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Abstract 17 

In the adult mammalian cortex, a small fraction of spines are created and eliminated every day, 18 

and the resultant synaptic connection structure is highly nonrandom, even in local circuits. 19 

However, it remains unknown whether a particular synaptic connection structure is 20 

functionally advantageous in local circuits, and why creation and elimination of synaptic 21 

connections is necessary in addition to rich synaptic weight plasticity. To answer these 22 

questions, we studied an inference task model through theoretical and numerical analyses. We 23 

demonstrate that a robustly beneficial network structure naturally emerges by combining 24 

Hebbian-type synaptic weight plasticity and wiring plasticity. Especially in a sparsely 25 

connected network, wiring plasticity achieves reliable computation by enabling efficient 26 

information transmission. Furthermore, the proposed rule reproduces experimental observed 27 

correlation between spine dynamics and task performance. 28 

 29 

 30 
Introduction 31 

The amplitude of excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs), often referred 32 

to as synaptic weight, is considered a fundamental variable in neural computation(Bliss and 33 

Collingridge, 1993)(Dayan and Abbott, 2005). In the mammalian cortex, excitatory synapses often 34 

show large variations in EPSP amplitudes(Song et al., 2005)(Ikegaya et al., 2013)(Buzsáki and 35 
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Mizuseki, 2014), and the amplitude of a synapse can be stable over trials(Lefort et al., 2009) and 36 

time(Yasumatsu et al., 2008), enabling rich information capacity compared with that at binary 37 

synapses(Brunel et al., 2004)(Hiratani et al., 2013). In addition, synaptic weight shows a wide variety 38 

of plasticity which depend primarily on the activity of presynaptic and postsynaptic 39 

neurons(Caporale and Dan, 2008)(Feldman, 2009). Correspondingly, previous theoretical results 40 

suggest that under appropriate synaptic plasticity, a randomly connected network is computationally 41 

sufficient for various tasks(Maass et al., 2002)(Ganguli and Sompolinsky, 2012). 42 

 On the other hand, it is also known that synaptic wiring plasticity and the resultant synaptic 43 

connection structure are crucial for computation in the brain(Chklovskii et al., 2004)(Holtmaat and 44 

Svoboda, 2009). Elimination and creation of dendritic spines are active even in the brain of adult 45 

mammalians. In rodents, the spine turnover rate is up to 15% per day in sensory cortex(Holtmaat et 46 

al., 2005) and 5% per day in motor cortex(Zuo et al., 2005). Recent studies further revealed that 47 

spine dynamics are tightly correlated with the performance of motor-related tasks(Yang et al., 48 

2009)(Xu et al., 2009). Previous modeling studies suggest that wiring plasticity helps memory 49 

storage (Poirazi and Mel, 2001)(Stepanyants et al., 2002)(Knoblauch et al., 2010). However, in those 50 

studies, EPSP amplitude was often assumed to be a binary variable, and wiring plasticity was 51 

performed in a heuristic manner. Thus it remains unknown what should be encoded by synaptic 52 

connection structure when synaptic weights have a rich capacity for representation, and how such a 53 

connection structure can be achieved through a local spine elimination and creation mechanism, 54 

which is arguably noisy and stochastic (Kasai et al., 2010).  55 

 To answer these questions, we constructed a theoretical model of an inference task. We 56 

first studied how sparse connectivity affects the performance of the network by analytic 57 

consideration and information theoretic evaluations. Then, we investigated how synaptic weights and 58 

connectivity should be organized to perform robust inference, especially under the presence of 59 

variability in the input structure. Based on these insights, we proposed a local unsupervised rule for 60 

wiring and synaptic weight plasticity. In addition, we demonstrated that connection structure and 61 

synaptic weight learn different components under a dynamic environment, enabling robust 62 

computation. Lastly, we investigated whether the model is consistent with various experimental 63 

results on spine dynamics. 64 

 65 

Results 66 

Connection structure reduces signal variability in sparsely connected networks 67 

 What should be represented by synaptic connections and their weights, and how are those 68 

representations acquired? To explore the answers to these questions, we studied a hidden variable 69 

estimation task (Fig. 1A), which appears in various stages of neural information processing(Beck et 70 
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al., 2008)(Lochmann and Deneve, 2011). In the task, at every time t, one hidden state is sampled 71 

with equal probability from p number of external states st = {0,1,…,p-1}. Neurons in the input layer 72 

show independent stochastic responses rX,j
t ~ N(θjµ, σX) due to various noises (Fig. 1B middle), where 73 

θjµ is the average firing rate of neuron j to the stimulus µ, and σX is the constant noise amplitude. 74 

Although, we used Gaussian noise for analytical purposes, the following argument is applicable for 75 

any stochastic response that follows a general exponential family, including Poisson firing 76 

(Supplementary Fig. 1). Neurons in the output layer estimate the hidden variable from input neuron 77 

activity and represent the variable with population firing {rY,i}. This task is computationally difficult 78 

because most input neurons have mixed selectivity for several hidden inputs, and the responses of the 79 

input neurons are highly stochastic (Fig. 1C). Let us assume that the dynamics of output neurons are 80 

written as follows: 81 

rY ,i
t = rYo exp cij wijrX ,j

t − hw( )− Iinh t
j=1

M∑⎡⎣ ⎤
⎦ , Iinh

 t = log exp cij wijrX ,j
t − hw⎡⎣ ⎤⎦j=1

M∑( )i=1

N∑⎡⎣⎢
⎤
⎦⎥ , (1) 82 

where cij (= 0 or 1) represents connectivity from input neuron j to output neuron i, wij is its synaptic 83 

weight (EPSP size), and hw is the threshold. M and N are population sizes of the input and output 84 

layers, respectively. In the model, all feedforward connections are excitatory, and the inhibitory input 85 

is provided as the global inhibition Iinh
t. 86 

If the feedforward connection is all-to-all (i.e., cij = 1 for all i,j pairs), by setting the 87 

weights as wij = q jµ ≡ θ jµ σ X
2  for output neuron i that represents external state µ, the network gives 88 

an optimal inference from the given firing rate vector rX
t, because the value qjµ represents how much 89 

evidence the firing rate of neuron j provides for a particular external state µ. (For details, see 90 

Methods 1.1). However, if the connectivity between the two layers is sparse, as in most regions of 91 

the brain(Potjans and Diesmann, 2014), optimal inference is generally unattainable because each 92 

output neuron can obtain a limited set of information from the input layer. How should one choose 93 

connection structure and synaptic weights in such a case? Intuitively, we could expect that if we 94 

randomly eliminate connections while keeping the synaptic weights of output neuron i that 95 

represents external state µ as wij ∝q jµ  (below, we call it as weight coding), the network still works 96 

at a near-optimal accuracy. On the other hand, even if the synaptic weight is a constant value, if the 97 

connection probability is kept at ρij ∝q jµ (i.e. connectivity coding; see Methods 1.2 for details of 98 

coding strategies), the network is expected to achieve near-optimal performance. Figure 2A 99 

describes the connection matrices between input/output layers in two strategies. In the weight coding, 100 

if we sort input neurons with their preferred external states, the diagonal components of the 101 

connection matrix show high synaptic weights, whereas in the connectivity coding, the diagonal 102 

components show dense connection (Fig. 2A). Both of realizations asymptotically converge to 103 

optimal solution when the number of neurons in the middle layer is sufficiently large, though in a 104 
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finite network, not strictly optimal under given constraints. In addition, both of them are obtainable 105 

through biologically plausible local Hebbian learning rules as we demonstrate in subsequent 106 

sections. 107 

We evaluated the accuracy of the external state estimation using a bootstrap method 108 

(Methods 3.2) for both coding strategies. Under intermediate connectivity, both strategies showed 109 

reasonably good performance (as in Fig. 1B bottom). Intriguingly, in sparsely connected networks, 110 

the connectivity coding outperformed the weight coding, despite its binary representation (Fig. 2B 111 

cyan/orange lines). The analytical results confirmed this tendency (Fig. 2B red/blue lines; see 112 

Methods 2.1 for the details) and indicated that the firing rates of output neurons selective for the 113 

given external state show less variability in connectivity coding than in the weight coding, enabling 114 

more reliable information transmission (Fig. 2C). To further understand this phenomenon, we 115 

evaluated the maximum transfer entropy of the feed forward connections: 116 

TE = H st( )−H st | rXt ,C( )
t

. Because of limited connectivity, each output neuron obtains 117 

information only from the connected input neurons. Thus, the transfer entropy was typically lower 118 

under sparse than under dense connections in both strategies (Fig. 2D). However, in the connectivity 119 

coding scheme, because each output neuron can get information from relevant input neurons, the 120 

transfer entropy became relatively large compared to the weight coding (orange line in Fig. 2D). 121 

Therefore, analyses from both statistical and information theory-based perspectives confirm the 122 

advantage of connectivity coding over the weight coding in the sparse regions.   123 

The result above can also be extended to arbitrary feedforward network as below. For a 124 

feedforward network of M times N neurons with connection probability ρ, information capacity of 125 

connections is given as IC ρ( ) ≡ logMNCρMN ≈MN ⋅H ρ( ) , where H represents the entropy function 126 

H ρ( ) ≡ −ρ logρ − 1− ρ( )log 1− ρ( ) . Similarly, for a given connections between two layers, 127 

information capacity of synaptic weights is written as Iw ρ( ) ≡ ρMN logb , where b is the number of 128 

distinctive synaptic states (Varshney et al., 2006). Therefore, when the connection probability ρ 129 

satisfies b = exp H ρ( ) ρ⎡⎣ ⎤⎦ , synaptic connections and weights have the same information capacities. 130 

This means that, as depicted in Figure 2E, in a sparsely connected network, synaptic connections 131 

tend to have larger relative information capacity, compared to a dense network with the same b. This 132 

result is consistent with the model above, because stochastic firing of presynaptic neuron can be 133 

translated as synaptic noise. Furthermore, in the CA3-to-CA1 connection of mice, connection 134 

probability is estimated to be around 6% (Sayer et al., 1990), and information capacity of synaptic 135 

weight is around 4.7 bits (Bartol et al., 2015), thus the connection structure should also play an active 136 

role in neural coding in the real brain (data point in Fig. 2E).  137 
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 138 

Dual coding by synaptic weights and connections enables robust inference 139 

In the section above, we demonstrated that a random connection structure highly degrades 140 

information transmission in a sparse regime to the degree that weight coding with random connection 141 

fell behind connectivity coding with a fixed weight. Therefore, in a sparse regime, it is necessary to 142 

integrate representations by synaptic weights and connections, but how should we achieve such a 143 

representation? Theoretically speaking, we should choose a connection structure that minimizes the 144 

loss of information due to sparse connectivity. This can be achieved by minimizing the 145 

KL-divergence between the distribution of the external states estimated from the all-to-all network, 146 

and the distribution estimated from a given connection structure (i.e. 147 

argmin
C 0=ρMN

DKL p(st | rX ,Call ) || p(s
t | rX ,C )⎡⎣ ⎤⎦ rX , see Methods 2.2 for details). However, this calculation 148 

requires combinatorial optimization, and local approximation is generally difficult(Donoho, 2006), 149 

thus expectedly the brain employs some heuristic alternatives. Experimental results indicate that 150 

synaptic connections and weights are often representing similar features. For example, the EPSP size 151 

of a connection in a clustered network is typically larger than the average EPSP size(Lefort et al., 152 

2009)(Perin et al., 2011), and a similar property is suggested to hold for interlayer 153 

connections(Yoshimura et al., 2005) (Ryan et al., 2015). Therefore, we could expect that by simply 154 

combining the weight coding and connectivity coding in the previous section, low performance at the 155 

sparse regime can be avoided. On the other hand, in the previous modeling studies, synaptic rewiring 156 

and resultant connection structure were often generated by cut-off algorithm in which a synapse is 157 

eliminated if the weight is smaller than the given criteria (Chechik et al., 1998)(Navlakha et al., 158 

2015). Thus, let us next compare the representation by combining the weight coding and connectivity 159 

coding (we call it as the dual coding below), with the cut-off coding strategy. 160 

Figure 3A describes the synaptic weight distributions in the two strategies, as well as in 161 

random connection (see Methods 1.3 for details of the implementation). When connectivity coding 162 

and weight coding are combined (i.e. in the dual coding), connection probability becomes larger in 163 

proportion to its synaptic weight (Fig. 3A middle), and the resultant distribution exhibits a broad 164 

distribution as observed in the experiments (Song et al., 2005)(Ikegaya et al., 2013), whereas in the 165 

cut-off strategy, the weight distribution is concentrated at a non-zero value (Fig. 3A right). 166 

Intuitively, the cut-off strategy seems more selective and beneficial for inference. Indeed, in the 167 

original task, the cut-off strategy enabled near-optimal performance, though the dual coding also 168 

improved the performance compared to a randomly connected network(Fig. 3C). However, under 169 

the presence of variability in the input layer, cut-off strategy is no longer advantageous. For instance, 170 

let us consider the case when noise amplitude σX is not constant but pre-neuron dependent. If the 171 
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firing rate variability of input neuron j is given by σ X ,j ≡ σ X exp 2ζ j logσ r( ) σ r , where ζ j  is a 172 

random variable uniformly sampled from [0, 1), and σr is the degree of variability, in an all-to-all 173 

network, optimal inference is still achieved by setting synaptic weights as wij = q jµ ≡ θ jµ σ X ,j
2 . On 174 

the contrary, in the sparse region, the performance is disrupted especially in the cut-off strategy, so 175 

that the dual coding outperformed the cut-off strategy (Fig. 3D). 176 

To further illustrate this phenomenon, let us next consider a case when a quarter of input 177 

neurons show a constant high response for all of the external states as  
!θ jµ = θconst , and the rest of 178 

input neurons show high response for randomly selected half of external states (i.e. 179 

 
Pr !θ j µ = θhigh⎡⎣ ⎤⎦ = Pr !θ jµ = θlow⎡⎣ ⎤⎦ =

1
2 ), where θlow < θhigh < θconst , and  θ jµ = !θ jµ Z µ  with the 180 

normalization factor
 
Z µ = rXo !θ jµ M

j=1

M∑ . Even in this case, wij = q jµ ≡ θ jµ σ X
2  is the optimal 181 

synaptic weights configuration in the all-to-all network, but if we create a sparse network with 182 

cut-off algorithm, the performance drops dramatically at certain connectivity, whereas in the dual 183 

coding, the accuracy is kept at some high levels even in the sparse connectivity (Fig. 3E).  184 

 To get insights on why the dual coding is more robust against variability in the input layer, 185 

for three input configurations described above, we calculated the relationship between synaptic 186 

weight wij and the information gained by a single synaptic connection ΔIij. Here, we defined the 187 

information gain ΔIij by the mean reduction in the KL divergence 188 

DKL p(st | rX ,Call ) || p(s
t | rX ,C )⎡⎣ ⎤⎦ rX

, achieved by adding one synaptic connection cij to a randomly 189 

connected network C (see Method 2.2 for details). In the original model, ΔIij has nearly a linear 190 

relationship with the synaptic weight wij (gray points in Fig. 3B), thus by simply removing the 191 

connections with small synaptic weights, a near-optimal connection structure was acquired (Fig. 3C). 192 

On the other hand, when the input layer is not homogeneous, large synapses tend to have negative 193 

(black circles in Fig. 3B) or zero (black points in Fig. 3B) gains, as a result, the linear relationship 194 

between the weight and the information gain was lost. Thus, in these cases, the dual coding is less 195 

likely to be disrupted by non-beneficial connections. 196 

Although our consideration here is limited to a specific realization of synaptic weights, in 197 

general, it is difficult to represent the information gain by locally acquired synaptic weight, so we 198 

could expect that the cut-off strategy is not the optimal connectivity organization in many cases.  199 

  200 

 201 
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Local Hebbian learning of the dual coding 202 

The argument in the previous section suggest that, by combining the weight coding and 203 

connectivity coding, the network can robustly perform inference especially in sparsely connected 204 

regions. However, in the previous sections, a specific connection and weight structure were given a 205 

priori, although structures in local neural circuits are expected to be obtained with local weight 206 

plasticity and wiring plasticity. Thus, we next investigate whether dual coding can be achieved 207 

through a local unsupervised synaptic plasticity rule.  208 

Let us first consider learning of synaptic weights. In order to achieve the weight coding, 209 

synaptic weight wij should converge to wij = q jµ σ X
2 ρ = rX ,j

t rY ,i
t σ X

2 ρrY ,i
t( ) when output neuron i 210 

represents external state µ, and ρ  represents the mean connectivity of the network. Thus, synaptic 211 

weight change Δwij =wij
t+1 −wij

t  is given as: 212 

Δwij = ηX γ( ) rY ,it rX ,jt −σ X
2 ρwij⎡⎣ ⎤⎦ + bh rYo N − rY ,it⎡⎣ ⎤⎦( ).   (2) 213 

The second term is the homeostatic term heuristically added to constrain the average firing rates of 214 

output neurons(Turrigiano and Nelson, 2004). Note that the first term corresponds to stochastic 215 

gradient descending on DKL p * (rX
t ) || p(rX

t |C,W )⎡⎣ ⎤⎦ , because the weight coding approximates the 216 

optimal representation by synaptic weights (Nessler et al., 2013)(see Methods 1.4 for details). We 217 

performed this unsupervised synaptic weight learning on a randomly connected network. When the 218 

connectivity is sufficiently dense, the network successfully acquired a suitable representation (Fig. 219 

4A). Especially under a sufficient level of homeostatic plasticity (Fig. 4B), the average firing rate 220 

showed a narrow unimodal distribution (Fig. 4C top), and most of the output neurons acquired 221 

selectivity for one of external states (Fig. 4C bottom).  222 

 We next investigated the learning of connection structures by wiring plasticity. Unlike 223 

synaptic weight plasticity, it is not yet well understood how we can achieve functional connection 224 

structure with local wiring plasticity. In particular, rapid rewiring may disrupt the network structure, 225 

and possibly worsen the performance (Chechik et al., 1998). Thus, let us first consider a simple 226 

rewiring rule, and discuss the biological correspondence later. Here, we introduced a variable ρij, for 227 

each combination (i,j) of presynaptic neuron j and postsynaptic neuron i, which represents the 228 

connection probability. If we randomly create a synaptic connection between neuron (i,j) with 229 

probability ρij/τc and eliminate it with probability (1-ρij)/τc, on average there is a connection between 230 

neuron (i,j) with probability ρij, when the maximum number of synaptic connections is bounded by 1. 231 

In this way, the total number of synaptic connections is kept constant on average, without any global 232 

regulation mechanism.  233 
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 From a similar argument done for synaptic weights, the learning rule for connection 234 

probability ρij is derived as: 235 

 Δρij = ηρrY ,it rX ,jt −σ X
2 ρijwo⎡⎣ ⎤⎦,     (3) 236 

where wo is the expected mean synaptic weight (Methods 1.5). Under this rule, the connection 237 

probabilities converge to the connectivity coding. Moreover, although this rule does not maximize 238 

the transfer entropy of the connections, direction of learning is on average close to the direction of 239 

the stochastic gradient on transfer entropy. Therefore, the above rule does not reduce the transfer 240 

entropy of the connection on average (see Methods 1.6).  241 

 Figure 5A shows the typical behavior of ρij and wij under combination of this wiring rule 242 

(equation (3)) and the weight plasticity rule described in equation (2) (we call this combination as the 243 

dual Hebbian rule because both equations (2) and (3) have Hebbian forms). When the connection 244 

probability is low, connections between two neurons are rare, and, even when a spine is created due 245 

to probabilistic creation, the spine is rapidly eliminated (Fig. 5A top). In the moderate connection 246 

probability, spine creation is more frequent, and the created spine survives longer (Fig. 5A middle). 247 

When the connection probability is high enough, there is almost always a connection between two 248 

neurons, and the synaptic weight of the connection is large because synaptic weight dynamics also 249 

follow a similar Hebbian rule (Fig. 5A bottom). 250 

 We implemented the dual Hebbian rule in our model and compared the performance of the 251 

model with that of synaptic weight plasticity on a fixed random synaptic connection structure. 252 

Because spine creation and elimination are naturally balanced in the proposed rule (Fig. 5B top), the 253 

total number of synaptic connections was nearly unchanged throughout the learning process (Fig. 5B 254 

bottom). As expected, the dual Hebbian rule yielded better performance (Fig. 5C,D) and higher 255 

estimated transfer entropy than the corresponding weight plasticity only model (Fig. 5E). This 256 

improvement was particularly significant when the frequency of rewiring was in an intermediate 257 

range (Fig. 5F). When rewiring was too slow, the model showed essentially the same behavior as 258 

that in the weight plasticity only model, whereas excessively frequent probabilistic rewiring 259 

disturbed the connection structure. Although a direct comparison with experimental results is 260 

difficult, the optimal rewiring timescale occurred within hours to days, under the assumption that 261 

firing rate dynamics (equation (1)) are updated every 10 to 100 ms. Initially, both connectivity and 262 

weights were random (Fig. 5G left), but after the learning process, the diagonal components of the 263 

weight matrix developed relatively larger synaptic weights, and, at the same time, denser 264 

connectivity than the off-diagonal components (Fig. 5G right). Thus, through dual Hebbian learning, 265 

the network can indeed acquire a connection structure that enables efficient information transmission 266 

between two layers; as a result, the performance improves when the connectivity is moderately 267 
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sparse (Fig. 5D, E). Although the performance was slightly worse than that of a fully-connected 268 

network, synaptic transmission consumes a large amount of energy(Sengupta et al., 2013), and 269 

synaptic connection is a major source of noise(Faisal et al., 2008). Therefore, it is beneficial for the 270 

brain to achieve a similar level of performance using a network with fewer connections.  271 

 272 

Connection structure can acquire constant components of stimuli and enable rapid learning 273 

We have shown that the dual coding by synaptic weights and connections robustly helps computation 274 

in a sparsely connected network, and the desirable weight and connectivity structures are naturally 275 

acquired through the dual Hebbian rule. Although we were primary focused on sparse regions, the 276 

rule potentially provides some beneficial effects even in densely connected networks. To consider 277 

this issue, we extended the previous static external model to a dynamic one, in which at every 278 

interval T2, response probabilities of input neurons partly change. If we define the constant 279 

component as θconst and the variable component as θvar, then the total model becomes 280 

θ jµ = 1
Z κmθ jµ

const + 1−κm( )θ jµ
var⎡⎣ ⎤⎦ , where the normalization term is given as 281 

1
MZ 2 κmθ jµ

const + 1−κm( )θ jµ
var⎡⎣ ⎤⎦

2

j=1

M

∑ = rXo( )2
 
(Fig. 6A). In this case, when the learning was performed 282 

only with synaptic weights based on fixed random connections, although the performance rapidly 283 

improved, every time a part of the model changed, the performance dropped dramatically and only 284 

gradually returned to a higher level (cyan line in Fig. 6B). By contrast, under the dual Hebbian 285 

learning rule, the performance immediately after the model shift (i.e., the performance at the trough 286 

of the oscillation) gradually increased, and convergence became faster (Fig. 6B,C), although the total 287 

connectivity stayed nearly the same (Fig. 6D). After learning, the synaptic connection structure 288 

showed a higher correlation with the constant component than with the variable component (Fig. 6E; 289 

see Methods 3.3). By contrast, at every session, synaptic weight structure learned the variable 290 

component better than it learned the constant component (Fig. 6F). The timescale for synaptic 291 

rewiring needed to be long enough to be comparable with the timescale of the external variability T2 292 

to capture the constant component. Otherwise, connectivity was also strongly modulated by the 293 

variable component of the external model (Fig. 6G). After sufficient learning, the synaptic weight w 294 

and the corresponding connection probability ρ roughly followed a linear relationship (Fig. 6H). 295 

Remarkably, some synapses developed connection probability ρ = 1, meaning that these synapses 296 

were almost permanently stable because the elimination probability (1-ρ)/τc became nearly zero. 297 

 298 

Approximated dual Hebbian learning rule reconciles with experimentally observed spine dynamics 299 

Our results up to this point have revealed functional advantages of dual Hebbian learning. In this last 300 
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section, we investigated the correspondence between the experimentally observed spine dynamics 301 

and the proposed rule. To this end, we first studied whether a realistic spine dynamics rule 302 

approximates the proposed rule, and then examined if the rule explains the experimentally known 303 

relationship between synaptic rewiring and motor learning (Yang et al., 2009)(Xu et al., 2009). 304 

 Previous experimental results suggest that a small spine is more likely to be 305 

eliminated(Yasumatsu et al., 2008)(Kasai et al., 2010), and spine size often increases or decreases in 306 

response to LTP or LTD respectively, with a certain delay (Matsuzaki et al., 2004)(Wiegert and 307 

Oertner, 2013). In addition, though spine creation is to some extent influenced by postsynaptic 308 

activity (Knott et al., 2006)(Yang et al., 2014), the creation is expected to be more or less a random 309 

process (Holtmaat and Svoboda, 2009). Thus, changes in the connection probability can be described 310 

as 311 

 ρij
t =

ρij
t−1 +ηρ γ 2wij − ρij

t−1⎡⎣ ⎤⎦     if cij = 1( )
γ 2wo                             if cij = 0( ).
⎧
⎨
⎪

⎩⎪
    (4) 312 

By combining this rule and the Hebbian weight plasticity described in equation (2), the dynamics of 313 

connection probability well replicated the experimentally observed spine dynamics (Yasumatsu et al., 314 

2008)(Kasai et al., 2010) (Fig. 7A-C). Moreover, the rule outperformed the synaptic weight only 315 

model in the inference task, although the rule performed poorly compared to the dual Hebbian rule 316 

due to the lack of activity dependence in spine creation (magenta line in Fig. 6I). This result suggests 317 

that plasticity rule by equations (2) and (4) well approximates the dual Hebbian rule (equations 318 

(2)+(3)). This is because, even if the changes in the connection probability are given as a function of 319 

synaptic weight as in equation (4), as long as the weight plasticity rule follows equation (2), wiring 320 

plasticity indirectly shows a Hebbian dependency for pre- and postsynaptic activities as in the 321 

original dual Hebbian rule (equation (3)). As a result, the approximated rule gives a good 322 

approximation of the original dual Hebbian rule.  323 

 We next applied this approximated learning rule to motor learning tasks. The primary 324 

motor cortex has to adequately read-out motor commands based on inputs from pre-motor 325 

regions(Salinas and Romo, 1998)(Sul et al., 2011). In addition, the connection from layer 2/3 to layer 326 

5 is considered to be a major pathway in motor learning(Masamizu et al., 2014). Thus we 327 

hypothesized that the input and output layers of our model can represent layers 2/3 and 5 in the 328 

motor cortex. We first studied the influence of training on spine survival(Xu et al., 2009) (Fig. 8A). 329 

To compare with experimental results, below we regarded 105 time steps as one day, and described 330 

the training and control phases as two independent external models θctrl and θtrain. In both training 331 

and control cases, newly created spines were less stable than pre-existing spines (solid lines vs. 332 

dotted lines in Fig. 8B), because older spines tended to have a larger connection probability (Fig. 333 
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7B). In addition, continuous training turned pre-existed spines less stable and new spines more stable 334 

than their respective counterparts in the control case (red lines vs. lime lines in Fig. 8B). The 5-day 335 

survival rate of a spine was higher for spines created within a couple of days from the beginning of 336 

training compared with spines in the control case, whereas the survival rate converged to the control 337 

level after several days of training (Fig. 8C). We next considered the relationship between spine 338 

dynamics and task performance(Yang et al., 2009). For this purpose, we compared task performance 339 

at the beginning of the test period among simulations with various training lengths (Fig. 8D). Here, 340 

we assumed that spine elimination was enhanced during continuous training, as is observed in 341 

experiments(Yang et al., 2009)(Xu et al., 2009). The performance was positively correlated with 342 

both the survival rate at day 7 of new spines formed during the first 2 days, and the elimination rate 343 

of existing spines (left and right panels of Fig. 8E). By contrast, the performance was independent 344 

from the total ratio of newly formed spines from day 0 to 6 (middle panel of Fig. 8E). These results 345 

demonstrate that complex spine dynamics are well described by the approximated dual Hebbian rule, 346 

suggesting that the brain uses a dual learning mechanism. 347 

 348 

Discussion 349 

In this study, we first analyzed how random connection structures impair performance in sparsely 350 

connected networks by analyzing the change in signal variability and the transfer entropy in the 351 

weight coding and the connectivity coding strategies (Fig. 2). Subsequently, we showed that 352 

connection structures created by the cut-off strategy are not beneficial under the presence of input 353 

variability, due to lack of positive correlation between the information gain and weight of synaptic 354 

connections (Fig. 3). Based on these insights, we proposed that the dual coding by weight and 355 

connectivity structures as a robust representation strategy, then demonstrated that the dual coding is 356 

naturally achieved through dual Hebbian learning by synaptic weight plasticity and wiring plasticity 357 

(Fig. 4, 5). We also revealed that, even in a densely connected network in which synaptic weight 358 

plasticity is sufficient in terms of performance, by encoding the time-invariant components with 359 

synaptic connection structure, the network can achieve rapid learning and robust performance (Fig. 360 

6). Even if spine creation is random, the proposed framework still works effectively, and the 361 

approximated model with random spine creation is indeed sufficient to reproduce various 362 

experimental results (Fig. 7, 8). 363 

 364 

Model evaluation 365 

Spine dynamics depend on the age of the animal(Holtmaat et al., 2005), the brain region(Zuo et al., 366 

2005), and many molecules play crucial roles(Kasai et al., 2010)(Caroni et al., 2012), making it 367 

difficult for any theoretical models to fully capture the complexity. Nevertheless, our simple 368 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 23, 2015. ; https://doi.org/10.1101/024406doi: bioRxiv preprint 

https://doi.org/10.1101/024406
http://creativecommons.org/licenses/by/4.0/


 12 

mathematical model replicated many key features(Yasumatsu et al., 2008)(Yang et al., 2009),(Xu et 369 

al., 2009)(Kasai et al., 2010). For instance, small spines often show enlargement, while large spines 370 

are more likely to show shrinkage (Fig. 7A). Older spines tend to have a large connection probability, 371 

which is proportional to spine size (Fig. 7B), and they are more stable (Fig. 7C). In addition, training 372 

enhances the stability of newly created spines, whereas it degrades the stability of older spines (Fig. 373 

8B).  374 

 375 

Experimental prediction 376 

In the developmental stage, both axon guidance(Munz et al., 2014) and dendritic extension(Matsui et 377 

al., 2013) show Hebbian-type activity dependence, but in the adult cortex, both axons and dendrites 378 

seldom change their structures(Holtmaat and Svoboda, 2009). Thus, although recent experimental 379 

results suggest some activity dependence for spine creation(Knott et al., 2006)(Yang et al., 2014), it 380 

is still unclear to what extent spine creation depends on the activity of presynaptic and postsynaptic 381 

neurons. Our model indicates that in terms of performance, spine creation should fully depend on 382 

both presynaptic and postsynaptic activity (Fig. 6I). However, we also showed that it is possible to 383 

replicate a wide range of experimental results on spine dynamics without activity-dependent spine 384 

creation (Fig. 8).  385 

Furthermore, whether or not spine survival rate increases through training is 386 

controversial(Yang et al., 2009)(Xu et al., 2009). Our model predicts that the stability of new spines 387 

highly depends on the similarity between the new task and control behavior (Fig. 8F). When the 388 

similarity is low, new spines created in the new task are expected to be more stable than those 389 

created in the control case, because the synaptic connection structure would need to be reorganized. 390 

By contrast, when the similarity is high, the stability of the new spines would be comparable to that 391 

of the control. In addition, our model replicates the effect of varying training duration on spine 392 

stability(Yang et al., 2009). When training was rapidly terminated, newly formed spines became less 393 

stable than those undergoing continuous training (Fig. 8G).  394 

 395 

Related studies 396 

Previous theoretical studies revealed candidate rules for spine creation and elimination(Deger et al., 397 

2012)(Zheng et al., 2013)(Fauth et al., 2015), yet their functional benefits were not fully clarified in 398 

those studies. Some modeling studies considered the functional implications of synaptic rewiring 399 

(Poirazi and Mel, 2001) or optimality in regard to benefit and wiring cost (Chen et al., 2006), but the 400 

functional significance of synaptic plasticity and the variability of EPSP size were not considered in 401 

those models. In comparison, our study revealed functional roles of wiring plasticity that cooperates 402 

with synaptic weight plasticity and obeys local unsupervised rewiring rules. In addition, we extended 403 
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the previous results on single-spine information storage and synaptic noise (Varshney et al., 2006) 404 

into a network, and provided a comparison with experimental results (Fig. 2E). 405 

Previous studies on associative memory models found the cut-off coding as the optimal 406 

strategy for maximizing the information capacity per synapse (Chechik et al., 1998)(Knoblauch et al., 407 

2010). Our results suggest that the above result is the outcome of the tight positive correlation 408 

between the information gain and synaptic weight in associative memory systems, and not generally 409 

applicable to other paradigms (Fig. 3BC). In addition, although cut-off strategy did not yield 410 

biologically plausible synaptic weight distributions in our task setting (Fig. 3A right), in 411 

perceptron-based models, this unrealistic situation can be avoided by tuning the threshold of neural 412 

dynamics (Brunel et al., 2004)(Sacramento et al., 2015). Especially, cut-off strategy may provide a 413 

good approximation for developmental wiring plasticity(Ko et al., 2013), though the algorithm is not 414 

fully consistent with wiring plasticity in the adult animals.  415 

Finally, our model provides a biologically plausible interpretation for multi-timescale 416 

learning processes. It was previously shown that learning with two synaptic variables on different 417 

timescales is beneficial under a dynamically changing environment(Fusi et al., 2007). In our model, 418 

both fast and slow variables played important roles, whereas in previous studies, only one variable 419 

was usually more effective than others, depending on the task context. 420 

 421 

Methods 422 

1. Model 423 

1.1 Model dynamics 424 

We first define the model and the learning rule for general exponential family, and derive equations 425 

for two examples (Gaussian and Poisson). In the task, at every time t, one hidden state st is sampled 426 

from prior distribution p(s). Neurons in the input layer show stochastic response rX,j
t that follows 427 

probabilistic distribution f(rX,j | st): 428 

f (rX ,j | µ) ≡ exp h(θ jµ )g(rX ,j )− A(θ jµ )+B(rX ,j )⎡⎣ ⎤⎦.  (5) 429 

From these input neuron activities, neurons in output layer estimate the hidden variables. Here we 430 

assume maximum likelihood estimation for decision making unit, as the external state is a discrete 431 

variable. In this framework, in order to detect the hidden signal, firing rate of neuron i should be 432 

proportional to posterior  433 

rY ,i
t ∝Pr st =σ i | rX

t⎡⎣ ⎤⎦.     (6) 434 

where σi represents the index of the hidden variable preferred by output neuron i (Beck et al., 435 

2008)(Lochmann and Deneve, 2011). Note that {rX,j} represent firing rates of input neurons, whereas 436 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 23, 2015. ; https://doi.org/10.1101/024406doi: bioRxiv preprint 

https://doi.org/10.1101/024406
http://creativecommons.org/licenses/by/4.0/


 14 

{rY,i} represent the rates of output neurons. Due to Bayes rule, estimation of st is given by, 437 

logp(st = µ | rXt ) = log
j=1

M

∑ p(rX ,j
t | st = µ)+ logp(st = µ)− logp(rXt )

                         = qµ j g(rX ,j
t )−α(qµ j )+B(rX ,j

t )⎡⎣ ⎤⎦
j=1

M

∑ + logp(st = µ)− logp(rXt ),
  (7) 438 

where  q jµ ≡ h(θ jµ ) , α(q jµ ) ≡ A h−1(q jµ )( ) . If we assume the uniformity of hidden states as 439 

logp(st = µ):const,  and 1
M α(q jµ )j=1

M∑ = αo , the equation above becomes 440 

logp(st = µ | rXt ) = qµ j g(rX ,jt )+B(rX ,jt )⎡⎣ ⎤⎦
j=1

M

∑ − logp(rXt )+ const.   441 

To achieve neural implementation of this inference problem, let us consider a neural dynamics in 442 

which the firing rates of output neurons follow, 443 

rY ,i
t = rYo exp cij

j=1

M

∑ wijg(rX ,j
t )− hw( )− Iinh t⎡

⎣
⎢

⎤

⎦
⎥,     (8) 444 

where, 445 

Iinh
t ≡ log exp

i=1

N

∑ cij
j=1

M

∑ wijg(rX ,jt )− hw⎡⎣ ⎤⎦
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,   446 

and hw is the threshold. If connection is all-to-all, wij = qjµ gives optimal inference, because 447 

rY ,it

rYo
=

exp q jµg(rX ,jt )j∑⎡⎣ ⎤
⎦

exp q jνg(rX ,jt )j∑⎡⎣ ⎤
⎦ν∑
= p(st = µ | rXt )     (9) 448 

Note that hw is not necessary to achieve optimal inference, however, under a sparse connection, hw is 449 

important for reducing the effect of connection variability. In this formalization, even in 450 

non-all-to-all network, if the sparseness of connectivity stays in reasonable range, near-optimal 451 

inference can be performed for arbitrary feedforward connectivity by adjusting synaptic weight to 452 

wij =w µ j ≡ q jµ ρµ j where ρµ j = 1
Ωµ

ciji∈Ωµ
∑ . 453 

 454 

1.2. Weight coding and connectivity coding 455 

Let us first consider the case when the connection probability is constant (i.e. ρij=ρ). By substituting 456 

ρij=ρ into the above equations, c and w are given with Pr cij = 1⎡⎣ ⎤⎦ = ρ  and wij =w µ j = q jµ ρ , 457 
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where the mean connectivity is given as ρ = γ q , and q  is the average of the normalized mean 458 

response qjµ (i.e., q = 1
Mp q jµµ∑j∑ ). Parameter γ is introduced to control the sparseness of 459 

connections, and here we assumed that neuron i represents the external state µ = floor p×i
N( )  

(i.e., if 460 

µN
p < i ≤ µ+1( )N

p , output neuron i represents the state µ). Under this configuration, the representation is 461 

solely achieved by the synaptic weights, thus we call this coding strategy as the weight coding.  462 

On the other hand, if the synaptic weight is kept at a constant value, the representation is 463 

realized by synaptic connection structure (i.e. connectivity coding). In this case, the model is given 464 

by Pr cij = 1⎡⎣ ⎤⎦ = ρµ j  and wij =w µ j = 1 γ , where ρµ j =min γ q jµ,1( ) .  465 

 466 

1.3 Dual coding and cut-off coding 467 

By combining the weight coding and connectivity coding described above, the dual coding is given 468 

as wij =w µ j = q jµ ρ , Pr cij = 1⎡⎣ ⎤⎦ = ρµ j , ρµ j =min γ q jµ,1( ) , where ρ was defined by ρ = γ q ,469 

q = 1
Mp q jµµ∑j∑ , as in the weight coding. For the cut-off coding strategy, the synaptic weight was 470 

chosen as wij =w µ j = q jµ ρo  where ρo is the mean connection probability. Based on these synaptic 471 

weights, for each output neuron, we selected Mρo largest synaptic connections, and eliminated all 472 

other connections. Thus, connection matrix C was given as cij = wij ≤wi ′j⎡⎣ ⎤⎦+ ≤Mρo′j∑⎡⎣ ⎤
⎦+ , where 473 

[true]+ =1, [false]+=0. When multiple connections have the same weight, we randomly selected the 474 

connections so that the total number of inbound connections becomes Mρo. Finally, in the random 475 

connection strategy, synaptic weights and connections were determined as wij =w µ j = q jµ ρo , 476 

Pr cij = 1⎡⎣ ⎤⎦ = ρo .  477 

 478 

1.4 Synaptic weight learning 479 

To perform maximum likelihood estimation from output neuron activity, synaptic weight matrix 480 

between input neurons and output neurons should provide a reverse model of input neuron activity. If 481 

the reverse model is faithful, KL-divergence between the true input and the estimated distributions 482 

DKL p * (rX
t ) || p(rX

t |C,W )⎡⎣ ⎤⎦  would be minimized (Dayan et al., 1995) (Nessler et al., 2013). 483 
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Therefore, synaptic weights learning can be performed by argminWDKL p * (rX
t ) || p(rX

t |C,W )⎡⎣ ⎤⎦ . 484 

Likelihood p(rX
t |C,W )  is approximated as 485 

 

 

p(rXt |C,W )∝ p
µ
∑ (rXt | st = µ,C,W )p(st = µ |C,W )

                = p
µ
∑ (st = µ |C,W )exp h(θ j ,µ

C ,W )g(rX ,j
t )− A(θ j ,µ

C ,W )+B(rX ,j
t )( )

j
∑⎡
⎣
⎢

⎤

⎦
⎥

                ! p
µ
∑ (st = µ)exp q jµ

C ,Wg(rX ,j
t )−α(q jµ

C ,W )+B(rX ,j
t )( )

j
∑⎡
⎣
⎢

⎤

⎦
⎥.

 (10) 486 

θ j ,µ
C ,W  in the second line is the average response estimated from connectivity matrix C, and weight 487 

matrix W. In the last equation, q jµ
C ,W  is substituted for h θ j ,µ

C ,W( ) . If we approximate the estimated 488 

parameter q jµ
C ,W  with  q jµ

C ,W ! ρowij  by using the average connectivity ρo, a synaptic weight 489 

plasticity rule is given by stochastic gradient descending as 490 

 

 

Δwij ∝
∂logp(rXt |C,W )

∂wij

= p(st = µ | rXt ,C,W )ρo g(rX ,jt )− ′α (ρowij )( )
! rY ,it ρo g(rX ,jt )− ′α (ρowij )( ).

    (11) 491 

Especially, in a Gaussian model, the synaptic weight converges to the weight coding as 492 

wij = rY ,it rX ,jt σ X
2 ρorY ,it( ) = q jµ ρo , where µ is the external state that output neuron i learned to 493 

represent (i.e. i ∈Ωµ ). 494 

As we were considering population representation, in which the total number of output 495 

neuron is larger than the total number of external states (i.e. p < N), there is a redundancy in 496 

representation. Thus, to make use of most of population, homeostatic constraint is necessary. For 497 

homeostatic plasticity, we set a constraint on the output firing rate. By combining two terms, 498 

synaptic weight plasticity rule is given as 499 

 Δwij =
ηX

γ
rY ,it g(rX ,jt )− ′α ρowij( )⎡⎣ ⎤⎦ + bh rYo /N − rY ,it⎡⎣ ⎤⎦( ).    (12) 500 

By changing the strength of homeostatic plasticity bh, the network changes its behavior. The learning 501 

rate is divided by γ, because the mean of w is proportional to 1/γ. Although, this learning rule is 502 

unsupervised, each output neuron naturally selects an external state in self-organisation manner.  503 

 504 

1.5 Synaptic connection learning 505 
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Wiring plasticity of synaptic connection can be given in a similar manner. As shown in Figure 3, if 506 

the synaptic connection structure of network is correlated with the external model, the learning 507 

performance typically gets better. Therefore, by considering argminρDKL p * (rX
t ) || p(rX

t | ρ,W )⎡⎣ ⎤⎦ , 508 

the update rule of connection probability is given as 509 

 Δρij ∝ rY ,it wo g(rX ,jt )− ′α (ρijwo )⎡⎣ ⎤⎦.      (13) 510 

Here, we approximated wij with its average value wo. In this implementation, if synaptic weight is 511 

also plastic, convergence of DKL is no longer guaranteed, yet as shown in Figure 3, redundant 512 

representation robustly provides a good heuristic solution.  513 

Let us next consider the implementation of the rewiring process with local spine 514 

elimination and creation based on the connection probability ρij. To keep the detailed balance of 515 

connection probability, creation probability cp (ρ)  and elimination probability ep (ρ)  need to 516 

satisfy  517 
(1− ρ)cp (ρ) = ρep (ρ)   518 

The simplest functions that satisfy above equation is cp (ρ) ≡ ρ τc , ep (ρ) ≡ (1− ρ) τc . In the 519 

simulation, we implemented this rule by changing cij from 1 to 0 with probability (1− ρ) τc  for 520 

every connection with cij=1, and shift cij from 0 to 1 with probability ρ τc  for non-existing 521 

connection (cij=0) at every time step.  522 

 523 

1.6 Dual Hebbian rule and estimated transfer entropy 524 

The results in the main texts suggest that non-random synaptic connection structure can be beneficial 525 

either when that increases estimated transfer entropy or is correlated with the structure of the external 526 

model. To derive dual Hebbian rule, we used the latter property, yet in the simulation, estimated 527 

transfer entropy also increased by the dual Hebbian rule. Here, we consider relationship of two 528 

objective functions. Estimation of the external state from the sampled inputs is approximated as 529 

 

〈p(st = µ) | {cijrX ,jt }〉i∈Ωµ
!

1
Ωµ

p(st = µ)exp ρij qµ j g(rX ,jt )−α(qµ j )+B(rX ,jt )⎡⎣ ⎤⎦j∑( )
p(st = ν )

ν∑ exp cij qν j g(rX ,jt )−α(qν j )+B(rX ,jt )⎡⎣ ⎤⎦j∑( )i∈Ωµ

∑  (14) 530 

Therefore, by considering stochastic gradient descending, an update rule of ρij is given as 531 

Δρij ∝ 1+ logrY ,it rYo( )rY ,it g(rX ,jt )−α(qµ j ) qµ j +B(rX ,jt ) qµ j⎡⎣ ⎤⎦    (15) 532 

If we compare this equation with the equation for dual Hebbian rule (equation (13)), both of them are 533 

monotonically increasing function of rY ,i
t  and have the same dependence on g(rX ,j

t )  although 534 

normalization terms are different. Thus, under an adequate normalization, the inner product of 535 
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change direction is on average positive. Therefore, although dual Hebbian learning rule does not 536 

maximize the estimated maximum transfer entropy, the rule rarely diminishes it. 537 

 538 

1.7 Gaussian model 539 

We constructed mean response probabilities {θ jµ } j=1,...,M
µ=1,...,p  by following 2 steps. First, non-normalized 540 

response probabilities {
!θ jµ } j=1,...,M

µ=1,...,p were chosen from a truncated normal distribution N(µM ,σM )  541 

defined on 0,∞)⎡⎣ . Second, we defined {θ jµ } j=1,...,M
µ=1,...,p by  θ jµ = !θ jµ Z µ , where 

 
Z µ = rXo !θ jµ M

j=1

M∑ . 542 

When the noise follows a Gaussian distribution, the response functions in equation (5) are given as 543 

h(θ ) = θ
σ x

2 ,  g(r ) = r , A(θ ) = θ 2

2σ x
2 + log( 2πσ x ),  B(r ) = − r 2

2σ x
2 .  (16) 544 

Because h−1(q ) =σ x
2q , α q( )  is given as α(q ) ≡ A h−1(q )( ) =σ x

2q 2 2 + log( 2πσ x ) . By 545 

substituting above values into the original equations, the neural dynamics is given as 546 

 rY ,i
t = rYo exp cij wijrX ,j

t −wo( )j=1

M∑ − Iinh t⎡
⎣

⎤
⎦.    (17) 547 

Similarly, dual Hebbian rule becomes 548 

Δwij =
ηX

γ
rY ,it rX ,jt −σ X

2 ρowij⎡⎣ ⎤⎦ + bh rYo /N − rY ,it⎡⎣ ⎤⎦( )    (18) 549 

 Δρij = ηρrY ,it rX ,jt −σ x
2ρijwo( ).       (19) 550 

 551 

1.8 Poisson model 552 

For Poisson model, we defined mean response probabilities {θ jµ } j=1,...,M
µ=1,...,p  from a log-normal 553 

distribution instead of a normal distribution. Non-normalized values were sampled from a truncated 554 

log-normal distribution logN(µMp ,σM
p )  defined on (lminp ,lmaxp ) . Normalization was performed as 555 

 θ jµ = !θ jµ Z µ  for  {
!θ jµ } j=1,...,M

µ=1,...,p , where Z µ = rXoM θ jµj∑ . Because the noise follows a Poisson 556 

distribution p(r |θ ) = exp −q + r logq − logr ![ ] , the response functions are given as 557 

 h(θ ) = logθ, g(r ) = r ,  A(θ ) = θ,  B(r ) = − logr ! .    (20) 558 

As a result, α q( )  is defined as α(q ) ≡ A h−1(q )( ) = eq . By substituting them to the original 559 

equations, the neural dynamics also follows equation (17). If connection is all-to-all, by setting 560 
wij = logθ jµ θo  for i ∈Ωµ , optimal inference is achievable. Here, we normalized θj  by θo, which 561 
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is defined as θo = 1
2minj ,µ θµ j , in order to keep synaptic weights in non-negative values. 562 

Learning rules for synaptic weight and connection are given as 563 

Δwij =
ηx

γ
rY ,it rX ,jt −θmin exp[ρowij ]⎡⎣ ⎤⎦ + bh rYo /N − rY ,it⎡⎣ ⎤⎦( ),    (21) 564 

Δρij = ηρrY ,it rX ,jt −θmin exp(ρijwo )( ).      (22) 565 

Note that the first term of the synaptic weight learning rule coincides with a previously proposed 566 

optimal learning rule for spiking neurons (Nessler et al., 2013)(Habenschuss et al., 2013). In 567 

calculation of model error, error was calculated as�
 
d = 1

pM !q jµ − q * jµ( )2j∑µ∑ , where estimated 568 

parameter  {
!q jµ }  was given by 

 

!q jµ =
〈q jµ

* 〉q jµ

q jµ pM
j∑q∑ . Here, 〈q jµ

* 〉  represents the mean of true 569 

{qjµ}, and non-normalized estimator q jµ  was calculated as q jµ =
1

〈cij 〉 Ωµ

cij
i∈Ωµ

∑ wij . In Figure S1D, 570 

estimation from connectivity was calculated from q jµ
C = 1

〈cij 〉 Ωµ

cij
i∈Ωµ

∑ , and similarly, estimation 571 

from weights was calculated by q jµ
W = 1

Ωµ ciji∈Ωµ
∑

cij
i∈Ωµ

∑ wij . For parameters, we used µM
p = 0.0,  572 

σM
p = 1.0,  lmin

p = 0.2,  lmaxp = 20.0 , wo = 1 γ ,  rXo = 0.3 , and for other parameters, we used same 573 

values with the Gaussian model. 574 

 575 

 576 

2 Analytical evaluations 577 

2.1 Evaluation of performances in weight coding and connectivity coding 578 

In Gaussian model, we can analytically evaluate the performance in two coding schemes. As the 579 

dynamics of output neurons follows rY ,i = rYo exp cijj∑ (wijrX ,jt −wo )− Iinht⎡
⎣

⎤
⎦,  membrane potential 580 

variable ui, which is defined as 581 

 ui ≡ cijj∑ (wijrX ,jt −wo ),      (23) 582 

determines firing rates of each neuron. Because {θ jµ }  is normalized with θ jµ
2 M

j=1

M∑ = (rXo )2 , 583 
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mean and variance of {θ jµ }  are given as  584 

µθ =
µMrXo

µM
2 +σ x

2
,  σθ

2 =
σMrXo( )2
µM

2 +σM
2 ,      (24) 585 

where µM and σM are the mean and variance of the original non-normalized truncated Gaussian 586 

distribution  {
!θ jµ } . Because both rX,j and {θ jµ }  approximately follow Gaussian distribution, ui is 587 

expected to follow Gaussian. Therefore, by evaluating its mean and variance, we can characterize the 588 

distribution of ui for a given external state (Babadi and Sompolinsky, 2014).  589 

Let us first consider the distribution of ui in the weight coding. In weight coding scheme, 590 

wij and cij are defined as 591 

 wij = θ jµ ρσ x
2 ,  Pr cij = 1⎡⎣ ⎤⎦ = ρ       (25) 592 

where ρ = γµθ σ x
2 . By setting wo = µθ

2 ρσ X
2( ) , the mean membrane potential of output neuron i 593 

selective for given signal (i.e. i ∈Ωµ  for st = µ ) is calculated as,  594 

 〈ui 〉 = θ jµ
2 − 〈θ jµ 〉

2( ) σ x
2

j∑ =Mσθ
2 σ x

2 .   595 

Similarly, the variance of ui is given as 596 

〈 ui − 〈ui 〉( )2 〉 = 1
ρσ X

cijθ jµζ j
j
∑ + 1

ρσ X
2 cij − ρ( ) θ jµ

2 − µθ
2( )

j
∑ + 1

σ X
2 θ jµ

2 − µθ
2 +σθ

2⎡⎣ ⎤⎦( )
j
∑⎛

⎝⎜
⎞

⎠⎟

2

= M
ρσ X

2 µθ
2 +σθ

2( ) +Mσθ
2

ρσ X
4 2 2µθ

2 +σθ
2( ) + 1− ρ( )σθ

2⎡⎣ ⎤⎦

  (26) 597 

where ζj is a Gaussian random variable. On the other hand, if output neuron i is not selective for the 598 

presented stimuli (if st ≠ µ  and i ∈Ωµ ), wij and rX,j are independent. Thus, the mean and the 599 

variance of ui are given as, 600 

 〈ui 〉 = 0,   〈(ui − 〈ui 〉)2 〉 = M
ρσ x

2 (µθ
2 +σθ

2 )+Mσθ
2

ρσ x
4 2µθ

2 +σθ
2( )   601 

In addition to that, due to feedforward connection, output neurons show noise correlation. For two 602 

output neurons i and l selective for different states (i.e. i ∈Ωµ  and l ∉Ωµ ), the covariance 603 

between ui and ul satisfies 604 

 (ui − 〈ui 〉)(ul − 〈ul 〉) = ρ2 wijwlj (rX ,j −θ jµ )
2

j∑ =Mµθ
2 σ x

2   605 

Therefore, approximately (ui, ul) follows a multivariable Gaussian distributions 606 
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ui
ul

⎛

⎝
⎜

⎞

⎠
⎟ =N

Mσθ
2

σ x
2

0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
,

M µθ
2+σθ

2( )
ρσX

2 +
Mσθ

2 2 2µθ
2+σθ

2( )+ 1−ρ( )σθ
2⎡

⎣
⎤
⎦

ρσX
4

Mµθ
2

σ x
2

Mµθ
2

σ x
2

M (µθ
2+σθ

2 )
ρσ x

2 + Mσθ
2 2µθ

2+σθ
2( )

ρσ x
4

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
.     (27) 607 

In maximum likelihood estimation, the estimation fails if a non-selective output neuron shows higher 608 

firing rate than the selective neuron. When there are two output neurons, probability for such an 609 

event is calculated as 610 

 
 
εw = Pr clj (wljrX ,jt −wo )j∑ > cij (wijrX ,jt −wo )j∑ | st = µ,i ∈Ωµ,l /∈Ωµ

⎡
⎣

⎤
⎦.   611 

In the simulation, there are p-1 distractors per one selective output neuron. Thus, approximately, 612 

accuracy of estimation was evaluated by  (1− εw )
p−1 . In Figure 2B, we numerically calculated this 613 

value for the analytical estimation.  614 

Similarly, in connectivity coding, wij and cij are given as 615 

 wij = 1 γ ,   Pr[cij = 1] = ρij ,   ρij = γθ jµ σ x
2 .  616 

By setting wo = µθ γ , from a similar calculation done above, the mean and the variance of (ui, ul) 617 

are derived as 618 

 
ui
ul

⎛

⎝
⎜

⎞

⎠
⎟ =N

Mσθ
2

σ x
2

0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
,

Mµθ
γ + Mσθ

2 µθσ x
2−γσθ

2⎡⎣ ⎤⎦
γσ x

4
Mµθ

2

σ x
2 + Mµθ

2σθ
2

σ x
4

Mµθ
2

σ x
2 + Mµθ

2σθ
2

σ x
4

Mµθ
γ + Mµθσθ

2

γσ x
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
.    (28) 619 

If we compare the two coding schemes, means are the same for two coding schemes, and 620 

as γ satisfies γ =σ x
2ρ µθ , variance of non-selective output neuron are similar. The main difference 621 

is the second term of signal variance. In the weight coding, signal variance is proportional to 1/γ, on 622 

the other hands, in the connectivity coding, the second term of signal variance is negative, and does 623 

not depend on the connectivity. As a result, in the adequately sparse regime, firing rate variability of 624 

selective output neuron becomes smaller in connectivity coding, and the estimation accuracy is better. 625 

In the sparse limit, the first term of variance becomes dominant and both schemes do not work well, 626 

consequently, the advantage for connectivity coding disappears. Coefficient of variation calculated 627 

for signal terms is indeed smaller in connectivity coding scheme (blue and red lines in Fig 2C), and 628 

the same tendency is observed in simulation (cyan and orange lines in Fig 2C). 629 

 630 

2.2 Optimality of connectivity 631 

To evaluate optimality of a given connection matrix C, we calculated the posterior probability of the 632 

external states estimated from C and rX, and compared then to that from the fully connected network 633 
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Call. Below, we denote the mean KL-divergence DKL p st | rX ,Call( ) || p st | rX ,C( )⎡⎣ ⎤⎦ rX
 as I(Call,C) 634 

for readability. When the true external state is st=ν, firing rates of input neurons are given by rX,j
t ~ 635 

N(θjν, σX), hence this I(Call,C) is approximately evaluated as 636 

I Call ,C( ) ≈ 1
p DKL p st | rX |ν ,Call( ) || p st | rX |ν ,C( )⎡⎣ ⎤⎦ rXν
∑

             ≈ 1
p DKL p st | θ jν +σ Xζ j{ },Call( )

ζ j{ }
|| p st | θ jν +σ Xζ j{ },C( )

ζ j{ }
⎡
⎣⎢

⎤
⎦⎥ν

∑
 637 

where {ζj} are Gaussian random variables, and Call represents the all-to-all connection matrix. By 638 

taking integral over Gaussian variables, the posterior probability is evaluated as 639 

p st = µ | θ jν +σ Xζ j{ },C( )
ζ j{ }

≅ 1
Ωµ

exp φµν
i ,C + 1

2ψ µ
i ,C( )

exp φ ′µ ν
i ,C + 1

2ψ ′µ
i ,C( )′µ∑i∈Ωµ

∑  ≡ pν st = µ |C( ) , 640 

where 641 

 φµν
i ,C ≡ cij 2θµ jθν j −θµ j

2( ) 2σ X
2( )j∑ , ψ µ

i ,C ≡ cij θµ j σ X( )2j∑ . 642 

Thus, the KL-divergence between estimations by two connection structures Call and C is 643 

approximated as: 644 

I Call ,C( ) ≈ 1
p

pν st = µ |Call( )logpν st = µ |Call( )
pν st = µ |C( )µ

∑
ν
∑     (29) 645 

In the black lines in Figures 3C-E, we maximized the approximated KL-divergence I(Call,C) with a 646 

hill-climbing method from various initial conditions, thus the lines may not be the exact optimal, but 647 

rather lower bounds of the optimal performance. Information gain by a connection cij was evaluated 648 

by 649 

 ΔIij ≡ I Call ,C( )− I Call ,C +ηij( )
C

 ,     (30) 650 

where ηij is a N×M matrix in which only (i,j) element takes 1, and all other elements are 0. In Figure 651 

3B, we took average over 1000 random connection structures with connection probability ρ=0.1. 652 

 653 

3 Model settings 654 

3.1 Details of simulation 655 

 In the simulation, the external variable st was chosen from 10 discrete variables (p = 10) 656 

with equal probability (Pr[st = q] = 1/p, for all q). The mean response probability θjµ was given first 657 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 23, 2015. ; https://doi.org/10.1101/024406doi: bioRxiv preprint 

https://doi.org/10.1101/024406
http://creativecommons.org/licenses/by/4.0/


 23 

by randomly chosen parameters 
 
!θ jµ{ } j=1,...,M

µ=0,...,p−1
 from the truncated normal distribution N(µM,σM) in 658 

[0,∞) , and then normalized using  θ jµ = !θ jµ Z µ , where 
 
Z µ = rXo !θ jµ M

j=1

M∑ . Mean weight wo 659 

was defined as wo = rXo γ . The normalization factor hw was defined as hw = q γ  in Figures 1–2 660 

and 4-5, where q = 1
Mp θ jµ σ X

2
µ∑j∑ , and as hw = rXo γ  in Figures 6–7, as the mean of θ 661 

depends on κm. In Figure 3, we used hw = q γ  for the dual coding, and hw = q ρo  for the rest. 662 

Average connectivity ρ  was calculated from the initial connection matrix of each simulation. In 663 

the calculation of the dynamics, for the membrane parameter v i ≡ cij wijrX ,j
t − hw( )j∑ , a boundary 664 

condition 
 
v i >maxℓ v ℓ −vd{ }  was introduced for numerical convenience, where vd = -60. In 665 

addition, synaptic weight wij was bounded to a non-negative value (wij > 0), and the connection 666 

probability was defined as ρ ∈[0,1] . For simulations with synaptic weight learning, initial weights 667 

were defined as wij = 1+σw
initζ( ) γ , where σw

init = 0.1, and ζ  is a Gaussian random variable. 668 

Similarly, in the simulation with structural plasticity, the initial condition for the synaptic connection 669 

matrix was defined as Pr cij = 1⎡⎣ ⎤⎦ = γ θ jµ σ x
2 . In both the dual Hebbian rule and the approximated 670 

dual Hebbian rule, the synaptic weight of a newly created spine was given as wij = 1+σw
initζ( )wo , 671 

for a random Gaussian variable ζ ←N 0,1( ) . In Figure 8, simulations were initiated at -20 days (i.e., 672 

2 × 106 steps before stimulus onset) to ensure convergence for the control condition. For model 673 

parameters, µM = 1.0, σM = 1.0, σX = 1.0, M = 200, N = 100 rX
o = 1.0, and rY

o = 1.0 were used, and for 674 

learning-related parameters, ηX = 0.01, bh = 0.1, ηρ = 0.001, τc = 106, T2 = 105, and κm = 0.5 were used. 675 

In Figures 7 and 8, ηρ = 0.0001, τc = 3 × 105, and γ = 0.6 were used, unless otherwise stated. 676 

 677 

3.2 Accuracy of estimation 678 

 The accuracy was measured with the bootstrap method. By using data from t-To <= t’ < t, 679 

the selectivity of output neurons was first decided. Ωµ was defined as a set of output neurons that 680 

represents external state µ. Neuron i belongs to set Ωµ if i satisfies  681 

µ = argmax
′µ

st = ′µ⎡⎣ ⎤⎦+′t =t−To

t∑ rY ,it

st = ′µ⎡⎣ ⎤⎦+′t =t−To

t∑
, 682 
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where operator [X]+ returns 1 if X is true; otherwise, it returns 0. By using this selectivity, based on 683 

data from t<= t’ < t+To, the accuracy was estimated as  684 

1
To

1
Ωs ′t

rY ,i′t
i∈Ω

s ′t

∑ >max
µ≠s ′t

1
Ωµ

rY ,i′t
i∈Ωµ

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
tof

′t =t

t+To−1

∑ . 685 

In the simulation, To = 103 was used because this value is sufficiently slow compared with weight 686 

change but sufficiently long to suppress variability.  687 

 688 

3.3. Model error 689 

Using the same procedure, model error was estimated as 690 

 
 
d = 1

pM
!θ jµ −θ jµ( )2

j=1

M

∑
µ=1

p

∑ , 691 

where  
!θ jµ  represents the estimated parameter.  

!θ jµ  was estimated by  692 

 θ jµ =
1

cij Ωµ

cijwij
i∈Ωµ

∑ , 
 
!θ jµ = roXθ jµ

1
M θ jµ

2
j=1

M∑ . 693 

In Figure 6E, the estimation of the internal model from connectivity was calculated by 694 

 θ jµ
C = 1

cij Ωµ

cij
i∈Ωµ

∑ . 695 

Similarly, the estimation from the synaptic weight in Figure 6F was performed with 696 

θ jµ
W = 1

Ωµ

cijwij
i∈Ωµ

∑ cij
i∈Ωµ

∑ . 697 

 698 

3.4 Transfer entropy 699 

Entropy reduction caused by partial information on input firing rates was evaluated by transfer 
700 

entropy: 
701 

TE = H st( )−H st | rXt ,C( )
t , 

702 

where
 703 

H st | rXt ,C( ) = − p st = sµ | rXt ,C( )logµ=1

p∑ p st = sµ | rXt ,C( )
≅ − p st = sµ | cijrX ,jt{ }( )

i∈Ωµ

log p st = sµ | cijrX ,jt{ }( )
i∈Ωµ

µ=1

p∑ ,
 704 
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p st = sµ | cijrX ,jt{ }( )
i∈Ωµ

≅ 1
Ωµ

p st = sµ( ) p rX ,j
t | st = sµ( )

cij =1
∏

i∈Ωµ

∑

= 1
Ωµ

p st = sµ( )exp cij
j=1

M

∑ qµ j g rX ,j
t( )−α qµ j( ) +B rX ,j

t( )⎡⎣ ⎤⎦
⎛

⎝⎜
⎞

⎠⎟

p st = sν( )exp cij
j=1

M

∑ qν j g rX ,j
t( )−α qν j( ) +B rX ,j

t( )⎡⎣ ⎤⎦
⎛

⎝⎜
⎞

⎠⎟ν
∑i∈Ωµ

∑ .

705 

Output group Ωµ was determined as described above. Here, the true model was used instead of the 706 

estimated model to evaluate the maximum transfer entropy achieved by the network.  707 

 708 

Code availability 709 

C++ codes of the simulation program will be available at ModelDB.  710 
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Figure 1: Description of the model. (A) Schematic diagram of the model. (B) An example of model behavior calculated
at Ω = 0.16, when the synaptic connection is organized using the weight-coding scheme. The top panel represents the
external variable, which takes an integer 0 to 9 in the simulation. The middle panel is the response of input neurons, and
the bottom panel shows the activity of output neurons. In the simulation, each external state was randomly presented,
but here the trials are sorted in ascending order. (C) Examples of neural activity in a simulation. Graphs on the top
row represent the average firing rates of five randomly sampled input neurons for given external states (black lines) and
their standard deviation (gray shadows). The bottom graphs are subthreshold responses of output neurons that represent
the external state s = 1. Because the boundary condition for the membrane parameter v
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Figure 2: Performance comparison between connectivity coding and weight coding. (A) Examples of synaptic weight
matrices in weight coding (W-coding) and connectivity coding (C-coding) schemes. X-neurons were sorted by their se-
lectivity for external states. (B) Comparison of the performance between connectivity coding and weight coding schemes
at various sparseness of connectivity. Orange and cyan lines are simulation results. The error bars represent standard
deviation over 10 independent simulations. In the following panels, error bars are trial variability over 10 simulations.
Red and blue lines are analytical results. (C) Analytically evaluated coefficient of variation (CV) of output firing rate and
corresponding simulation results. For simulation results, the variance was evaluated over whole output neurons from
their firing rates for their selective external states. (D) Estimated maximum transfer entropy for two coding strategies.
Black horizontal line is the maximal information log

e

p. (E) Relative information capacity of connection structure versus
synaptic weight is shown at various values of synaptic connectivity. In the orange (cyan) area, the synaptic connectivity
has higher (lower) information capacity than the synaptic weights. Plus symbol represents the data point obtained from
CA3-to-CA1 connections.
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Figure 3: Dual coding yields robust information representation compared to fixed random connections and cut-off strat-
egy. (A) Synaptic weight distributions in random connection (left), dual coding (middle), and cut-off (right) strategies.
Light colors represent possible connections (i.e. distributions of synaptic weights under all-to-all connections), while
dark colors show the actual connections. Connection probability was set at Ω = 0.1. (B) Relationships between the synap-
tic weight and the information gain per connection for three input configurations described in panels C-E. The open
black circles were calculated with æ

r

= 2.0 instead of æ
r

= 4.0 for illustration purpose. (C-E) Comparisons of performance
among different connection structure organizations. Note that black lines represent lower bounds for the optimal per-
formance, but not the exact optimal solutions. In panel D, the means and standard deviations were calculated over 100
simulation trials instead of 10 due to intrinsic variability.
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Figure 4: Synaptic weight learning on random connection structures. (A) An example of output neuron activity before
(top) and after (bottom) synaptic weight learning calculated at connectivity Ω = 0.4. (B) Selectivity of output neurons and
accuracy of estimation at various strengths of homeostatic plasticity at Ω = 0.4. Selectivity was defined as

P
s

t=µ r

t

Y ,i /
P

t

r

t

Y ,i
for i 2≠µ. (C) Histogram of average firing rates of output neurons (top), and selectivity of each neuron calculated for the
simulation depicted in panel A.
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Figure 5: Dual Hebbian learning for synaptic weights and connections. (A) Examples of spine creation and elimination.
In all three panels, green lines show synaptic weights, and blue lines are connection probability. When there is not a
synaptic connection between two neurons, the synaptic weight becomes zero, but the connection probability can take a
non-zero value. Simulation was calculated at Ω = 0.48, ¥Ω = 0.001, and ø

c

= 105. (B) Change in connectivity due to synaptic
elimination and creation. Number of spines eliminated (red) and created (green) per unit time was balanced (top). As a
result, connectivity did not appreciably change due to rewiring (bottom). Black lines in the bottom graph are the mean
connectivity at ∞= 0.1 and ∞= 0.101 in the model without rewiring. (C) Accuracy of estimation for the model with/without
wiring plasticity. For the dual Hebbian model, the sparseness parameter was set as ∞ = 0.1, whereas ∞ = 0.101 was used
for the weight plasticity model to perform comparisons at the same connectivity (see panel B). (D, E) Comparison of the
performance (D) and the maximum estimated transfer entropy (E) after learning between the dual Hebbian model and the
model implemented with synaptic plasticity only at various degrees of connectivity. Horizontal line in panel E represents
the total information l og

e

p. (F) Accuracy of estimation with various timescales for rewiring ø
c

. Note that the simulation
was performed only for 5£106 time steps, and the performance did not converge for the model with a longer timescale.
(G) Synaptic weight matrices before (left) and after (right) learning. Both X-neurons (input neuron) and Y-neurons (output
neurons) were sorted based on their preferred external states.
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Figure 6: Dual learning under a dynamic environment. (A) Examples of input neuron responses. Blue lines represent
the constant components µ

const

, green lines show the variable components µ
var

, and magenta lines are the total external
models µ calculated from the normalized sum. (B) Learning curves for the model with or without wiring plasticity, when
the variable components change every 105 time steps. (C) Accuracy of estimation for various ratios of constant compo-
nents. Early phase performance was calculated from the activity within 10,000 steps after the variable component shift,
and the late phase performance was calculated from the activity within 10,000 steps before the shift. As in panel B, or-
ange lines represent the dual Hebbian model, and cyan lines are for the model with weight plasticity only. (D) Trajectories
of connectivity change. Connectivity tends to increase slightly during learning. Dotted lines are mean connectivity at
(∑

m

,∞) = (0.0,0.595), (0.2,0.625), (0.4,0.64), (0.5,0.64), (0.6,0.635), and (0.8,0.620). In C, these parameters were used for
the synaptic plasticity only model, whereas ∞ was fixed at ∞ = 0.6 for the dual Hebbian model. (E,F) Model error calcu-
lated from connectivity (E) and synaptic weights (F). Note that the timescale of F is the duration in which the variable
component is constant, not the entire simulation (i.e. the scale of x-axis is 104 not 106). (G) Model error calculated from
connectivity for various rewiring timescales ø

c

. For a large ø
c

, the learning process does not converge during the simula-
tion. (H) Relationship between synaptic weight w and connection probability Ω at the end of learning. When the external
model is stable, w and Ω have a more linear relationship than that for the variable case. (I) Comparison of performances
among the model without wiring plasticity (cyan), the dual Hebbian model (orange), the approximated model (magenta).
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Figure 7: Spine dynamics of the approximated dual Hebbian model. (A) Relative change of connection probability in 105

time steps. If the initial connection probability is low, the relative change after 105 time steps has a tendency to be posi-
tive, whereas spines with a high connection probability are more likely to show negative changes. The line at the bottom
represents eliminated spines (i.e., relative change = -1). (B,C) Relationships between spine age and the mean connec-
tion probability (B) and the 5-days survival rate (C). Consistent with the experimental results, survival rate is positively
correlated with spine age. 5-days survival rate was calculated by regarding 105 time steps as one day.
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Figure 8: Influence of training on spine dynamics. (A) Schematic diagrams of the simulation protocols for panels B,C,
and F,G, and examples of spine dynamics for pre-existing spines and new spines. (B) Spine survival rates for control and
training simulations. Dotted lines represent survival rates of pre-existing spines (spines created before day 0 and existing
on day 2), and solid lines are new spines created between day 0 and day 2. (C) The 5-day survival rate of spines created
at different stages of learning. (D,E) Relationships between creation and elimination of spines and task performance.
Performance was calculated from the activity within 2,000-7,000 time steps after the beginning of the test phase. In the
simulation, the synaptic elimination was increased fivefold from day 1 to the end of training. (F) Effect of similarity be-
tween the control condition and training on the new spine survival rate. The value of ∑

m

was changed as in Figure 6C
to alter the similarity between the two conditions. Note that ∑

m

= 0 in panels A-E, and G. (G) Spine survival rates for
short-training (2 d) and long-training (30 d) simulations. Pre-existing and new spines were defined as in panels A,B.
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Supplementary Figure 1: Results in Poisson model. (A) An example of output neuron activity before (top) and after (bot-
tom) synaptic weight learning at connectivity Ω = 0.25. (B) Synaptic weight matrices before (left) and after (right) learning.
Both X-neurons and Y-neurons were sorted based on their preferred external states. (C) Accuracy of estimation at various
timescale of rewiring ø

c

. (D) Model error calculated from connectivity (left) and synaptic weights (right). (E) Compari-
son of performance among the model without wiring plasticity (cyan), and dual Hebbian model(orange). Corresponding
results in the Gaussian model are described in Fig. 4A, Fig. 5F, Fig. 5G, Fig. 6EF, Fig. 6I respectively.
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