ 0.01. The red and blue circles, combined, represent SNPs with ASE at an FDR 
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threshold of ≤ 0.05. Similarly, red, blue and yellow circles, combined, represent SNPs with ASE 

at an FDR threshold of ≤ 0.1. 

 

Figure 7 

Comparison of absolute allelic differences from jointly identified cis-modulated genes (ASE and 

eQTL mapping, left boxplot) with those only identified using ASE (right boxplot). Outliers are 

not shown. 
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Figure 8 

Comparison of cis-acting variation at transcript versus protein levels. The X-axis and Y-axis 

represent LOD scores for genes and cognate proteins measured at their closest markers (cis 

LOD). A LOD of 2 (dashed line) roughly corresponds to a nominal p < 0.01. 
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Figure 9 

Schematic examples of genes potentially associated with different categories of cis-regulatory 

mechanisms. The Y-axis shows the allelic ratios of SNPs located within the gene. An allelic ratio 

greater than 0.5 (dashed line) represents high expression of the B allele.  Examples of allele-

specific regulation of (A) overall gene expression, (B) 3’ UTR processing, (C) 5’ UTR 

processing, and (D) isoform usage. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 13, 2015. ; https://doi.org/10.1101/024588doi: bioRxiv preprint 

https://doi.org/10.1101/024588


39 
 

Figure S1 

Pearson correlation of allelic ratios between two biological replicates (ERR032205 and 

ERR032206). 

 

 

Figure S2 

Alternative splice site usage between B and D alleles due to a polymorphism (rs33609674, 

CAG/CGG) that results in gain of splice acceptor site (solid triangle) in the B allele. The B allele 

uses an acceptor site (solid triangle) located in intron 1 of the D allele. As a result, the B 

transcript has 4 additional amino acids (SLSP) in the beginning of exon 2. Expression data from 

the striatum of the B (top track) and D (bottom track) alleles confirms the use of an alternate 

splice-site. 
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