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Abstract

In the adult mammalian cortex, a small fraction of spines are created and eliminated every day, and the

resultant synaptic connection structure is highly non-random, even in local circuits. However, it remains

unknown whether a particular synaptic connection structure is functionally advantageous in local circuits,

and why creation and elimination of synaptic connections is necessary in addition to rich synaptic weight

plasticity. To answer these questions, we studied an inference task model through theoretical and

numerical analyses. We show that a connection structure helps synaptic weight learning when it provides

prior expectations. We further demonstrate that an adequate network structure naturally emerges from

dual Hebbian learning for both synaptic weight plasticity and wiring plasticity. Especially in a sparsely

connected network, wiring plasticity achieves reliable computation by enabling efficient information

transmission. Correlations between spine dynamics and task performance generated by the proposed rule

are consistent with experimental observations.

Author Summary

A virtue of the brain that is missing from artificial machines is its ability to reorganize and improve the

circuit structure. Neural circuits should be adequately tuned to perform information processing such as

decoding of sensory signal from noisy sensory inputs, or motor command generation from stochastic

premotor inputs. Activity-dependent modifications of synaptic efficiency through long-term potentiation
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and depression are considered to play a major role in this tuning, but rewiring through creation and

elimination of synaptic connections is also active even in the cortex of adult mammalian. It is still

unknown what neural circuits learn to represent through the changes in synaptic efficiency and

connections, and how such learning is performed by local spine dynamics. In this study, we reveal the

functional advantage of representation by synaptic connection structure over that by synaptic efficiency.

Furthermore we derive a dual-Hebbian learning rule that governs the two forms of plasticity. The rule

improves network communication and enables robust computation by capturing slow components of the

environment with connection structure. Our work provides an important step towards understanding of

synaptic wiring plasticity and resultant connection structure.

Introduction 1

The amplitude of excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs), often referred to 2

as synaptic weight, is considered a fundamental variable in neural computation [1] [2]. In the mammalian 3

cortex, excitatory synapses often show large variations in EPSP amplitudes [3] [4] [5], and the amplitude 4

of a synapse can be stable over trials [6] and time [7], enabling rich information capacity compared with 5

that at binary synapses [8] [9]. In addition, synaptic weight shows a wide variety of plasticity which 6

depend primarily on the activity of presynaptic and postsynaptic neurons [10] [11]. Correspondingly, 7

previous theoretical results suggest that under appropriate synaptic plasticity, a randomly connected 8

network is computationally sufficient for various tasks [12] [13]. 9

On the other hand, it is also known that synaptic wiring plasticity and the resultant synaptic 10

connection structure are crucial for computation in the brain [14] [15]. Elimination and creation of 11

dendritic spines are active even in the brain of adult mammalians. In rodents, the spine turnover rate is 12

up to 15% per day in sensory cortex [16] and 5% per day in motor cortex [17]. Recent studies further 13

revealed that spine dynamics are tightly correlated with the performance of motor-related tasks [18] [19]. 14

Previous modeling studies suggested that wiring plasticity helps memory storage [20] [21] [22]. However, 15

in those studies, EPSP amplitude was assumed to be a binary variable, and wiring plasticity was 16

performed in a heuristic manner. Thus it remains unknown what should be encoded by synaptic 17

connection structure when synaptic weights have a rich capacity for representation, and how such a 18

connection structure can be achieved through a local spine elimination and creation mechanism. 19

To answer these questions, we constructed a theoretical model of an inference task. We found that 20

the computational benefit of a connection structure depends on the sparseness of connectivity. In 21
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particular, when a connection is sparse, the connection structure improves performance compared with 22

that of a randomly connected network by reducing signal variability. Based on these insights, we proposed 23

a local unsupervised rule for wiring and synaptic weight plasticity. In the rule, connection structure and 24

synaptic weight learn different components under a dynamic environment, enabling robust computation. 25

The model also replicates various experimental results on spine dynamics. 26

Results 27

Connection structure helps computation in sparsely connected networks 28

What should be represented by synaptic connections and their weights, and how are those representations 29

acquired? To explore the answers to these questions, we studied a hidden variable estimation task (Fig 30

1A), which appears in various stages of neural information processing [23] [24] [25]. In the task, at every 31

time t, one hidden state is sampled with equal probability from p number of external states 32

st = {0, 1, ..., p− 1}. Neurons in the input layer show independent stochastic responses 33

rtX,j ∼ N(θjµ, σx) due to various noises (Fig 1B middle), where θjµ is the average firing rate of neuron 34

j to the stimulus µ, and σx is the constant noise amplitude. Although, we used Gaussian noise for 35

analytical purposes, the following argument is applicable for any stochastic response that follows a 36

general exponential family, including Poisson firing (S1 Fig). Neurons in the output layer estimate the 37

hidden variable from input neuron activity and represent the variable with population firing. This task is 38

computationally difficult because most input neurons have mixed selectivity for several hidden inputs, and 39

the responses of the input neurons are highly stochastic (Fig 1C). Let us assume that the dynamics of 40

output neurons are written as follows: 41

rtY,i = roY exp

 M∑
j=1

cij
(
wijr

t
X,j − hw

)
− Itinh

 , Itinh = log

 N∑
i=1

exp

 M∑
j=1

cij
[
wijr

t
X,j − hw

] ,
(1)

where cij (= 0 or 1) represents connectivity from input neuron j to output neuron i, wij is its synaptic 42

weight (EPSP size), and hw is the threshold. M and N are population sizes of the input and output 43

layers, respectively. In the model, all feedforward connections are excitatory, and the inhibitory input is 44

provided as the global inhibition Itinh. 45

If the feedforward connection is all-to-all (i.e., cij = 1 for all i, j pairs), by setting the weights as 46

wij = qjµ = θjµ/σ
2
x for output neuron i that represents external state µ, the network gives an optimal 47
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Figure 1. Description of the model. (A) Schematic diagram of the model. (B) An example of model
behavior calculated at ρ = 0.16, when the synaptic connection is organized using the weight-coding
scheme. The top panel represents the external variable, which takes an integer 0 to 9 in the simulation.
The middle panel is the response of input neurons, and the bottom panel shows the activity of output
neurons. In the simulation, each external state was randomly presented, but here the trials are sorted in
ascending order. (C) Examples of neural activity in a simulation. Graphs on the top row represent the
average firing rates of five randomly sampled input neurons for given external states (black lines) and
their standard deviation (gray shadows). The bottom graphs are subthreshold responses of output
neurons that represent the external state s = 1. Because the boundary condition for the membrane
parameter vi ≡

∑
j cij

(
wijr

t
x,j − hw

)
is introduced as vi > maxl{vl − vd}, vi is typically bounded at

−vd. Note that vi is the unnormalized log-likelihood, and the units on the y-axis are arbitrary.

inference from the given firing rate vector rtX , where the value qjµ represents how much evidence the 48

firing rate of neuron j provides for a particular external state µ (for details, see Materials and 49

methods). However, if the connectivity between the two layers is sparse, as it is in most regions of the 50

brain, optimal inference is generally unattainable because each output neuron can obtain a limited set of 51

information from the input layer. How should one choose connection structure and synaptic weights in 52

such a case? We first considered two extreme examples for illustration purposes. One strategy is to use 53

synaptic weight for approximating the optimal representation while keeping the connection random with a 54

fixed connection probability (weight coding). In this case, c and w are given with Pr[cij = 1] = ρ and 55

wij = wµj = qjµ/ρ, where the mean connectivity is given as ρ = γq̄ , and q̄ is the average of the 56

normalized mean response qjµ (i.e., q̄ = 1
Mρ

∑
j

∑
µ qjµ). Parameter γ is introduced to control the 57

sparseness of connections, and here we assume that neuron i represents the external state 58

µ = floor
(
p×i
N

)
(i.e., if µN

p < i ≤ (µ+1)N
p , output neuron i represents the state µ). The other strategy is 59

to use synaptic connectivity for the representation while fixing the synaptic weight (connectivity coding). 60

In this case, the model is given by Pr[cij = 1] = ρµj and wij = wµj = 1/γ, where ρµj = min(γqjµ, 1). 61

If we sort input neurons with their preferred external states, the diagonal components of the connection 62

matrix show high synaptic weights in the weight-coding scheme, whereas the diagonal components show 63

dense connection in the connection-coding scheme (Fig 2A). Note that neither of the realizations is 64
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strictly the optimal solution under each constraint. However, as we discuss later, both of them are 65

obtainable through biologically plausible local Hebbian learning rules. 66

Figure 2. Connection structure helps computation in sparsely connected networks. (A) Examples of
synaptic weight matrices in weight-coding (W-coding) and connectivity-coding (C-coding) schemes.
X-neurons were sorted by their selectivity for external states. (B) Comparison of the performance
between connectivity-coding and weight-coding schemes at various sparseness of connectivity. Orange
and cyan lines are simulation results. The error bars represent standard deviation over 10 independent
simulations. In the following panels, error bars are trial variability over 10 simulations. Red and blue lines
are analytical results. (C) Analytically evaluated coefficient of variation (CV) of output firing rate and
corresponding simulation results. For simulation results, the variance was evaluated over whole output
neurons from their firing rates for their selective external states. (D) Estimated maximum transfer
entropy for two coding strategies. Black horizontal line is the maximal information logep. (E)
Relationships between the performance and the degree of weight coding (κw) and connection coding (κc).
The upper left corner represents the performance of the connection-coding scheme (κc = 1, κw = 0), and
the lower right corner corresponds to that of the weight-coding scheme (κc = 0, κw = 1). (F) Estimated
log-likelihood ratio between the likelihood calculated in redundant representation and the likelihood
derived from optimal inference. Log-likelihood was estimated by

〈log
p(st=µ|{cij ,wij ,rtX,j})

p∗(st=µ|rtX)
〉i∈Ωµ ' 〈

∑
j (cijwij − qjµ) rtX,j〉i∈Ωµ . The graph was calculated for combined

representations of weight coding and connection coding (i.e., κ = κw = κc).

So which strategy gives a better representation? We evaluated the accuracy of the external state 67

estimation using a bootstrap method (see Materials and methods). Under intermediate connectivity, 68

both strategies showed reasonably good performance (as in Fig 1B bottom). Intriguingly, in sparse cases, 69

connectivity coding outperformed weight coding, despite its binary representation (Fig 2B cyan/orange 70

lines). The analytical results confirmed this tendency (Fig 2B red/blue lines) and indicated that the firing 71

rates of output neurons selective for the given external state show less variability in connectivity coding 72

than in weight coding, enabling more reliable information transmission (Fig 2C). To further understand 73
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this phenomenon, we evaluated the maximum transfer entropy of the feed forward connections: 74

TE = 〈H(st)−H(st|rtx, C)〉t. Because of limited connectivity, each output neuron obtained information 75

only from the connected input neurons. Thus, the transfer entropy was typically lower under sparse than 76

under dense connections in both strategies (Fig 2D). However, for the connectivity-coding scheme, each 77

output neuron obtained information from relevant input neurons, suppressing the reduction in transfer 78

entropy (orange line in Fig 2D). Therefore, in the given inference model, the connection structure is 79

helpful for improving performance when the structure increases the transfer entropy of the connections. 80

In the brain, synaptic connectivity and weights often have some redundancy. For example, the EPSP 81

size of a connection in a clustered network is typically larger than the average EPSP size [6] [26]. This 82

positive correlation between connectivity and weight indicates redundancy in the neural representation, 83

and a similar property is expected to hold for interlayer connections [27]. Thus, we next considered the 84

function of this redundancy. To this end, we mixed weight coding and connectivity coding as 85

Pr[cij = 1] = ρµj and wij = wµj =
qjµ

γ[κw q̄+(1−κw)qjµ] , where ρµj = min (γ [κcqjµ + (1− κc)q̄] , 1), and 86

κw and κc are the degrees of weight and connectivity coding, respectively (0 ≤ κw, κc ≤ 1). Note that 87

(κw, κc) = (1, 0) corresponds to the weight coding, whereas (κw, κc) = (0, 1) corresponds to connectivity 88

coding. In these representations, the performance improved by combining the two schemes (Fig 2E), 89

even if the representation was redundant (i.e., κw + κc > 1.0). The log-likelihood ratio with an optimal 90

estimation became higher under a redundant representation (i.e., κw = κc > 0.5) for both correct 91

(st = µ) and incorrect (st 6= µ) responses (Fig 2F; calculated for κw = κc = κ) because output neurons 92

became overconfident on its decision. Nevertheless, as the amplitude of lateral inhibition became 93

stronger, overall redundant representation was not harmful. 94

Connection structure enables rapid learning 95

In the last section, we showed that in a sparsely connected network, non-random connection structure 96

could be beneficial for computation. But is there any benefit to having a connection structure in a dense 97

network? The results in the previous section indicated that when connectivity was sufficiently dense 98

(ρ > 0.4 in the simulation), both performance and the estimated transfer entropy saturated under an 99

appropriate synaptic weight configuration, even if the connectivity was random. Thus, to consider the 100

potential benefits of non-random connection structures, we next implemented synaptic weight learning in 101

our model while fixing the connectivity. Synaptic weights should minimize KL-divergence between the true 102

input distribution and the estimated input distribution to represent the internal model [28] [29]. Thus, by 103
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considering stochastic gradient descending, synaptic weight change ∆wij = wt+1
ij − wtij is given as: 104

∆wij = (ηx/γ)
(
rtY,j

[
rtX,j − σ2

xρ̄wij
]

+ bh
[
roY /N − rtY,i

])
. (2)

The first Hebbian term is derived from the gradient descending, and the second term is the homeostatic 105

term heuristically added to constrain the average firing rates of output neurons [30] (see Materials and 106

methods). We first performed this unsupervised synaptic weight learning on a randomly connected 107

network. When the connectivity was moderately dense, the network successfully acquired a suitable 108

representation (Fig 3A), and the model error (Materials and methods) eventually converged (Fig 3B). 109

Especially under a sufficient level of homeostatic plasticity (Fig 3C), the average firing rate showed a 110

narrow unimodal distribution (Fig 3D top), and most of the output neurons acquired selectivity for one 111

of external states (Fig 3D bottom). However, when a part of the true model was given as the connection 112

structure with ρµj = min (γ [λqjµ + (1− λ)q̄] , 1) , at larger λ, the initial performance became higher 113

and the convergence was faster (Fig 3E, Fig 3F; λ = 0 corresponds to the model with random 114

connectivity). Note that the low correlation between the external model and the connection structure 115

(λ ∼ 0.4) was sufficient to observe this effect. This result suggests that an adequate connection structure 116

can induce fast learning if the structure is correlated with the external model. 117

Dual Hebbian learning rule enables efficient information transmission 118

So far, we have revealed that in both sparse and dense networks, non-random connection structures can 119

be beneficial for computation or at least for learning. However, in the previous sections, a specific 120

connection structure was given a priori, although structures in local neural circuits are expected to be 121

obtained with wiring plasticity through the elimination and creation of spines. Thus, we next investigated 122

the underlying rewiring rules that can induce beneficial connection structures. To this end, for each 123

combination (i, j) of presynaptic neuron j and postsynaptic neuron i, we introduced a variable ρij , which 124

represents the connection probability. The biological correspondence of this variable is discussed below. If 125

we randomly create a synaptic connection between neuron (i, j) with probability ρij/τc and eliminate it 126

with probability (1− ρij)/τc, on average there is a connection between neuron (i, j) with probability ρij , 127

when the maximum number of synaptic connections is bounded by 1. This provides a wiring plasticity 128

rule for a given ρij , but how should we choose ρij? Because synaptic connection structure should be 129

correlated with the external model, by considering stochastic gradient descendent by ρij on 130

KL-divergence between the true input firing rate distributions and the estimated distribution, the learning 131

submitted to bioRxiv 7/32

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2015. ; https://doi.org/10.1101/024406doi: bioRxiv preprint 

https://doi.org/10.1101/024406
http://creativecommons.org/licenses/by/4.0/


Figure 3. Synaptic weight learning on random or non-random connection structures. (A) An example of
output neuron activity before (top) and after (bottom) synaptic weight learning at connectivity ρ = 0.4.
(B) Model error decreases with synaptic weight learning regardless of connectivity. (C) Selectivity and
accuracy of estimation at various strengths of homeostatic plasticity at ρ = 0.4. (D) Histogram of
average firing rates of output neurons (top), and selectivity of each neuron. Selectivity was defined as for
in the simulation depicted in A. (E) Relationship between learning curve and connection structure at
connectivity ρ = 0.4 and the strength of homeostatic plasticity bh = 1.0. The parameter λ represents the
similarity between the connection structure and the external model. (F) Model error calculated from
synaptic weights for the simulation depicted in E.

rule of ρ is given as 132

∆ρij = ηρr
t
Y,j

[
rtX,j − σ2

xρijwo
]
. (3)

Remarkably, although this rule does not maximize the transfer entropy of the connections, the directions 133

of stochastic gradients of two objective functions are on average close to one another; therefore, the 134

above stated rule does not reduce the transfer entropy of the connection on average (see Materials and 135

methods). Fig 4A shows the typical behavior of ρij and wij under this dual Hebbian rule defined by 136

equations (2) and (3). When the connection probability is low, a connection between two neurons is rare, 137

and, even when a spine is created due to probabilistic creation, the spine is rapidly eliminated. In the 138

moderate connection probability, spine creation is more frequent, and the created spine survives longer. 139

When the connection probability is high enough, a connection is nearly always formed, and the synaptic 140

weight of the connection is large because synaptic weight dynamics also follow a similar Hebbian rule. 141

We implemented the dual Hebbian rule in our model and compared the performance of the model 142

with that of synaptic weight plasticity on a fixed random synaptic connection. Because spine creation and 143
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Figure 4. Dual Hebbian learning for synaptic weights and connections. (A) Examples of spine creation
and elimination. In all three panels, green lines show synaptic weights, and blue lines are connection
probability. When there is not a synaptic connection between two neurons, the synaptic weight becomes
zero, but the connection probability can take a non-zero value. Simulation was calculated at ρ = 0.48,
ηρ = 0.001, and τc = 105. (B) Change in connectivity due to synaptic elimination and creation. Number
of spines eliminated (red) and created (green) per unit time was balanced (top). As a result, connectivity
did not appreciably change due to rewiring (bottom). Black lines in the bottom graph are the mean
connectivity at γ = 0.1 and γ = 0.101 in the model without rewiring. (C,D) Accuracy of estimation (C)
and the estimated maximum transfer entropy (D) for the model with/without wiring plasticity. For the
dual Hebbian model, the sparseness parameter was set as γ = 0.1, whereas γ = 0.101 was used for the
weight plasticity model to perform comparisons at the same connectivity (see B). (E) Synaptic weight
matrices before (left) and after (right) learning. Both X-neurons (input neuron) and Y-neurons (output
neurons) were sorted based on their preferred external states. (F) Accuracy of estimation with various
timescales for rewiring τc. Note that the simulation was performed only for 5× 106 time steps, and the
performance did not converge for the model with a longer timescale. (G,H) Comparison of the
performance (G) and the maximum estimated transfer entropy (H) between the dual Hebbian model and
the model implemented with synaptic plasticity only at various degrees of connectivity. Horizontal line in
H represents the total information loge p.

submitted to bioRxiv 9/32

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2015. ; https://doi.org/10.1101/024406doi: bioRxiv preprint 

https://doi.org/10.1101/024406
http://creativecommons.org/licenses/by/4.0/


elimination are naturally balanced in the proposed rule (Fig 4B top), the total number of synaptic 144

connections was nearly unchanged throughout the learning process (Fig 4B bottom). As expected, the 145

dual Hebbian rule yielded better performance (Fig 4C) and higher estimated transfer entropy than the 146

corresponding weight plasticity only model (Fig 4D). This improvement was only observed when the 147

frequency of rewiring was in an intermediate range (Fig 4F). When rewiring was too slow, the model 148

showed essentially the same behavior as that in the weight plasticity only model, whereas excessively 149

frequent probabilistic rewiring disturbed the connection structure. Although a direct comparison with 150

experimental results is difficult, the optimal rewiring timescale occurred within hours to days, under the 151

assumption that firing rate dynamics (equation (1)) are updated every 10-100 ms. Initially, both 152

connectivity and weights were random (Fig 4E left), but after the learning process, the diagonal 153

components of the weight matrix developed relatively larger synaptic weights, and, at the same time, 154

connectivity was denser than that for the off-diagonal components (Fig 4E right). Thus, through dual 155

Hebbian learning, a network can indeed acquire a connection structure that enables efficient information 156

transmission between two layers; as a result, the performance increases when the connectivity is 157

moderately sparse (Fig 4G,H). Although the performance was slightly worse than a fully-connected 158

network, synaptic transmission consumes a large amount of energy [31], and synaptic connection is a 159

major source of noise [32]; therefore, it is beneficial to achieve a similar level of performance using a 160

network with fewer connections. 161

Connection structure can acquire constant components of stimuli and enable 162

rapid learning 163

We have shown that the dual Hebbian learning rule helps computation in a sparsely connected network. 164

But what happens in densely connected networks? To consider this issue, we extended the previous static 165

external model to a dynamic one, in which at every interval T2, response probabilities of input neurons 166

partly change. If we define the constant component as θconst and the variable component as θvar, then 167

the total model becomes θjν = 1
Z

[
κmθ

const
jν + (1− κm)θvarjν

]
, where the normalization term is given as 168

1
MZ2

∑M
j=1

[
κmθ

const
jµ + (1− κm)θvarjµ

]2
= (roX)2 (Fig 5A). In this case, when the learning was performed 169

only with synaptic weights based on fixed random connections, although the performance rapidly 170

improved, every time a part of the model changed, the performance dropped dramatically and only 171

gradually returned to a higher level (cyan line in Fig 5B). By contrast, under the dual Hebbian learning 172

rule, the performance immediately after the model shift (i.e., the performance at the trough of the 173
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oscillation) gradually increased, and convergence became faster (Fig 5B,C), although the total 174

connectivity stayed nearly the same (Fig 5D). After learning, the synaptic connection structure showed a 175

higher correlation with the constant component than with the variable component (Fig 5E; see Materials 176

and methods). By contrast, at every session, synaptic weight structure learned the variable component 177

better than it learned the constant component (Fig 5F). The timescale for synaptic rewiring needed to 178

be long enough to be comparable with the timescale of the external variability T2 to capture the constant 179

component. Otherwise, connectivity was also strongly modulated by the variable component of the 180

external model (Fig 5G), and unable to provide the expectation. After sufficient learning, the synaptic 181

weight w and the corresponding connection probability ρ roughly followed a linear relationship (Fig 5H). 182

Remarkably, some synapses developed connection probability ρ = 1, meaning that these synapses were 183

almost permanently stable because the elimination probability (1− ρ)/τc became nearly zero. 184

Semi-dual Hebbian learning rule explains experimentally observed spine 185

dynamics 186

The results to this point have revealed the functional advantages of dual Hebbian learning. However, we 187

do not yet know whether the brain really uses such a dual learning rule. Although the dual Hebbian rule 188

appears theoretically preferable, the effects of presynaptic and postsynaptic activity on spine creation and 189

elimination remain unclear [15] [33]. Thus we modified the rule such that spine dynamics do not directly 190

depend on neural activities, and demonstrated that the model well replicates experimentally observed 191

spine dynamics and the resultant animal behavior. Under the dual Hebbian rule, both synaptic weight 192

and connection probability follow similar Hebbian-type plasticity rules (Equations (2) and (3)). Therefore, 193

even if we assume that the change in the connection probability is given as a function of synaptic weight, 194

the rule should still give a good approximation. Thus we defined the semi-dual Hebbian learning rule as 195

ρtij =

 ρt−1
ij + ηρ

[
γ2wij − ρt−1

ij

]
. (if cij = 1)

γ2wo (if cij = 0)
(4)

The upper equation means that if there is a connection between two neurons, the change in connection 196

probability solely depends on its synaptic weight. Previous experimental results suggest that a small spine 197

is more likely to be eliminated [7] [33], and spine size often increases or decreases in response to LTP or 198

LTD, respectively, with a certain delay [34] [35]. Thus we can naturally assume that the connection 199

probability ρ is proportional to spine size. In the absence of a synaptic connection (i.e., cij = 0), we 200
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Figure 5. Dual learning under a dynamic environment. (A) Examples of input neuron responses. Blue
lines represent the constant components θconst, green lines show the variable components θvar, and
magenta lines are the total external models θ calculated from the normalized sum. (B) Learning curves
for the model with or without wiring plasticity, when the variable components change every 105 time
steps. (C) Accuracy of estimation for various ratios of constant components. Early phase performance
was calculated from the activity within 10,000 steps after the variable component shift, and the late
phase performance was calculated from the activity within 10,000 steps before the shift. As in B, orange
lines represent the dual Hebbian model, and cyan lines are for the model with weight plasticity only. (D)
Trajectories of connectivity change. Connectivity tends to increase slightly during learning. Dotted lines
are mean connectivity at (κm, γ) = (0.0, 0.595), (0.2, 0.625), (0.4, 0.64), (0.5, 0.64), (0.6, 0.635), and
(0.8, 0.620). In C, these parameters were used for the synaptic plasticity only model, whereas γ is fixed
at γ = 0.6 for the dual Hebbian model. (E,F) Model error calculated from connectivity (E) and synaptic
weights (F). Note that the timescale of E is the duration in which the variable component is constant,
not the entire simulation. (G) Model error calculated from connectivity for various rewiring timescales τc.
For a large τc, the learning process does not converge during the simulation. (H) Relationship between
synaptic weight w and connection probability ρ at the end of learning. When the external model is stable,
w and ρ have a more linear relationship than that for the variable case.
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assume that the connection probability is fixed at a constant value γ2wo, regardless of the firing rates of 201

presynaptic and postsynaptic neurons; thus spine creation is totally random. We first applied this rule for 202

the task in the previous section. Although the rule performed poorly compared with the original dual 203

Hebbian rule due to the lack of activity dependence in spine creation, the rule still outperformed the 204

synaptic weight only model in the early phase of the model shift (Fig 6A). For a static external model, 205

the dynamics of connection probability well mimicked the experimentally observed spine dynamics [7] [33] 206

(Fig 6B-E). 207

Figure 6. Spine dynamics of the semi-dual Hebbian model. (A) Comparison of performances among the
model without wiring plasticity (cyan), the approximated model (purple), and the dual Hebbian model
(orange). (B) Relative change of connection probability within 105 time steps. If the original connection
probability is low, the relative change after 105 time steps has a tendency to be positive, whereas spines
with a high connection probability are more likely to show negative change. The black line at the bottom
represents eliminated spines (i.e., relative change = -1). (C) Synaptic weight distribution (top),
connection probability distribution (middle), and non-bounded connection probability distribution
(bottom). Histograms were scaled by 1/(7× 105) for normalization. In the bottom panel, for connections
with ρ > 1, non-bounded values were defined by ρest = wγ2. See Materials and Methods for details of
the analytical evaluation. (D, E) Relationships between spine age and the mean connection probability
(D) and the 5-day survival rate (E). As expected from the experimental results, survival rate is positively
correlated with spine age.

We next examined the performance of the model in motor learning tasks. Appropriate motor 208

commands are expected to be inferred in the motor cortex based on inputs from pre-motor 209

regions [36] [37]. In addition, the connection from layer 2/3 to layer 5 is considered a major pathway in 210

motor learning [38]. Thus we hypothesized that the input and output layers of our model roughly 211

correspond to layers 2/3 and 5 of the motor cortex. We first studied the influence of training on spine 212
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survival [19] (Fig 7A). Below, to compare with experimental results, we defined 105 time steps as one 213

day, and the training and control were defined as two independent external models θctrl and θtrain. In both 214

training and control cases, newly created spines were less stable than pre-existing spines (solid lines vs. 215

dotted lines in Fig 7B), because older spines tended to have larger connection probability (Fig 6D). By 216

continuous training, pre-existing spines became less stable than those in the control case, while new 217

spines became more stable compared with those in the control case (red lines vs. lime lines in Fig 7B). 218

The 5-day survival rate of a spine was higher for spines created within a couple of days from the 219

beginning of training compared with that of the control, whereas the survival rate converged to the 220

control level after continuous training (Fig 7C). We next considered the relationship between spine 221

dynamics and task performance [18]. For this purpose, we compared task performance at the beginning 222

of the test period among simulations with various training lengths (Fig 7D). Here, we assumed that 223

spine elimination was enhanced during continuous training, as is observed in experiments [18] [19]. The 224

performance was positively correlated with both the survival rate at day 7 for new spines formed during 225

the first 2 days and the elimination rate of existing spines (left and right panels of Fig 7E). By contrast, 226

the performance was independent from the total ratio of newly formed spines from day 0 to 6 (middle 227

panel of Fig 7E). Without the assumption of enhanced elimination, total new spines were also positively 228

correlated with the performance (S2 Fig B). These results demonstrate that complex spine dynamics are 229

well described by the semi-dual Hebbian rule, suggesting that the brain uses a dual learning mechanism. 230

Discussion 231

The results of our study propose the following answers to the questions presented in the introduction. 232

When connections are sparsely organized, the synaptic connection structure should be organized such that 233

the estimated transfer entropy becomes larger than that of a randomly connected network to reduce 234

signal variability (Fig 2C) and improve performance, even in the presence of synaptic weight plasticity 235

(Fig 4C). In a densely connected network in which synaptic weight plasticity is sufficient in terms of 236

performance, the synaptic connection structure should encode the time-invariant components of the 237

external model to achieve rapid learning and robust performance (Fig 5B). In both cases, synaptic 238

connection structures can be achieved by a Hebbian-type learning rule in which the elimination and 239

creation of dendritic spines are probabilistically performed based on the activity of presynaptic and 240

postsynaptic neurons. Similar results are obtained even if spine creation is random, when spine 241

elimination is probabilistically performed based on the synaptic weight, and this approximated model is 242
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Figure 7. Influence of training on spine dynamics. (A) Schematic diagrams of the simulation protocols
for B,C, and examples of spine dynamics for pre-existing spines and new spines. (B) Spine survival rates
for control and training simulations. Dotted lines represent survival rates of pre-existing spines (spines
created before day 0 and existing on day 2), and solid lines are new spines created between day 0 and day
2. (C) The 5-day survival rate of spines created at different stages of learning. (D,E) Relationships
between creation and elimination of spines and task performance. Performance was calculated from the
activity within 2,000-7,000 time steps after the beginning of the test phase. In the simulation, the
synaptic elimination was increased fivefold from day 1 to the end of training.
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indeed sufficient to reproduce various experimental results (Figs 6-7). 243

Model evaluation 244

Spine dynamics depend on the age of the animal [16], the brain region [17], spine shape [39], and many 245

molecules play crucial roles [33] [40], making it difficult for any theoretical model to fully capture the 246

complexity. Nevertheless, our simple mathematical model replicated many key features [7] [18] [19] [33]. 247

For instance, small spines often show enlargement, while large spines are more likely to show shrinkage 248

(Fig 6B). Older spines tend to have a large connection probability, which is proportional to spine size 249

(Fig 6D), and they are more stable (Fig 6E). In addition, training enhances the stability of newly created 250

spines, whereas it degrades the stability of older spines (Fig 7B). 251

Experimental prediction 252

In the developmental stage, both axon guidance [41] and dendritic extension [42] show Hebbian-type 253

activity dependence, but in the adult cortex, both axons and dendrites seldom change their 254

structures [15]. Thus, although recent experimental results suggest some activity dependence for spine 255

creation [43] [44], it is still unclear to what extent spine creation depends on the activity of presynaptic 256

and postsynaptic neurons. Our model indicates that in terms of performance, spine creation should fully 257

depend on both presynaptic and postsynaptic activity (Fig 6A). However, it is possible to replicate a 258

wide range of experimental results on spine dynamics without assuming activity dependence of spine 259

creation (Fig 6, 7). 260

In addition, whether or not spine survival rate increases through training is controversial [18] [19]. Our 261

model implies that the stability of new spines highly depends on the similarity between new task and 262

control behavior (S2 Fig A). When the similarity is low, new spines would be expected to be more stable 263

than those in the control case, because the synaptic connection structure also would need to be 264

reorganized. By contrast, when the similarity is high, the stability of the new spines would be comparable 265

to that of the control. Our model additionally replicates the effect of varying training duration for spine 266

stability [18]. When training was rapidly terminated, newly formed spines became less stable than those 267

undergoing continuous training (S2 Fig C). 268
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Related studies 269

Several theoretical investigations have been conducted on phenomenological characteristics of 270

synaptogenesis [45] [46] [47]. Some studies further considered the functional implications [20] [22] or 271

optimality in regard to wiring cost [48], but the functional significance of synaptic plasticity and the 272

variability of EPSP size were not considered in those studies. 273

It was previously determined that learning with two variables on different timescales is beneficial under 274

a dynamic environment [49]. In our model, both fast and slow variables played important roles, whereas 275

in previous studies, only one variable was usually effective, depending on the context. In addition, our 276

model provides a biologically plausible interpretation of the learning process with two variables. 277

Materials and methods 278

Model 279

Model dynamics We first define the model and the learning rule for general exponential family, and 280

derive equations for two examples (Gaussian and Poisson). In the task, at every time t, one hidden state 281

st is sampled from prior distribution p(s). Neurons in the input layer show stochastic response rtX,j that 282

follows probabilistic distribution f(rX,j |st): 283

f(rX,j |µ) = exp [h(θjµ)g(rx,j)−A(θjµ) +B(rX,j)] . (5)

Neurons in output layer estimate the hidden variables from input neuron activity. Here we assume 284

maximum likelihood estimation for decision making unit, as the external state is a discrete variable. In this 285

framework, in order to detect the hidden signal, firing rate of neuron i should be proportional to posterior 286

rtY,i ∝ Pr
[
st = σi|rtX

]
. (6)

where σi represents the index of the hidden variable preferred by output neuron i [23] [24]. Due to Bayes 287

rule, estimation of st is given by, 288

log p(st = µ|rtX) =
M∑
j=1

log p(rtX,j |st = µ) + log p(st = µ)− log p(rtX)

=
M∑
j=1

[
qµjg(rtX,j)− α(qµj) +B(rtX,j)

]
+ log p(st = µ)− log p(rtX), (7)
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where qjµ ≡ h(θµj), α(qµj) ≡ A
(
h−1(qjµ)

)
. If we assume the uniformity of hidden states as 289

log p(st = µ) : const , and 1
M

∑M
j=1 α(qµj) = αo, the equation above becomes 290

log p(st = µ|rtX) =
M∑
j=1

[
qµjg(rtX,j) +B(rtX,j)

]
− log p(rtX) + const.

Let us assume that, at every time t, firing rate of output neurons follow, 291

rtY,i = roY exp

 M∑
j=1

cij
(
wijg(rtX,j)− hw

)
− Itinh

 , (8)

where, 292

Itinh ≡ log

 N∑
i=1

exp

 M∑
j=1

cij
[
wijg(rtX,j)− hw

] , hw = 〈qjµ〉/γ

If connection is all-to-all, wij = qjµ gives optimal inference, because 293

rtY,i
roY

=
exp

[∑
j qjµg(rtX,j)

]
∑
ν exp

[∑
j qjνg(rtX,j)

] = p(st = µ|rtX) (9)

Note that hw is not necessary to achieve optimal inference, however, under a sparse connection, hw is 294

important for reducing the effect of connection variability. In this formalization, even in non-all-to-all 295

network, if the sparseness of connectivity stays in reasonable range, near-optimal inference can be 296

performed for arbitrary feedforward connectivity by adjusting synaptic weight to wij = wµj ≡ qjµ/ρµj 297

where ρµj = 1
|Ωµ|

∑
i∈Ωµ

cij . 298

Synaptic weight learning To perform maximum likelihood estimation from output neuron activity, 299

synaptic weight matrix between input neurons and output neurons should provide a reverse model of input 300

neuron activity. If the reverse model is faithful, KL-divergence between the true input and the estimated 301

distributions DKL [p∗(rtX)||p(rtX |C,W )] would be minimized [28] [29]. Therefore, synaptic weights 302
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learning can be performed by argminW DKL [p∗(rtX)||p(rtX |C,W )]. p(rtX |C,W ) is approximated as 303

p(rtX |C,W ) ∝
∑
µ

p(rtX |st = µ,C,W )p(st = µ|C,W )

=
∑
µ

p(st = µ|C,W ) exp

∑
j

(
h(θC,Wj,µ )g(rtX,j)−A(θC,Wj,µ ) +B(rtX,j)

)
'

∑
µ

p(st = µ) exp

∑
j

(
qC,Wjµ g(rtX,j)− α(qC,Wjµ ) +B(rtX,j)

) . (10)

θC,Wj,µ in the second line is the average response estimated from connectivity matrix C, and weight matrix 304

W . In the last equation, qC,Wjµ is substituted for h(θC,Wij ). If we approximate the estimated parameter 305

qC,Wjµ with qC,Wjµ ' ρowij , by using the average connectivity ρo, a synaptic weight plasticity rule is given 306

by stochastic gradient descending as 307

∆wij ∝ ∂ log p(rtX |C,W )

∂wij

= p(st = µ|rtX , C,W )ρo
(
g(rtX,j)− α′(ρowij)

)
' rtY,iρo

(
g(rtX,j)− α′(ρowij)

)
. (11)

As we were considering population representation, in which the total number of output neuron is 308

larger than the total number of external states, there is an redundancy in representation. To make use of 309

most of population, homeostatic constraint is necessary. For homeostatic plasticity, we set a constraint on 310

the output firing rate. By combining two terms, synaptic weight plasticity rule is given as 311

∆wij =
ηX
γ

(
rtY,i

[
g(rtX,j)− α′ (ρowij)

]
+ bh

[
roY /N − rtY,i

])
. (12)

By changing the strength of homeostatic plasticity bh, the network changes its behavior. The learning 312

rate is divided by γ, because the mean of w is proportional to 1
γ . Although, this learning rule is 313

unsupervised, each output neuron naturally selects an external state in self-organisation manner. 314

Synaptic connection learning Wiring plasticity of synaptic connection can be given in a similar 315

manner. As shown in Fig 3E, if the synaptic connection structure of network is correlated with the 316

external model, the learning performance gets better. Therefore, by considering 317

argminρDKL [p∗(rtX)||p(rtX |ρ,W )], the update rule of connection probability is given as 318

∆ρij ∝ rtY,iwo
[
g(rtX,j)− α′(ρijwo)

]
. (13)
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Here, we approximated wij with its average value wo. In this implementation, if synaptic weight is also 319

plastic, convergence of DKL is no longer guaranteed. However, as shown in Fig 2E, redundant 320

representation yields better performance, thus this approximation is reasonable. To keep the detailed 321

balance of connection probability, creation probability cp(ρ) and elimination probability ep(ρ) need to 322

satisfy 323

(1− ρ)cp(ρ) = ρep(ρ)

The simplest functions that satisfy above equation is cp(ρ) ≡ ρ/τc, ep(ρ) ≡ (1− ρ)/τc. In the simulation, 324

we implemented this rule by changing cij from 1 to 0 with probability ≡ (1− ρ)/τc for every connection 325

with cij = 1, and shift cij from 0 to 1 with probability ρ/τc for non-existing connection (cij = 0) at every 326

time step. 327

Dual Hebbian rule and estimated transfer entropy The results in the main texts suggest that 328

non-random synaptic connection structure can be beneficial either when that increases estimated transfer 329

entropy or is correlated with the structure of the external model. To derive dual Hebbian rule, we used 330

the latter property, yet in the simulation, estimated transfer entropy also increased by the dual Hebbian 331

rule. Here, we consider relationship of two objective functions. Estimation of the external state from the 332

sampled inputs is approximated as 333

〈p(st = µ)|{cijrtX,j}〉i∈Ωµ '
1

|Ωµ|
∑
i∈Ωµ

p(st = µ) exp
(∑

j ρij
[
qµjg(rtX,j)− α(qµj) +B(rtX,j)

])
∑
ν p(s

t = ν) exp
(∑

j cij

[
qνjg(rtX,j)− α(qνj) +B(rtX,j)

])
(14)

Therefore, by considering stochastic gradient descending, an update rule of ρij is given as 334

∆ρij ∝
(
1 + log rtY,i/r

o
Y

)
rtY,i

[
g(rtX,j)− α(qµj)/qµj +B(rtX,j)/qµj

]
(15)

If we compare this equation with the equation for dual Hebbian rule, both of them are monotonically 335

increasing function of rtY,i and have the same dependence on g(rtX,j) although normalization terms are 336

different. Thus, under an adequate normalization, the inner product of change direction is on average 337

positive. Therefore, although dual Hebbian learning rule does not maximize the estimated maximum 338

transfer entropy, the rule rarely diminish it. 339

Gaussian model We constructed mean response probabilities {θjµ}µ=1,...,p
j=1,...,M by following 2 steps. First, 340

non-normalized response probabilities {θ̃jµ}µ=1,...,p
j=1,...,M were chosen from a truncated normal distribution 341
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N(µM , σM ) defined on [0,∞). Second, we defined {θjµ}µ=1,...,p
j=1,...,M by θjµ = 1

Zµ
θ̃jµ, where 342

Zµ =
roX√∑M

j=1 θ̃jµ/M
. When the noise follows a Gaussian distribution, the response functions in equation 343

(5) are given as 344

h(θ) =
θ

σ2
x

, g(r) = r, A(θ) =
θ2

2σ2
x

+ log(
√

2πσx), B(r) = − r2

2σ2
x

. (16)

Because h−1(q) = σ2
xq, α is given as α(q) ≡ A

(
h−1(q)

)
=

σ2
x

2 q
2 + log(

√
2πσx). By substituting above 345

values into the original equations, the neural dynamics is given as 346

rtY,i = roY exp

 M∑
j=1

cij
(
wijr

t
X,j − wo

)
− Itinh

 , (17)

Similarly, dual Hebbian rule becomes 347

∆wij =
ηX
γ

(
rtY,i

[
rtX,j − σ2

Xρowij
]

+ bh
[
roY /N − rtY,i

])
(18)

∆ρij = ηρr
t
Y,i

(
rtX,j − σ2

xρijwo
)
. (19)

Poisson model For Poisson model, we defined mean response probabilities {θjµ}µ=1,...,p
j=1,...,M from a 348

log-normal distribution instead of a normal distribution. Non-normalized values were sampled from a 349

truncated log-normal distribution logN(µpM , σ
p
M ) defined on (lpmin, l

p
max). Normalization was performed 350

as θjµ = 1
Zµ
θ̃jµ for {θ̃jµ}µ=1,...,p

j=1,...,M , where Zµ =
roXM∑
j θjµ

. Because the noise follows a Poisson distribution 351

p(r|θ) = exp [−q + r log q − log r!], the response functions are given as 352

h(θ) = log θ, g(r) = r, A(θ) = θ, B(r) = − log r! . (20)

As a result, α(q) is defined as α(q) ≡ A
(
h−1(q)

)
= eq. By substituting them to the original equations, 353

the neural dynamics also follows equation (17). If connection is all-to-all, by setting wij = log
θµj
θo

for 354

i ∈ Ωµ, optimal inference is achievable. Here, we normalized θµj by θo, which is defined as 355

θo = 1
2 minj,µ θµj , in order to keep synaptic weights in non-negative values. 356

Learning rules for synaptic weight and connection are given as 357

∆wij =
ηx
γ

(
rtY,i

[
rtX,j − θmin exp[ρowij ]

]
+ bh

[
roY /N − rtY,i

])
(21)

∆ρij = ηρr
t
Y,i

(
rtX,j − θmin exp(ρijwo)

)
. (22)
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Note that the first term of the synaptic weight learning rule coincides with a previously proposed optimal 358

learning rule for spiking neurons [29] [50]. In calculation of model error, we error was calculated as 359

d =
√

1
pM

∑
µ

∑
j

(
q̃jµ − q∗jµ

)2
, where estimated parameter {q̃} was given by q̃jµ =

〈q∗jµ〉qjµ∑
q

∑
j q̄jµ/(pM) . 360

Non-normalized estimator q̄jµ is calculated as q̄jµ = 1
〈cij〉|Ωµ|

∑
i∈Ωµ

cijwij . In S1 Fig F, estimation 361

from connectivity was calculated from q̄Cjµ = 1
〈cij〉|Ωµ|

∑
i∈Ωµ

cij , and similarly, estimation from weights 362

was calculated by q̄Wjµ = 1
|Ωµ|

∑
i∈Ωµ

cij

∑
i∈Ωµ

cijwij . 363

For parameters, we used µpM = 0.0, σpM = 1.0, lpmin = 0.2, lpmax = 20.0, wo = 1/γ, roX = 0.3, and 364

for other parameters, we used same values with the Gaussian model. 365

Analytical evaluation 366

Performance In Gaussian model, we can analytically evaluate the performance in two coding schemes. 367

As the dynamics of output neurons follows 368

rY,i = roY exp

∑
j

cij(wijr
t
X,j − wo)− Itinh

 ,
membrane potential variable ui, which is defined as 369

ui ≡
∑
j

cij(wijr
t
X,j − wo), (23)

determines firing rates of each neuron. Due to normalization 1
M

∑M
j=1 q

2
jµ = (roX)2, mean and variance 370

of {θjµ} are given as 371

µθ =
µMr

o
X√

µ2
M + σ2

x

, σ2
θ =

(σMr
o
X)

2

µ2
M + σ2

M

, (24)

where µM and σM are the mean and variance of the original non-normalized truncated Gaussian 372

distribution. Because both rX,j and θjµ approximately follow Gaussian distribution, ui is expected to 373

follow Gaussian. Therefore, by evaluating its mean and variance, we can characterize the distribution of 374

ui for a given external state [51]. 375

In weight coding In weight coding scheme, wij and cij are defined as 376

wij =
θjµ
ρσ2

x

, Pr [cij = 1] = ρ
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where ρ =
γ〈θjµ〉
σ2
x

. If st = µ, 377

〈ui〉 =

〈∑
j

1

σ2
x

(
θ2
jµ − 〈θjµ〉2

)〉
=
Mσ2

θ

σ2
x

. (25)

Similarly, the variance of ui is 378

〈(ui − 〈ui〉)2〉 =

〈∑
j

(cij − ρ)(wijθjµ − wo) +
∑
j

cijwij(r
t
X,j − θjµ)

2〉

=
1− ρ
ρσ4

x

〈∑
j

(
θ2
jµ − 〈θjµ〉2

)2〉
+

1

ρσ2
x

〈∑
j

θ2
jµ

〉

=
(1− ρ)Mσ2

θ

ρσ4
x

(4µ2
θ + 3σ2

θ) +
M

ρσ2
x

(µ2
θ + σ2

θ). (26)

If st 6= µ, as wij and rx,j are independent, 379

〈ui〉 = 0, 〈(ui − 〈ui〉)2〉 =
M

ρσ2
x

(µ2
θ + σ2

θ) (27)

In addition to that, due to feedforward connection, output neurons show noise correlation. If output 380

neuron i belongs to i ∈ Ωµ where st = µ, whereas l 6∈ Ωµ, the covariance between ui and ul satisfies 381

〈(ui − 〈ui〉)(ul − 〈ul〉)〉 =

〈
ρ2
∑
j

wijwlj(rX,j − θjµ)2

〉
=
Mµ2

θ

σ2
x

(28)

Therefore, approximately (ui, ul) follows a multivariable Gaussian distributions 382

 ui

ul

 = N


 Mσ2

θ

σ2
x

0

 ,

 (1−ρ)Mσ2
θ

ρσ4
x

(4µ2
θ + 3σ2

θ) + M
ρσ2
x

(µ2
θ + σ2

θ)
Mµ2

θ

σ2
x

Mµ2
θ

σ2
x

M
ρσ2
x

(µ2
θ + σ2

θ)




In maximum likelihood estimation, the estimation fails if a non-selective output neuron shows higher 383

firing rate than the selective neuron. Probability for such a event when there are two output neuron is 384

εw = Pr

∑
j

clj(wljr
t
X,j − wo) >

∑
j

cij(wijr
t
X,j − wo)|st = µ, i ∈ Ωµ, l 6∈ Ωµ

 . (29)

In the simulation, there are p− 1 distractors per one selective output neuron. Thus, approximately, 385

accuracy of estimation was evaluated by (1− εw)p−1. In Fig 2B, we numerically calculated this value for 386
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the analytical estimation. 387

In connectivity coding In connectivity coding, wij and cij are given as 388

wij =
1

γ
, Pr[cij = 1] = ρij , ρij =

γθjµ
σ2
x

. (30)

From a similar calculation done above, 389

 ui

ul

 = N


 Mσ2

θ

σ2
x

0

 ,

 Mµθ
γ +

Mσ2
θ

γσ4
x

[
µθσ

2
x − γ(µ2

θ + 3σ2
θ)
] Mµ2

θ

σ2
x

Mµ2
θ

σ2
x

Mµθ
γ


 .

If we compare the two coding schemes, mean and covariance are the same for two coding schemes, 390

and as γ satisfies γ =
σ2
xρ
µθ

, variance of non-selective output neuron are similar. The main difference is the 391

second term of signal variance. In the weight coding, signal variance is proportional to 1/ρ, on the other 392

hands, in the connectivity coding, the second term of signal variance is negative, and does not depend on 393

the connectivity. As a result, in the adequately sparse regime, firing rate variability of selective output 394

neuron become smaller in connectivity coding, and the estimation accuracy is better. In the sparse limit, 395

the first term of variance becomes dominant and both schemes do not work well, consequently, the 396

advantage for connectivity coding disappears. Coefficient of variation calculated for signal terms is indeed 397

smaller in connectivity coding scheme (blue and red lines in Fig 2C), and the same tendency is observed 398

in simulation (cyan and orange lines in Fig 2C). 399

Spine dynamics In the Gaussian model, because the response probability of input neurons 400

approximately follows a Gaussian distribution, at the equilibrium state, connection probabilities should 401

follow: 402

p(ρ) =


ρ

Z
√

2πσθγ
exp

(
− (ρ−γ)2

2σ2
θγ

2

)
if 0 ≤ ρ < 1

1
Z
√

2πσθγ

∫∞
1

exp
(
− (ρ′−γ)2

2σ2
θγ

2

)
dρ′ if ρ = 1

. (31)

If we ignore fluctuation of ρ caused by stochastic firing, life expectancy T of a spine with connection 403

probability ρ follows, 404

p(T |ρ) =
1− ρ
Z(ρ)τc

exp (T log [1− (1− ρ)/τc]) , (32)
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where Z(ρ) is a normalization factor. Thus, spine age distribution is given as, 405

p(d|ρ) =
∑
T

p(d|T )p(T |ρ) =
∑
T≥d

1

T
p(T |ρ). (33)

By Bayes rule, connection probability distribution ρ for a given spine age d is 406

p(ρ|d) =
p(d|ρ)p(ρ)∫
dρ′p(d|ρ′)p(ρ′)

. (34)

Fig 6D shows the mean connection probability for various spine ages. As seen in previous experimental 407

studies, older spines tend to have larger connection probability. In the evaluation of analytical results, we 408

used an approximation 409

p(T |ρ) ' 1− ρ
Z(ρ)τc

exp
(

(T/∆t) log [1− (1− ρ)/(τc/∆t)]
)
,

with ∆t = 103. Similarly, 5 days survival rate for various spine age d was calculated as, 410

p(5days survival|d) =

∫
dρ′p(5days survival|ρ′)p(ρ′|d) =

∫
dρ′ exp (5To log [1− (1− ρ′)/τc]) p(ρ′|d),

(35)

where To is time steps corresponding to one day. As expected, 5 days survival rate was higher for older 411

spines in both analytical calculation and simulation (Fig 6E). 412

Details of simulation 413

Model settings In the simulation, the external variable st was chosen from 10 discrete variables 414

(p = 10) with equal probability (Pr[st = q] = 1/p, for all q). The mean response probability θjµ was 415

given first by randomly chosen parameters {θ̃µ=0,...,p−1
j=1,...,M } from the truncated normal distribution 416

N(µM , σM ) in [0,∞) , and then normalized using θjµ = θ̃jµ/Zµ, where Zµ = roX/
√∑M

j=1 θ̃jµ/M . 417

Mean weight wo was defined as wo = roX/γ. The normalization factor hw was defined as hw = q̄/γ in 418

Figs 1-4, where q̄ = 1
Mp

∑
j

∑
µ θjµ/σ

2
x, and as hw = roX/γ in Figs 5-7, as the mean of θ depends on 419

κm. Average connectivity ρ̄ was calculated from the initial connection matrix of each simulation. In the 420

calculation of the dynamics, for the membrane parameter vi ≡
∑
j cij

(
wijr

t
X,j − hw

)
, a boundary 421

condition vi > maxl{vl − vd} was introduced for numerical convenience, where vd = −60. In addition, 422

synaptic weight w was bounded to a non-negative value (w > 0), and the connection probability was 423
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defined as ρ ∈ [0, 1]. For simulations with synaptic weight learning, initial weights were defined as 424

wij = (1 + σinitw ζ)/γ, where σinitw = 0.1, and ζ is a Gaussian random variable. Similarly, in the 425

simulation with structural plasticity, the initial condition for the synaptic connection matrix was defined 426

as Pr[cij = 1] = γ〈θjµ〉/σ2
x. In both the dual Hebbian rule and the semi-dual Hebbian rule, the synaptic 427

weight of a newly created spine was given as wij = (1 + σinitw ζ)wo, for a random Gaussian variable 428

ζ ← N(0, 1). In Fig 7, simulations were initiated at -20 days (i.e., 2× 106 steps before stimulus onset) 429

to ensure convergence for the control condition. For model parameters, µM = 1.0, σM = 1.0, σx = 1.0, 430

M = 200, N = 100, roX = 1.0, and roY = 1.0 were used, and for learning-related parameters, ηx = 0.01, 431

bh = 0.1, ηρ = 0.001, τc = 106, T2 = 105, and κm = 0.5 were used. In Figs 6 and 7, except Fig 6A, 432

ηρ = 0.0001, τc = 3× 105, and γ = 0.6 were used, unless otherwise stated. 433

Accuracy of estimation The accuracy was measured with the bootstrap method. By using data from 434

t− To ≤ t′ < t, the selectivity of output neurons was first decided. Ωµ was defined as a set of output 435

neurons that represents external state µ. Neuron i belongs to set Ωµ if i satisfies 436

µ = argmax
µ′

∑t
t′=t−To [s

t = µ′]tofr
t
Y,i∑t

t′=t−To [s
t = µ′]tof

, (36)

where operator [X]tof returns 1 if X is true; otherwise, it returns 0. By using this selectivity, based on 437

data from t <= t′ < t+ To, the accuracy was estimated as 438

1

To

t+To−1∑
t′=t

 1

|Ωst′ |
∑
i∈Ωst′

rt
′

Y,i > max
µ6=st′

1

|Ωµ|
∑
i∈Ωµ

rt
′

Y,i

 . (37)

In the simulation, To = 103 was used because this value is sufficiently slow compared with weight change 439

but sufficiently long to suppress variability. 440

Model error Using the same procedure, model error was estimated as 441

d =

√√√√ 1

pM

p∑
q=1

M∑
j=1

(θ̃jq − θjq)2, (38)

where θ̃jq represents the estimated parameter. θ̃jq was estimated by 442

θ̄jµ =
1

〈cij〉|Ωµ|
∑
i∈Ωµ

cijwij , θ̃jµ = rXo θ̄jµ/

√√√√ 1

M

M∑
j=1

θ̄2
jµ. (39)
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In Fig 5E, the estimation of the internal model from connectivity was calculated by 443

θ̄Cjµ =
1

〈cij〉|Ωµ|
∑
i∈Ωµ

cij . (40)

Similarly, the estimation from the synaptic weight was performed with 444

θ̄Wjµ =
1

|Ωµ|
∑
i∈Ωµ

cijwij/
∑
i∈Ωµ

cij . (41)

Transfer entropy Entropy reduction caused by partial information on input firing rates was evaluated 445

by transfer entropy: 446

TE = 〈H(st)−H(st|rtX , C)〉t, (42)

where 447

H(st|rtX , C) =

p∑
µ=1

p(st = sµ|rtX , C) log p(st = sµ|rtX , C) (43)

≈
p∑

µ=1

〈p
(
st = sµ|{cijrtX,j}

)
〉i∈Ωµ log〈p

(
st = sµ|{cijrtX,j}

)
〉i∈Ωµ ,

〈p
(
st = sµ|{cijrtX,j}

)
〉i∈Ωµ ≈ 1

|Ωµ|
∑
i∈Ωµ

p(st = sµ)
∏
cij=1

p(rtX |st = sµ)

=
1

|Ωµ|
∑
i∈Ωµ

p(st = sµ) exp
(∑M

j=1 cij
[
qµjg(rtX,j)− α(qµj) +B(rtX,j)

])
∑
ν p(s

t = sν) exp
(∑M

j=1 cij

[
qνjg(rtX,j)− α(qνj) +B(rtX,j)

]) .
Output group Ωµ was determined as described above. Here, the true model was used instead of the 448

estimated model to evaluate the maximum transfer entropy achieved by the network. 449

Code availability 450

C++ codes of the simulation program will be available at http://modeldb.yale.edu/181913. 451

submitted to bioRxiv 27/32

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2015. ; https://doi.org/10.1101/024406doi: bioRxiv preprint 

https://doi.org/10.1101/024406
http://creativecommons.org/licenses/by/4.0/


Supporting Information 452

Supplementary Figure 1. Results in Poisson model. (A) Relationship between the performance and
the degree of weight coding (κw) and connectivity coding (κc). (B) An example of output neuron
activity before (top) and after (bottom) synaptic weight learning at connectivity ρ = 0.25. (C)
Relationship between learning curve and connection structure when connectivity ρ = 0.5, and the
strength of homeostatic plasticity bh = 1.0. The parameter λ represents similarity between the
connection structure and the external model. (D) Synaptic weight matrices before (left) and after (right)
learning. both X-neurons and Y-neurons were sorted based on their preferred external states. (E)
Accuracy of estimation at various time scale of rewiring τc. (F) Model error calculated from connectivity
(left) and synaptic weights (right). (G) Comparison of performance among the model without wiring
plasticity (cyan), and dual Hebbian model(orange). Corresponding results in the Gaussian model are
described in Fig 2E, Fig 3A, Fig 3E, Fig 4E, Fig 4F, Fig 5E,F, Fig 6A, respectively.
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