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ABSTRACT 

Detecting the targets of adaptive natural selection from whole genome sequencing data is a 

central problem for population genetics. However, to date most methods have shown sub-optimal 

performance under realistic demographic scenarios. Moreover, over the past decade there has 

been a renewed interest in determining the importance of selection from standing variation in 

adaptation of natural populations, yet very few methods for inferring this model of adaptation at 

the genome scale have been introduced. Here we introduce a new method, S/HIC, which uses 

supervised machine learning to precisely infer the location of both hard and soft selective 

sweeps. We show that S/HIC has unrivaled accuracy for detecting sweeps under demographic 

histories that are relevant to human populations, and distinguishing sweeps from linked as well 

as neutrally evolving regions. Moreover we show that S/HIC is uniquely robust among its 

competitors to model misspecification. Thus even if the true demographic model of a population 

differs catastrophically from that specified by the user, S/HIC still retains impressive 

discriminatory power. Finally we apply S/HIC to the case of resequencing data from human 

chromosome 18 in a European population sample and demonstrate that we can reliably recover 

selective sweeps that have been identified earlier using less specific and sensitive methods. 
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INTRODUCTION 

The availability of population genomic data has empowered efforts to uncover the selective, 

demographic, and stochastic forces driving patterns of genetic variation within species. Chief 

among these are attempts to uncover the genetic basis of recent adaptation (Akey 2009). Indeed, 

recent advances in genotyping and sequencing technologies have been accompanied by a 

proliferation of statistical methods for identifying recent positive selection (see Wollstein and 

Stephan 2015 for recent review). 

Most methods for identifying positive selection search for the population genetic 

signature of a “selective sweep” (Berry et al. 1991), wherein the rapid fixation of a new 

beneficial allele leaves a valley of diversity around the selected site (Maynard Smith and Haigh 

1974; Kaplan et al. 1989; Stephan et al. 1992), about which every individual in the population 

exhibits the same haplotype (i.e. the genetic background on which the beneficial mutation 

occurred). At greater genetic distances, polymorphism recovers as recombination frees linked 

neutral variants from the homogenizing force of the sweep (Kaplan et al. 1989). This process 

also produces an excess of low- and high-frequency derived alleles (Braverman et al. 1995; Fay 

and Wu 2000), and increased allelic association, or linkage disequilibrium (LD), on either side of 

the sweep (Kelly 1997), but not across the two flanks of the sweep (Kim and Nielsen 2004; 

Stephan et al. 2006). Selective fixation de novo beneficial mutations such as described by 

Maynard Smith and Haigh (1974) are often referred to as “hard sweeps.” 

 More recently, population geneticists have begun to consider the impact of positive 

selection on previously standing genetic variants (Orr and Betancourt 2001; Hermisson and 

Pennings 2005). Under this model of adaptation, an allele initially evolves under drift for some 

time, until a change in the selective environment causes it to confer a fitness advantage and 
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sweep to fixation. In contrast to the hard sweep model, the selected allele is present in multiple 

copies prior to the sweep. Thus, because of mutation and recombination events occurring near 

the selected site during the drift phase, the region containing this site may exhibit multiple 

haplotypes upon fixation (Pennings and Hermisson 2006a). The resulting reduction in diversity 

is therefore less pronounced than under the hard sweep model (Innan and Kim 2004; Hermisson 

and Pennings 2005). For this reason such events are often referred to as “soft sweeps.” Soft 

sweeps will not skew the allele frequencies of linked neutral polymorphisms toward low and 

high frequencies to the same extent as hard sweeps (Przeworski et al. 2005), and may even 

present an excess of intermediate frequencies (Teshima et al. 2006). This mode of selection will 

also have a different impact on linkage disequilibrium: LD will be highest at the target of 

selection rather than in flanking regions (Schrider et al. 2015). In very large populations, 

selection on mutations that are immediately beneficial may also produce patterns of soft sweeps 

rather than hard sweeps, as the adaptive allele may be introduced multiple times via recurrent 

mutation before the sweep completes (Pennings and Hermisson 2006b, a). 

Adaptation could proceed primarily through selection on standing variation if the 

selective environment shifts frequently relative to the time scale of molecular evolution, and if 

there is enough standing variation segregating in the population on which selection may act 

following such a shift (Gillespie 1991; Hermisson and Pennings 2005). However, it is important 

to note that selection on standing variation may produce a hard sweep of only one haplotype 

containing the adaptive mutation if this allele is present at low enough frequency prior to sweep 

(Przeworski et al. 2005; Jensen 2014). In other words, the observation of hard sweeps may be 

consistent with selection on standing variation as well as selection on de novo mutations. For 

these and other reasons, there is some controversy over whether adaptation will result in soft 
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sweeps in nature (Jensen 2014). This could be resolved by methods that can accurately 

discriminate between hard and soft sweeps. To this end, some recently devised methods for 

detecting population genetic signatures of positive selection consider both types of sweeps (Peter 

et al. 2012; Ferrer-Admetlla et al. 2014; Garud et al. 2015). Unfortunately, it may often be 

difficult to distinguish soft sweeps from regions flanking hard sweeps due to the “soft shoulder” 

effect (Schrider et al. 2015). 

Here we present a method that is able to accurately distinguish between hard sweeps, soft 

sweeps, regions linked to sweeps (or the “shoulders” of sweeps), and regions evolving neutrally. 

This method incorporates spatial patterns of a variety of population genetic summary statistics 

across a large genomic window in order to infer the mode of evolution governing a focal region 

at the center of this window. We combine many statistics used to test for selection using an 

Extremely Randomized Trees classifier (Geurts et al. 2006), a powerful supervised machine 

learning classification technique. We refer to this method as Soft/Hard Inference through 

Classification (S/HIC). By incorporating multiple signals in this manner S/HIC achieves 

inferential power exceeding that of any individual test. Furthermore, by using spatial patterns of 

these statistics within a broad genomic region, S/HIC is able to distinguish selective sweeps not 

only from neutrality, but also from linked selection with much greater accuracy than other 

methods. Thus, S/HIC has the potential to identify smaller candidate regions around recent 

selective sweeps, thereby narrowing down searches for the target locus of selection. We also 

show that S/HIC’s reliance on large-scale spatial patterns makes it more robust to non-

equilibrium demography than previous methods, even if the demographic model is misspecified 

during training. This is vitally important, as the true demographic history of a population sample 

may be unknown. Finally, we demonstrate the utility of our approach by applying it to 
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chromosome 18 in the CEU sample from the 1000 Genomes dataset (Altshuler et al. 2012), 

recovering most of the sweeps identified previously in this population through other methods. 

 

METHODS 

Combining multiple facets of genetic variation to detect soft and hard sweeps 

We sought to devise a method that could not only accurately distinguish among hard sweeps, soft 

sweeps, and neutral evolution, but also among these modes of evolution and regions linked to 

hard and soft sweeps, respectively (Schrider et al. 2015). Such a method would not only be 

robust to the soft shoulder effect, but would also be able to more precisely delineate the region 

containing the target of selection by correctly classifying unselected but closely linked regions. 

In order to accomplish this, we sought to exploit the impact of positive selection on spatial 

patterns of several aspects of variation surrounding a sweep. Not only will a hard sweep create a 

valley of diversity centered around a sweep, but it will also create a skew toward high frequency 

derived alleles flanking the sweep and intermediate frequencies at further distances (Braverman 

et al. 1995; Fay and Wu 2000), reduced haplotypic diversity at the sweep site (Garud et al. 

2015), and increased LD along the two flanks of the sweep but not between them (Kim and 

Nielsen 2004). For soft sweeps, these expected patterns may differ considerably (Przeworski et 

al. 2005; Pennings and Hermisson 2006a; Schrider et al. 2015), but also depart from the neutral 

expectation. 

While some of these patterns of variation have been used individually for sweep 

detection (e.g. Kim and Nielsen 2004; Nielsen et al. 2005), we reasoned that by combining 

spatial patterns of multiple facets of variation we would be able to do so more accurately. To this 

end, we designed a classifier that leverages spatial patterns of a variety of population genetic 
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summary statistics in order to infer whether a large genomic window recently experienced a 

selective sweep at its center.  We accomplished this by partitioning this large window into 

adjacent subwindows, measuring the values of each summary statistic in each subwindow, and 

normalizing by dividing the value for a given subwindow by the sum of values for this statistic 

across all subwindows. Thus, for a given summary statistic x, we used the following vector: 

 

𝑥!
𝑥!!
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𝑥!!
  …   

𝑥!
𝑥!!

 

 

where the larger window has been divided into n subwindows, and xi is the value of the summary 

statistic x in the ith subwindow. Thus, this vector captures differences in the relative values of a 

statistic across space within a large genomic window, but does not include the actual values of 

the statistic. In addition to allowing for discrimination between sweeps and linked regions, this 

strategy was motivated by the need for accurate sweep detection in the face of a potentially 

unknown nonequilibrium demographic history, which may grossly affect values of these 

statistics but may skew their expected spatial patterns to a much lesser extent. In total, we 

constructed these vectors for each of 𝜋 (Nei and Li 1979),  𝜃!   (Watterson 1975), 𝜃!   (Fay and Wu 

2000), the number of distinct haplotypes, average haplotype homozygosity, H12 and H2/H1 

(Messer and Petrov 2013; Garud et al. 2015), ZnS (Kelly 1997), and ω (Kim and Nielsen 2004). 

Thus, we represent each large genomic window by the following vector, to which we refer as the 

feature vector: 
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We sought to discriminate between hard sweeps, regions linked to hard sweeps, soft sweeps, 

regions linked to soft sweeps, and neutrally evolving regions on the basis of the values of the 

vectors defined above. Because there is no analytical expectation of the values of these statistics 

at varying distances from a sweep, we opted to use a supervised machine learning framework, 

wherein a classifier is trained from regions known to belong to one of these five classes. We 

trained an Extra-Trees classifier (or extremely randomized forest; Geurts et al. 2006) from 

coalescent simulations (described below) in order to classify large genomic windows as 

experiencing a hard sweep in the central subwindow, a soft sweep in the central subwindow, 

being closely linked to a hard sweep, being closely linked to a soft sweep, or evolving neutrally 

according to the values of its feature vector (Fig 1). 

Briefly, the Extra-Trees classifier is an ensemble classification technique that harnesses a 

large number classifiers referred to as decision trees. A decision tree is a simple classification 

tool that uses the values of multiple features for a given data instance, and creates a branching 

tree structure where each node in the tree is assigned a threshold value for a given feature. If a 

given data point’s (or instance’s) value of the feature at this node is below the threshold, this 

instance takes the left branch, and otherwise it takes the right. At the next lowest level of the tree, 

the value of another feature is examined. When the data instance reaches the bottom of the tree, 

it is assigned a class inference based on which leaf it has landed (Quinlan 1986). Typically, a 

decision tree is built according to an algorithm designed to optimize its accuracy (Quinlan 1986). 

The Extra-Trees classifier, on the other hand, builds a specified number of semi-randomly 

generated decision trees. Classification is then performed by simply taking the class receiving the 

most “votes” from these trees (Geurts et al. 2006), building on the strategy of random forests 
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(Breiman 2001). While individual decision trees may be highly inaccurate, the practice of 

aggregating predictions from many semi-randomly generated decision trees has been proved to 

be quite powerful (Ho 1995). 

In the following sections we describe our methodology for training, testing, and applying 

our Extra-Trees classifier for identifying positive selection. We also experimented with support 

vector machines (SVMs; Cortes and Vapnik 1995), but found that for this classification problem 

the Extra-Trees classifier slightly but consistently outperformed SVMs (data not shown). 

 

Coalescent simulations for training and testing 

We simulated data for training and testing of our classifier using our coalescent simulator, 

discoal_multipop (https://github.com/kern-lab/discoal_multipop). As discussed in the Results, 

we simulated training sets with different demographic histories (Supplemental Table S1), and, 

for positively selected training examples, different ranges of selection coefficients (α=2Ns, where 

s is the selective advantage and N is the population size). For each combination of demographic 

history and range of selection coefficients, we simulated large chromosomal windows that we 

later subdivided into 11 adjacent and equally sized subwindows. We then simulated training 

examples with a hard selective sweep whose selection coefficient was uniformly drawn from the 

specified range, U(αlow, αhigh). We generated 11,000 sweeps: 1000 where the sweep occurred in 

the center of the leftmost of the 11 subwindows, 1000 where the sweep occurred in the second 

subwindow, and so on. We repeated this same process for soft sweeps at each location; these 

simulations had an additional parameter, the derived allele frequency, f, at which the mutation 

switches from evolving under drift to sweeping to fixation, which we drew from U(0.05, 0.2). 

For our equilibrium demography scenario, we drew the fixation time of the selective sweep from 
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U(0, 0.2)×N generations ago, while for non-equilibrium demography the sweeps completed more 

recently (see below). We also simulated 1000 neutrally evolving regions. Unless otherwise 

noted, for each simulation the sample size was set to 100 chromosomes. 

 For each combination of demographic scenario and selection coefficient, we combined 

our simulated data into 5 equally-sized training sets (Fig 1): a set of 1000 hard sweeps where the 

sweep occurs in the middle of the central subwindow (i.e. all simulated hard sweeps); a set of 

1000 soft sweeps (all simulated soft sweeps); a set of 1000 windows where the central 

subwindow is linked to a hard sweep that occurred in one of the other 10 windows (i.e. 1000 

simulations drawn randomly from the set of 10000 simulations with a hard sweep occurring in a 

non-central window); a set of 1000 windows where the central subwindow is linked to a soft 

sweep (1000 simulations drawn from the set of 10000 simulations with a flanking soft sweep); 

and a set of 1000 neutrally evolving windows unlinked to a sweep. We then generated a replicate 

set of these simulations for use as an independent test set. 

 

Training the Extra-Trees classifier 

We used the python scikit-learn package (http://scikit-learn.org/) to train our Extra-Trees 

classifier and to perform classifications. Given a training set, we trained our classifier by 

performing a grid search of multiple values of each of the following parameters: max_features 

(the maximum number of features that could be considered at each branching step of building the 

decision trees, which was set to 1, 3, 𝑛, or n, where n is the total number of features); 

max_depth (the maximum depth a decision tree can reach; set to 3, 10, or no limit), 

min_samples_split (the minimum number of training instances that must follow each branch 

when adding a new split to the tree in order for the split to be retained; set to 1, 3, or 10); 
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min_samples_leaf. (the minimum number of training instances that must be present at each leaf 

in the decision tree in order for the split to be retained; set to 1, 3, or 10); bootstrap (whether or 

not bootstrap sampling is used to create decision trees); criterion (the criterion used to assess the 

quality of a proposed split in the tree, which is set to either Gini impurity or to information gain). 

The number of decision trees included in the forest was always set to 100. After performing a 

grid-search with 10-fold cross validation in order to identify the optimal combination of these 

parameters, we used this set of parameters to train the final classifier. 

 

Comparisons with other methods 

We compared the performance of our classifier to that of various other methods. First, we 

examined two population genetic summary statistics: Tajima’s D (1983) and Kim and Nielsen’s 

ω (2004), calculating their values in each subwindow within each large simulated chromosome 

that we generated for testing (see above). We also used Nielsen et al.’s composite likelihood 

ratio test, referred to as CLR or SweepFinder (2005), which searches for the spatial skew in 

allele frequencies expected surrounding a hard selective sweep. When testing SweepFinder’s 

ability to discriminate between modes of evolution within larger regions, we computed the 

composite-likelihood ratio between the sweep and neutral models for a site located at the center 

of each of the 11 subwindows of our large simulated test regions. The only training necessary for 

SweepFinder was to specify the neutral site frequency spectrum. 

Next, we used scikit-learn to implement Ronen et al.’s (2013) SFselect, a support vector 

machine classifier that discriminates between selection and neutrality on the basis of a region’s 

binned and weighted site frequency spectrum (SFS). In our implementation we collapsed the SFS 

into 10 bins as suggested by Ronen et al., and also added soft sweeps as a third class (in addition 
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to hard sweeps and neutrality), using Knerr et al.’s (1990) method for extending a binary 

classifier to perform multi-class classification. We trained this classifier from simulated data 

following the same demographic and selective scenarios used to train our own classifier, and 

with the same number of simulated training instances, but these simulations encapsulated much 

smaller regions (equivalent to the size of one of our eleven subwindows). To avoid confusion 

with the original SFselect, which only handles hard sweeps, we refer to this implementation as 

SFselect+. 

Finally, we implemented a version of Garud et al.’s (2015) scan for hard and soft sweeps. 

Garud et al.’s method uses an Approximate Bayesian Computation-like approach to calculate 

Bayes Factors to determine whether a given region is more similar to a hard sweep or a soft 

sweep by performing coalescent simulations. For this we performed simulations with the same 

parameters as we used to train SFselect+, but generated 100,000 simulations of each scenario in 

order to ensure that there was enough data for rejection sampling. We then used two statistics to 

summarize haplotypic diversity within these simulated data: H12 and H2/H1 (Messer and Petrov 

2013). All simulated regions whose vector [H12 H2/H1] lies within a Euclidean distance of 0.1 

away from the vector corresponding to the data instance to be classified are then counted (Garud 

et al. 2015). The ratio of simulated hard sweeps to simulated soft sweeps within this distance 

cutoff is then taken as the Bayes Factor. We also computed Bayes Factors for discriminating 

between selection and neutrality in the same manner. Note that this step was not taken by Garud 

et al., who restricted their analysis of the D. melanogaster genome to only the strongest signals 

of positive selection, only asking whether they more closely resembled hard or soft sweeps. 

When testing the ability of Garud et al.’s method to distinguish selective sweeps from both 

linked and neutrally evolving regions, we used large simulated windows and examined values of 
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H12 and H2/H1 only within the subwindow that exhibited the largest value of H12, in an effort to 

mimic their strategy of using H12 peaks (Garud et al. 2015). 

We summarized each method’s power using the receiver operating characteristic (ROC) 

curve, making these comparisons for the following binary classification problems: discriminating 

between hard sweeps and neutrality, between hard sweeps and soft sweeps, between selective 

sweeps (hard or soft) and neutrality, and between selective sweeps (hard or soft) and unselected 

regions (including both neutrally evolving regions and regions linked to selective sweeps). For 

each of these comparisons we constructed a balanced test set with a total of 1000 simulated 

regions in each class, so that the expected accuracy of a completely random classifier was 50%, 

and the expected area under the ROC curve (AUC) was 0.5. Whenever the task involved a class 

that was a composite of two or more modes of evolution, we ensured that the test set was 

comprised of equal parts of each subclass. For example, in the selected (hard or soft) versus 

unselected (neutral or linked selection) test, the selected class consisted of 500 hard sweeps and 

500 soft sweeps, while the unselected class consisted of 333 neutrally evolving regions, 333 

regions linked to hard sweeps, and 333 regions linked to soft sweeps (and one additional 

simulated region from one of these test sets randomly selected, so that the total size of the 

unselected test set was 1000 instances). As with our training sets, we considered the true class of 

a simulated test region containing a hard (soft) sweep occurring in any but the central 

subwindow to be hard-linked (soft-linked)—even if the sweep occurred only one subwindow 

away from the center.  

 The ROC curve is generated by measuring performance at increasingly lenient thresholds 

for discriminating between the two classes. We therefore required each method to output a real-

valued measure proportional to its confidence that a particular data instance belongs the first of 
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the two classes. For S/HIC, we used the posterior classification probability from the Extra-Trees 

classifier obtained using scikit-learn’s predict_proba method. For SFselect+, we used the value 

of the SVM decision function. For SweepFinder, we used the composite likelihood ratio. For 

Garud et al.’s method, we used the fraction of accepted simulations (i.e. within a Euclidean 

distance of 0.1 from the test instance) that were of the first class: for example, for hard vs. soft, 

this is the number of accepted simulations that were hard sweeps divided by the number of 

accepted simulations that were either hard sweeps or soft sweeps. For Tajima’s D (Tajima 1989) 

and Kim and Nielsen’s ω (Kim and Nielsen 2004), we simply used the values of these statistics. 

 

Simulating sweeps under non-equilibrium demographic models 

We simulated training and test datasets from Tennessen et al.’s (2012) European demographic 

model (Table S1). This model parameterizes a population contraction associated with migration 

out of Africa, a second contraction followed by exponential population growth, and a more 

recent phase of even faster exponential growth. Values of θ and ρ=4Nr were drawn from prior 

distributions (Table S1), allowing for variation within the training data, whose means were 

selected from recent estimates of human mutation (Kong et al. 2012) and recombination rates 

(Kong et al. 2010), respectively. For simulations with selection, we drew values of α from 

U(5.0×103, 5.0×105), and drew the fixation time of the sweeping allele form U(0, 51,000) years 

ago (i.e. the sweep completed after the migration out of Africa). 

We also generated simulations of Tennessen et al.’s African demographic model, which 

consists of exponential population growth beginning ~5,100 years ago (Table S1). We generated 

two sets of these simulations: one where α was drawn from U(5.0×104, 5.0×105), and one with α 

drawn from U(5.0×104, 5.0×105). The sample size of these simulated data sets was set to 100 
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chromosomes. These two sets were then combined into a single training set. For these 

simulations, the sweep was constrained to complete some time during the exponential growth 

phase (no later than 5,100 years ago). As for simulations with constant population size, when 

simulating soft sweeps on a previously standing variant, we drew the derived allele frequency at 

the onset of positive selection from U(0.05, 0.2). 

 

Application to the human chromosome 18 from the 1000 Genomes CEU sample 

We applied our method to chromosome 18 from the Phase I data release from the 1000 Genomes 

project (Altshuler et al. 2012). We restricted this analysis to the CEU population sample 

(individuals with European ancestry, sampled from Utah), and trained S/HIC using data from the 

European demographic model described above. After training this classifier, we prepared data 

from chromosome 18 in CEU for classification. Prior to constructing feature vectors, we first 

performed extensive filtering for data quality. First, we masked all sites flagged by the 1000 

Genomes Project as being unfit for population genetic analyses due to having either limited or 

excessive read-depth or poor mapping quality (according to the strictMask files for the Phase I 

data set which are available at http://www.1000genomes.org/). In order to remove additional 

sites lying within repetitive sequence wherein genotyping may be hindered, we eliminated sites 

with 50 bp read mappability scores less than one (Derrien et al. 2012) and also sites masked by 

RepeatMasker (http://www.repeatmasker.org). Finally, we attempted to infer the ancestral state 

at each remaining site, using the chimpanzee (Mikkelsen et al. 2005) and macaque (Gibbs et al. 

2007) genomes as outgroups. For each site, if the chimpanzee and macaque genomes agreed, we 

used this nucleotide as our inferred ancestral state. If instead only the chimpanzee or the 

macaque genome had a nucleotide aligned to the site, we used this base as our inferred ancestral 
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state. For sites that were SNPs, we also required that the inferred ancestral state matched one of 

the two human alleles. For all cases where these criteria were not met, we discarded the site. 

 After data filtering, we calculated summary statistics within adjacent 200 kb windows 

across the entire chromosome. Windows with >50% of sites removed during the filtering 

processes were omitted from our analysis. For the remaining windows, we used a sliding window 

approach with a 2.2 Mb window and a 200 kb step size to calculate the feature vector in the same 

manner as for our simulated data, and then applied S/HIC to this feature vector to infer whether 

the central subwindow of this 2.2 Mb region contained a hard sweep, a soft sweep, was linked to 

a hard sweep, linked to a soft sweep, or evolving neutrally. Visualization of candidate regions 

was performed using the UCSC Genome Browser (Kent et al. 2002). 

 

Software availability 

Our classification tool is available at https://github.com/kern-lab/shIC, along with software for 

generating the feature vectors used in this paper (either from simulated training data or from real 

data for classification). 

 

RESULTS 

S/HIC accurately detects hard sweeps 

The most basic task that a selection scan must be able to perform is to distinguish between hard 

sweeps and neutrally evolving regions, as the expected patterns of nucleotide diversity, 

haplotypic diversity, and linkage disequilibrium produced by these two modes of evolution differ 

dramatically (Maynard Smith and Haigh 1974; Fay and Wu 2000; Kim and Nielsen 2004; Jensen 

et al. 2007; Garud et al. 2015; Schrider et al. 2015). We therefore begin by comparing S/HIC’s 
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power to discriminate between hard sweeps and neutrality to that of several previously published 

methods: these include SweepFinder (aka CLR; Nielsen et al. 2005), SFselect (Ronen et al. 

2013), Garud et al.’s haplotype approach using the H12 and H2/H1 statistics (Garud et al. 2015), 

Tajima’s D (1989), and Kim and Nielsen’s ω (2004). We extended SFselect to allow for soft 

sweeps (Methods), and therefore refer to this classifier as SFselect+ in order to avoid confusion. 

We summarize the power of each of these approaches with the receiver operating characteristic 

(ROC) curve, which plots the method’s false positive rate on the x-axis and the true positive rate 

on the y-axis (Methods). Powerful methods that are able to detect many true positives with very 

few false positives will thus have a large area under the curve (AUC), while methods performing 

no better than random guessing are expected to have an AUC of 0.5. 

 We began by assessing the ability of these tests to detect selection in populations with 

constant population size and no population structure. First, we used test sets where the selection 

coefficient α=2Ns was drawn uniformly from U(2.5×102, 2.5×103), finding that S/HIC 

outperformed every other method except SFselect+—both methods had perfect accuracy 

(AUC=1.0; Fig S1A). We observed the same result with drawing α from U(2.5×103, 2.5×104) 

(AUC=1.0; Fig S1B). For weaker selection (α ~U(25, 2.5×102)) this classification task is more 

challenging, and the accuracies of most of the methods we tested dropped substantially. S/HIC, 

however, performed quite well, with an AUC of 0.9845, slightly better than SFselect+, and 

substantially better than the remaining methods (Fig S1C). Note that Garud et al.’s method 

leveraging H12 and H2/H1 performed quite poorly in these comparisons, especially in the case of 

weak selection. This is likely because the fixation times of the sweeps that we simulated ranged 

from 0 to 0.2×N generations ago, and the impact of selection on haplotype homozygosity decays 

quite rapidly after a sweep completes (Schrider et al. 2015). If we repeat this comparison with 
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sweeps completing immediately prior to sampling, this method performs quite well (consistent 

with results from Garud et al. 2015), though not as well as our method or SFselect+ (data not 

shown). 

 For the above comparisons, our classifier, Garud et al.’s method, and SFselect+ were 

trained with the same range of selection coefficients used in these test sets. Thus, these results 

may inflate the performance of these methods relative to other methods, which do not require 

training from simulated selective sweeps. If one does not know the strength of selection, one 

strategy is to train a classifier using a wide range of selection coefficients so that it may be able 

to detect sweeps of varying strengths (Ronen et al. 2013). We therefore combined the three 

training sets from the three different ranges of α described above into a larger training set 

consisting of sweeps of α raging from as low as 25 to as high as 25,000. This step was done not 

only for S/HIC, but also for SFselect+ and our implementation of Garud et al.’s method, and we 

use this approach for the remainder of the paper when using classifiers trained from constant 

population size data. When trained on a large range of selection coefficients, S/HIC still detected 

sweeps with α drawn from U(2.5×102, 2.5×103) with perfect accuracy, as did SFselect+ (Fig 2A). 

For stronger sweeps, we again had excellent accuracy (AUC=0.999; Fig 2B) and outperformed 

all other methods except SFselect+ (AUC=1.0). For weaker sweeps our method had the highest 

accuracy (AUC=0.9854, versus 0.9697 for SFselect+ and lower for other methods; Fig 2C). 

Thus, S/HIC can distinguish hard selective sweeps of greatly varying strengths of selection from 

neutrally evolving regions as well as if not better than previous methods. 

 

S/HIC can uncover soft sweeps and distinguish them from hard sweeps 
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In order to uncover the targets of recent selective sweeps and also determine which mode of 

positive selection was responsible, one must be able to detect the signatures of soft as well as 

hard sweeps and to distinguish between them. We therefore assessed the power of each method 

to distinguish sets of simulated selective sweeps consisting of equal numbers of hard and soft 

sweeps from neutral simulations, using the same training data (for methods that require it) as for 

the analysis in Fig 2. For all ranges of selection coefficients, S/HIC has excellent power to 

distinguish hard and soft sweeps from neutrality; our AUC scores ranging from 0.9636 to 

0.9898, and are higher than every other method in each scenario (Fig S2). S/HIC also 

distinguishes hard sweeps from soft sweeps as well as or better than each other method, except in 

the case of weak sweeps where SFselect+ has slightly better power (AUC=0.7998 versus 0.8237, 

respectively; Fig S3). 

 

Distinguishing sweeps from linked selection to narrow the target of adaptation 

The goal of genomic scans for selective sweeps is not merely to quantify the extent to which 

positive selection impacts patterns of variation, but also to identify the targets of selection in 

hopes of elucidating the molecular basis of adaption. Unfortunately, hitchhiking events can skew 

patterns of variation across large chromosomal stretches often encompassing many loci. 

Furthermore, this problem not only confounds selection scan by obscuring the true target of 

selection, it may also lead to falsely inferred soft sweeps as a result of the soft shoulder effect 

(Schrider et al. 2015). Our goal in designing S/HIC was to be able to accurately distinguish 

among positive selection, linked selection, and neutrality, thereby addressing both of these 

challenging problems. 
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 In order to assess the ability of our approach and other methods to perform this task, we 

repeated the test shown in Fig S2, but this time we included regions linked to selective sweeps 

among the set of neutral test instances. Thus, we ask how well these methods distinguish 

genomic windows containing the targets of selective sweeps (soft or hard) from neutrally 

evolving windows or windows closely linked to sweeps. Encouragingly, we find that S/HIC is 

able confidently distinguish windows experiencing selective sweeps from linked as well as 

neutrally evolving regions (Fig 3)—S/HIC achieves substantially higher accuracy than each 

other methods (AUC=0.9628 or higher for all values of α, while no other method has AUC>0.9 

for any α). As the selection coefficient increases, S/HIC’s performance increase relative to that 

of other methods is particularly pronounced (Fig 3A, B), which is unsurprising because in these 

cases the impact of selection on variation within linked regions is much further reaching than for 

weak sweeps (Fig 3C). 

 While ROC curves provide useful information about power, a more complete view of our 

ability to distinguishing among hard sweeps, soft sweeps, linked selection, and neutrality can be 

obtained by asking how our classifier behaves at varying distances from selective sweeps. We 

directly compared our method’s ability to classify regions ranging from 5 subwindows upstream 

of a hard sweep to 5 subwindows downstream of a hard sweep to SFselect+ (the top performer 

among all other methods we had examined) and Garud et al.’s method using H12 and H2/H1 (the 

only other method among those we examined that is designed to detect soft sweeps). For these 

simulations, each subwindow had a total recombination rate 4Nr=80, corresponding to 0.2 cM 

per subwindow when N=10,000. We then counted the fraction of simulations predicted to belong 

to each of our five classes (hard, hard-linked, soft, soft-linked, and neutral) or the three classes 

used for SFselect+. As shown in Fig 4, we find that when α ranges from 250 to 2500 and there 
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has been a hard sweep in the central window, that the H12 and H2/H1 method often detects the 

sweep, but infers it to be in one of the 10 flanking windows (based on the location of the 

maximum H12 value). S/HIC and SFSelect+ on the other hand recover the sweep with high 

frequency when examining the correct window (95.9% and 96.7% accuracy, respectively). 

However, as we move away from the selected site, a large number of windows are misclassified 

as hard sweeps by SFSelect+. For example, SFselect+ misclassifies 47% of cases two windows 

away from the true sweep as hard sweeps, and almost all of the remaining examples as soft 

sweeps. In contrast, our method classifies <4% of these regions as sweeps, correctly classifying 

>93% of these windows as hard-linked instead. At a distance of 5 windows away from the 

sweep, SFselect+ classifies the majority of windows as soft sweeps and many others as hard 

sweeps, while we classify >95% of windows as hard-linked, and <1% as sweeps of either mode. 

For soft sweeps, we have better sensitivity in the sweep window than SFselect+ (79.1% versus 

75.3%). We also narrow the target of selection down to a smaller region, as we classify the 

majority of flanking windows as soft-linked, while SFselect+ produces many soft sweep calls in 

these windows. 

The difference between S/HIC and SFselect+ is amplified when testing these classifiers 

on stronger hard sweeps (α ranging from 2,500 to 25,000). Our classifier is better able to narrow 

down the selected region by classifying flanking windows as hard-linked, while SFselect+ 

classifies the vast majority of simulations even 5 windows away from the target of selection as 

hard sweeps (Fig 5). Though here SFselect+ has more sensitivity to detect hard sweeps when 

examining the correct window (99.6% versus 87.9%), as S/HIC misclassifies 11.7% of these 

stronger sweeps as linked-Hard. On the other hand, we recover 80.3% of soft sweeps versus 

77.7% for SFselect+. We also misclassify relatively few linked regions as sweeps (~13% when 
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one window away, versus ~50% for SFselect+). For weaker sweeps (α ~U(25, 250)), the impact 

of selection on linked regions is reduced, and SFselect+ calls fewer false sweeps in linked 

regions. However, S/HIC has greater sensitivity than SFselect+ to detect both hard and soft 

sweeps at the correct window, and also misclassify fewer flanking regions as sweeps (Fig S4). 

Across the entire range of selection coefficients, S/HIC mislabeled fewer neutral simulations as 

sweeps (~6% for our classifier in each cases, versus >9% for SFselect+). Garud et al.’s method 

also produces relatively few false positives, but has poor sensitivity to detect hard sweeps 

(especially in the correct window), and even less sensitivity to soft sweeps. In summary, across 

all selection coefficients S/HIC has greater sensitivity than SFselect+ to detect soft sweeps, and 

also for hard sweeps except when selection is very strong. Importantly, for both types of sweeps 

S/HIC will identify a smaller candidate region around the selective sweep than SFselect+. S/HIC 

is able to classify far fewer linked windows as selected because it has two classes for this 

purpose, hard-linked and soft-linked, that SFselect+ lacks. Though SFselect+ could be improved 

by incorporating these classes, it may prove difficult to determine whether a window is selected 

or merely linked to a sweep on the basis of its SFS alone (Schrider et al. 2015), rather than 

examining larger scale spatial patterns of variation. 

 

The impact of population size change and demographic misspecification  

Non-equilibrium demographic histories have the potential to confound population genetic scans 

for selective sweeps (Simonsen et al. 1995; Wakeley and Aliacar 2001). We therefore sought to 

assess the power of S/HIC and other methods to detect selection occurring in populations 

experiencing dramatic changes in population size. To this end we trained and tested our 

classifiers first on a model of recent exponential population size growth (the African model from 
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Tennessen et al. 2012; Table S1), and then on a model of recurrent population contraction 

followed by first slow and then accelerated population growth (Tennessen et al’s European 

model; Table S1). For both of these demographic histories, S/HIC has the highest accuracy of all 

of those that we examined (ROC curves shown in Fig S5). 

 A more pessimistic scenario is one where the true demographic history of the population 

is not known, and therefore misspecified during training. Most demographic events should 

impact patterns of variation genome-wide rather than smaller regions (but see Przeworski 2002; 

Jensen et al. 2005). Thus, approaches that search for spatial patterns of polymorphism consistent 

with selective sweeps may be more robust to demographic misspecification than methods 

examining local levels of variation only (as demonstrated by Nielsen et al. 2005). To test this, we 

trained S/HIC and other classifiers on equilibrium datasets, and measured their accuracy on test 

data simulated under the non-equilibrium demographic models described above. In Fig S6A we 

show the power of these classifiers to detect selective sweeps occurring under the African model 

of recent exponential growth. Under this scenario, with α~U(5.0×103, 5.0×104) (equivalent to 

s~U(6.0×10-3, 6.0×10-2) with N=424,000), S/HIC achieves an AUC of 0.7992, while the next-

highest performing method is SFselect+ (AUC=0.7077). Similarly, we perform better than other 

methods when searching for stronger selection (α ranging from 5.0×104 to 5.0×105; 

AUC=0.9846 versus <0.92 for all others; Fig S6B). 

Note that the simple summary statistic methods ω and Tajima’s D have some power to 

detect selection even under non-equilibrium demography (Fig S5). However, this result is 

probably quite optimistic: the ROC curve is generated by repeatedly adjusting the critical 

threshold and measuring true and false positive rates. In practice, a single critical threshold may 

be chosen to identify putative sweeps. If this critical value is chosen based on values of the 
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statistic generated under the incorrect demographic model, then the false positive rate may be 

quite high. For example, Nielsen et al. (2005) showed that when a threshold for Tajima’s D is 

selected based on simulations under equilibrium, 100% of neutral simulations under a population 

growth model exceed this threshold. In other words, the ROC curve is useful for illustrating a 

method’s potential power if an appropriate threshold is selected, but this may not always be the 

case in practice. 

 A more informative approach to evaluating our power may thus be to examine the 

fraction of regions including sweeps, linked to sweeps at various recombination distances, or 

evolving neutrally, that were assigned to each class (as done in Figs 4-5 for constant population 

size). We show this in Fig S7, which better illustrates S/HIC’s power and robustness to unknown 

demographic history. With α ~U(5.0×104, 5.0×105) we recover 86.7% of hard sweeps versus 

85.7% for SFselect+ and 35.3% for H12 and H2/H1 (Fig S7D-F). Moreover, while SFselect+ 

classifies the vast majority of linked regions as hard or soft sweeps, we classify most of these as 

hard-linked, and most of the remainder as soft-linked—we classify very few linked regions as 

selective sweeps. This comparison yields similar results in regions flanking soft sweeps. 

In the context of scans for positive selection, the primary concern with non-equilibrium 

demography is that it will produce a large number of false selective sweep calls. Indeed, when 

trained on an equilibrium demographic history and tested on the exponential growth model, 

SFselect+ classifies roughly one-fourth of all neutral loci as having experienced recent positive 

selection. In stark contrast, S/HIC does not seem to be greatly affected by this problem: we 

classify only ~7% of neutrally evolving regions as sweeps. As shown in Fig S7D, we obtain 

similar results when examining sweeps with α ~U(5.0×104, 5.0×105). 
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Next, we examined the impact of demographic misspecification on power to detect 

selection occurring under Tennessen et al.’s model of the population size history of Europeans 

following their migration out of Africa (Tennessen et al. 2012) but having trained S/HIC under 

the standard neutral model. This demographic history presents an even greater challenge for 

identifying positive selection than the African model, as it is characterized by two population 

contractions followed by exponential growth, and then a more recent phase of faster population 

growth (Methods). For this scenario, a single range of selection coefficients was used: α 

~U(5.0×103, 5.0×105). Here, we find that, perhaps unsurprisingly, the performance of most 

methods is lower than in the African scenario. However, S/HIC once again appears substantially 

more robust to misspecification of the demographic model than other methods (AUC=0.8247 

versus 0.5609 for the next best method; Fig 6). 

When we take a closer look and examine the proportion of windows at various distances 

from sweeps that are assigned to each class, we find that while S/HIC classifies hard sweeps with 

lower sensitivity than under constant population size scenario (63.9% and 12.5% of test 

examples are classified as hard and soft, respectively), relatively few linked windows are 

classified as sweeps (Fig 7A). For soft sweeps S/HIC fares less well (16.7% of windows are 

correctly classified, and 34.5% classified as hard sweeps), though again relatively few false 

positives are produced in linked regions. In contrast, SFselect+ classifies the majority of 

windows as soft sweeps (Fig 7B), including 62.6% of hard sweeps, and 91.5% of neutral regions. 

Thus, under this model our method remains fairly sensitive to selective sweeps, though it 

struggles to correctly infer the mode of selection, while avoiding the enormous false positive 

rates that may plague other methods. Together, the above results lend credence to the idea that 
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spatial patterns of variation will be far less impaired by misspecification of the demographic 

model. 

 

Identifying selective sweeps in a human population sample with European ancestry 

The results from simulated data described above suggest that our method has the potential to 

identify selective sweeps and distinguish them from linked selection and neutrality with excellent 

accuracy. In order to demonstrate our method’s practical utility, we used it to perform a scan for 

positive selection in humans. In particular, we searched the 1000 Genomes Project’s CEU 

population sample (European individuals from Utah) for selective sweeps occurring after the 

migration out of Africa. We focused this search on chromosome 18, where several putative 

selective sweeps have been identified in Europeans (Williamson et al. 2007). The steps we took 

to train our classifier and filter the 1000 Genomes data prior to conducting our scan are described 

in the Methods. 

 In total, we examined 345 windows, each 200 kb in length. We classified 17 windows 

(4.9%) as centered around a hard sweep, 183 (53.0%) as linked to a hard sweep, 38 (11.0%) as 

centered around a soft sweep, 77 (8.7%) as linked to a soft sweep, and 30 (8.7%) as neutral. 

Surprisingly, we infer that over 60% of windows lie within regions whose patterns of variation 

are affected by linked sweeps, even though sweeps appear to be quite rare. This may imply that, 

given the genomic landscape of recombination in humans, even rare selective events may be 

strong enough to impact variation across much larger stretches of the genome. However, we 

cannot firmly draw this conclusion given the difficulty of distinguishing between linked selection 

and neutrality under the European demographic model (Fig 7). 
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 Encouragingly, our scan recovered 4 of the 5 putative sweeps on chromosome 18 in 

Europeans identified by Williamson et al. (2007) using SweepFinder. These include CCDC178 

(which we classify as a hard sweep), DTNA (which we classify as soft), CCDC102B (soft), and 

the region spanning portions of CD226 and RTTN (hard; shown in Fig 8). In each of these loci, 

the windows that we predicted to contain the sweep overlapped regions of elevated composite 

likelihood ratio (CLR) values from SweepFinder (visualized using data from Pybus et al. 2013). 

Although the CLR statistic is not completely orthogonal to the summary statistics we examine to 

perform our classifications, the close overlap that we observe between these two methods 

underscores our ability to precisely detect the targets of recent positive selection. The complete 

set of coordinates of putative sweeps from this scan is listed in Supplemental Table S2. 

 Next, we asked whether S/HIC recovered evidence of positive selection on the LCT 

(lactase) locus. Previous studies have found evidence for very recent and strong selection on this 

gene in the form population differentiation and long-range haplotype homozygosity (Hollox et 

al. 2001; Bersaglieri et al. 2004; Tishkoff et al. 2007). Moreover, several variants in this region 

are associated with lactase persistence. Nielsen et al.’s CLR has also identified this region 

(Nielsen et al. 2005), but not consistently: Williamson et al.’s (Williamson et al. 2007) CLR scan 

did not detect a sweep at this locus, nor does a recent scan using the 1000 Genomes data (data 

from Pybus et al. 2013; Fig. S6). This may be expected, as the selection on lactase persistence 

alleles appears to have not yet produced completed sweeps. Overall, there is very strong 

evidence of recent and perhaps ongoing selection for lactase persistence in human populations 

relying on diary for nutrition. 

 Like the SweepFinder CLR, S/HIC in its current form is also designed to detect 

completed sweeps. Nonetheless, we applied S/HIC to a 4 Mb region on chromosome 2 spanning 
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LCT and neighboring loci. Consistent with previous studies, we found an extremely strong signal 

of recent positive selection, with a 1 Mb region encompassing LCT classified as a hard sweep 

(Fig S8). This result is also in agreement with Peter et al. (2012), whose approximate Bayesian 

computation (ABC) approach supported a hard sweep over selection on standing variation at 

LCT. Such a large candidate region might be expected after a very strong selective sweep as is 

believed to have occurred (or may be ongoing) at LCT. However, we cannot rule the possibility 

of additional targets of selection in this region of chromosome 2: our candidate window also 

overlaps a region identified by Green et al. (2010) as having an excess of derived alleles in the 

human genome relative to the number observed in Neanderthal. 

 

DISCUSSION 

Detecting the genetic targets of recent adaptation and the mode of positive selection acting on 

them—selection on de novo mutations versus previously standing variants—remains an 

important challenge in population genetics. The majority of efforts to this end have relied on 

population genetic summary statistics designed to uncover loci where patterns of allele frequency 

(e.g. Tajima 1989; Fu and Li 1993; Fay and Wu 2000) or linkage disequilibrium (e.g. Kelly 

1997; Kim and Nielsen 2004) depart from the neutral expectation. Recently, powerful machine 

learning techniques have begun to be applied to this problem, showing great promise (Pavlidis et 

al. 2010; Lin et al. 2011; Ronen et al. 2013; Schrider et al. 2015). Here we have adopted a 

machine learning approach to develop S/HIC, a method designed to not only uncover selective 

sweeps, but to distinguish them from regions linked to sweeps as well as neutrally evolving 

regions, and to identify the mode of selection. This is achieved by examining spatial patterns of a 

variety of population genetic summary statistics that capture different facets of variation across a 
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large-scale genomic region. Currently, this method examines the values of nine statistics across 

eleven different windows in infer the mode of evolution in the central window—this makes for a 

total of 99 different values considered by the classifier. By leveraging all of this information 

jointly, our Extra-Trees classifier is able to detect selection with accuracy unattainable by 

methods examining a single statistic, underscoring the potential of the machine learning 

paradigm for population genetic inference. Indeed, on simulated datasets with constant 

population size, S/HIC has power matching or exceeding previous methods when linked 

selection is not considered (i.e. the sweep site is known a priori), and vastly outperforms them 

under the more realistic scenario where positive selection must be distinguished from linked 

selection as well as neutrality. 

 We argue that the task of discriminating between the targets of positive selection and 

linked but unselected regions is an extremely important and underappreciated problem that must 

be solved if we hope to identify the genetic underpinnings of recent adaptation in practice. This 

is especially so in organisms where the impact of positive selection is pervasive, and therefore 

much of the genome may be linked to recent selective sweeps (e.g. Langley et al. 2012). A 

method that can discriminate between sweeps and linked selection would have three important 

benefits. First, it will reduce the number of spurious sweep calls in flanking regions, thereby 

mitigating the soft shoulder problem (Schrider et al. 2015). Second, such a method would have 

the potential to narrow down the candidate genomic region of adaptation. Third, such a method 

would be able to find those regions least affected by linked selection, which themselves might 

act as excellent neutral proxies for inference into demography or mutation. We have shown that 

S/HIC is able to distinguish among selection, linked selection, and neutrality with remarkable 
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power, granting it the ability to localize selective sweeps with unrivaled accuracy and precision, 

demonstrating its practical utility. 

While S/HIC performs favorably to other approaches under the ideal scenario where the 

true demographic history of the population is known, in practice this may not always be the case. 

However, because our method relies on spatial patterns of variation, we are especially robust to 

demography: if the demographic model is misspecified, the disparity in accuracy between S/HIC 

and other methods is even more dramatic. For example, if we train S/HIC with simulated 

datasets with constant population size, but test it on simulated population samples experiencing 

recent exponential growth (e.g. the African model from Tennessen et al. 2012), we still identify 

sweeps and infer the mode of selection with impressive accuracy, and vastly outperform other 

methods. We also tested S/HIC on a more challenging model with two population contractions 

followed by slow exponential growth, and more recent accelerated growth (the European model 

from Tennessen et al. 2012). Though S/HIC performs far better than other tests for selection in 

this case, power for all methods is far lower than under constant population size, even if the 

demographic model is properly specified during training. The reason for this is somewhat 

disconcerting: under this demographic model, the impact of selective sweeps on genetic diversity 

is blunted, making it far more difficult for any method to identify selection and discriminate 

between hard and soft sweeps. This underscores a problem that could prove especially difficult 

to overcome. That is, for some demographic histories all but the strongest selective sweeps may 

produce almost no impact on diversity for selection scans to exploit. 

A second and related confounding effect of misspecified demography is that following 

population contraction and recovery/expansion, much of the genome may depart from the neutral 

expectation, even if selective sweeps are rare. By examining the relative levels of various 
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summaries of variation across a large region, rather than the actual values of these statistics, we 

are quite robust to this problem (Fig 7 and Fig S7). In other words, while non-equilibrium 

demography may reduce S/HIC’s sensitivity to selection and its ability to discriminate between 

hard and soft sweeps, we still classify relatively few neutral or even linked regions as selected. 

Thus, although inferring the mode of positive selection with high confidence may remain 

extremely difficult in some populations, our method appears to be particularly well suited for 

detecting selection in populations with non-equilibrium demographic histories whose parameters 

are uncertain. Indeed, applying our approach to chromosome 18 in a European human 

population, we detect most of the putative sweeps previously reported by Williamson et al. 

(2007). 

 In summary, we have devised a machine learning-based scan for positive selection that 

possesses not only unparalleled accuracy, but is also exceptionally robust to demography. 

Adjustments to the feature space can easily be made to better suit a particular study population. 

For example, if haplotypic phase is unknown, one can replace measures of gametic LD with 

zygotic LD. Additional classes could also be incorporated into the classifier (e.g. “partial” or 

incomplete sweeps), along with relevant summary statistics (features) such as iHS and nSL 

(Voight et al. 2006; Ferrer-Admetlla et al. 2014). Thus, our approach is practical and flexible. As 

additional population genetic summary statistics and tests for selection are devised, they can be 

incorporated into our feature space, thereby strengthening an already powerful method which has 

the potential to illuminate the impact of selection on genomic variation with unprecedented 

detail. 
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Figure 1: Examples of the five classes used by S/HIC. S/HIC classifies each window as a hard 
sweep (blue), linked to a hard sweep (purple), a soft sweep (red), linked to a soft sweep (orange), 
or neutral (gray). This classifier accomplishes this by examining values of various summary 
statistics in 11 different windows in order to infer the mode of evolution in the central window 
(the horizontal blue, purple, red, orange, and gray brackets). Regions that are centered on a hard 
(soft) selective sweep are defined as hard (soft). Regions that are not centered on selective 
sweeps but have their diversity impacted by a hard (soft) selective sweep but are not centered on 
the sweep are defined as hard-linked (soft-linked). Remaining windows are defined as neutral. 
S/HIC is trained on simulated examples of these five classes in order to distinguish selective 
sweeps from linked and neutral regions in population genomic data. 
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Figure 2: ROC curves showing the 
true and false positive rates of various 
methods/statistics when tasked with 
discriminating between regions 
containing a hard sweep and 
neutrally evolving regions. A) For 
intermediate strengths of selection 
(α~U(2.5×102, 2.5×103)). B) For 
stronger selective sweeps 
(α~U(2.5×103, 2.5×104)). C) For weaker 
sweeps (α~U(2.5×101, 2.5×102)). Here, 
and for all other ROC curves unless 
otherwise noted, methods that require 
training from simulated sweeps were 
trained by combining three different 
training sets: one where α~U(2.5×101, 
2.5×102), one where α~U(2.5×102, 
2.5×103), and one where α~U(2.5×103, 
2.5×104). 
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Figure 3: ROC curves showing the 
true and false positive rates of various 
methods/statistics when tasked with 
discriminating between regions 
containing a sweep (either hard or 
soft) and unselected regions (either 
neutral or linked to sweeps). A) For 
intermediate strengths of selection 
(α~U(2.5×102, 2.5×103)). B) For 
stronger selective sweeps 
(α~U(2.5×103, 2.5×104)). C) For weaker 
sweeps (α~U(2.5×101, 2.5×102)). 
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Figure 4: Heatmaps 
showing the fraction of 
regions at varying distances 
from sweeps inferred to 
belong to each class by 
S/HIC, SFselect+, and 
Garud et al.’s method using 
H12 and H2/H1. The location 
of any sweep relative to the 
classified window (or 
"Neutral" if there is no 
sweep) is shown on the y-
axis, while the inferred class 
on the x-axis. Here, 
α~U(2.5×102, 2.5×103). 
When classifying regions 
with H12 and H2/H1, if a hard 
(soft) sweep was detected, 
the region was classified as 
hard (soft) if the maximum 
H12 value was found in the 
central subwindow, and as 
hard-linked (soft-linked) 
otherwise. 
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Figure 5: Heatmaps 
showing the fraction of 
regions at varying distances 
from strong sweeps 
inferred to belong to each 
class by S/HIC, SFselect+, 
and Garud et al.’s method 
using H12 and H2/H1. The 
location of any sweep 
relative to the classified 
window (or "Neutral" if there 
is no sweep) is shown on the 
y-axis, while the inferred 
class on the x-axis. Here, 
α~U(2.5×103, 2.5×104). 
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Figure 6: ROC curves showing the true and false positive rates of various 
methods/statistics when tasked with discriminating between regions containing a sweep 
(either hard or soft) and unselected regions (either neutral or linked to sweeps) when 
testing on simulations with Tennessen et al.’s European demographic model. Here, 
α~U(5×103, 5×105), and the methods that require training from simulated sweeps were trained 
from the same simulations with equilibrium demography as used for Figures 2-7. 
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Figure 7: Heatmaps 
showing the fraction of 
regions simulated under 
Tennessen et al.’s 
European demographic 
model located at varying 
distances from sweeps 
inferred to belong to each 
class by S/HIC, SFselect+, 
and Garud et al.’s method 
using H12 and H2/H1. The 
location of any sweep 
relative to the classified 
window (or "Neutral" if there 
is no sweep) is shown on the 
y-axis, while the inferred 
class on the x-axis. Here, 
α~U(5×103, 5×105). These 
three classifiers were trained 
from simulations with 
equilibrium demography. 
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Figure 8: Browser screenshot showing patterns of variation around a putative selective 
sweep in Europeans near CD226 and RTTN in chr18. Values of π, Tajima’s D, Fay and Wu’s 
H, Kelley’s ZnS, and Nielsen et al’s composite likelihood ratio, all from Pybus et al. (2013), are 
shown. Beneath these statistics we show the classifications from S/HIC (red: hard sweep; faded 
red: hard-linked; blue: soft sweep; faded blue: soft-linked; black: neutral). This image was 
generated using the UCSC Genome Browser (http://genome.ucsc.edu). 
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Figure S1: ROC curves showing the 
true and false positive rates of various 
methods/statistics when tasked with 
discriminating between regions 
containing a hard sweep and 
neutrally evolving regions. A) For 
intermediate strengths of selection 
(α~U(2.5×102, 2.5×103)). B) For 
stronger selective sweeps 
(α~U(2.5×103, 2.5×104)). C) For weaker 
sweeps (α~U(2.5×101, 2.5×102)). Here, 
the methods that require training from 
simulated sweeps were trained from a 
set having the same distribution of 
selection coefficients as the test set. 
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Figure S2: ROC curves showing the 
true and false positive rates of various 
methods/statistics when tasked with 
discriminating between regions 
containing a sweep (either hard or 
soft) and neutrally evolving regions. 
A) For intermediate strengths of 
selection (α~U(2.5×102, 2.5×103)). B) 
For stronger selective sweeps 
(α~U(2.5×103, 2.5×104)). C) For weaker 
sweeps (α~U(2.5×101, 2.5×102)). 
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Figure S3: ROC curves showing the 
true and false positive rates of various 
methods/statistics when tasked with 
discriminating between hard and soft 
sweeps. A) For intermediate strengths 
of selection (α~U(2.5×102, 2.5×103)). 
B) For stronger selective sweeps 
(α~U(2.5×103, 2.5×104)). C) For weaker 
sweeps (α~U(2.5×101, 2.5×102)). 
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Figure S4: Heatmaps 
showing the fraction of 
regions at varying distances 
from weak sweeps inferred 
to belong to each class by 
S/HIC, SFselect+, and 
Garud et al.’s method using 
H12 and H2/H1. The location 
of any sweep relative to the 
classified window (or 
"Neutral" if there is no 
sweep) is shown on the y-
axis, while the inferred class 
on the x-axis. Here, 
α~U(2.5×101, 2.5×102). 
 
  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2015. ; https://doi.org/10.1101/024547doi: bioRxiv preprint 

https://doi.org/10.1101/024547
http://creativecommons.org/licenses/by/4.0/


 47 

Figure S5: ROC curves showing the 
true and false positive rates of various 
methods/statistics when tasked with 
discriminating between regions 
containing a sweep (either hard or 
soft) and unselected regions (either 
neutral or linked to sweeps) when 
testing on non-equilibrium 
demography. Here, the methods that 
require training from simulated sweeps 
were trained from the same 
demographic model used for testing. A) 
Testing on the African demographic 
model, with α~U(5×103, 5×104). B) The 
African demographic model, with 
α~U(5×104, 5×105). C) The European 
demographic model, with α~U(5×103, 
5×105). 
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Figure S6: ROC curves 
showing the true and false 
positive rates of various 
methods/statistics when 
tasked with discriminating 
between regions containing a 
sweep (either hard or soft) 
and unselected regions (either 
neutral or linked to sweeps) 
when training with 
equilibrium demography but 
testing on non-equilibrium 
demography. Here, the 
methods that require training 
from simulated sweeps were 
trained from the same 
simulations with equilibrium 
demography as used for Figures 
2-7. A) Testing on the African 
demographic model, with 
α~U(5×103, 5×104). B) The 
African demographic model, 
with α~U(5×104, 2.5×105). C) 
The European demographic 
model, with α~U(5×103, 
5×105). Note that Tajima’s D 
and Kim and Nielsen’s ω were 
omitted from this figure, as we 
simply used the values of these 
statistics to generate ROC 
curves without respect to any 
demographic model. 
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Figure S7: Heatmaps showing the fraction of regions simulated under Tennessen et al.’s 
African demographic model located at varying distances from sweeps inferred to belong to 
each class by S/HIC, SFselect+, and Garud et al.’s method using H12 and H2/H1. The 
location of any sweep relative to the classified window (or "Neutral" if there is no sweep) is 
shown on the y-axis, while the inferred class on the x-axis. For panels A–C, α~U(5×103, 5×104), 
and for D–F α~U(5×104, 5×105). These three classifiers were trained from simulations with 
equilibrium demography. 
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Figure S8: Patterns of variation around the LCT locus in the CEU population. Values of π, 
Tajima’s D, Fay and Wu’s H, Kelley’s ZnS, Kim and Nielsen’s ω, and Nielsen et al’s composite 
likelihood ratio, all from Pybus et al. (2013), are shown. Beneath these statistics we show the 
classifications from S/HIC (red: hard sweep; faded red: hard-linked; blue: soft sweep; faded 
blue: soft-linked; black: neutral). This image was generated using the UCSC Genome Browser 
(http://genome.ucsc.edu). 
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SUPPLEMENTAL TABLE LEGENDS 
 
Table S1: Parameters used for simulating training and test datasets of large chromosomal 
regions. 
 
Table S2: Predicted sweeps on chromosome 18 from the CEU sample from Phase I of the 
1000 Genomes Project. 
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