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Abstract4

With the great advances in ancient DNA extraction, population genetics5

data are now made of geographically separated individuals from both present6

and ancient times. However, population genetics theory about the joint ef-7

fect of space and time has not been thoroughly studied. Based on the clas-8

sical stepping–stone model, we develop the theory of Isolation by Distance9

and Time. We derive the correlation of allele frequencies between demes10

in the case where ancient samples are present in the data, and investigate11

the impact of edge effects with forward–in–time simulations. We also derive12

results about coalescent times in circular/toroidal models. As one of the13

most common way to investigate population structure is to apply principal14

component analysis, we evaluate the impact of this theory on plots of prin-15

cipal components. Our results demonstrate that time between samples is a16

non-negligible factor that requires new attention in population genetics.17

∗corresponding author: duforetn@berkeley.edu

1

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 7, 2015. ; https://doi.org/10.1101/024133doi: bioRxiv preprint 

https://doi.org/10.1101/024133
http://creativecommons.org/licenses/by-nc/4.0/


1 Introduction18

Geography plays a central role in the pattern of genetic differentiation within19

a species. Seminal work on describing the evolution of continuous popula-20

tions was done by Wright and Malécot. They studied genetic differentia-21

tion and inbreeding in continuously distributed population (Wright, 1943;22

Malécot, 1948). The resulting idea is that, under the assumption of local23

dispersion, genetic differentiation accumulates with distance. This pattern24

of genetic structure is called Isolation–By–Distance (IBD), which is detected25

by computing measures of differentiation such as FST (Wright, 1943; Nei,26

1973; Weir and Cockerham, 1984), or correlation coefficients (Malécot, 1955;27

Kimura and Weiss, 1964). Understanding the effect of geographic distance28

on population structure is an important task for population geneticist, as29

it is a source of neutral genetic variation (Slatkin, 1985; Rousset, 1997).30

Furthermore, IBD has been observed in humans and many other species31

(Sharbel et al., 2000; Castric and Bernatchez, 2003; Ramachandran et al.,32

2005; Hellberg, 2009; Karakachoff et al., 2015).33

The role of geography in neutral genetic variation has been widely stud-34

ied partly because of the existence of many population genetic studies of35

individuals living at the present time and sampled in different locations.36

Because of the development of methods for sequencing DNA from fossils,37

genomes of individuals alive at previous times are now available to bring38

new information about the evolutionary processes that affected a species in39

the past. Since the first studies of ancient DNA (aDNA) three decades ago40

(Higuchi et al., 1984; Pääbo, 1985), techniques to retrieve DNA molecules41

from ancient bones have tremendously developed (Pääbo et al., 2004).42

In modern evolutionary biology, the similarity of differentiation in space43

and time is acknowledged (Depaulis et al., 2009; Andrello et al., 2011;44

Teacher et al., 2011). Theoretical developments predict the effect of time on45

FST and related quantities (Skoglund et al., 2014). Epperson (2000) studied46

patterns of isolation by distance and time in ecology by using stochastic47

spatial time series and Identity by descent probabilities However such theo-48

retical studies remain scarce.49

The effect of separation in time can be studied using classical statis-50

tical methods in population genetics, such as principal component analysis51

(PCA) (Patterson et al., 2006). PCA is widely used to determine relatedness52

between individuals, and is a convenient way to represent geographic pat-53

terns (Novembre et al., 2008). But PCA can also capture the differentiation54

between ancient and modern samples: the percentage of variance explained55

by time can be expressed on the same scale as the percentage of variance56
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explained by geography (Skoglund et al., 2014). Unfortunately, PCA does57

not give a complete picture of how differentiation quantities such as Fst and58

correlations of allele frequencies evolve in time and space.59

In this article we generalize the theory of IBD to allow for difference60

in the times at which different individuals are sampled. We call this the61

theory of isolation by distance and time (IBDT). We base our work on the62

stepping–stone model of Kimura (1953) and add to the theoretical results63

known for this model (Kimura and Weiss, 1964; Weiss and Kimura, 1965;64

Maruyama, 1971a; Nagylaki, 1983; Cox et al., 2002; De and Durrett, 2007).65

We start by briefly reviewing the original results for the infinite stepping–66

stone model at equilibrium and the decay of correlation of allele frequencies67

with distance. Then, we extend the original work to derive the correlation68

between individuals separated by distance and time. We perform simulations69

that show the validity of the analytic results, even in the case of a finite70

number of populations where some demes are subject to edge effect. We also71

derive the expected coalescence times between samples separated by time72

and space in circular and toroidal models (Slatkin, 1991, 1993). Finally we73

consider the consequences of IBDT on PCA in the common case of a dataset74

made of a large proportion genomes from present–day individuals and few75

ancient genomes.76

2 The stepping–stone model77

The stepping–stone model describes the distribution of allele frequencies in78

an infinite set of demes in different locations of the space represented by79

Cartesian coordinates. We start by describing the 1-Dimensional case. Let80

p(k) be the frequency of one allele at a bi-allelic locus in population k and81

p̄ be the overall allele frequency. In each generation, p(k) is updated with82

the following three steps (Crow et al., 1970):83

• Exchange a proportion mi of migrants with demes at a distance i.84

• Exchange a proportion m∞ of migrants with a deme that has fixed85

allele frequency p̄. The meaning of this step is discussed later.86

• Sample gametes of the next generation in the population.87

In the case considered by Kimura and Weiss (1964), migrants are ex-88

changed only between neighboring locations in the first step, so that mi =89

0, i > 1. The second step consists of exchanges of migrants with an external90

population at rate m∞. This event is equivalent to reversible mutations91
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occurring. The formulation of the model states that every locus is bi-allelic,92

and the number of loci is fixed. As a consequence, the mutation model is a93

reversible mutation model with probability m∞, and mi >> m∞. Random94

sampling of step 3 is represented by a random change in the allele frequency95

ε(k), with E[ε(k)] = 0, and E[ε(k)2] = p(k)(1− p(k))/2Ne, where Ne is the96

effective population size of a deme (Wright, 1940; Kimura and Crow, 1963).97

Our interest is in the changes in allele frequency in one generation. We98

consider p̃(k) = p̄ − p(k), the deviation from the average frequency. Given99

these three steps,100

p̃′(k) = (1−
∞∑
i=1

mi−m∞)p̃(k)+
m1

2
(p̃(k−1)+p̃(k+1))+

m2

2
(p̃(k−2)+p̃(k+2))+· · ·+ε(k).

(1)
To simplify the notation, we define the operators S and L,101

Sp̃(k) = p̃(k + 1), S−1p̃(k) = p̃(k − 1), (2)
102

L = (1−
∞∑
i=1

mi −m∞)S0 +
∞∑
i=1

mi

2
(Si + S−i), (3)

so that,103

p̃′(k) = Lp̃(k) + ε(k). (4)

The quantity of interest in this model is the correlation of allele frequen-104

cies between two demes at locations k1 and k2. Let r(k) be the correlation105

coefficient of allele frequencies between populations that are k steps apart.106

Assuming equilibrium, we have107

r(k) =
ρ(k)

ρ(0)
=
E[p̃(k1)p̃(k2)]

ρ(0)
=
E[Lp̃(k1)Lp̃(k2)]

ρ(0)
, (5)

where ρ(k) is the covariance in frequencies in demes k steps apart. The108

mathematical treatment of equation (5) by Weiss and Kimura (1965) using109

the spectral representation of a correlation (Doob, 1953) gives the general110

formula111

r(k) =
C

2π

∫ 2π

0

cos(kθ)dθ

1− [
∑∞

i=0micos(iθ)]2
, (6)

where C is the normalizing constant.112

Equation (6) can be approximated by an exponential function of k:113

r(k) = e
−
√

2m∞
m1

k
. (7)
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This simple formula conveys the important idea that in one dimension, the114

correlation of allele frequencies between populations decays exponentially115

with distance. In the 2–Dimensional and 3–Dimensional cases, the cor-116

relation function is more difficult to approximate. Using modified Bessel117

function, it is shown that correlation at a given distance is lower in these118

cases than in the 1–Dimensional case (Weiss and Kimura, 1965).119

3 Isolation–by–Distance–and–Time120

3.1 1–Dimensional case121

We are here interested in the case where genetic samples are collected from122

demes that are in different locations and at different times (measured in123

generations). Let ρ(k, t) be the covariance between allele frequencies of two124

demes separated by k steps and t generations. We denote the coordinates of125

these demes by (k1, t1) and (k2, t2), and the deviations in allele frequencies126

p̃(k1)
(t1) and p̃(k2)

(t2). Since we assume the distribution of allele frequencies127

is stationary in both time (equilibrium distribution) and space (all migration128

rates are equal), we can consider these coordinates to be (0, 0) and (k, t) with129

no loss of generality. Following previous notation130

ρ(k, t) = E[p̃(k1)
(t1)p̃(k2)

(t2)] = E[p̃(k)(t)p̃(0)(0)]. (8)

To characterize the evolution of the covariance between allele frequencies131

with respect to time t, we iteratively apply the operator L defined in equation132

(3). This operation describes the potential trajectories of an allele, and133

results in a quantity similar to a propagator. This process leads to134

ρ(k, t) = Ltρ(k) (9)

with ρ(k) = ρ(k, 0) (see Appendix A).135

Let r(k, t) be the correlation between allele frequencies of two demes136

separated by k steps and t generations, equations (5) and (9), combined137

with the general formula of equation (6) gives138

r(k, t) =
C

2π

∫ 2π

0

[
∑∞

i=0micos(iθ)]
tcos(kθ)dθ

1− [
∑∞

i=0micos(iθ)]2
. (10)

and the constant C is set such that r(0, 0) = 1 (Appendix B).139

This equation reduces to140

r(k, t) =
C

2π

∫ 2π

0

[1−m1 −m∞ +m1cos(θ)]
tcos(kθ)dθ

1− (1−m1 −m∞ +m1cos(θ))2
(11)
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in the standard stepping–stone model, where demes only exchange migrants141

with their closest neighbors at rate m1/2. An exact formula for this integral142

can be calculated and is notable for its size and lack of utility (Appendix143

C).144

One noteworthy feature of equation (10) is that the decay of the cor-145

relation with time is not affected by the effective population size Ne. This146

result is different from what is expected for an isolated population: the level147

of differentiation as a function of the number of generations separating two148

samples is larger when the effective population size is small, reflecting the149

increased magnitude of genetic drift. However, in the particular case of an150

equilibrium stepping–stone model, the covariance of allele frequencies be-151

tween the demes is not a function of the effective population size, a result152

already known in the spatial context (see equation (7)) (Kimura and Weiss,153

1964). This result becomes clear when considered in terms of coalescence154

times. Between the time the first and second samples are taken, the trajec-155

tory of the first sample depends only on the migration process. There is no156

possibility of coalescence.157

3.2 Two dimensions and more.158

So far, we have focused on the 1-Dimensional case for the sake of simplicity.159

However, it is important to investigate the decay in higher dimensions as it160

is common in practice to have samples taken from a 2-Dimensional or even161

3-Dimensional habitat. The general formula for the correlation in higher162

dimensions can be obtained with no more theoretical development. In their163

work on the stepping–stone model, Kimura and Weiss derived a general for-164

mula for the correlation that can be extended to any number of dimensions.165

In their work they only gave approximations for 1, 2 or 3 dimensions as these166

are the practical cases. Using general formula (3.11) of Weiss and Kimura167

(1965), we can write the correlation 10 in 2 dimensions168

r(k1, k2, t) =
C2

(2π)2

∫ 2π

0

∫ 2π

0

[
∑∞

i1=0

∑∞
i2=0mi1i2cos(i1θ1)cos(i2θ2)]

tcos(k1θ1)cos(k2θ2)dθ1dθ2

1− (
∑∞

i1=0

∑∞
i2=0mi1i2cos(i1θ1)cos(i2θ2))

2
.

(12)
The generalization to obtain the correlation in n dimensions is straight–169

forward (Appendix D).170

We perform a numerical integration of equation (12) to investigate the171

decay of correlation with distance and time in one dimension and higher.172

Correlation decreases as a function of distance and time in 1, 2 and 3 di-173

mensional models (Figure 1). In addition, for equal values of the migration174

6

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 7, 2015. ; https://doi.org/10.1101/024133doi: bioRxiv preprint 

https://doi.org/10.1101/024133
http://creativecommons.org/licenses/by-nc/4.0/


and mutation rates the correlation decrease is much larger with respect to175

time and geography in higher dimension models, consistently with previous176

results (Maruyama, 1970a, 1971a). Numerical integration is done using the177

R package cubature.178

3.3 Simulations in one dimension and two dimensions.179

When considering realistic examples, a finite number of demes is present in180

the data. As a consequence, correlation patterns are affected by the prox-181

imity of the edge of the sampling scheme (Maruyama, 1970b). Another182

effect of the finite number of demes is that the overall allele frequency can183

drift away from the theoretical allele frequency. An alternative is to con-184

sider a finite, non-circular model, and to deal with edge issues independently185

(Felsenstein, 2015). To investigate to which extent the analytic theory de-186

veloped in the previous section is valid in a finite stepping–stone model with187

temporal sampling, we perform simulations.188

Backward in time simulation software such as ms (Hudson, 2002), or189

fastsimcoal (Excoffier and Foll, 2011), are usually used to investigate IBD in190

a stepping–stone models (Novembre et al., 2008). Temporal sampling can191

be investigated in such model by simulating gene trees where lineages from192

isolated demes are joined to the stepping–stone demes at a chosen time in193

the past (Skoglund et al., 2014). Mutations are then randomly placed on the194

gene tree. Such a simulation is needed to understand the influence of time195

and distance on genetic differentiation, but does not precisely reproduce196

the process of the above model which assumes reversible mutation rather197

than the infinite site model. The infinite site model does not have a true198

equilibrium for any one site, only a pseudo–equilibrium.199

We wrote a C program that performs forward in time simulations. The200

simulation program precisely follows the model presented in the previous201

section. At the initial time, the allele frequencies in all the demes are equal202

to the allele frequencies in the outside infinite–sized population. Then the203

program runs for a large number of generations until the stationary distri-204

bution of the allele frequencies is reached.205

In the 1-Dimensional case, we simulate 100 demes. For the 2-Dimensional206

case, we simulate a total of 2500 demes on a 50 × 50 grid. We assume all207

the demes have the same effective population size. We sample the allele208

frequencies at several times in the past. Correlation between demes fit very209

closely the theory of equations (11) and (12) provided that demes are taken210

sufficiently far away from the edge of the grid (Figure 2). The edge effect211

directly increases the correlation between demes, and is present when com-212
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paring present and ancient samples. In both 1 and 2 dimensions, the edge213

effect disappears in the simulations (Figure 3). As predicted by Maruyama,214

the edge effect is less strong with lower migration rates.215

4 Coalescence times216

4.1 Coalescence times in one dimension217

Coalescence times in a stepping–stone model can be derived under some218

assumptions. In particular, we consider a case with migration only between219

neighboring demes and low mutation rate. Expected coalescence times be-220

tween genes that are in different demes is a function of the locations of these221

demes. These coalescence times are of interest because they closely related222

to FST and coefficients of identity–by–descent (Slatkin, 1991). Under the223

assumption of a circular 1-Dimensional stepping-stone model with nd demes,224

two genes A1 and A2 have an expected coalescence time225

E[TA1A2 ] = 2Nend + (nd − k)
k

2m
, (13)

where Ne is the effective population size per deme, m the migration rate226

between neighboring demes (previously m1), and k is the distance between227

the two demes (Slatkin, 1991). Considering a circular arrangement of the228

demes makes the analysis simpler, as only the distance between the demes229

matters, and there are no edge effects. In addition it has been shown that230

linear/planar and circular/toroidal stepping stone models are very similar231

when considering population away from the edges (Maruyama, 1971a,b). To232

study a case similar to the infinite stepping–stone model, we assume nd is233

large.234

We extend the previous theoretical result in the case where two genes235

are sampled at different times. Let us assume that the sampled genes are in236

population k1 and k2. The number of generations between the two sampling237

times is t = t1 − t2, and we assume, with no loss of generality, that t1 = 0238

and t2 = t generations in the past. The coalescence process between these239

two genes can be divided in three phases. The first phase corresponds to240

the genealogy that traces back to the ancestor of the present gene, called241

A
(t)
1 , at generation t. This ancestor is in population k

(t)
1 . The two other242

parts correspond to the time until the coalescence event between A
(t)
1 and243

A2. They are respectively the time until the gene A
(t)
1 and A2 are in the244

same deme, then the time to the common ancestor of these two genes. This245
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part has already been described, and the expectation is given in equation246

(13) (Slatkin, 1991). The expected coalescence time between A1 and A2 is247

then written248

E[TA1A2 ] = t+ E[T
A

(t)
1 A2

]. (14)

The variable T
A

(t)
1 A2

is the coalescence time between a random gene in249

the unknown population k
(t)
1 and a random gene in population k2. To rep-250

resent the uncertainty about the population k
(t)
1 , we derive the probability251

distribution of the position k
(t)
1 at time t, given position k1 at time 0. Using252

this probability distribution we rewrite the expectation (14) as253

E[TA1A2 ] = t+

nd−1∑
x=0

E[T
A

(t)
1 A2
|k(t)1 = x]p(k

(t)
1 = x). (15)

To describe the probability distribution of position k
(t)
1 at time t given254

that a gene is in population k1 at time 0, we consider a random walk with255

transition matrix256

M =


1−m m

2 0 . . . 0 m
2

m
2 1−m m

2 . . . 0 0
0 m

2 1−m . . . 0 0
. . .
m
2 0 0 . . . m

2 1−m

 . (16)

Using standard results about Markov chains (Ross et al., 1996), we know257

that the vector of probabilities for the position at time t, P
k
(t)
1

is expressed258

such as259

P
k
(t)
1

= M tPk1 (17)

with Pk1 is the initial probability distribution of gene A1’s position. The260

initial probability distribution is trivial and Pk1 is a vector of 0 with a 1261

in the kth1 entry. Exact formula for this matrix power can be obtained262

using tridiagonal matrix properties (Al-Hassan, 2012). However we can also263

express an approximation for the probability distribution of this process264

at time t. This random process is symmetrical, centered in k1, and using265

classical results about Brownian motion, has a variance proportional to t.266

We can approximate the probability distribution by a Normal distribution,267

and268

P (k
(t)
1 = x|k1) = N (x; k1,mt). (18)

9

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 7, 2015. ; https://doi.org/10.1101/024133doi: bioRxiv preprint 

https://doi.org/10.1101/024133
http://creativecommons.org/licenses/by-nc/4.0/


The accuracy of this approximation can be verified with simulations using269

equation (17). The approximation is relevant for sufficiently large values270

of t, depending on the migration rate. The expected coalescence time in a271

1-Dimensional circle can then be written272

E[TA1A2 ] = 2Nend + t+
1√

2πmt

∫ nd−1

0
(nd − |x− k2|)

|x− k2|
2m

e−
(x−k1)

2

2mt dx.

(19)
Coalescence time between genes is an increasing function of distance273

and time between demes (Figure 4). Asymptotically, when t is large, the274

expected time for two genes to be in the same population can be approx-275

imated by a linear function of time between the samples (Figure 4). The276

right part of equation (19) is the integral of a product of a positive function277

that depends only on the distance between demes and a Gaussian kernel278

with variance mt. As the time gets large, relatively to m, the Gaussian ker-279

nel becomes flat, and the integral is almost constant (Figure 4). In practice,280

this implies that in a population at equilibrium, the geography does not281

matter when the sample is very old.282

4.2 Coalescence times in two dimensions283

In the case of a 2-Dimensional habitat with nd1 × nd2 demes, the expected284

coalescence time between two genes A1 and A2 is285

E[TA1A2 ] = Nend1nd2 +
S(i, j)

2Nem
, (20)

where S(i, j) is a function of i and j, the number of demes between the two286

genes. We assume in this case that the migration in each direction is the287

same.288

Using the same conditioning as in equation (14), we can derive the ex-289

pectation for the coalescence time of genes A1 in population k1 and A2 in290

population k2, t generations in the past. We have291

E[TA1A2 ] = t+

nd1−1∑
x1=0

nd2−1∑
x2=0

E[T
A

(t)
1 A2
|k(t)

1 = (x1, x2)]p(k
(t)
1 = (x1, x2)). (21)

The probability distribution of the position of gene A1 at time t, k
(t)
1292

is known using the same random walk as in the 1-Dimensional case. The293

distribution can be approximated by a bivariate Normal distribution with294
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mean k1, and covariance matrix Σ, where Σ is diagonal with terms mt/2 in295

the diagonal. In the anisotropic case where migration rate would be different296

in the two dimensions, m1 and m2, Σ would have m1t and m2t as diagonal297

terms. The evaluation of this function for samples separated in distance and298

time shows a similar pattern to the 1-Dimensional case (Figure 4). However299

for a same migration rate, the expected times for two genes to be in the300

same deme in the 2–Dimensional toroidal model are smaller than in the 1–301

Dimensional circular model. Then, if there is the same number of demes,302

with same effective population sizes, e.g. ndNe = nd1nd2Ne, the expected303

coalescence times are smaller in the 2–Dimensional case. This result is304

already known when comparing samples taken at the same generation and305

remains true when t is positive (Slatkin, 1993).306

5 Connection with PCA307

Because there is a close connection between PCA and coalescence times308

(McVean, 2009), our results are relevant to using PCA to compare ancient309

and modern samples. PCA is a useful way to represent the main axes of310

variation in the data and has proven to be a powerful tool to infer genetic311

relationships when applied to ancient DNA data(Skoglund et al., 2012; Haak312

et al., 2015).313

5.1 Ancient samples are shrunk towards 0.314

In population genetics, PCA is usually performed by computing the eigen-315

vectors, and eigenvalues of the matrix of covariances in the genotypes of316

different individuals. Although there are other ways to compute princi-317

pal components, this one is convenient in population genetics because the318

number of variables is usually larger by several orders of magnitude than319

the number of samples. The effect of differences in the sampling times can320

be evaluated using the dependence of the covariance matrix described by321

equation (10). To illustrate, consider a 2-Dimensional even repartition of322

10×10 demes, and ancient samples taken in several randomly chosen demes323

at t = 1000 generations in the past (Figure 5A). By calculating the theo-324

retical covariance matrix and its first two eigenvectors, we obtain the first325

two principal components that reproduce geography of the demes (Novem-326

bre et al., 2008; Engelhardt and Stephens, 2010). Figure (5B) shows that327

principal components mimic the geography of the present demes, but an-328

cient demes are not superposed on the corresponding present-day sample329
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from the same deme. Instead, ancient samples move towards the center of330

the first and second principal components.331

Using 100 demes from a 1-Dimensional simulation described above, we332

apply PCA to the allele frequencies at the 6000 simulated loci. To remove333

the edge effect, we simulate 200 demes, and consider only the 100 demes in334

the center. We also include allele frequencies from past generations for sev-335

eral demes. PC1 shows the 1-Dimensional pattern of isolation–by–distance336

as expected, and ancient samples are closer to 0 (Figure 6A). The distance337

between the scores of ancient individuals and the center of the principal com-338

ponent decreases as the sampling time increases. In practice, the true allele339

frequencies are not known, and the covariance matrix is estimated on indi-340

viduals. When working with sampled individuals instead of allele frequency,341

the same pattern is still visible. A subsampling of 10 diploid individuals342

for each deme at the present time, and 1 diploid individual for each ancient343

deme shows the same shrinkage of PC scores for ancient individuals (Figure344

6B).345

When applying PCA on allele frequencies from the 2-Dimensional sim-346

ulations, the time effect is visible on the first two components. We study347

the case of a 10 × 10 grid, with no edge effects, and ancient samples taken348

from 4 demes at different times in the past (Figure 6C). The first and sec-349

ond principal components reproduce the geography of the samples, and the350

ancient samples are moved towards the center of the plot (Figure 6D).351

This shrinkage effect of time can be understood considering the shape of352

the covariance function. The first and second principal components repre-353

sent the 2–Dimensional Isolation–By–Distance pattern. This pattern causes354

the covariance matrix at time t = 0 to have a ”block Toeplitz with Toeplitz355

blocks” form (Novembre and Stephens, 2008). However the pairwise co-356

variance between present-day individuals (t = 0) and between ancient and357

present-day individuals (t > 0) does not have the same shape (Figure 1).358

Equation (10) implies that in a stepping–stone model the covariance as a359

function of distance flattens when comparing present and ancient individu-360

als. As a consequence, the scores of ancient samples are moved towards the361

center of the principal components reproducing the local correlation pattern.362

Thus ancient samples can cluster with present samples at different locations,363

even in an equilibrium stepping–stone model.364

5.2 One component for the time differentiation365

Links between PCA and population genetics quantities, such as coalescence366

times and FST have been studied (McVean, 2009; Duforet-Frebourg et al.,367
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2015; Baran and Halperin, 2015) and show that these values can be esti-368

mated from principal components. In the 2–population case, McVean (2009)369

showed that the distance between individuals on the appropriate principal370

component is approximately a linear function of the square root of the time,371

∆, until the lineages of the two individuals are in the same deme. If there372

are ancient and present samples, they can be considered as two groups, and373

∆ is the time corresponding to the first two parts of the coalescence process374

between the lineages, described in the previous section. The time separating375

the individuals is a source of variance important enough to be reflected in the376

principal components (Skoglund et al., 2014). In this case, one component377

separates the two groups and the distance between groups is approximately378

proportional to
√

∆. In Appendix E, we compute the expectation of ∆ if379

there are several present-day and one ancient individuals sampled.380

We analyze the case with 50 contiguous populations sampled from a381

circular 1-Dimensional stepping–stone model with nd = 1000. We assume382

m1 = 0.1, and one deme is sampled in the past. We apply PCA by comput-383

ing the eigenvectors of the individuals correlation matrix. The first principal384

component represents the IBD pattern between the present demes (Figure385

7A). The second principal component corresponds to the differentiation be-386

tween the ancient deme, and the present demes. The average distance on387

PC2 between the two groups (present and ancient) is an increasing func-388

tion that can be approximated by a linear function of the square root of ∆389

(Figure 7B).390

6 Conclusions and discussion391

We have generalized the Kimura–Weiss theory of a stepping–stone model392

to the case where samples are taken at different times, a theory we call393

Isolation-by distance-and-time (IBDT). The correlation between individu-394

als decreases as a function of both geographic distance and time. This result395

is accentuated in higher dimensions. When considering IBDT patterns, the396

edge effect applies when considering a linear model with a finite number of397

demes, similarly to the standard stepping–stone model. However simula-398

tions shows that in both 1 and 2 dimensions, this effect vanishes at a rate399

depending of the migration rate. We have also derived the expected coales-400

cence times under the assumption of a circular, or toroidal model and low401

mutation rate. As the time between samples increases, the coalescence time402

between samples can be approximated by a linear function of time.403

The connection between IBDT theory and PCA is of interest as it gives404
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insights about what to expect from the PC plots that compare ancient and405

present-day samples. When considering only principal components repro-406

ducing geography, scores of the ancient samples may not cluster with the407

population at the same location. Such a result can occur even in the case408

of a population at equilibrium in a stepping–stone model, with no complex409

demographic history. This behavior of PCA is important to note as it could410

result in the inference of a non-existent ancient demographic event. The411

genetic differentiation created by time can be observed on another principal412

component. An important question that remains is in which conditions the413

proportion of variance explained by time is larger than the proportion of414

variance explained by Geography. In this unlikely event, the first principal415

component would not reproduce geography of the samples but rather the416

time line of the samples.417

The limitations of PCA to investigate population structure in a spatio–418

temporal context highlights the need for new theoretical developments to419

analyze population structure when present-day and ancient samples are420

combined. This is especially apparent when considering the complex de-421

mographic scenarios already inferred about the history of modern humans422

(Pickrell and Reich, 2014). Important theoretical work has already been423

done to test specific hypothesis (Durand et al., 2011; Loh et al., 2013). An-424

other way to test different past demographic events is with intensive simu-425

lation procedures, such as Approximate Bayesian Computations (Beaumont426

et al., 2002; Csilléry et al., 2010). In this case, theoretical developments427

on mechanistic models such as the stepping–stone model are important to428

perform simulations efficiently (Baird and Santos, 2010).429

We studied the classical stepping–stone model under the assumptions of430

a stationary distribution of the allele frequencies in both time and space.431

These assumptions are not valid in all cases. The time–stationary distribu-432

tion is not reached when recent events such as range expansions occurred,433

causing asymmetry in the site frequency spectrum (Hallatschek et al., 2007;434

Peter and Slatkin, 2013). Spatial non–stationarity and anisotropy can occur435

when migration pattern is uneven between all populations, or migration is436

favored in one direction (Jay et al., 2013; Duforet-Frebourg and Blum, 2014;437

Petkova et al., 2014). The correlation of allele frequencies is then not only438

a function of space and time, but also of the locations of each deme in the439

habitat.440

A stepping–stone model is not the only model to describe spatial popula-441

tion structure. As an alternative to discrete models, continuous models can442

also be considered to study evolutionary processes (Maruyama, 1972; Bar-443

ton et al., 2002, 2010). Isolation–by-Distance–and–Time can be studied in a444
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continuous framework. In the same way, results about coalescence times in445

a stepping–stone model can be connected to previous theory on coalescence446

in a continuous population (Wilkins and Wakeley, 2002).447
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Figure 1: Correlation as a function of distance between demes k steps appart
in 1, 2 and 3-Dimensional models. The correlation is evaluated for different
number of generations t between the demes. The migration and mutation
rates are used for all models, and m1 = .01 and m∞ = 4.10−4.
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Figure 2: Comparison between theoretical results and simulations in the 2
dimensional case with m1 = .02 and m∞ = 10−5. The solid lines represent
the theory prediction. The dots represent the simulation results evaluated
for demes at a distance 4, 10 or 16 from the edges. Since in the simulations
several pairwise comparisons between demes have the same distance in space
and time, we keep the median of these pairwise correlations.
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Figure 4: Top row: Expected time for two genes to be in a same deme in a
1–Dimensional circular stepping–stone model with Ne = 100, m = .01, and
nd = 51 demes. Bottom row: Expected time for two genes to be in a same
deme in a 2–Dimensional toroidal stepping–stone model with Ne = 100,
m = .01, and nd = 51×51 demes. Left column: Expected times as a function
of the time between the samples. Colors indicate the geographic distance
between samples. Right column. Expected times as a function of geographic
distance between the samples. Colors indicate the time between samples.
Sampling consists in 45 time points evenly separated by 50 generations.
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Figure 5: Panel A. Sampling scheme of a 10×10 grid of demes. Brown trian-
gles represent demes where ancient individuals are sampled 1000 generations
in the past. Panel B. First 2 eigenvectors of the covariance matrix between
populations of Panel A. Parameters used are m1 = .01 and m∞ = 10−5.
Color code is the same as in Panel A. Brown arrows start from the position
of the present deme where an ancient sample is taken, and end where the
ancient sample is projected on the principal components.
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Figure 6: Panel A. First principal component for the 1-Dimensional simula-
tion described above, with m1 = .01 and m∞ = 4.10−5. PCA is performed
on allele frequency data from each of the 100 demes, and ancient allele fre-
quencies are taken in 5 populations at 8 times in the past. Panel B. First
principal component for the 1-Dimensional simulation described above. In
each deme, 10 diploid individuals are sampled at the present time. One
diploid individual is sampled in 5 demes at 8 times in the past. Panel C.
Sampling scheme of a 10×10 grid of populations. Demes marked by a trian-
gle are demes where ancient individuals were sampled. Panel D. plot of PC1
and PC2 for the 2-Dimensional simulation with m1 = .001 and m∞ = 10−5.
Ancient samples are taken at different times in the past for 4 demes.
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Appendix A450

Using the notations in Weiss and Kimura (1965), we calculate the covariance451

of the allele frequencies ρ(k) between two populations that are spatially452

separated by k units of distance. This quantity is defined by453

ρ(k) = E[p̃(0)p̃(k)]. (22)

In the case where the demes are also separated by t units of time, we define454

ρ(k, t) = E[p̃(0)(0)p̃(k)(t)]. (23)

and in the particular case of t = 1,455

456

ρ(k, 1) = E[p̃(k)(1)p̃(0)(0)]
= E[p̃(k)′p̃(0)]
= E[(Lp̃(k) + ε(k))p̃(0)]
= E[Lp̃(k)p̃(0)] + E[Lε(k)p̃(0)]
= LE[p̃(k)p̃(0)]
= Lρ(k).

457

By induction, we show that for any value of t > 0458

ρ(k, t) = Ltρ(k). (24)

Let’s assume that for a time t > 0 equation (24) is true,459

ρ(k, t+ 1) = E[p̃(k)(t+1)p̃(0)(0)]

= E[(Lp̃(k)(t) + ε(k)(t))p̃(0)]

= E[Lp̃(k)(t)p̃(0)] + E[Lε(k)(t)p̃(0)]

= LE[p̃(k)(t)p̃(0)]
= Lρ(k, t)
= Ltρ(k).

460

Then to obtain the correlation of allele frequencies r(k, t) between two461

demes, we have ρ(0, 0) = ρ(0) and462

r(k, t) =
ρ(k, t)

ρ(0, 0)
=
Ltρ(k)

ρ(0)
= Ltr(k). (25)
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Appendix B463

We established in equation (11) that r(k, t) = Ltr(k), and using the general464

expression in equation (6) we have,465

466

r(k, t) = Lt C2π
∫ 2π
0

cos(kθ)dθ
1−[

∑∞
i=0micos(iθ)]2

= C
2π

∫ 2π
0

Ltcos(kθ)dθ
1−[

∑∞
i=0micos(iθ)]2

.
467

It is now demonstrated that468

Ltcos(kθ) = [
∞∑
i=0

micos(iθ)]
tcos(kθ), (26)

where for the convenience of the notation we denote m0 = (1 − m∞ −469 ∑∞
i=1mi). In the particular case of t = 1 we have470

Lcos(kθ) =
∑∞

i=0
mi
2 (S+icos(kθ) + S−icos(kθ))

=
∑∞

i=0
mi
2 (cos((k + i)θ) + cos((k − i)θ))

=
∑∞

i=0
mi
2 (2cos(iθ)cos(kθ))

= [
∑∞

i=0micos(iθ)]cos(kθ)

471

Now assuming that formula (26) holds for any value t > 0, we have472

473

Lt+1cos(kθ) = L[Ltcos(kθ)]
= L[

∑∞
i1=0 · · ·

∑∞
it=0mi1 . . .mitcos(i1θ) . . . cos(itθ)]cos(kθ)

=
∑∞

it+1=0[
∑∞

i1=0 · · ·
∑∞

it=0mi1 . . .mitcos(i1θ) . . . cos(itθ)]

×mit+1

2 (cos((k + it+1)θ) + cos((k − it+1)θ))
=
∑∞

it+1=0

∑∞
i1=0 · · ·

∑∞
it=0mi1 . . .mitmit+1cos(i1θ) . . . cos(itθ)cos(it+1θ)cos(kθ)

= [
∑∞

i=0micos(iθ)]
t+1cos(kθ).

474

We can conclude by induction that formula (26) is true for any positive t.475

Then, using equation (26), a general formula for r(k, t) can be expressed476

r(k, t) =
C

2π

∫ 2π

0

[
∑∞

i=0micos(iθ)]
tcos(kθ)dθ

1− [
∑∞

i=0micos(iθ)]2
. (27)

Constant C is set such that r(0, 0) = 1. We do not analytically inves-477

tigate this constant, however details about the case t = 0 can be found in478

Weiss and Kimura (1965).479
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Appendix C480

Let’s assume the particular stepping-stone model:
∑∞

i=0micos(iθ) = 1 −
m1 −m∞ +m1cos(θ). Now the correlation between 2 demes k steps appart
and t generations is

r(k, t) =
C

2π

∫ 2π

0

[1−m1 −m∞ +m1cos(θ)]
tcos(kθ)dθ

1− [1−m1 −m∞ +m1cos(θ)]2
.

The fraction can be decomposed in two parts r(k, t) = C/(2π)(A1(k, t) +
A2(k, t)) using partial fraction expansion, where

A1(k, t) =

∫ 2π

0

[1−m1 −m∞ +m1cos(θ)]
tcos(kθ)dθ

1− [1−m1 −m∞ +m1cos(θ)]

A2(k, t) =

∫ 2π

0

[1−m1 −m∞ +m1cos(θ)]
tcos(kθ)dθ

1 + [1−m1 −m∞ +m1cos(θ)]

. Let α = (1−m1 −m∞)/m1, we can expand A1 and A2,

A1(k, t) = −mt−1
1

t∑
i=0

(
t

i

)
αt−i

∫ 2π

0

cos(θ)icos(kθ)dθ

α− 1
m1

+ cos(θ)
,

A2(k, t) = mt−1
1

t∑
i=0

(
t

i

)
αt−i

∫ 2π

0

cos(θ)icos(kθ)dθ

α+ 1
m1

+ cos(θ)
,

To get rid of the integral, we can use the fact that∫ 2π

0

cost(θ)cos(kθ)dθ

x+ cos(θ)
=

1

2t

t∑
i=0

a
(t)
i

∫ 2π

0

cos((k + i)θ) + cos((k − i)θ)dθ
x+ cos(θ)

,

where481

i 0 1 2 3 4 5 Sum

a
(1)
i 0 1 2× 1 = 2

a
(2)
i 2 0 1 2× 1 + 2 = 4

a
(3)
i 0 3 0 1 2× (1 + 3) = 8

a
(4)
i 6 0 4 0 1 16

a
(5)
i 0 10 0 5 0 1 32

482

and as given in Weiss and Kimura (1965)483
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1
2π

∫ 2π
0

cos(kθ)dθ
x+cos(θ) = {

1√
x2−1(

√
x2 − 1− x)n, x > 1,

(−1)n+1
√
x2−1 (

√
x2 − 1 + x)n, x < −1.

484

This leads us to the expressions for A1 and A2,485

486

A1(k, t) = −mt−1
1

∑t
i=0

(
t

i

)
αt−i 1

2i

∑i
j=1{ a

(i)
j

(−1)k+j√
(α− 1

m1
)2−1

(α− 1
m1

+
√

(α− 1
m1

)2 − 1)k+j

a
(i)
j

(−1)k−j√
(α− 1

m1
)2−1

(α− 1
m1

+
√

(α− 1
m1

)2 − 1)k−j}
487

A2(k, t) = mt−1
1

∑t
i=0

(
t

i

)
αt−i 1

2i

∑i
j=1{ a

(i)
j

1√
(α+ 1

m1
)2−1

(
√

(α+ 1
m1

)2 − 1− (α+ 1
m1

))k+j

a
(i)
j

1√
(α+ 1

m1
)2−1

(
√

(α+ 1
m1

)2 − 1− (α+ 1
m1

))k−j}
488
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Appendix D489

The 2-Dimensional case of the analysis can be detailed by changing the
operators L and S. We note the cartesian coordinates of each deme with
the couple (i1, i2), and we define the operators S1 and S2 such as

S1p̃(i1, i2) = p̃(i1 + 1, i2) and S2p̃(i1, i2) = p̃(i1, i2 + 1).

The operator L in two dimensions becomes

L = (1−
∑
i1

∑
i2

mi1i2−m∞)
(S0

1 + S0
2)

2
+
∑
i1

∑
i2

mi1i2

4
(Si11 +S−i11 )(Si22 +S−i22 )

where mi1i2 is the migration rate between demes separated by i1 and i2
steps. The correlation in 2 dimensions can be written using the spectral
decomposition and for two demes we have

r(k1, k2, 0) =
C2

(2π)2

∫ 2π

0

∫ 2π

0

cos(k1θ1)cos(k2θ2)dθ1dθ2
1− (

∑∞
i1,i2=0mi1i2cos(i1θ1)cos(i2θ2))

2

for two populations that are separated by k1 and k2 steps at the same
generation. Using the same trigonometric properties as in appendix B, we
have

Ltcos(k1θ1)cos(k2θ2) = [
∑
i1

∑
i2

(mi1i2cos(i1θ1)cos(i2θ2))]
tcos(k1θ1)cos(k2θ2)

and m00 = (1−
∑

i1

∑
i2
mi1i2 −m∞). As a consequence, the correlation of

allele frequencies in 2 dimensions between two populations separated by k1
and k2 steps, and t generations is

r(k1, k2, t) =
C2

(2π)2

∫ 2π

0

∫ 2π

0

[
∑∞

i1=0

∑∞
i2=0mi1i2cos(i1θ1)cos(i2θ2)]

tcos(k1θ1)cos(k2θ2)dθ1dθ2

1− (
∑∞

i1=0

∑∞
i2=0mi1i2cos(i1θ1)cos(i2θ2))

2
.

To go further, and especially investigate the 3-Dimensional case that
can be relevant in practice, it is possible to extend the calculations in n-
dimensional models, where two populations are separated by t generations
and a vector of steps (k1, . . . kn). Redefining the operators S and L, we can
show that the correlation is

r(k1, . . . , kn, t) =
Cn

(2π)n

∫ 2π

0
. . .

∫ 2π

0

[
∑∞

i1,in=0mi1...incos(i1θ1) . . . cos(inθn)]tcos(k1θ1) . . . cos(knθn)dθ1 . . . dθn

1− (
∑∞

i1,...in=0mi1...incos(i1θ1) . . . cos(inθn))2
.
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Appendix E490

We detail the case where two groups are present in the data, the present491

demes and the ancient deme. The quantity ∆ is the time for two genes in492

different groups to be in the same group. In the case where there is one493

ancient deme k2 and one present deme k1, using equation (19) we have494

E[∆|k1] = E[TA1A2 ]− 2Nend

= t+ 1√
2πm1t

∫ nd

0 (nd − |x− k2|) |x−k2|2m1
e
− (x−k1)

2

2m1t dx.
495

In the practical case we consider several present time demes 1 . . . np,496

and one ancient deme. The expectation of ∆ has to be conditioned by the497

probability that A1 is in a given present population k1.498

E[∆] =

np∑
i=1

p(k1 = j)E[∆|k1 = j]. (28)

Since we consider a stepping–stone model where all the populations have499

the same effective population size, we have p(k1 = j) = 1/np, j = 1 . . . np.500
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Pääbo, S., Poinar, H., Serre, D., Jaenicke-Després, V., Hebler, J., Rohland,617

N., Kuch, M., Krause, J., Vigilant, L., and Hofreiter, M. (2004). Genetic618

analyses from ancient dna. Annu. Rev. Genet., 38:645–679.619

Patterson, N., Price, A. L., and Reich, D. (2006). Population structure and620

eigenanalysis. PLoS Genetics.621

Peter, B. M. and Slatkin, M. (2013). Detecting range expansions from ge-622

netic data. Evolution, 67(11):3274–3289.623

Petkova, D., Novembre, J., and Stephens, M. (2014). Visualizing spatial624

population structure with estimated effective migration surfaces. bioRxiv,625

page 011809.626

Pickrell, J. K. and Reich, D. (2014). Toward a new history and geography of627

human genes informed by ancient dna. Trends in Genetics, 30(9):377–389.628

32

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 7, 2015. ; https://doi.org/10.1101/024133doi: bioRxiv preprint 

https://doi.org/10.1101/024133
http://creativecommons.org/licenses/by-nc/4.0/


Ramachandran, S., Deshpande, O., Roseman, C. C., Rosenberg, N. A., Feld-629

man, M. W., and Cavalli-Sforza, L. L. (2005). Support from the relation-630

ship of genetic and geographic distance in human populations for a serial631

founder effect originating in africa. Proceedings of the National Academy632

of Sciences of the United States of America, 102(44):15942–15947.633

Ross, S. M. et al. (1996). Stochastic processes, volume 2. John Wiley &634

Sons New York.635

Rousset, F. (1997). Genetic differentiation and estimation of gene flow from636

f-statistics under isolation by distance. Genetics, 145(4):1219–1228.637

Sharbel, T. F., Haubold, B., and Mitchell-Olds, T. (2000). Genetic iso-638

lation by distance in arabidopsis thaliana: biogeography and postglacial639

colonization of europe. Molecular Ecology, 9(12):2109–2118.640

Skoglund, P., Malmström, H., Raghavan, M., Stor̊a, J., Hall, P., Willerslev,641
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