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ABSTRACT 
 

Accurate knowledge on the core components of mutation rates is of vital importance to 

understand genome dynamics. By performing a single-genome and model-free analysis of 39894 
retrotransposon remnants, we reveal core, sequence-dependent, nucleotide substitution rates 

(germline) at each of the 3.2 billion positions of the human genome. Benefiting from the data 
made available in such detail, we show that a simulated genome generated by equilibrating a 

random DNA sequence solely using our rate constants, exhibits nucleotide organisation observed 

in the actual human genome, with or without repeat elements. This directly demonstrates the key 
role of the core nucleotide substitution rates in shaping the oligomeric composition of the human 

genome. We next generate the basal mutability profile of the human genome and show the 
depletion of the moieties with low basal mutability in the database of cancer mutations. 

 

INTRODUCTION 
 

The stability, dynamics and organisation of genomes are key factors that influence the molecular 

evolution of life1. Single-nucleotide substitutions occur an order of magnitude more frequently than 

common insertions/deletions2,3, and are major contributors to the sampling pathways by which a 

genome changes over the passage of time. A thorough understanding of the descriptors that govern 

single-nucleotide substitutions (mutations hereafter) is thus essential to comprehend genome dynamics 

and its connection to the underlying first principle processes. 
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For a given genomic position and i->j nucleotide substitution, the mutation rate, as expressed by the 

rate constant ri,j, can be presented as a single-base average value ri,j
sb and fluctuations contributed by 

short-range context (δri,j
sr), CpG-associated (δri,j

CpG), long-range (δri,j
lr), gene/functional (δri,j

gene), and 

specific (δri,j
spec) effects: 

 ri,j = ri,j
sb + δri,j

sr + δri,j
CpG + δri,j

lr + δri,j
gene + δri,j

spec      (1) 

The ri,j
sb term can be estimated through genomic averages for the individual i->j mutation rates, and is 

reported for the genomes of human4,5 and other species6-8. By investigating the aggregation patterns in 

substitution frequencies, it was shown that the ri,j variation is subjected to two distinct short-range (<10 

nt) and long-range (>1000 nt) effects9,10. In the equation above, the short-range effect is captured 

through the δri,j
sr term and describes the totality of the intrinsic properties and sequence-dependent 

interactions of DNA with overall mutagenic and reparation processes in a given organism11. The better-

studied mutation patterns at a CpG context12-14 are separated in the δri,j
CpG term, since besides having a 

specific short-range dyad context, CpG mutations also depend on a number of regional factors that alter 

the epigenetic targeting of the CpG sites10,15-18. Many relatively recent studies have shed light on the 

δri,j
lr variation caused by the regional effects that depend on a long-range sequence context through 

secondary mechanisms, such as recombination and GC-biased gene conversion1,4,19,20, transcription-

coupled biased genome repair21 and instability22, chromatin organisation23, replication-associated 

mutational bias24 and inhomogenous repair25, differential DNA mismatch repair26, non-allelic gene 

conversion27, and male mutation bias28. The term δri,j
gene captures the change in mutation rates in genes 

and other functional elements under strong selection bias and reflects observations such as the 

increased neutral substitution rates in exons29,30 and the possible reduction of the mutation rates in X-

chromosome31. δri,j
spec holds the highly specific increase or decrease in mutation rates governed by 

targeted mechanisms32. 

Herein, we obtain the core components (Eq. 2) of the spontaneous single-nucleotide substitution 

rates via the direct analysis of 39894 L1 mobile DNA remnants33 in the same, human, genome (a 

single-genome approach). 

 ri,j
core = ri,j

sb + δri,j
sr          (2) 

Our transposon exposed k (Trek) method provides the ri,j
core rates at single-nucleotide resolution in 

L1, where we demonstrate sufficient sequence variability to cover a wide-range of sequence contexts. 

We use this coverage to determine the core rate constants for all possible nucleotide substitutions (3 per 

position) at every single 3.2 billion position in the human genome. The Trek method reveals the ri,j
core 

variation in a model-free manner and at a level beyond accounting for only the two immediate 
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neighbouring nucleotides34. Furthermore, we make our dataset, holding the time-dependent rate 

constants for individual substitutions that account for up to 7-mer sequence context effect, publically 

available. Importantly, we demonstrate that ri,j
core values alone can generate a sequence, from first 

principles, starting from a random DNA sequence, whose key features reflect the oligomeric 

organisation of the actual human genome. Next, we calculate the core mutability profile of the human 

genome evaluating the basal predisposition to single-nucleotide substitutions and outline the decreased 

frequency of the stable sequence motifs among the sites linked to somatic cancer mutations. 

 

RESULTS AND DISCUSSION 

 

Revealing the core single-nucleotide substitution rates 

The repetitive occurrence of mobile DNA elements in different regions within the same genome33 

provides the opportunity to obtain the core ri,jcore mutation rate constants that account for the δri,jsr 

immediate effects of neighbouring nucleotides. After the initial inactivation at different time epochs35-

38, individual remnants of many transposon subfamilies within a genome have been subjected to largely 

the same overall mutagenic and proofreading conditions as the rest of the genome39, hence can also 

serve as markers of ri,jcore mutation rates applicable to genomic sites that share the immediate sequence-

context. For the purpose of this study, we have used the hominoid lineage of the L1 LINE 

retrotransposons, spanning 3.1 to 20.4 myr (million years) of age36. The constituent subfamilies of the 

lineage are L1PA5, L1PA4, L1PA3, L1PA2 and the most recent L1Hs. Their respective age and the 

number of insertions in the human genome are presented in Supplementary Table S1. The choice was 

made through the following reasoning. The L1 elements have a long (~6k nt) sequence without 

extended repeats like in the LTR elements33. This enables their robust mapping on a chosen template 

and provides essential local sequence variability around different nucleotide positions within L1 

elements. There are distinct L1 subfamilies that were active at different time epochs, with detailed 

molecular clock analyses available35-38 to reveal and, importantly, validate the age of each subfamily. 

They are well-represented and, unlike other classes of transposable elements, are uniformly scattered 

across mostly the intergenic regions of the human genome33,40,41. Unlike SINEs and LTRs, LINE sites 

show very low level of RNA polymerase enrichment, as a marker of transcriptional association, in 

normal tissues42. The selected most-recent subfamilies are sufficiently young36 a) to enable an 

unambiguous identification of the genomic coordinates of the borders for the remnants; b) to assume 

that each position in those elements would be unlikely to mutate multiple times over the studied period 
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of their existence as remnants in the human genome (see Methods); c) to attribute a time-invariance to 

the rates during the analysed period of mutation accumulation4,43,44. The young L1 subfamilies have 

most of their remnants coming from the genomic regions with G+C content close to the genomic 

average value40 (see Supplementary Fig. S1). Finally, many matching positions in our studied five L1 

representatives share the same consensus bases, hence, such positions are not polymorphic due to 

adaptive pressure and can serve as internal references for inferring the ri,jcore rates. 

 

 
Figure 1. Trek methodology of determining the core single-nucleotide substitution rate constants. (a) The Trek 
approach is applicable to a genome containing multiple remnants of retrotransposon subfamilies silenced at 
different time epochs. We can consider those subfamilies as mutation counters that had different resetting ages 
(b). The full consensus sequence of the most recent subfamily is taken as a reference (a). The remnants are then 
grouped by their age and fully mapped onto the reference sequence (b). For each position i in the reference 
sequence, the fractions of the four bases in all the time groups are calculated (c). The comparison of these 
fractions coming from individual base types across different time periods enables a linear model fitting, through 
which we can reveal the rates of the mutations for the substitutions into the b2, b3 and b4 bases from the 
consensus (b1) state of the given position (d). The steps c and d are repeated for all the positions in the reference 
sequence, producing single-nucleotide resolution core mutation rate constants with a sequence-context 
dependency as sampled in the reference sequence of the mobile element. To assure the high quality and 
neutrality of the retrieved mutation rate constants, we accounted for the sites in the reference sequence that had 
at least 700 mapped occurrences in each time group (b), with the same wild-type variant being always the 
prevalent one (more than 80%) in each subfamily (c) and producing a Pearson’s correlation coefficient of at least 
0.7 in the time-evolution plots (d). 
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The Trek methodology of obtaining ri,jcore rates, along with the considerations for filtering out the 

possible selection and non-neutral mutation sites, is presented in Fig. 1 with further details in Methods 

and Supplementary Fig. S2. The acquired data on the full set of position-specific mutation rates are 

presented in Fig. 2. 
 

 
Figure 2. Transposon exposed (Trek) ri,j

core substitution rate constants of the human genome. The boxplots are 
shown for each i->j substitution type inferred from the hominoid L1 elements spread across the human genome. 
Each point comes from a specific position in the L1 element, reflecting the mutation rate constant averaged 
across multiple occurrences of that specific position with the same sequence-context in multiple regions of the 
genome. The complementary i->j pairs are plotted in adjacency. The median values of the overall mutation rates 
in byr-1 (billion years) unit, averaged across the varying sequence-context within the L1 elements, are shown on 
the top. 
 

A total of 661 positions, at the 3’ side of the L1 elements used, passed our robustness checks (see 

Methods) and were thus employed to infer the corresponding ri,j
core values from the analysis of all the 

young L1 remnants in the human genome. We recorded the data in the Trek database that contains a set 

of well-defined ri,jcore constants (see below for the extent of sequence context coverage in the Trek 

database) capturing the influence of the unique arrangement of neighbouring nucleotides at those 

positions. Owing to the nature of the selected L1 elements, as discussed above, and the Trek procedure 

design (Fig. 1), we expect the absence of the δri,j
gene contribution, the elimination of δri,j

lr at the 

averaging stage (Fig. 1b) and the removal of the δri,j
CpG and δri,j

spec effects through our robustness 

checks embedded within the Trek procedure (see Fig. 1c,d and Methods). Therefore, our method 
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provides the ri,j
core = ri,j

sb + δri,j
sr core variation (Fig. 2) of the mutation rates at around the ri,j

sb genomic 

average values for each i->j base substitution. If the above is correct and our method indeed results in 

ri,j
core values, further averaging of the core ri,j

sb + δri,j
sr rates (median values shown in Fig. 2) should give 

us the single-base ri,j
sb genomic average substitution rates, cancelling out the remaining δri,j

sr 

contribution. In fact, the comparisons of our Trek-derived ri,j
sb with two published datasets that report 

on the genomic average ri,j
sb rates4,5 show an excellent correlation (Supplementary Fig. S3, Pearson’s 

R>0.99) confirming the absence of any bias and unusual mutation rates in the time-accumulated 

substitutions at the L1 sites that pass the Trek procedure. The genome simulation, described later in this 

work, provides an additional validation for our rate constants. The ri,j
core values (Eq. 1 and 2) for all 

possible i->j substitutions inferred for each of the eligible individual L1 positions are thus assumed to 

be common for any other sites in the genome that share the short-range sequence context. 

 

The influence range of neighbour nucleotides 

To apply the ri,jcore constants to the human genome, we first established the optimal length of a DNA 

sequence (k-mer, where k is the length of the sequence) capturing most of the influences that modulate 

mutation rates of the base at the centre. For this, we evaluated the power of the knowledge of the 

neighbouring arrangement of nucleotides in predicting the ri,jcore constants for each of the twelve i->j 

substitution types, where i and j are the four DNA bases. We built test predictors for individual 

substitution types via a tree-based machine learning technique, while using varying lengths of 

sequences centred at the positions where the rate constants were to be predicted (see Methods). The 

aim of the machine learning procedure was to establish the optimal sequence length to minimise the 

error in the predicted rate constants (Supplementary Fig. S4 and S5). In agreement with prior 

evidence9,10,45,46, but now obtained for each individual i->j substitution type from Trek data, the optimal 

window was found to be 5-7-nt (both 5- and 7-nt resulting in comparable results for many substitution 

types) and was subsequently used as guidance for the direct mapping of the Trek rate constants from 

the L1 sequence onto any given human nuclear DNA sequence for the ri,j
core assignment. 

 

Mapping the Trek ri,j
core data on any DNA sequence 

The upper 7-nt size window for determining the single-nucleotide substitution rate constants at the 

central base accounts for 3 upstream and 3 downstream bases relative to each nucleotide position. Our 

substitution positions that pass the Trek criteria capture 636 unique 7-mers out of the possible 16384 

(47). Therefore, for many loci in the human genome we need to use a smaller window (< 7-mer) as a 
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match criterion to assign to one of the Trek rate constant sets. By trimming the size of the k-mer to 5, 

hence accounting for 2 upstream and 2 downstream bases, we cover 404 unique sequences out of 

possible 1024 (45). Further reduction of the size to 3, allows having data for 56 unique triads out of 64 

(leaving out only the CpG containing triads, see below). For the single-base case (1-mers), where we 

average out all short-range neighbour effects and longer-range sequence variability, we obtain data for 

all the 4 bases and 4×3 possible substitutions as shown in Fig. 2 (the median values on the top of the 

figure). The coverage of the longer k-mers is however increased nearly twice when we account for the 

strand-symmetry, as described in Methods. Please note, that for each unique k-mer we obtained 3 ri,jcore 

constants via the described analysis of a large pool of L1 remnants from different genomic loci. 

With the above considerations, we created a program (Trek mapper) to produce the full range of 

ri,j
core core mutation rate constants for any sequence, accounting for the context information for up to the 

7-mer window and pulling the matching core data from the Trek database. Should a representative 

match be absent with the full 7-nt long sequence, the window around the given position in a query 

sequence is shortened into the longest variant possible (out of the 5-nt, 3-nt or 1-nt lengths) with a full 

match in the Trek database (see Methods and Supplementary Fig. S6). In this way, for all the possible 

16384 7-mers, our Trek database reports 49152 rate constants (3×16384), of which 3168 (6.4%) 

account for the 7-mer context, 23232 (47.3%) account for the nested 5-mer context, 17120 (34.8%) for 

3-mer and only 5632 (11.5%, CpG containing sequences) constants do not account for any context 

effect on the central base, since we eliminate those by design, due to the δri,j
CpG contributions. We thus 

produce an unprecedented dataset that reports, and makes publically available (Supplementary Data 2 

and Data 3), the direct, ri,jcore rates for all individual i->j substitutions accounting for the context effects 

beyond the 64 triads34. If we consider only the unique values in the Trek database, we report 2078 

unique rate constants (taking into account different extent of averaging, where multiple entries are 

present for the different context ranges), of which 1208 (58.1%), 782 (37.6%), 85 (4.1%) and 3 (0.1%) 

entries account for 7-, 5-, 3- and 1-mer contexts respectively. The 1-mer averaged data were used for 

the k-mers in that contain either C or G bases of a CpG dyad at the centre, to assign the overall 

mutation rate constants by the Trek mapper. This was done since none of the CpG sites in the L1 

elements passed our robustness checks, due to the targeted epigenetic control (δri,j
CpG) of the single-

nucleotide substitutions there12-14, which were also non-uniform with time (active targeting, δri,j
spec, 

while in the viable epoch for each L1 subfamily) and were present to silence the active 

retrotransposons. 
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Our current data are for the human nuclear genome. However, the general approach for obtaining 

ri,j
core constants is applicable to any organism where the genome contains a set of well-characterised and 

related young mobile elements silenced at different time epochs and without notable context bias. 

 

The origin of the oligomeric landscape in the human genome 

The full set of sequence-dependent human ri,j
core mutation rates (all 3 constants per position) enabled us 

to perform a sophisticated in silico evolution of a random DNA sequence, guided solely by our ri,j
core 

values. We started from a random sequence of 5 million (mln) nt with a G+C content of 60% 

(substantially greater than the 40.45% G+C content for the human genome). We performed random 

mutations weighted by Trek-inferred probabilities (see Methods, Supplementary Fig. S7 and 

Supplementary Video 1), where, after each cycle, the mutation rate constants were updated for the 

sequence positions that were either mutated or fell within the influence zone of the performed 

mutations. The simulation was continued until the overall G+C content of the simulated sequence 

became constant (see Fig. 3a-c). 
 

 
Figure 3. Comparison of the in silico evolved and actual human genomes. (a) The 5-mln-nt starting sequence is 
randomly generated with 60% G+C content. The sequence is then neutrally evolved using ri,j

core values only, until 
the base-compositional equilibrium is established (a-c). This was reached after about 20 mln mutations (or an 
average of 4 mutations per site (b). The equilibration converges faster when we start from a sequence with lower 
G+C content. The plots d-g show the correlation of the k-mer contents in the equilibrated genome with the 
corresponding content in the real human genome. The lengths of the k-mers along with the correlation 
coefficients are shown on the bottom right corners of the plots. Two correlation coefficients are shown with the 
exclusion and the inclusion (the value in the bracket) of CpG containing oligomers (red points in the plots). The 
dashed lines depict the diagonals for the ideal match of the k-mer contents. 
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The simulation converged to generate a sequence with the A, T, G and C compositions of 30.91, 

30.90, 19.06 and 19.13% respectively. Note, that these values are in good agreement with the A, T, G 

and C compositions of the repeat-masked human genome of 29.75, 29.79, 20.24 and 20.22% 

respectively (see Methods). Furthermore, the simulated genome captures the contents of different 

individual oligomers (k-mers) in the human genome. The data for all the possible 16 dyads, 64 triads, 

1024 pentads and 16384 heptads are presented in Fig. 3d-g and show a significant (see the correlation 

coefficients) correlation between the compositional landscapes of the Trek-simulated genome and the 

actual human genome. Regardless of the starting composition of the initial DNA sequences, our 

simulations always equilibrated to a state with similar oligomer (up to 7-mer) content. The k-mer 

contents shown in Fig. 3d-g for the actual human genome were calculated from the repeat-masked 

version of the RefSeq human genome, where all the identified repeat elements, including the L1, were 

disregarded. This assured the removal of a potential bias due to the presence of L1 elements in the 

human genome. As ri,j
core constants are free of the δri,j

CpG contribution (see above), the simulated 

genome produced higher alterations in representing the k-mer contents that have CpGs (red points in 

Fig. 3d-g), which directly demonstrates the contribution of δri,j
CpG to the background compositional 

landscape of the human genome. 

The correlations in Fig. 3 are from simulations where the rate constants were symmetrised according 

to the inherit strand-symmetry in double helical DNA (see Methods). The results without such 

equalisation are still significant, though producing slightly worse correlation coefficients 

(Supplementary Fig. S8). 

To confirm that the observed correlations for different k-mer contents (Fig. 3d-g) arise due to our 

sequence-context-dependent core mutation rates, rather than as a side effect, by a pure chance, in a 

sequence where the simulation makes only the single-base composition converge to that of the real 

human genome (such as in sequence generated using an ideal 4×4 single-nucleotide substitution rate 

matrix), we calculated the expected distribution of different k-mers in a fully random genome but with 

the exact human A, T, G and C base compositions. In the complete absence of any sequence-context 

effects, the probability of the occurrence (fraction) of any k-mer in a sufficiently long sequence is equal 

to the product of the occurrence probabilities of their constituent bases. For instance, the probability of 

observing the AGT triad is the pAGT = pApGpT product, where the individual pi probabilities are the base 

contents expressed in fractions. The comparison of the k-mer fractions obtained in this way with the 

human genome data (Supplementary Fig. S9) shows a substantially reduced correlation (for the 

genomic 7-mer content, Pearson’s R=0.59 compared to 0.74 using Trek rates), supporting the 
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attribution of the important role to the ri,j
core values in shaping the compositional landscape of our 

genome. 

 

The basal mutability profile of the human genome 

Our Trek mapper provides the full set of ri,j
core constants for each position in the whole human genome. 

Such data enables us to calculate the context-dependent overall mutability by taking the sum of the 

individual rate constants for the 3 possible mutations at each base position, thus producing the core 

ri,N
core mutability constant for the substitution of a given base i by any other base N. Supplementary 

Fig. S10 shows a comparison of the basal mutability profiles calculated for the individual 

chromosomes (red) with the whole genome profile (green), where most of the chromosomes exhibit the 

same overall distribution as the whole genome. Further grouping and analysis47 of the unique sequences 

found in regions of different basal mutability for the whole human genome reveals motifs that tune the 

stabilities of the bases at the centre (see Fig. 4 and the caption for further elaborations). Note that the 

observed sequence-determined mutational biases can potentially contribute to the initial nucleation of a 

more extensive base-content pattern formation in chromosomes48,49. 

 

 
Figure 4. Sequence-context dependence of the ri,N

core basal mutability constants. Sequence logos47 are shown for 
all the unique 7-mer sequences grouped by the central base type (columns) and the category of the mutability 
range the sequences fall in (rows, basal mutability range is shown in byr-1 rate constants). The y-axes in the 
individual sequence logos show the information content in bits. The x-axes outline the neighbouring base 
positions relative to the central base. For each sequence, the mutability constant of the central base (i) depicts the 
sum of the core rate constants for the mutations to the three other (non-i) bases, ri,N

core = ri,b2
core + ri,b3

core + ri,b4
core. 

As can be seen from the plots, the bases A and T are highly mutable when the neighbouring positions are 
enriched in the same, A and T, bases (compare the logos a and d with e and h). The adjacent enrichment in A 
increases the mutability of C (b), and decreases the mutability of G (g) bases. Conversely, the adjacent 
enrichment in T increases the mutability of G (c) and decreases that of the C (f) bases. Note, that our data are for 
ri,N

core and do not include the methylation-driven increased mutation rates in CpG dyads12-14. 
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Basal mutability profile in cancer-linked sites 

A recent study50 suggested that the multi-etiologic nature of cancer is primarily linked to random 

chance. To this end, genomic sites with higher intrinsic mutability (lower stability) might exhibit a 

higher prevalence of cancer-related genome alterations, as compared to sites of lower intrinsic 

mutability (higher stability). Although the sequence context of cancer mutations and their dependence 

on cancer types is out of the scope of the present work and is covered in detail elsewhere51-54, here we 

examined the simple relationship between our calculated basal mutability values and observed cancer-

associated somatic mutations accessed via the annotated COSMIC cancer database55 (see Methods). 

 

 
Figure 5. Basal mutability profiles of the whole human genome and cancer-linked mutation sites. The density 
(kernel density estimate) distribution of the mutation rates in the whole human genome (green), compared to the 
sites of the mutations associated with cancer (red) are shown. The overlaps of both distributions are in brown. 
The x-axis shows the mutability constant for the mutation to any other base (ri,N

core = ri,b2
core + ri,b3

core + ri,b4
core). 

The comparison clearly shows a reduction of the stable sites and excess of the unstable sites in cancer-linked 
loci. 
 
Since the Trek data are for the core spontaneous substitutions, we restricted the analysis to the non-

coding and non-polymorphic (not identified as SNP) single-nucleotide substitutions (6 mln mutations) 

in cancer. By mapping these sites to the human genome and retrieving the sequence-context 

information (7-nt long sequences centred at the mutation points), we processed the data with Trek 

mapper and obtained the ri,N
core profile for the non-coding sites detected in human cancer. The outcome 

in Fig. 5, overlapped with the whole-genome ri,N
core profile, shows that stable sites in the human 

genome, assigned by the Trek mapper to have mutability constants below 1.13 byr-1, are significantly 

less represented in cancer. 
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Like many other disease-causing mutation sites56, most of the sites that are highly enriched in cancer 

(Fig. 6a) are CpGs57, which, even without accounting for the methylation driven increase12-14 of the 

mutation rates, show high basal mutability values58. However, Fig. 6b,c demonstrates the discussed 

trend in the 7-mer cancer enrichment ratio (Methods) vs. basal mutability dependence even when all 

the CpG sites are removed from the analysis. Overall, our results show that the intrinsic basal 

mutability of different sites in DNA may contribute to their absence/presence in pathological 

genotypes. In particular, we observe that 7-mers with low mutability of the central base are relatively 

depleted in cancer-linked mutation data. They present a cancer enrichment ratio that is smaller than 1, 

whereas for the unstable 7-mers, the enrichment ratio, on average, tends to 1 (Fig. 6c), meaning that the 

enrichment in cancer is comparable to the one in the whole genome. 

 

 
Figure 6. Enrichment of 7-mers with varying basal mutability in the cancer-linked mutation sites. The 47 points 
in the plots correspond to unique 7-mer sequences. The cancer enrichment score for each such sequence was 
calculated by dividing the occurrence fraction of the sequence in only the cancer-linked sites to the fraction in 
the whole repeat-masked human genome. All the 7-mers that had either C or G of a CpG dyad at the centre show 
a remarkable cancer enrichment ratio (up to 49, see the points in the red box in a). Since for the CpGs, Trek data 
report on only the average C and G mutation rate constants, the mutability values for those points can be 
underestimated in a. However, even the average mutabilities for C and G bases are higher than the discussed 
1.13 byr-1 threshold. Accounting for the epigenetic methylation-driven increase in mutation rates for the CpG 
containing sequences would only increase their mutability values. The plots b and c represent the data that 
exclude the sequences with CpGs at the centre. The mean cancer enrichment ratio for such subset was 0.89, with 
standard deviation of 0.44. The data points within the 0.89±0.44 range of cancer enrichment ratio are contained 
in between the dashed lines in b and c. The red lines in b and c represent the Lowess65 fit, showing the decrease 
of the cancer enrichment ratio with the decrease in mutability. 
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CONCLUSIONS 

 

We have employed a single-genome and model-free approach (Trek) that reveals the core (ri,j
core = ri,j

sb 

+ δri,j
sr) components of the spontaneous single-nucleotide substitution rates and basal mutability 

constants (ri,N
core) for the human nuclear genome. Although the mobile DNA elements have been used 

before4,39,43,59 for estimating averaged substitution rates, the increased quality of the human reference 

sequence and the detailed subfamily divergence studies for the L1 elements35-38 done during the past 

decade enabled the construction of a specific direct method for the single-genome retrieval of the core 

ri,j
core rate constants at a single-nucleotide resolution, while also accounting for the comprehensive 

short-range context effects beyond the previous Bayesian estimates for the +1/-1 base effects34. The 

retrieval of our ri,j
core data in a single-genome manner adds additional value, since it ensures the absence 

of potential bias due to a) differences in the molecular machinery that influence the mutation rates 

while comparing the genomes of different species, and b) the short generation span where only the 

most probable mutations would become visible while comparing genomic data in families 

(parents/offspring) to detect de novo substitutions. As the major outcome of this study, we used our 

context-dependent rate constants to provide the first direct demonstration of the equilibration of a 

random DNA sequence into the one with overall (genomic base content) and short-range (different k-

mer contents) characteristics that closely mirror that of the actual human genome. The L1-derived rates 

recapitulated fundamental properties of the repeat-masked and therefore L1-free human genome 

(Supplementary Fig. S11). This simulation thus provides significant evidence in support of the role of 

core neutral mutations in shaping the compositional dynamics of complex genomes60 and additionally 

validates the reliability of the obtained Trek-derived ri,j
core constants. Importantly, our study 

demonstrates that the non-specific core mutation rates are capable of producing apparent selection or 

depletion patterns in the human genome. To this end, our in silico equilibrated sequences, obtained 

solely based on the full set of ri,j
core constants, can now serve as true background standards for the 

comparisons to reveal real selection61 for or against different sequence motifs. The extended set of core 

mutation rate constants we report can potentially help advance our understanding in genome dynamics, 

with possible implications for the role of random mutations in the emergence of pathological genotypes 

and the evolution of proteomes. 
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METHODS 

 
The human reference genome sequence was taken from the Ensembl database (www.ensembl.org), and 

was of the version hg19/GRCh37. The positions and span of the retrotransposons were taken from the 

output of the RepeatMasker62 processing, accessed through the UCSC genome database 

(www.genome.ucsc.edu). The repeat annotations were those corresponding to the version of the used 

human RefSeq genome (hg19/GRCh37). The R programming language (www.r-project.org) was used 

for all the consecutive analyses. Most of the computations were performed on the available Linux 

workstation and computing cluster facilities hosted at the Department of Chemistry, University of 

Cambridge, and the Cancer Research UK Cambridge Institute. 

 

Revealing the core mutation rate constants. All the remnant sequences of the mentioned subfamilies 

(Supplementary Table S1) were first aligned onto the 6064 nt reference sequence. As the reference, 

we took the consensus sequence of the human L1Hs retrotransposon (Fig. 1a,b and Supplementary 

Fig. S2). The alignment was done in a pairwise manner with high end-gap penalties (“overlap” mode) 

that, while allowing insertions and deletions, did not severely break the queried sequences for false 

mappings with a better global alignment score. R with the Biostrings library for alignment was used. 

After the alignment, all the relevant mutation fractions were collected for each position in the five L1 

subfamilies reporting on a specific time epoch (Fig. 1b,c). For example, if the position i in the 

reference sequence was G (b1), the mutation rate constants were calculated for the G->A (b1->b2) 

transition and G->C (b1->b3), G->T (b1->b4) transversions. First, the base fractions were calculated for 

five time-reporting L1 subfamilies; i.e. to get the fraction of mutations accumulated in ~20.4 myr (age 

of L1PA536), all bases in L1PA5 remnants that were precisely mapped on the ith position of the 

reference sequence were counted and the fractions of G, A, C and T bases retrieved (Fig. 1c). Here, we 

applied one of the robustness checks and made sure that the fractions were estimated if at least 700 

mapped bases were present for the ith position in each time-reporting subfamily (Fig. 1b). We also 

aimed to calculate such substitution rates for only the positions where the mutations are random and not 

specifically selected for or against. In other words, the position should not be a polymorphic or a 

subfamily speciation-defining nucleotide. We filtered out such cases by ensuring that any eligible ith 

position had the same nucleotide of the reference sequence as its most prevalent variant with a 

minimum of 80% occurrence in all subfamilies (Fig. 1c). The average crude single-nucleotide 

substitution rate is noted to be 12.85×10-9 mutations per site per generation5. Assuming an average 
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generation length of 20 years2, the mutation rate constant in a time domain can be crudely 

approximated as 0.64 byr-1. In the course of 20.4 myr (the age of L1PA5), this should result in only a 

1.31% mutated base fraction at a give site, caused by the average spontaneous substitution rates. 

Therefore, by assuming a threshold of 80%, we allow up to 15 times variation of the rates from the 

average estimate, which is a safe range5 for the direct estimation of the single-nucleotide substitution 

rates and their core variation. Having the mutation fraction data from five different ages and for three 

(b1->b2, b1->b3, b1->b4) possible substitutions at the position i allowed to fit a linear model via the least 

squares methodology for the fraction-versus-time dependence for each mutation separately (Fig. 1d). If 

the data, hence the fitted line, were of high quality, the slope was expected to represent the ri,j
core 

mutation rate constant. We applied the third robustness filtering at this stage, by making sure that the 

rates were calculated for only the cases where the time correlation of the mutation fractions in Fig. 1d 

had greater than 0.7 Pearson’s correlation coefficient. This ensured that the retrieved fractions of the 

mutations comprised of only the time-accumulated substitutions, rather than of targeted substitutions 

during the active life-span of the L1 elements, before their silencing. Please note, however, that the 

correlation coefficients in most of such time correlations that passed the whole Trek procedure were 

substantially higher (the observed Pearson’s correlation coefficients were centred at 0.92 with 0.07 

standard deviation). The procedure was done for all the 6064 positions in the L1 reference sequence, 

except the positions 5856-5895 and 6018-6064, close to the 3’-end (Supplementary Fig. S2) that 

engulf the low-complexity G-rich and A-rich sequences correspondingly, prone to alignment errors. 

One of the reasons for the usage of only the young L1 subfamilies (spanning 20.4 myr age) was to 

minimise the potential error in rate constant determination in the Trek procedure caused by repeated 

substitutions hitting the same position during the considered period of the mutation accumulation. The 

effect is indeed negligible for 20.4 myr span, as we can estimate using the above mentioned 0.64 byr-1 

value5 for the average i->j substitution rate constant, r. Since the rate constant is sufficiently small to 

induce only a small δfj change in substituted base fraction during the δt = 0.0204 byr (20.4 myr) time 

period (see above), we can equate the δfj change in the fraction of the base j (at the given position that 

had the original base i identity in a large population of homologous sequences) to the p ≈ δfj ≈ rδt 

substitution probability within δt period. We can thus make a crude estimation for the probability of the 

second substitution to another, k≠j, base happening at the same position to be (rδt)2, which is the 

product of individual substitution probabilities assuming that the rate constant does not change from 

our average estimate r across those two substitution types. We can permit this for the sake of the back-

of-the-envelope estimation of the order of the effect expected from the repeated mutations hitting the 
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same site within 20.4 myr period. To this end, the δfj
app apparent change in i->j substitution fraction that 

we would observe by neglecting the additional j->k substitution, would underestimate the more realistic 

δfj and be equal to δfj
app = rδt - (rδt)2, as we would not count the j bases that emerged but became 

additionally substituted by k. Hence, the corresponding apparent rate constant that neglects second 

substitution would also underestimate the actual value r, and can be expressed as rapp = δfj
app/δt = (rδt - 

(rδt)2)/ δt = r(1-rδt). This means that the underestimation of the actual rate constant would be by [r-r(1-

rδt)]×100/r = 100×rδt %. Putting 0.64 byr-1 for r and the 0.0204 byr for δt, we can expect only 1.3% 

contribution from the repeated second substitution at the same position within 20.4 myr. Since some of 

the other non-j bases could become js and balance the underestimation of the δfj fraction, the error 

could be even smaller. This shows that repeated substitutions can be safely ignored in 20.4 myr time-

scale. Furthermore, the validity of our ri,j
core rate constants was further checked through the two 

independent analyses reflected in Supplementary Fig. S3 and Fig. S4. 

 

Finding the influence range of neighbour nucleotides. We have used generalised boosted models63 

(GBM) to elucidate the effective range for the core sequence-context effects. This was achieved by 

developing test models to evaluate the predictive strength of only the neighbouring bases in defining 

the core mutation rate of the central base. The GBM was used as implemented in the gbm library for R. 

For each i->j mutation type, all the found Trek data were taken without the possible outliers, which 

were filtered by allowing only the usage of the values that were within the 1.65 (a value that keeps 

~90% data if normally distributed) times standard deviation range of the constants in a given mutation 

category. The sequences were then processed to produce pos/bi uncoupled features that were associated 

with the relative adjacent positions (pos, - for upstream and + for downstream positions) and their 

possible four bi base types. Those features took values 0 or 1, depending on whether the base at an 

associated relative position was of the bi (1) or any other base type (0). For instance, if we wanted to 

develop a model accounting for only a single upstream (pos = -1) and a single downstream (pos = +1) 

nucleotides, hence predicting the mutation rates for different 3-mers, where the central base is the one 

that mutates, then we produced 8 pos/bi features for the GBM fitting. There, 4 binary features (-1/A, -

1/C, -1/G and -1/T) described whether the upstream -1 position is of base type A, C, G or T, and 4 

binary features described the same for the downstream +1 position. We built the models using 3-, 5-, 7-

, 9-, and 11-mers, thus accounting for 1, 2, 3, 4 and 5 upstream and the same number of downstream 

neighbour bases. The absence of the coupling in the binary features, unlike in the case where, for 

instance, one employs only two binary features per 4 states, enabled us to also investigate the predictive 
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significance of each nucleobase identity at a given neighbouring position, which was useful in deciding 

against the construction of more complex machine learning models (see below) using additional 

features with higher level of abstraction for the sequence information (overall base content, sequence-

derivative properties). The GBM models were then fitted by systematically trying different 

permutations of the tuning values63 for the number of trees (50-7500), interaction depth (1-10), 

shrinkage (0.001, 0.01 and 0.1), the number of minimum observations per node (1-28) and the bag 

fraction (0.25-0.65). The optimal combinations of the tuning parameters were found per mutation type 

and sequence length, via a 16-fold cross validation repeated 7 times. The found best parameters are 

accessible in the Supplementary Data, and the predictive performances of the best models, from the 

repeated cross validation studies, are presented in Supplementary Fig. S5. To make a predictor of 

ri,j
core based on a sequence, we found it much better to use direct values coming from the proposed Trek 

methodology, rather than the GBM models, as the Trek values were already well averaged across 

multiple occurrences of the same sequence in different loci of the human genome (Fig. 1-3 and 

Supplementary Fig. S3). Furthermore, the overall poor performance of the GBM models implies that 

the influence of the immediate context is highly non-additive and non-Bayesian, which is expected 

taking into account the nature of the core context-dependent mutation rates. The latter rates reflect the 

intrinsic short-range sequence properties, interactions and recognition with the overall mutagenic and 

repair machinery present in a given organism. There, the whole sequence at a certain small scale9 is 

what defines the interaction11, and it is hard to represent such effects through even smaller-scale 

constituents. The direct model-free approach used in our Trek mapper methodology (see below) thus 

seems essential in mapping the ri,j
core rate constants throughout the human genome. To this end, the 

GBM models here had a sole purpose of identifying the optimal range of influence for accounting the 

neighbouring nucleotides. The optimal range was found to be captured, on average, by a 5-7-nt long 

window (Supplementary Fig. S4 and S5) which is in an excellent agreement with the prior <10 nt 

estimate9-11,45,46. We used the maximum 7-nt length to stratify the Trek data for the further model-free 

mapping on any provided sequence, including the whole human genome. 

 

Mapping the Trek mutation data on any sequence. We developed a Trek mapper program. For each 

i position in a query sequence (Supplementary Fig. S6), the program looks at the bases i-3 to i+3. If 

the exact 7-mer, with the associated rate constant values, is not available in the Trek database, the 

program reduces the size of the sequence to 5, by considering i-2 to i+2 positions, or, if necessary, to 3- 

or 1-mers, until an exact match is found in the database. This would essentially mean that some 
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reported mutation rates would come from the actual triad data. About half will come from pentads and 

some from heptads, accounting for more precise sequence-context information. A few will originate 

from the fully averaged single-base (1-mer) Trek mutation rates. Single-base values are also returned 

for the terminal positions in a query sequence. For each unique sequence in the discussed 7-, 5-, 3- and 

1-mers, if the k-mer appears more than once in the reference L1 sequence, of course with different 

neighbours at the positions out of the k-mer range, we average the Trek values by taking the median. 

For instance, the rG->A mutation rate constant in the 3-mer AGT represents the rate averaged across all 

the appearances of AGT in the L1 reference sequence, which would normally be with varying other 

neighbour bases, out of the 3-mer range. The rG->A in AGT will therefore represent the average rate 

constant across all the representatives of the significant range, the NNAGTNN 7-mers, present in L1, 

where N can be any of the four bases. In the same way, the mutation rate constants for the single bases 

(1-mers) can be considered as fully averaged across all the possible neighbour effects in NNNGNNN 

sequences. Our algorithm therefore makes the most of transposon exposed mutation rate data of the 

human genome, returning the best possible values inferable from our Trek database and, where 

uncertainty is present, returning the best averaged values for a shorter context range. Furthermore, we 

have enabled an option to use symmetrised Trek parameterisation, assuming an overall strand-

invariance of the mutation rates. In the latter case, the complementary mutation rate constants of the 

central bases in two reverse complementary k-mers were equalised. For example, the G->A mutation 

rate constant (r1) in the 3-mer AGC was set equal to the complementary C->T rate constant (r2) in the 

reverse complementary GCT. The data equalisation was done in the following way: if both r1 and r2 

were of the same quality accounting for the whole sequence-context information in both 3-mer 

variants, then both values were set to (r1+ r2)/2; however, if one of the rate constants was determined 

with a better quality, since the full 3-mer data for the other case was missing and the 1-mer average was 

used as a replacement, then the rate constant of the better quality variant was assigned to both r1 and r2. 

Accounting for the strand symmetry improves the results of the validation studies, further refining the 

mutation rate constant values and increasing the coverage of longer k-mers in the Trek database. 

The described Trek mapper program, along with the associated data can be accessed through the 

http://trek.atgcdynamics.org web page. Future improvements in data and the program, through 

extending the types of mobile DNA in the Trek procedure, will be reflected on the same web site. The 

Trek mapper server application was written in R, using the Shiny library and server application 

(http://shiny.rstudio.com). 
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Equilibration of a random DNA sequence with the Trek rates. A 5 million (mln) nt sized random 

genome was created with the initial A, T, G and C base contents set to 20, 20, 30 and 30% 

correspondingly, hence with 60% genomic G+C content. The length was selected to cope with the 

finite computational and time resources, though operating on lengthier sequences will not change the 

outcome of the calculations, since the captured sequence-context effects are within 7-nt window. We 

first calculated the probabilities of all the possible mutations in this random sequence, which basically 

meant the assignment of 3 mutation rate constants per position in the genome, describing the 

conversion into the three bases other than the base already present in the respective position. This was 

done using the Trek mapper described above. Next, at each step, we sampled 5000 mutations weighted 

by the calculated 3×5 mln rate constants. We then identified those 5000 positions and the 

corresponding mutation types that were sampled to happen (Supplementary Fig. S7), performed those 

mutations, and, updated the probability values via the Trek mapper. Repeated multiple times, the 

process evolved the sequence (Supplementary Video 1) ruled by the core spontaneous rate constants 

that are sensitive to the changes in the sequence composition at the immediate vicinity in the genome. 

For the comparison of the simulated sequence at equilibrium with the real human genome (RefSeq), 

we calculated the fractions of different oligomers (k-mers) in both sequences (Supplementary Data). 

The k-mer contents of the human genome were calculated by sliding a window of size k (from 1 to 7) 

and counting the occurrence of each 4k unique sequence. We used a direct calculation of the 

lexicological index64 of a string to increase the computational efficiency of the k-mer counting. 

Although, data from the masked human genome were used in the k-mer analyses to rule out any bias 

from the presence of the same L1 elements in the object of application of Trek data, the comparison of 

the masked and unmasked genomes showed only negligible differences in both single base and short k-

mer contents. If, however, we consider only the L1 elements, the k-mer content was quite different 

from the rest of the genome. 

 

Basal mutability constants at cancer-linked sites. We took all the non-coding somatic single-

nucleotide substitution data associated with cancer from the COSMIC database55 

(www.sanger.ac.uk/cosmic, NCV dataset accessed in February, 2015). Since our Trek rate constants 

are for the spontaneous mutations, we only considered the sites that were also not declared as known 

SNPs (the status was present in the NCV dataset). This was to ensure that we excluded sites where an 

active polymorphism is potentially encouraged by a natural selection. About 3.7% data from the 

remaining set of cancer-linked mutations were duplicates, with no differences found in genomic 
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location and mutation types. We removed those, keeping only the single first-encountered copies of 

such entries. The resulting data contained 5984711 mutation entries. 

The cancer enrichment score (Fig. 6) for a given k-mer sequence was calculated by taking the ratio 

of the occurrence fractions, calculated in (numerator) only the cancer-linked sites (where the linked 

base is the central one in the k-mer) and (denominator) in the whole repeat-masked human genome 

(Supplementary Data). 

 

Data access. The Trek ri,j
core database and the mapper are housed at http://trek.atgcdynamics.org. 

Additional figures and tables, referenced in the text, can be found in the Supplementary Information 

(Table S1 and Figures S1-S11). We deposit the video showing the in silico dynamics of a random 

sequence upon equilibration (Supplementary Video 1), the raw data on the mutation rate constants in 

the reference L1 sequence (Supplementary Data 1), the resulting Trek database processed with 

(Supplementary Data 2) and without (Supplementary Data 3) the strand-symmetry considerations, 

the k-mer content for the masked and unmasked human genomes (Supplementary Data 4), the full set 

of 7-mer sequences with the respective cancer enrichment scores and mutability values 

(Supplementary Data 5), and the GBM parameters that were minimising the error of the tree-based 

test models (Supplementary Data 6). All the associated method and analyses source codes are 

available from the authors upon request. 

 

REFERENCES 
 

1. Lynch, M. The origins of genome architecture. (Sinauer Associates Inc., 2007). 
2. Nachman, M. W. & Crowell, S. L. Estimate of the mutation rate per nucleotide in humans. 

Genetics 156, 297–304 (2000). 
3. Chen, J.-Q. et al. Variation in the ratio of nucleotide substitution and indel rates across genomes 

in mammals and bacteria. Mol. Biol. Evol. 26, 1523–1531 (2009). 
4. Arndt, P. F., Hwa, T. & Petrov, D. A. Substantial regional variation in substitution rates in the 

human genome: importance of GC content, gene density, and telomere-specific effects. J. Mol. 
Evol. 60, 748–763 (2005). 

5. Lynch, M. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl. Acad. 
Sci. U. S. A. 107, 961–968 (2010). 

6. Denver, D. R., Morris, K., Lynch, M., Vassilieva, L. & Thomas, K. High direct estimate of the 
mutation rate in the mitochondrial genome of caenorhabditis elegans. Science 289, 2342–2344 
(2000). 

7. Lynch, M. et al. A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc. 
Natl. Acad. Sci. U. S. A. 105, 9272–9277 (2008). 

8. Zhu, Y. O., Siegal, M. L., Hall, D. W. & Petrov, D. A. Precise estimates of mutation rate and 
spectrum in yeast. Proc. Natl. Acad. Sci. U. S. A. 111, E2310–8 (2014). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 10, 2015. ; https://doi.org/10.1101/024257doi: bioRxiv preprint 

https://doi.org/10.1101/024257
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sahakyan & Balasubramanian 21 

9. Silva, J. C. & Kondrashov, A. S. Patterns in spontaneous mutation revealed by human-baboon 
sequence comparison. Trends Genet. 18, 544–547 (2002). 

10. Ellegren, H., Smith, N. G. & Webster, M. T. Mutation rate variation in the mammalian genome. 
Curr. Opin. Genet. Devel. 13, 562–568 (2003). 

11. Zavolan, M. & Kepler, T. B. Statistical inference of sequence-dependent mutation rates. Curr. 
Opin. Genet. Devel. 11, 612–615 (2001). 

12. Sved, J. & Bird, A. The expected equilibrium of the CpG dinucleotide in vertebrate genomes 
under a mutation model. Proc. Natl. Acad. Sci. USA 87, 4692–4696 (1990). 

13. Jiang, C. & Zhao, Z. Directionality of point mutation and 5-methylcytosine deamination rates in 
the chimpanzee genome. BMC Genomics 7, 316 (2006). 

14. Supek, F., Lehner, B., Hajkova, P. & Warnecke, T. Hydroxymethylated cytosines are associated 
with elevated C to G transversion rates. PLoS Genet. 10, e1004585 (2014). 

15. Majewski, J. & Ott, J. Distribution and characterization of regulatory elements in the human 
genome. Genome Res. 12, 1827–1836 (2002). 

16. Hellmann, I. et al. Selection on human genes as revealed by comparisons to chimpanzee cDNA. 
Genome Res. 13, 831–837 (2003). 

17. Fryxell, K. J. & Moon, W.-J. CpG mutation rates in the human genome are highly dependent on 
local GC content. Mol. Biol. Evol. 22, 650–658 (2005). 

18. Mugal, C. F. & Ellegren, H. Substitution rate variation at human CpG sites correlates with non-
CpG divergence, methylation level and GC content. Genome Biol 12, R58 (2011). 

19. Lercher, M. J. & Hurst, L. D. Human SNP variability and mutation rate are higher in regions of 
high recombination. Trends Genet. 18, 337–340 (2002). 

20. Duret, L. & Arndt, P. F. The impact of recombination on nucleotide substitutions in the human 
genome. PLoS Genet. 4, (2008). 

21. Hanawalt, P. C. & Spivak, G. Transcription-coupled DNA repair: two decades of progress and 
surprises. Nat. Rev. Mol. Cell Biol. 9, 958–970 (2008). 

22. Gaillard, H., Herrera-Moyano, E. & Aguilera, A. Transcription-associated genome instability. 
Chem. Rev. 113, 8638–8661 (2013). 

23. Schuster-Böckler, B. & Lehner, B. Chromatin organization is a major influence on regional 
mutation rates in human cancer cells. Nature 488, 504–507 (2012). 

24. Agier, N. & Fischer, G. The mutational profile of the yeast genome is shaped by replication. 
Mol. Biol. Evol. 29, 905–913 (2012). 

25. Reijns, M. A. M. et al. Lagging-strand replication shapes the mutational landscape of the 
genome. Nature 518, 502–506 (2015). 

26. Supek, F. & Lehner, B. Differential DNA mismatch repair underlies mutation rate variation 
across the human genome. Nature 521, 81–84 (2015). 

27. Ellison, C. E. & Bachtrog, D. Non-allelic gene conversion enables rapid evolutionary change at 
multiple regulatory sites encoded by transposable elements. Elife 4, e05899 (2015). 

28. Ellegren, H. Characteristics, causes and evolutionary consequences of male-biased mutation. 
Proc. Biol. Sci. 274, 1–10 (2007). 

29. Subramanian, S. & Kumar, S. Neutral substitutions occur at a faster rate in exons than in 
noncoding DNA in primate genomes. Genome Res. 13, 838–844 (2003). 

30. Chamary, J. V., Parmley, J. L. & Hurst, L. D. Hearing silence: non-neutral evolution at 
synonymous sites in mammals. Nat Rev Genet 7, 98–108 (2006). 

31. McVean, G. T. & Hurst, L. D. Evidence for a selectively favourable reduction in the mutation 
rate of the X chromosome. Nature 386, 388–392 (1997). 

32. Martincorena, I. & Luscombe, N. M. Non-random mutation: the evolution of targeted 
hypermutation and hypomutation. Bioessays 35, 123–130 (2012). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 10, 2015. ; https://doi.org/10.1101/024257doi: bioRxiv preprint 

https://doi.org/10.1101/024257
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sahakyan & Balasubramanian 22 

33. Kazazian, H. H., Jr. Mobile DNA. Finding treasure in junk. (Pearson Education, 2011). 
34. Hwang, D. G. & Green, P. Bayesian Markov chain Monte Carlo sequence analysis reveals 

varying neutral substitution patterns in mammalian evolution. Proc. Natl. Acad. Sci. USA 101, 
13994–14001 (2004). 

35. Boissinot, S., Chevret, P. & Furano, A. V. L1 (LINE-1) retrotransposon evolution and 
amplification in recent human history. Mol. Biol. Evol. 17, 915–928 (2000). 

36. Khan, H. Molecular evolution and tempo of amplification of human LINE-1 retrotransposons 
since the origin of primates. Genome Res. 16, 78–87 (2006). 

37. Lee, J. et al. Different evolutionary fates of recently integrated human and chimpanzee LINE-1 
retrotransposons. Gene 390, 18–27 (2007). 

38. Giordano, J. et al. Evolutionary history of mammalian transposons determined by genome-wide 
defragmentation. PLoS Comput. Biol. 3, e137 (2007). 

39. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 
(2001). 

40. Medstrand, P., van de Lagemaat, L. N. & Mager, D. L. Retroelement distributions in the human 
genome: variations associated with age and proximity to genes. Genome Res. 12, 1483–1495 
(2002). 

41. Rawal, K. & Ramaswamy, R. Genome-wide analysis of mobile genetic element insertion sites. 
Nucl. Acids Res. 39, 6864–6878 (2011). 

42. Criscione, S. W., Zhang, Y., Thompson, W., Sedivy, J. M. & Neretti, N. Transcriptional 
landscape of repetitive elements in normal and cancer human cells. BMC Genomics 15, 583 
(2014). 

43. Arndt, P. F., Petrov, D. A. & Hwa, T. Distinct changes of genomic biases in nucleotide 
substitution at the time of Mammalian radiation. Mol. Biol. Evol. 20, 1887–1896 (2003). 

44. The phylogenetic handbook: a practical approach to the phylogenetic analysis and hypothesis 
testing. (Cambridge University Press, 2012). 

45. Zhao, Z. & Boerwinkle, E. Neighboring-nucleotide effects on single nucleotide polymorphisms: 
A study of 2.6 million polymorphisms across the human genome. Genome Res. 12, 1679–1686 
(2002). 

46. Nevarez, P. A., DeBoever, C. M., Freeland, B. J., Quitt, M. A. & Bush, E. C. Context dependent 
substitution biases vary within the human genome. BMC Bioinformatics 11, 462 (2010). 

47. Schneider, T. D. & Stephens, R. M. Sequence logos: a new way to display consensus sequences. 
Nucl. Acids Res. 18, 6097–6100 (1990). 

48. Eyre-Walker, A. & Hurst, L. D. The evolution of isochores. Nat Rev Genet 2, 549–555 (2001). 
49. Costantini, M., Clay, O., Auletta, F. & Bernardi, G. An isochore map of human chromosomes. 

Genome Res. 16, 536–541 (2006). 
50. Tomasetti, C. & Vogelstein, B. Cancer etiology. Variation in cancer risk among tissues can be 

explained by the number of stem cell divisions. Science 347, 78–81 (2015). 
51. Hodgkinson, A., Chen, Y. & Eyre-Walker, A. The large-scale distribution of somatic mutations 

in cancer genomes. Hum. Mutat. 33, 136–143 (2012). 
52. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–

421 (2013). 
53. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 

502, 333–339 (2013). 
54. Jia, P., Pao, W. & Zhao, Z. Patterns and processes of somatic mutations in nine major cancers. 

BMC Medical Genomics 7, 11 (2014). 
55. Forbes, S. A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic 

Mutations in Cancer. Nucl. Acids Res. 39, D945–50 (2011). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 10, 2015. ; https://doi.org/10.1101/024257doi: bioRxiv preprint 

https://doi.org/10.1101/024257
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sahakyan & Balasubramanian 23 

56. Cooper, D. N. & Krawczak, M. The mutational spectrum of single base-pair substitutions 
causing human genetic disease: patterns and predictions. Hum Genet 85, 55–74 (1990). 

57. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–
158 (2007). 

58. Rubin, A. F. & Green, P. Mutation patterns in cancer genomes. Proc. Natl. Acad. Sci. U. S. A. 
106, 21766–21770 (2009). 

59. Walser, J. C., Ponger, L. & Furano, A. V. CpG dinucleotides and the mutation rate of non-CpG 
DNA. Genome Res. 18, 1403–1414 (2008). 

60. Kimura, M. The neutral theory of molecular evolution. (Cambridge University Press, 1983). 
61. Vitti, J. J., Grossman, S. R. & Sabeti, P. C. Detecting natural selection in genomic data. Annu. 

Rev. Genet. 47, 97–120 (2013). 
62. Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0, 2013-2015, at 

http://www.repeatmasker.org. 
63. Kuhn, M. & Johnson, K. Applied predictive modeling. (Springer, 2013). 
64. Compeau, P. & Pevzner, P. Bioinformatics algorithms: an active learning approach. (Active 

Learning Publishers, 2014). 
65. Cleveland, W. S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. 

Assoc. 74, 829–836 (1979). 
 

ACKNOWLEDGEMENTS 

 
This research was supported by the Herchel Smith Fund. SB is a Wellcome Trust Senior Investigator. 

We thank Dr. Chris Lowe for proofreading the manuscript. 

 

AUTHOR CONTRIBUTIONS 

 
A.B.S and S.B. designed the study, performed the research, interpreted the results and wrote the paper. 

The authors declare no competing financial interests. 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 10, 2015. ; https://doi.org/10.1101/024257doi: bioRxiv preprint 

https://doi.org/10.1101/024257
http://creativecommons.org/licenses/by-nc-nd/4.0/

