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Abstract 

One of the unaddressed challenges in drug discovery is that drug potency determined in 

vitro is not a reliable indicator of drug activity in humans. Accumulated evidences suggest that in 

vivo activity is more strongly correlated with the binding/unbinding kinetics than the equilibrium 

thermodynamics of protein-ligand interactions (PLI). However, existing experimental and 

computational techniques are insufficient in studying the molecular details of kinetics process of 

PLI. Consequently, we not only have limited mechanistic understanding of the kinetic process 

but also lack a practical platform for the high-throughput screening and optimization of drug 

leads based on their kinetic properties.  Here we address this unmet need by integrating energetic 

and conformational dynamic features derived from molecular modeling with multi-task learning. 

To test our method, HIV-1 protease is used as a model system. Our integrated model provides us 

with new insights into the molecular determinants of kinetics of PLI. We find that the coherent 

coupling of conformational dynamics between protein and ligand may play a critical role in 

determining the kinetic rate constants of PLI. Furthermore, we demonstrate that the relative 

movement of normal nodes of amino acids upon ligand binding is an important feature to capture 

conformational dynamics of the binding/unbinding kinetics. Coupled with the multi-task 

learning, we can predict combined kon and koff accurately with an accuracy of 74.35%. Thus, it is 

possible to screen and optimize compounds based on their binding/unbinding kinetics. The 

further development of such computational tools will bridge one of the critical missing links in 

drug discovery. 
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Significance 

Drug efficacy and side effect are often dependent on the life-time rather than the binding 

affinity of drug-target complex. The ignorance of drug binding/unbinding kinetics seriously 

hinders the development of efficient and safe therapeutics. For the first time, we integrate 

physically-based modeling with multi-task learning to investigate the molecular determinants of 

protein binding kinetics as well as efficiently and accurately predict the kinetic rate constants of 

drug-target complex. Such computational tools will allow us not only to elucidate novel 

mechanisms of protein binding/unbinding process but also to screen and optimize compounds 

based on their kinetic property. This will bridge one of the critical missing links between in vitro 

drug screening and in vivo drug efficacy and toxicity. 

 

Introduction 
 

Target-based and cell-based screenings are the two major approaches in the early stage of 

drug discovery. In both of these two technologies, one of the unaddressed fundamental 

challenges is that drug potency measured in vitro may not be a reliable indicator of drug efficacy 

and toxicity in the human body. In the compound screening and lead optimization, equilibrium 

thermodynamics constants such as half maximal inhibitory concentration (IC50) or dissociation 

constant (Kd) have been used as the measures of drug potency for years. As molecules in the 

human body are in a non-equilibrium condition, the activity of a drug depends on, not only  how 

strong it interacts with the protein, but also how easy it hits the target and how long it resides in 

the target. Increasing body of evidence suggests that drug activity in vivo is not defined by 

equilibrium conditions measured in vitro, but rather depends on the residence time (τ = 1/ koff) of 

the receptor-ligand complex in vivo in a number of cases [1]. The longer residence time will 
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increase the efficacy of the drug. For example, geldenamycin has low affinity for Heat shock 

protein (Hsp90) in vitro with IC50 ~ 1 μM, in comparison to its nanomolar effects in vivo [1,2]. 

Copeland et al. analyzed the results of the experiment of mutation-based resistance to inhibitors 

of HIV-1 protease, and concluded that the essential factor for sustained drug efficacy in vivo is 

residence time but not binding affinity [3]. Pan et al. reported that residence time is highly 

correlated with functional efficacy of a series of agonists of the A2A adenosine receptor (r2 = 

0.95), but there is little correlation with binding affinity (r2 = 0.15) [4]. Furthermore, Dahl and 

Akerud disclosed that the on-target side effect could be reduced by reducing the drug residence 

time [5]. Thus, a drug with optimal efficacy and toxicity profile should have a balanced kon and 

koff. Since IC50 and Kd depend on the measurement of the combined effect of kon and koff, they 

are actually insufficient to explain the impact of binding/unbinding kinetic on drug action, as the 

same value of Kd can come from infinite number of combinations of kon and koff. Additionally, 

since Kd is dependent on the free energy difference between the bound and unbound states but is 

independent on the transition state of protein-ligand interaction (PLI), it is inadequate to explain 

the binding/unbinding process of PLI [4,6]. 

Experimental techniques for the study of PLI kinetics are not only expensive and time-

consuming but also insufficient of providing detailed molecular characterization of the PLI 

kinetics process [7-9]. Computational modeling plays an increasing role in elucidating the 

binding/unbinding process of PLI. Molecular dynamics (MD) simulations have been reported to 

be capable to capture the binding process, from beginning to end, in full atomic detail [10]. 

Unfortunately, the power of MD simulations is limited due to the fact that protein-ligand binding 

event takes place in a time scale ranging from microseconds up to hours and days. For the 

majority of the binding processes, they are infeasible for MD simulations. Therefore, 
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metadynamics and other conformational sampling techniques have been developed to improve 

sampling in MD simulations of a system where ergodicity is hindered by the form of the 

system’s energy landscape. Gervasio et al. applied a metadynamics method successfully to the 

docking of ligands on flexible receptors in water solution. The method is able not only to find the 

docked geometry and to predict the binding affinity (ΔGbinding) but also to explore the entire 

docking process from the solution to the docking cavity, including barriers and intermediate 

minima [11]. Even though these progresses are remarkable, metadynamics is not yet feasible to 

study the whole binding/unbinding process of PLI on a large scale. In addition, the choice of 

collative variables in the metadynamics simulation is not a trivial task. 

With the increasing availability of protein binding kinetics data [12,13], data-driven 

modeling provides an alternative and efficient solution to studying the PLI kinetics. Several 

predictive models for kinetic constants of protein-protein interaction (PPI) have been developed 

[14,15]. However, the molecular attributes in these models only covered static structural 

characteristics such as the percentage of residues in α-helix, the buried surface area of protein, 

the proportion of charged residues and the proportion of polar atoms at the interface, and the 

energetic features such as hydrogen bonding potential and the interfacial electrostatic interaction 

energy between interfacial residues. These features may not sufficiently capture conformational 

dynamics of the PLI kinetic processes. In addition, existing methods predict kon and koff 

independently. As a matter of fact, they could be dependent in nature. To our knowledge, few 

methods are available for the large-scale modeling of the binding/unbinding kinetics of PLI with 

explicit dynamic features, as well as predicting kon and koff simultaneously.   

To tackle the above problems, we integrate energetic and conformational dynamic 

features derived from efficient molecular modeling with state-of-the-art multi-task learning 
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(MTL) approach. In this study, ligand-bound HIV-1 proteases are used as an example to build 

models.  In addition to Electrostatic Energy (EE) and van der Waals Energy (VDWE), which are 

derived from all-atom Molecular Dynamics simulation [16,17] and environmental-dependent 

electrostatic potential energy [18], Relative Movement of Ligand-Residue (RMLR) and Relative 

Movement of Residue-Residue (RMRR) that represent the dynamics impact of ligand binding on 

the amino acid residues are derived from Normal Mode Analysis (NMA) analysis and used to 

train machine learning models.  Our multi-facet statistical analysis consistently shows that 

conformational dynamic features, such as RMLR, are as important as energetic features, 

particularly EE, in predicting kon and koff. Based on these findings, we propose that coherent 

conformational dynamic coupling between protein and ligand may play a critical role in 

determining the kinetic rate constants of PLI. Furthermore, we demonstrated that NMA is an 

efficient method to capture conformational dynamic features of the binding/unbinding kinetics of 

PLI. Coupled with the state-of-the-art multi-target classification as well as multi-target 

regression, it is possible for us to screen and optimize compounds based on the 

binding/unbinding kinetics of PLI in a high-throughput fashion.  The further development of 

such computational tools will bridge one of the critical missing links between in vitro drug 

potency and in vivo drug efficacy and safety, thereby accelerating drug discovery process. 

Results 

1. Characteristics of data set 

In this study, we used HIV-1 protease complex structure to investigate the 

conformational dynamics and develop predictive model of ligand binding/unbinding kinetics. 

The HIV-1 protease is an excellent model system for our purpose. First, thirty-nine HIV-1 

protease inhibitors have experimentally determined kon and koff under the same condition [19,20]. 
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They provide reasonable number of high quality data points for the data-driven modeling. 

Second, abundant data of HIV-1 protease inhibitor resistance mutation (PIRM) are available 

[21]. They can be used to validate the predictive model. Third, both unbound and complex 

structures of HIV-1 protease are released in Protein Data Bank [22]. The apo- and holo-

conformations are the basis for our analysis.     

When mapping the 39 HIV-1 protease inhibitors on the 2-dimensional space of kon and 

koff, as shown in Figure 1, all FDA-approved drugs were clustered in the upper-left corner with 

high kon and low koff.  Based on the criteria of log10koff  = -2 and log10kon = 5.6, which will put all 

FDA approved drugs in a single class and evenly distribute the inhibitors into four different 

classes, with the labels (0,0), (0,1), (1,0), and (1,1) (see Supplementary Table S1). It is noted that 

several inhibitors such as A037 have the similar value of Kd, which is equal to koff/kon, to that of 

the approved drugs, but fall into different classes from the FDA-approved drugs in the 2D map. 

It suggests that atomic interactive constant Kd alone is not sufficient to determine the drug effect. 

Ten inhibitors have solved HIV-1 complex structures in PDB.  For the remaining 

inhibitors whose complex structures have not been experimentally determined, protein-ligand 

docking software eHiTS [23] is applied to predict its binding pose. The receptor is chosen from 

one of the ligand-bound HIV-1 complexes with the co-crystallized ligand structure similar to the 

docked ligand structure. Whenever possible, the common fragment of the co-crystallized and the 

docked ligand is used as a constraint to select the final binding pose of the docked ligand, such 

that the RMSD of superimposed common fragments is minimal. An example is shown in 

Supplementary Figure S1.  

Binding site amino acid residues that are involved in the HIV-1 protease inhibitor 

interactions are determined using the change of solvent assessable surface area (SASA) upon 
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ligand binding. As depicted on Figure S2, there are total 44 amino acids on both chains of the 

HIV-1 dimmer.  

 

2. Characterization of protein-ligand interaction using the directionality of 

normal modes 

Normal Mode Analysis (NMA) is a powerful computational method to identify and 

characterize the slowest molecular deformational motions with large amplitude, which are 

widely involved in biological functions of macromolecules, but inaccessible by other methods. 

Protein binding and unbinding events are often on a long-time scale ranging from milliseconds to 

days, far beyond the current capability of MD simulations. Coarse-grained NMA may allow us to 

extract important dynamic information on protein-ligand binding/unbinding processes. Since the 

presence of solvent damping dramatically slows down the large-amplitude motions of bio-

molecules, the timescales of molecular motions in reality are much longer than what can be 

estimated from the eigenvalues of NMA that are calculated in vacuum. In other words, solvent 

damping causes a discrepancy on a timescale between NMA and real molecular motions.  

However, the study conducted by Ma revealed that the presence of solvent has a minor impact on 

eigenvectors, which are determined by the potential surface only [24]. Thus, the information 

provided by the eigenvectors for the directionality of conformational transitions could be used to 

study dynamic processes in the time-scale of real situations.  

In this study, NMA was conducted using iMod [25]. The directionality of normal modes 

of the residues in the binding site is used to characterize the conformational dynamic features of 

binding and unbinding event. Specifically, two data sets including Relative Movement of 

Ligand-Residue (DS-RMLR), and Relative Movement of Residue-Residue (DS-RMRR) were 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 24, 2015. ; https://doi.org/10.1101/024513doi: bioRxiv preprint 

https://doi.org/10.1101/024513
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

derived from NMA analysis. Both DS-RMLR and DS-RMRR cover the 10 lowest frequency 

modes, where DS-RMLR illustrates the relative directionality of normal modes between ligand 

and residue, and DS-RMRR illustrates the change of directionality of normal modes of binding 

site residues upon the ligand binding. As an example, Figure 2A depicts the superposition of the 

44 residue eigenvectors of the aligned apo structure and the DMP bound structure of 1st normal 

mode. It illustrates the shift of the eigenvectors of the 44 residues of HIV-1 protease upon ligand 

binding. Figure 2B illustrates the relative displacements of the 44 ligand-residue pairs in the 

DMP bound HIV-1 complex. 

 

3. Characterization of ligand-residue interaction energy 

Residue decomposed Pairwise Interaction Energy (PIE) and its two constituting 

components including Electrostatic Energy (EE) and van der Waals Energy (VDWE), between 

the ligand and the binding site residue of HIV-1 protease, are calculated from all-atom Molecular 

Dynamics (MD) simulation and environmental-dependent electrostatic potential energy. The 

values of PIE, EE, and VDWE, which characterize various energetic aspects of ligand-residue 

interaction, are used to build three data sets: DS-PIE, DS-EE, and DS-VDWE.  

 

4. Structural determinants of protein-ligand binding/unbinding 

We use the energetic and conformational dynamic attributes derived from MD 

simulation and NMA to train a multi-target machine learning (MTML) model for the 

classification prediction of kinetic rate constants. In total, there are five principal training data 

sets including DS-PIE, DS-EE, DS-VDWE, DS-RMLR, and DS-RMRR. Each of them 

comprises thirty-nine cases with each case comprising 44 attributes. 
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MTML is defined as follows: Given a set of learning examples D of the form (X,Y), 

where X = (x1, x2,…, xk) is a vector of k training attributes and Y = (y1, y2,…, yt) is a vector of  t 

target attributes, learn a model that, given a new unlabeled example X, can predict the values of 

all target attributes Y simultaneously. When yi is categorical, the problem is known as 

classification. In this study, the yi is a binarized value of kon and koff as shown in Figure 1.  

Random Forest Predictive Clustering (RF-Clus) is applied for the task of MTML. RF-

Clus outperforms other MTML algorithms in the benchmark studies [26]. In addition, it can 

handle high-dimensional features, e.g. in the situation where the number of attributes is much 

higher than the number of cases, and can select the importance of attributes (amino acid residues) 

that contribute to the accuracy of kon/koff prediction. The model was run on the iteration numbers 

of 100, 200, 250, and 500 in the leave-one-out cross-validation experiment. 

Table 1 shows the selected features in the descending order of score of importance. 

Consequently, sixteen, fifteen, thirteen, and fourteen features were selected from DS-RMLR, 

DS-RMRR, and DS-EE, and DS-PIE. These identified key residues consist of three motifs: an N-

terminal motif (R8, L10), a charged motif (L23, D25, G27, A28, D29, D30, and V32), and a 

motif corresponding to flap region (residue 43-58), as shown in Figure 3. Both the N-terminal 

motif and the charged motif are common to DS-PIE, DS-RMLR, DS-RMRR and DS-EE. The 

flap region is identified by DS-RMRL and DS-RMRR.  

All-atom MD simulations have shown that the conformational dynamics of flap region 

(residue 43-58) plays a key role in the ligand binding process of HIV-1 protease [27,28,29]. 

Consistent with this observation, the residues in the flap region are identified as key kinetic 

features with signification displacement upon ligand binding. The recapitulation of the findings 

from the MD simulation provides a validation to the data-driven approach in the paper. The 
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charged motif in the active site participates in substrate peptide recognition. Specifically, D25 

and D29 form hydrogen bonds with substrate peptide. Additionally, R8 and D30 can interact 

with polar side chains or distal main chain groups in longer substrate peptides. Moreover, the 

mutation of L10, L23, and V32 lead to drug resistance of HIV protease inhibitors.  

 

5. Combined electrostatic and conformational dynamic features can predict 

kon/koff  accurately 

We examine the impacts of the energetic and conformational dynamic features on the 

prediction of kon/koff accuracy by building different MTML models in three stages. First, we use 

energetic features (data sets: DS-EE, DS-PIE, DS-VDWE) to build the MTML model. Second, 

in order to evaluate if the normal mode directionality features can be used to predict the ligand 

binding and unbinding process, we apply DS-RMRR, DS-RMLR and DS-RMLR+DS-RMRR 

comprising 88 training attributes in the feature vectors to build the MTML model. Third, we 

integrate the properties of conformational dynamics and energetics by adding the RMLR features 

to DS-EE (data set DS-EE+DS-RMLR) to build the MTML model.  

For the models trained by DS-EE, DS-PIE, DS-VDWE, DS-RMLR, DS-RMRR, DS-

RMLR+DS-RMRR, and DS-EE+DS-RMLR, the highest prediction accuracy of log10kon are 

71.79, 69.23, 43.59, 69.23, 51.28, 69.23, and 76.92% respectively (Figure 4A), the highest 

prediction accuracy of log10koff are 76.92, 66.67, 56.41, 71.79, 64.10, 71.79, and 71.79% 

respectively (Figure 4B), and the highest prediction accuracy of the combined four-class 

log10kon/log10koff are 71.79, 66.66, 47,43, 69.23, 57.69, 70.51, and 74.35% respectively (Figure 

4C). 
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Among the three models trained by the energetic features, the prediction accuracy of the 

combined four-class log10kon/log10koff given by the DS-EE and DS-PIE models are significantly 

higher than a random guess (50%) by 21.79 and 16.66% respectively, but the accuracy given by 

the DS-VDWE model is lower than random by 2.57%. These results suggest that in the case of 

HIV-1 protease, electrostatic interaction plays a key role in the binding/unbinding process, and 

the Electrostatic Energy features are more accurate in predicting kon and koff than the features of 

van der Waals Energy and Pairwise Interaction Energy. 

For all the three models trained by the normal mode directionality features, the prediction 

accuracy of the combined four-class log10kon/log10koff is higher than random. Although the 

accuracy given by the DS-RMRR model is only slightly higher than random by 7.69%, the 

accuracy given by the DS-RMLR and DS-RMLR+DS-RMRR models are significantly higher 

than random by 19.23, and 10.51% respectively. These results suggest that the normal mode 

directionality can capture the information on the ligand binding and unbinding process.  

Comparing with the prediction accuracy of the combined four-class log10kon/log10koff 

given by the DS-EE  and DS-EE+DS-RMLR models shows that integrating the conformational 

dynamic features into the energetic features increases the accuracy from 71.79 to 74.35 by 

2.56%. Consequently, it implies that the electrostatic interaction and conformational dynamics 

are jointly responsible for the binding kinetics of HIV protease.  

 
 

Discussions 

1. Coherent receptor-ligand movement is one of the structural determinants of 

protein binding/unbinding kinetics 
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Consistent with the all-atom MD simulation, the MTML model trained with the relative 

directionality of normal mode between residue and ligand recapitulates the role of flap region in 

the binding kinetics of HIV protease.  It is known that electrostatic interaction between a charged 

drug and a charged receptor impacts the kinetic rate constants [30,31]. Specifically, kon is 

sensitive to long-range electrostatic interaction, and koff tends to be influenced more by short-

range interactions such as hydrogen bonds, salt bridges and van der Waals contacts [32]. The 

majority of the residues selected in this study are hydrophobic; the exceptions are the catalytic 

D25 and D29, which are able to form hydrogen bonds with the main chain groups of substrate 

peptides, and R8, D30 and K45 which can interact with polar side chains or distal main groups in 

longer substrate peptides. The MTML model ranks these charged residues more important than 

the flap region in their contribution to the prediction accuracy. In addition, the MTML model can 

achieve high prediction accuracy using the electrostatic energy alone. These indicate that the 

electrostatic interaction is one of the major factors in determining the binding/unbinding kinetics 

of HIV protease.  

Interestingly, in addition to the electrostatic interactions, the directionality of ligand 

binding site residue movement also has strong correlations with the kinetic constants. Not only 

the similar residues are selected from DS-RMLR to those from DS-EE, the best performed 

MTML model is obtained from the combination of DS-RMLR and DS-EE. Based on this 

observation, we propose that the coherent movement between the ligand and the receptor may 

play a critical role in determining the ligand binding and unbinding kinetics. As shown in Figure 

5, even if two protein-ligand complexes have the same non-covalent interactions with the same 

intensity, they may have different kinetic constants due to the different relative movements 

between the ligand atom and the receptor atom. It is not surprising, as the non-covalent 
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interactions, especially hydrogen-bonding, depends on the relative directionality of atomic pairs. 

The relative movement may change the directionality of the interaction, thus weaken (even 

break) or strengthen the interaction. Thus, the coherent conformational dynamics coupling could 

be one of key structural determinants of protein binding/unbinding kinetics. This has not been 

observed before.  

 

2. High-throughput predictive modeling of ligand binding and unbinding 

kinetics 

In spite of recognized importance of protein-ligand binding and unbinding kinetics in the 

drug discovery, few efficient computational tools are available to screen and optimize chemical 

compounds based on the binding and unbinding kinetics. With the increasing availability of 

experimentally determined kon/koff data [14,15], data-driven approach is an appropriate choice for 

the development of a high-throughput predictive model of ligand binding and unbinding kinetics 

[33]. However, two questions remain to be answered in developing an effective and efficient 

machine learning model. First, what are the molecular determinants of ligand binding and 

unbinding kinetics so that they can be used as features to train a high-quality machine learning 

model with the minimum impact of over-fitting, and false correlation? Second, what are the 

suitable machine learning algorithms that can handle high-dimensional data and predict kon/koff 

simultaneously? For the first time, we have shown that NMA could be an efficient tool to capture 

the conformationally dynamic information of the ligand binding and unbinding kinetics. The 

features derived from the NMA could be used to enhance the performance of the machine 

learning model. Moreover, recently developed multi-target classification algorithms such as RF-
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Clus could be adopted to train a machine learning model that can predict dependent kon/koff 

simultaneously.  

Although this proof-of-concept study demonstrates the potential of integrating 

physically-based modeling with multi-target machine learning in understanding the molecular 

determinants, and developing high-throughput predictive model of ligand binding and unbinding 

kinetics, there is plenty of space to improve the methodology.  Since solvation effect causes a 

discrepancy on a timescale between real molecular motion and NMA that are calculated in 

vacuum, it is expected that NMA coupled with an implicit or explicit solvation model may 

provide more information on the conformational dynamics of ligand binding process. As water 

plays a critical role in the ligand binding, the explicit incorporation of the water molecule in the 

binding site may improve the accuracy of simulation. The global and local geometry of binding 

pocket could be another important feature [34,35]. In the current study, the ligand is treated as a 

single rigid body. As a matter of fact, the flexibility of the ligands may have impacts on the 

kinetic rate constants. As shown in supplemental information Figure S3, both of the values of 

log10kon and log10koff are weakly correlated with the ligand flexibility that is characterized by the 

number of rotatable bonds. The general trend is that the kon and koff decrease as the number of the 

ligand rotatable bonds increases. It suggests that the performance of MTML model could be 

further improved by incorporating the ligand properties. We group the kon/koff into four classes 

and use the classification model to predict the class and to select features. In practice, it could be 

more useful to predict the real value of kon and koff simultaneously. It requires a multi-target 

regression model, which is an active area of research in machine learning.  

There are three different models of conformational ensemble of protein-ligand complex. 

They are the model of induced fit mechanism which is adopted by HIV-1 protein-ligand complex 
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[1,36], the model of selected fit mechanism [37,38], and the model of three step mechanism 

[39,40]. The mechanism of model determines the on-rate and off-rate equations. For example, 

the induced fit on-rate is limited by the diffusional rate of encounter complex formation of the 

proteins in their unbound conformational ensemble, but the off-rate is dependent on the 

equilibrium between the ground state complex and the excited state complex [36]. Since all the 

training data sets in this study only cover the characteristics of the ground state HIV-1 complex, 

the ignorance of the characteristics of the excited state HIV-1 complex could induce deficiency 

in the predictive model. In summary, the further development of predictive modeling tools of 

ligand binding and unbinding kinetics will bridge one of the critical missing links between in 

vitro drug potency and in vivo drug efficacy and safety on a large scale, thereby accelerating 

drug discovery process. 

 

Materials and Methods 

Figure S4 depicts the workflow of computational procedure in this study, which includes 

four phases: Phase 1 concerns the structure construction of 3D ligand-bound HIV-1 protease 

complex. Phase 2 addresses the identification of ligand binding site residues. Phase 3 targets the 

construction of the five principal data sets. Phase 4 is machine learning computation.  

In brief, the 3D conformation of ligand was docked in the HIV protease if no co-

crystallized structures exist. Normal Mode Analysis (NMA) was performed for both apo- and 

holo-structure for each inhibitor. Relative Movement of Ligand-Residue (RMLR) and Relative 

Movement of Residue-Residue (RMRR) that represent the conformational dynamics impact of 

ligand binding on the binding site residues were derived from NMA analysis. In addition, 

Pairwise Interaction Energy as well as its two components, van der Waals Energy and 
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Electrostatic Energy between the ligand and amino acid residues, were derived from the 200 ps 

all-atom Molecular Dynamics simulation and environmental-dependent electrostatic potential 

energy. Finally, conformational dynamics and thermodynamics features, individually or 

combined, are used to train multi-target machine learning models.  
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Figure legends 

 

Figure 1. Discretization of kon and koff of HIV protease inhibitors. Results of the 

discretization based on the criteria set at log10koff = -2 (x-axis) and log10kon = 5.6 (y-axis). Thirty-

nine training records were discretized into four binary classes: (0,0), (0,1), (1,0), and (1,1).  

 

Figure 2. Directionality of normal mode. (A) Superposition of the 44 residue eigenvectors of 

the aligned apo HIV-1 structure (red) (PDB code:3IXO) and the DMP bound HIV-1 structure 

(blue) (PDB code: 1QBS) of 1st normal mode. (B) Eigenvector displacements of the 44 DMP 

(red) –residue (green/blue) pairs in the DMP bound HIV-1 complex (1st normal mode). 

Green/blue arrows are the eigenvectors of the 22 residues of chain A/B respectively. 

 

Figure 3. Twenty-one key residues. Chains A and B of HIV-1 protease are in transparent grey 

and transparent yellow ribbons, respectively. The three residues located on the chain B are 

labeled with * superscript. Charged motif including L23, D25, G27, A28, D29, D30 and V32 are 

in green. Residues located on the N-terminal including R8 and L10 are in red. Residues located 

in the flap region including K45, I47, G48, G49, I50, A52, and F53 are in blue; L76 and P81 

located near the flap region are in pink. 

 

Figure 4. Prediction accuracy of MTML model. Prediction accuracy of (A) log10kon, (B) 

log10koff, and (C) the combined four-class log10kon/log10koff. The number in parentheses is the 

iteration number used in the experiment. 
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Figure 5. The influence of ligand-residue conformational coupling on protein 

binding/unbinding kinetics. (A) Coherent conformational coupling. The relative movement 

between ligand atom and receptor atom will not change the distance and directionality of the 

interaction, thus the intensity of interaction will not be changed. (B) Incoherent conformational 

coupling. The relative movement between ligand atom and receptor atom will alter the distance 

and directionality of the interaction. As a result, the interaction could be weaken or broken. 
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Table 1. Key residues identified from four data sets: DS-RMLR, DS-RMRR, DS-EE, and 

DS-PIE.  

Residue         DS-RMLR         DS-RMRR             DS-EE            DS-PIE 
Frequency Score Frequency Score Frequency Score Frequency Score 

R8 35.86 0.78 56.46 0.73 64.79 0.74 52.32 0.73 
L10† 39.13 0.75 61.16 0.71 34.72 0.77 43.04 0.75 
L23† 45.60 0.71 54.18 0.71 40.69 0.72 35.52 0.76 
D25 44.21 0.69 45.02 0.73 37.41 0.75 49.28 0.70 
G27 42.85 0.68 39.96 0.73 30.62 0.75 35.40 0.72 
A28 34.70 0.68 39.67 0.70 35.23 0.71 27.48 0.75 
D29 28.18 0.71 41.37 0.67 28.36 0.73 48.60 0.67 
D30† 30.95 0.70 39.79 0.67 25.90 0.72 28.24 0.71 
V32† 29.35 0.66 37.83 0.66 25.15 0.72 29.84 0.70 
K45 37.77 0.65 35.79 0.68   27.98 0.70 

   I47† 30.44 0.68 35.19 0.66 25.54 0.68   
G48† 26.88 0.67 26.10 0.66     
G49 34.44 0.63 31.57 0.63 33.23 0.66   
I50†   36.64 0.61     
A52 26.08 0.66 27.07 0.62   26.73 0.64 
F53† 27.90 0.66       
L76†       26.63 0.62 
P81     25.54 0.63 25.78 0.61 
R8* 30.55 0.61       

D25*       31.25 0.60 
D29*     28.13 0.65   

 
The feature selection criterion is the frequency of attribute occurrence ≥ 25%.  

*Residues in chain B.  

†Residues whose mutation lead to drug resistance. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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SI Materials and Methods 

In this study, thirty-nine ligand-bound HIV-1 protease complexes were used as training 

samples to build five principal datasets including three datasets with energetic features: 

Electrostatic Energy (DS-EE), van der Waals Energy (DS-VDWE), and Pairwise Interaction 

energy (DS-PIE) that is the sum of EE and VDWE , and two datasets with conformational 

dynamic features: Relative Movement of Ligand and Residue (DS-RMLR), and Relative 

Movement of Residue-Residue (DS-RMRR). Each of them comprises 39 cases with each case 

comprising 44 attributes. Two datasets with 88 training attributes including DS-RMLR+DS-

RMRR and DS-EE+DS-RMLR were built by integrating DS-RMLR and DS-RMRR, and DS-EE 

and DS-RMLR respectively. Thus, a total of seven datasets was used to train the RF-Clus 

MTML model for classification prediction to predict kon and koff simultaneously. 

Figure S4 depicts the workflow of computational procedure in this study, which includes 

four phases: Phase 1 concerns the structure construction of 3D ligand-bound HIV-1 protease 

complex. Phase 2 addresses the identification of residues that are close to the ligand. Phase 3 

targets the construction of the three principal datasets. Phase 4 is machine learning computation.  

 

Phase 1 - 3D Structure of Ligand-Bound HIV-1 Complex 

In 2002, Markgren et al. reported the kinetic rate constants (kon and koff) of thirty-nine 

ligand-bound HIV-1 complexes [19] using the technique of Surface Plasmon Resonance Based 

(SPR) Biosensor (Table S2) [20]. Thirty-three of them were classified into five structural 

categories (Table S3) in reference to the 2D molecular structure of B206 as shown in Figure S5. 

The five categories include non-B268 analogues, P1/P1’ analogues of B268, P2/P2’ analogues of 

B268, cyclic ureas and cyclic sulfamides. Standard nomenclature, P1...Pn, P1’…Pn’ is used to 
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designate amino acid residues of peptide substrates in the enzyme-substrate interactions (Figure 

S6). In this study, ten 3D molecular structures of the thirty-nine complexes were collected from 

RCSB Protein Data Bank (PDB) [41]. They include DMP-1QBS, AMP-3EKV, B435-1D4H, 

B369-1EBY, B409-1EC1, B388-1EBZ, B425-1D4I, Nelfinavir-3EKX, Ritonavir-1HXW, and 

U75875-1HIV. The remaining twenty-nine complex structures were obtained from a three-step 

building process. First, a 2D molecular ligand structure was transformed into its SMILES string 

[42]. Figure S7 depicts the transformation from the 2D molecular structure of B268 into its 

SMILES string. Second, the ligand SMILES string was converted into a 3D molecular ligand 

structure using Frog [43] as shown in Figure S8. Third, Electronic High Throughput Screening 

(eHiTS) program [23,44-46] was used to dock a target ligand into the active site of a wild type 

HIV-1 protein. The receptor was chosen from one of the five ligand-bound HIV-1 complexes 

(1QBS, 1EBW, 1AJV, 1EC2, and 1D4H) with the co-crystallized ligand structure similar to the 

target ligand structure. Whenever possible, the common fragment of the co-crystallized and the 

docked ligand is used as a constraint to select the final binding pose of the docked ligand, such 

that the RMSD of superimposed common fragments is minimal. An example is shown in Figure 

S1. Table S4 shows the results of the docking process.  

Detection Limits of SPR Biosensor: Due to the baseline stability of SPR biosensor and the 

detection limit exerted by the diffusion rate of an ligand to its binding partner which is 

immobilized on the biosensor surface, SPR biosensor is only capable of measuring association 

(kon) and dissociation (koff) kinetic rate constants in the range of 102 to 108 M-1s-1 and 1 to 10-6s-1, 

respectively [7]. As shown in Table S2, the kon and koff values of DMP, B376, and A008 are 

beyond the upper detection limit. The kon values of B277 and A016 are proximate to the lower 

detection limit. 
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Phase 2 – Identify Residues close to Ligand 

Solvent accessible surface area (SASA) procedures [47] with probe radii of 1.4 and 2.1Å, 

written in TCL script were implemented on Visual Molecular Dynamics (VMD) [48] platform to 

identify residues close to the ligand in a ligand-protein complex. The steps of the SASA 

computation are as follows: First, calculate the SASA for each residue in the ligand-protein 

complex. Second, calculate the SASA for each residue in the isolated protein molecule. Third, 

subtract the results from the above two steps for the same residue. Only residues that are close to 

the ligand have non-zero values after subtraction. The results reveal that 44 residues out of 198 

are close to the ligands within 4.2 Å. Figure S9 shows the TCL script of SASA with probe radius 

of 1.4Å for the A045-1AJV complex. 

 

Phase 3 – Principal Data set Construction 

Five principal training data sets including DS-PIE, DS-VDWE, DS-EE, DS-RMLR, and 

DS-RMRR were constructed for the ML prediction of kinetic rate constants (log10kon and 

log10koff). Normal mode analysis was performed to compute the attribute values in DS-RMLR 

and DS-RMRR. 

1. Training data set DS-PIE: DS-PIE covers the PIE properties of a residue-ligand pair. 

The energy comprises two terms: 

van der Waals Energy + Electrostatic Energy (kcal/mol) 

•  van der Waals Energy = C12/r
12 – C6/r

6 , where r is the distance between the two atoms’ 

nuclei,  C12 and C6 are constants, whose values depend on the depth of the energy well and the 

equilibrium separation of the two atoms' nuclei. 
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•  Electrostatic Energy = Cqiqj/εrij, where C is the Coulomb constant; qi and qj are point 

charges i and j; ε is the dielectric constant; and rij is the distance between the two points. 

Since ε can range from 1 to 80 in a protein environment, a reasonable ε value is important to the 

correctness of the electrostatic energy calculation, and determines the accuracy of the PIE 

calculation. Average dielectric constants of different types of residues (Figure S10) reported by 

Li et al. [18], were adopted in this study to calculate the electrostatic energy. The dielectric 

constants range from 11.0 to 25.6 and are physically sound. Charged amino acids (Lys, Arg, Glu, 

and Asp) are associated with the highest average dielectric values. They also tend to be loosely 

packed on the protein surface, leaving room for structural rearrangement. On the other hand, 

hydrophobic residues (Cys, Ile, Phe, Val) are assigned with low dielectric values and they tend to 

be found in the protein core.  

MD simulations of the thirty-nine ligand-HIV-1 models were carried out using the 

Nanoscale Molecular Dynamics (NAMD) [17] program with CHARMM27 force field for HIV-1 

protein and CHARMM general force field for the ligands [49]. All models proceeded through a 

minimization process of at least 4 ps and an equilibrium process of 200 ps. During the 

simulations, temperature was set at 310 K, and the generalized born implicit solvent method was 

used with the ionConcentration, GBISDelta, GBISBeta, GBISGamma and alphaCutoff set at 

0.15, 0.8, 0.0, 2.90912 and 14, respectively [50-52]. After loading the 200 ps trajectory file 

produced from MD simulations into VMD, the value of PIE of each unique residue-ligand pair 

was calculated using the NAMDEnergy plugin in VMD. Figure S11 shows the NAMDEnergy 

graphical user interface for the computation of the PIE between ligand A045 and leucine of chain 

A. The expression of “(chain A) and (resid 10)” on the tab of Selection 1 identifies leucine of 
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chain A with the dielectric constant of 11.8 entered on the dielectric tab, and the expression of 

“resid 501” on the tab of Selection 2 identifies ligand A045. 

MD simulations were performed at the High Performance Computing Center at the 

College of Staten Island, CUNY. 

2. Data sets DS-RMLS and DS-RMSS: The training attributes of DS-RMLR and DS-

RMRR illustrate the relative movement of a ligand-residue pair and the relative movement of a 

residue upon ligand binding respectively. The NMA system, iMOD [25] developed by Lopez-

Blanco et al. in 2011 was adopted to compute the displacement vectors of the residues and the 

ligands in the models. iMOD uses internal coordinates instead of Cartesian coordinates and 

defines the potential energy as follows: 

Potential energy = ∑i<jFij(rij – r0
ij)

2 + s∑α(θα-θ
0
α)

2  , where 

• rij is the distance between the atoms i and j, and the super-index 0 indicates the initial  

equilibrium conformation. 

• Fij is the matrix whose elements describe the force constant associated with each atom 

pair. Fij = k/(1 + (r0
ij/ro)

p) if r0
ij < rcut, otherwise Fij = 0 and  k, ro, p and rcut were set to 1, 3.8Å, 6 

and 10Å respectively. 

• The second term of the energy equation is added for tip effect prevention. θα is the 

dihedral angle [53]. 

Two applications, imode and imodview of iMOD were used in this study. First, imode 

program was used with –save_cart option to produce Cartesian normal modes in the output file 

with .evec extension. Second, the output file was used as an input file for imodview to compute 

the 3D vector sets of residues and ligands for the ten lowest frequency modes (n = 1 to 10). 

Residue/ligand molecule was set to be the averaging level to compute the arrow of eigenvector 
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(level =1). According to recent studies, the first ten lowest frequency modes cover nearly 90% of 

protein conformational change, and thus, it is necessary for the training attributes consisting of 

information from the first 10 lowest frequency modes [25]. The NMA Training Attribute Value 

(NTAV) is defined as follows:  

NMA Training Attribute Value = (DPVV1
2 + ... + DPVVj

2 + ... + DPVV10
2)1/2,  

where j =1 to 10 is the normal mode index. DPVV is either the dot product of ligand 

displacement vector after normalization and residue displacement vector in DS-RMLR or the dot 

product of two displacement vectors of a residue upon ligand binding in DS-RMRR. 

Specifically, after aligning to the corresponding ligand-bound complex, closed-flap HIV-1 

protease, 3IXO (PDB ID code), was used as the unbound structure of HIV-1 protease. 

 

Phase 4 - Machine Learning 

Machine learning is composed of a training phase and a predicting phase. Because two 

kinetic rate constants (koff, kon) are correlated, we used a multi-target random forest classification 

algorithm of Clus [54] to train coherent binary-output models to predict the two kinetic rate 

constants simultaneously. 

• Cross-Validation: In this study, leave-one-out (LOO) cross-validation is used.  

• Performance Measurement: Figure S12 depicts a confusion matrix for a binary 

classifier with two outcomes, high and low binding affinity (1,0). The targets that are correctly 

classified are denoted as true positives (TP) and true negatives (TN), and the targets that are 

misclassified are denoted as false positives (FP) and false negatives (FN). Sensitivity and 

specificity are the true positive (TP) and true negative (TN) rate respectively. 
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Common measures are accuracy and error rate. Accuracy is the percentage of a test set that is 

correctly classified and error rate is simply the percentage of a test set that is misclassified. They 

are computed as: 

sensitivity = TP / (TP + FN) 

specificity = TN / (TN + FP) 

accuracy = 100 x (TP + TN) / (TP + FN + TN + FP) % 

error rate = 100 x (FP + FN) / (TP + FN + TN + FP) % 

Specifically, accuracy of the combined four-class log10kon/log10koff binary prediction is defined 

as:  if the true value is (1, 1), the accuracy for predicted (1, 1), (1, 0), (0, 1), and (0, 0) is 100, 50, 

50, 0%, respectively.  

• Feature Selection: Statistical experiment was conducted to identify the training features 

in DS-PIE, DS-EE, DS-RMLR, and DS-RMRR with frequency of occurrence greater than 25% 

in the LOO cross-validation experiment of the binary-target random forest classification 

algorithm.  
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Table S1. Results of the discretization. 

Binary Class (0,0) (0,1)  (1,0) (1,1) 

Ligand I.D. 

A037 Saquinavir B347 B369 
B429 B440 B365 B388 
B409 Nelfinavir A016 A021 
A038 Indinavir A024 B355 
B412 B408 A047 A030 
B439 Ritonavir A023 B322 
B268 Amp A017 B425 
B277 U75875 B249 A045 
B435   A018 B295 

    A015 B376 
      A008 
      DMP323 

 

There are 9, 8, 10, and 12 training records in the binary classes of (0,0), (0,1), (1,0), and (1,1), 

respectively. Each record was identified by its corresponding ligand name. 
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Table S2. Association and dissociation rate constants (kon, koff) of the interactions between 

thirty-nine inhibitors and HIV-1 protease.  

Ligand koff kon log10(koff) log10(kon)
U75875 0.00544 6760000 -2.2644 6.8299

Saquinavir 0.00023 817000 -3.644 5.9122

Ritonavir 0.00216 3920000 -2.6655 6.5933

Nelfinavir 0.00067 663000 -3.1752 5.8215

Indinavir 0.00158 1530000 -2.8013 6.1847

DMP 83.3 25200000000 1.9206 10.4014

BEA409 0.00043 348000 -3.3645 5.5416

B440 0.0003 477000 -3.5186 5.6785

B439 0.00163 81100 -2.7878 4.909

B435 0.00653 101000 -2.1851 5.0043

B429 0.00037 323000 -3.4283 5.5092

B425 0.234 666000 -0.6308 5.8235

B412 0.00082 181000 -3.0878 5.2577

B408 0.00169 889000 -2.7721 5.9489

B388 0.0227 5970000 -1.644 6.776

B376 13.7 205000000 1.1367 8.3118

B369 0.0133 6390000 -1.8761 6.8055

B365 0.0309 304000 -1.51 5.4829

B355 0.373 1080000 -0.4283 6.0334

B347 0.027 9200 -1.5686 3.9638

B322 0.0677 1850000 -1.1694 6.2672

B295 0.436 902000 -0.3605 5.9552

B277 0.00485 134 -2.3143 2.1271

B268 0.00367 355000 -2.4353 5.5502

B249 0.273 41000 -0.5638 4.6128

AMP 0.00488 4430000 -2.3116 6.6464

A047 0.0697 188000 -1.1568 5.2742

A045 0.263 499000 -0.58 5.6981

A038 0.00049 29300 -3.3125 4.4669

A037 0.00037 204000 -3.4377 5.3096

A030 0.042 512000 -1.3768 5.7093

A024 0.0685 221000 -1.1643 5.3444

A023 0.139 200000 -0.857 5.301

A021 0.0273 687000 -1.5638 5.837

A018 0.474 348000 -0.3242 5.5416

A017 0.179 43600 -0.7471 4.6395

A016 0.0605 172 -1.2182 2.2355

A015 0.938 109000 -0.0278 5.0374

A008 43.8 7060000000 1.6415 9.8488

 
Surface Plasmon Resonance Based Biosensor was used for the measurement of the constants. 

The kon and koff values in green are beyond the upper detection limit and the koff values in red are 

proximate to the lower detection limit. 
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Table S3. Structural classification of thirty-three ligand-bound HIV-1 complexes in 

reference to the structure of B268. 

non-B268 
analogues 

P1/P1’ analogues  
of B268 

P2/P2’ and central 
hydroxy analogues 

cyclic urea  
compound 

cyclic sulfamide 
compound 

B295 B277 A017 A008 A021 

B355 B268 A016 DMP323 A024 

 B408 A015  A047 

 B409 B376  A045 

 B440 A018  A030 

 B429 B322  A023 

 B412 B365   

 A037 B347   

 B439 B388   

 A038 B369   

  B425   

  B435   

  B249   
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Table S4. eHiTS docking results.  
 

Complex 1QBS 1EBW 1AJV 1EC2 1D4H 

Target Ligand A008 A015 A021 A037 B295 

 A016 A023 A038 B355 
 A017 A024 B412 Indinavir 
 A018 A030 B429 Saquinavir 
 B249 A045 B439  
 B268 A047 B440  
 B277    
 B322    
 B347    
 B365    
 B376    
 B408    

 
Target ligands and the HIV-1 protease of the complex in the same column were adopted in the 

eHiTS docking process to generate the corresponding ligand-bound HIV-1 complex structures. 
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Figure S1. Docking ligand into HIV-1 protease.  DMP (blue) is the co-crystalized ligand in 

HIV-1 protease (PDB code: 1QBS). Ligand A008 (red) is docked into the HIV-1 of 1QBS. 
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Figure S2. Forty-four HIV-1 residues selected by SASA program and the 26 drug resistant 

mutation residues. The chains A and B of HIV-1 are in transparent gray and green ribbons, 

respectively, with their flap regions (residue id: 43 – 58) in pink cartoon and active site (residue 

id: 25 – 29) in blue cartoon. The 22 SASA residues on the chain A are represented by 5 red 

beads for the charged residues and 17 green beads for the neutral residues. The 26 drug resistant 

mutation residues are depicted in lines on the chain B including the 12 PIRM residues near the 

binding site in red and the 14 PIRM residues outside the binding site in green. 
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Figure S3. Number of ligand rotatable bond versus log10kon / log10koff. Each data point 

represents one sample of ligand-HIV-1 complex. 
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Figure S4. Schema of methodology. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 24, 2015. ; https://doi.org/10.1101/024513doi: bioRxiv preprint 

https://doi.org/10.1101/024513
http://creativecommons.org/licenses/by-nc-nd/4.0/


48 
 

 
 
 

 
 
Figure S5. 2D molecular structure of B268. R1 and R2 are benzene rings. 
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Figure S6. Structure of interaction between aspartyl protease and peptide substrate. 
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Figure S7. Transformation from the 2D molecular structure of B268 into its SMILES 

string. 
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Figure S8. Conversion of B268 SMILES string into its 3D molecular structure. Color 

scheme: Turquoise, blue and red represent carbon, nitrogen and oxygen atoms respectively. 
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# sasa of chain A, B ,X. chain X is ligand
set outfilef0 [open A045_1AJV_f0_f02_r14.dat w]
set outfilef1 [open A045_1AJV_f1_f12_r14.dat w]
set outfilef02 [open A045_1AJV_f2_f02_r14.dat w]
set outfilef12 [open A045_1AJV_f2_f12_r14.dat w]

set complex02 [atomselect top "chain A or chain X"]
set complex12 [atomselect top "chain B or chain X"] 
set frag0 [atomselect top "chain A"]
set frag1 [atomselect top "chain B"]
set frag2 [atomselect top "chain X"]
set x 1
set y 1
set z 1
set d 1

set residlistf0 [lsort -integer -unique [$frag0 get residue]]
foreach r $residlistf0 {

set sel [atomselect top "residue $r"]
set rsasa1($x) [measure sasa 1.4 $complex02 -restrict 

$sel]
set rsasa2($x) [measure sasa 1.4 $frag0 -restrict 

$sel]
set diff0 [expr $rsasa2($x) - $rsasa1($x)] 
$sel delete
puts $outfilef0 "residue $r, complex-f02: $rsasa1($x) 

single-f0 $rsasa2($x) difference: $diff0"
set x [expr $x + 1]

}
puts $outfilef0 " "

set residlistf1 [lsort -integer -unique [$frag1 get residue]]
foreach r $residlistf1 {

set sel [atomselect top "residue $r"]
set rsasa3($y) [measure sasa 1.4 $complex12 -restrict 

$sel]
set rsasa4($y) [measure sasa 1.4 $frag1 -restrict 

$sel]
set diff1 [expr $rsasa4($y) - $rsasa3($y)] 
$sel delete
puts $outfilef1 "residue $r, complex-f12: $rsasa3($y) 

single-f1 $rsasa4($y) difference: $diff1"
set y [expr $y + 1]

}
puts $outfilef1 " "

 

 
Figure S9. SASA TCL script with probe radius of 1.4Å for the A045-1AJV complex. 
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Figure S10. Average dielectric constants of different types of amino acids. 
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Figure S11. NAMDEnergy graphical user interface. 
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Figure S12. A confusion matrix for a binary classifier. 
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