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Abstract 

Many genetic variants influence complex traits by modulating gene expression, thus altering the 

abundance levels of one or multiple proteins. In this work we introduce a powerful strategy that 

integrates gene expression measurements with large-scale genome-wide association data to 

identify genes whose cis-regulated expression is associated to complex traits. We use a relatively 

small reference panel of individuals for which both genetic variation and gene expression have 

been measured to impute gene expression into large cohorts of individuals and identify 

expression-trait associations. We extend our methods to allow for indirect imputation of the 

expression-trait association from summary association statistics of large-scale GWAS1-3. We 

applied our approaches to expression data from blood and adipose tissue measured in ~3,000 

individuals overall. We then imputed gene expression into GWAS data from over 900,000 

phenotype measurements4-6 to identify 69 novel genes significantly associated to obesity-related 

traits (BMI, lipids, and height). Many of the novel genes were associated with relevant 

phenotypes in the Hybrid Mouse Diversity Panel. Overall our results showcase the power of 

integrating genotype, gene expression and phenotype to gain insights into the genetic basis of 

complex traits. 

 

Introduction 

Although a large proportion of variability in complex human traits is due to genetic variation, the 

mechanistic steps between genetic variation and trait are generally not understood7. Many 

genetic variants influence complex traits by modulating gene expression, thus altering the 

abundance levels of one or multiple proteins8-12. Such relationships between gene expression and 

trait could be investigated through association scans in individuals for which both measurements 

are available8,13,14. Unfortunately, studies that measure gene expression have been held back by 

specimen availability and cost, with the few published studies of gene expression and complex 

trait being orders of magnitude smaller than studies of trait alone. Consequently, many 

expression-trait associations cannot be detected, especially those with small effects. To mitigate 

the reduced power from small sample size, alternative approaches examined the overlap of 

genetic variants that impact gene expression (eQTLs) with trait-associated variants identified in 
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large, independent genome-wide association studies (GWAS)4,5,8,9,11-13,15. However, this 

approach is likely to miss expression-trait associations of small effect.  

We developed a new approach to identify genes whose expression is significantly associated to 

complex traits in individuals without directly measured expression levels (Methods). We 

leveraged a relatively small set of reference individuals for whom both gene expression and 

genetic variation (single nucleotide polymorphisms, SNPs) have been measured to impute the 

cis-genetic component of expression into a much larger set of phenotyped individuals from their 

SNP genotype data (Figure 1). We then correlated the imputed gene expression to the trait to 

perform a transcriptome-wide association study (TWAS) and identify significant expression-trait 

associations (Methods). A critical limitation is that large-scale GWAS data are typically only 

publicly available at the level of summary association statistics (e.g. individual SNP effect 

sizes)1-3. We extended our approach to impute expression-trait association statistics at the 

summary statistic level (Methods). This allowed us to increase the effective sample size for 

expression-trait association testing to hundreds of thousands of individuals. By focusing only on 

the genetic component of expression, we avoid instances of expression-trait associations that are 

not a consequence of genetic variation but are driven by variation in trait (Figure 2). Our 

approach can be conceptualized as a test for significant cis-genetic correlation between 

expression and trait (Methods). 

We applied our approaches to expression data from blood and adipose tissue measured in ~3,000 

individuals overall. Through extensive simulations and real data analyses we show that our 

proposed approach increases performance over standard GWAS or eQTL-guided GWAS. 

Furthermore, we reanalyzed a 2010 lipid GWAS16 to find 25 new expression-trait associations in 

that data. 19 out of 25 contained genome-wide significant SNPs in the more recent and expanded 

lipids study4 thus showcasing the power of our approach to find robust associations. We imputed 

gene expression into GWAS data from over 900,000 phenotype measurements4-6 to identify 69 

novel genes significantly associated to obesity-related traits (BMI, lipids, and height). Many of 

the novel genes were associated with relevant phenotypes in the Hybrid Mouse Diversity Panel. 

Overall our results showcase the power of integrating genotype, gene expression and phenotype 

to gain insights into the genetic basis of complex traits. 
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Results 

Overview of the methods 

We integrate gene expression and GWAS data using imputed gene expression from SNP data. 

Briefly, we use a reference panel of gene expression and SNP data to build a statistical model for 

predicting the cis-genetic component of expression. The imputed expression can be viewed as a 

linear model of SNP data with weights based on the correlation between SNPs and gene 

expression in the training data while accounting for linkage disequilibrium (LD) among SNPs. 

To capitalize on the largest GWAS to date (typically available only at the summary level), we 

extended our approach to impute the expression-trait association statistics directly from GWAS 

summary statistics (Methods). In contrast to expression imputation from individual-level data, 

imputation of expression-trait association from GWAS summary statistics can exploit publically 

available data from hundreds of thousands of samples. Linear predictors naturally extend to 

indirect imputation of the standardized effect of the cis-genetic component on the trait starting 

from only the GWAS association statistics1-3. Similarly to individual level imputation, the 

predicted effect of the expression on the trait can be viewed as a linear combination of the effects 

of each SNP on the trait with weights estimated from reference panels that contain both SNP and 

gene expression measurements (see Methods). 

SNP-heritability of gene expression 

To investigate the potential utility of a transcriptome-wide association (TWAS) based on 

imputed gene expression we first estimated the cis- (1Mb window around the gene) and trans- 

(rest of the genome) SNP-heritability (ℎ!!) for each gene in our data17,18. These metrics quantify 

the maximum possible accuracy (in terms of R2) of a linear predictor from the corresponding set 

of SNPs19,20 (Methods). We used 3,234 individuals for whom genome-wide SNP data and 

expression measurements were available: 573 individuals with RNA-seq measured in adipose 

tissue from the METSIM (METabolic Syndrome In Men) study41,42; 1,414 individuals with 

array-based expression measured in whole blood from the Young Finns Study (YFS)21,22; and 

1,247 unrelated individuals with array-based expression measured in peripheral blood (NTR, 

Netherlands Twin Registry)23 (Methods, Table S1). All expression measurements were adjusted 

for batch confounders, and array probes were merged into a single expression value for each 
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gene where possible (Methods). Consistent with previous work23,24, we observed significantly 

non-zero estimates of heritability across all three studies, with mean cis-ℎ!! ranging from 0.01-

0.07 and mean trans-ℎ!! ranging from 0.04-0.06 in genes where estimates converged (Figure S3, 

Table S1). Although we observed large differences in the average cis-ℎ!! estimates between the 

two blood cohorts, the estimates were strongly correlated across genes (Pearson 𝜌=0.47 for YFS-

NTR, as compared to 𝜌=0.15 and 𝜌=0.26 for METSIM-NTR and METSIM-YFS respectively). 

This is consistent with a common but not identical genetic architecture. The cis-ℎ!! was 

significantly non-zero for 6,924 genes after accounting for multiple hypotheses (1,985 for 

METSIM, 3,836 for YFS, and 1,103 for NTR) (Figure S3) whereas current sample sizes where 

too small to detect individually significant trans heritable genes. As expected, we also observed a 

high overlap of genes with significant cis-ℎ!! across cohorts (Table S15). We focused subsequent 

analyses on the 6,924 cis-heritable genes as such genes are typically enriched for trait 

associations6,9,13,23-28. 

TWAS performance in simulations 

We evaluated whether the expressions of the 6,924 highly heritable genes could be accurately 

imputed from cis-SNP genotype data alone in these three cohorts. In each tissue, we used cross-

validation to compare predictions from the best cis-eQTL to those from all SNPs at the locus 

either in a best linear unbiased predictor (BLUP) or in a Bayesian model29,30 (Methods). On 

average, the Bayesian linear mixed model (BSLMM)30, which uses all cis-SNPs and estimates 

the underlying effect-size distribution, attained the best performance with a 32% gain in 

prediction R2 over a prediction computed using only the top cis-eQTL (Figure 4, Figure S1). The 

BSLMM exhibited a long tail of increased accuracy, more than doubling the prediction R2 for 

25% of genes (Figure S2). In contrast to complex traits where hundreds of thousands of training 

samples are required for accurate prediction31,32, a substantial portion of variance in expression 

can be predicted at current sample sizes due to the much smaller number of independent SNPs in 

the cis region20. Furthermore, larger training sizes will continue to increase the total number of 

genes that can be accurately predicted (Figure 3).  

Next, we focused on evaluating the power of the TWAS approach to detect significant 

expression-trait associations using GWAS summary data from complex traits (equivalent to 
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TWAS from individual level data; see Methods, Supplementary Figure S13). For comparison, 

we also measured power to detect significant SNP-trait associations through standard GWAS 

(testing each SNP individually) and eQTL-based GWAS (eGWAS, where the best eQTL in each 

gene is the only variant tested for association to trait), with all three tests corrected for their 

genome-wide test burdens. Using real genotype data, we simulated a causal SNP-expression-trait 

model with realistic effect-sizes and measured the power of each strategy to identify genome-

wide significant variants (accounting for 1 million SNPs for GWAS and 15,000 expressed genes 

using family-wise error rate control). Over many diverse disease architectures (Methods) TWAS 

substantially increased power when the expression-causing variants were un-typed or poorly 

tagged by an individual SNP (Figures 5, S8, S9, S10, S11, S12, S14). The greatest power gains 

were observed in the case of multiple causal variants: 92% power for TWAS compared to 18% 

and 25% for GWAS and eGWAS. This scenario would correspond to expression caused by 

allelic heterogeneity9,33,34, or “apparent” heterogeneity at common variants (due to tagging of 

unobserved causal variant)35. TWAS was comparable to other approaches when a single causal 

variant was directly typed, in which case combining the effects of neighboring SNPs does not 

add signal. Under the null where expression was completely independent of phenotype (with 

either being heritable, Figure 2A-D), the TWAS false positive rate was well controlled (Table 

S9). As expected, all methods were confounded in the case where the same causal variants had 

independent effects on trait and expression (Figure 2F-G; Supplementary Figure S9, S14). 

We also compared TWAS to a recently proposed method, COLOC36, for evaluating co-

localization of gene expression at known GWAS risk loci. After matching the false-discovery 

rate of the two methods in simulations (Methods), we observed that TWAS and COLOC had 

similar power under the single typed causal variant scenario (with slightly lower COLOC power 

at small GWAS sizes), but that TWAS has superior performance when the causal variant was un-

typed or in the presence of allelic heterogeneity (Supplementary Figure S11). This is likely due 

the fact that TWAS explicitly models LD to better capture the un-typed variants. Though 

COLOC has lower power to detect new loci, it offers the advantage of testing specific biological 

hypotheses and may be useful in evaluating known associations. 

Finally, we investigated the effect of the expression reference panel size on performance of 

TWAS (see Supplementary Figure S10). In general, we observe that the TWAS approach always 
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outperforms eGWAS when multiple variants are causal.	
  Interestingly, power for either approach 

does not increase substantially beyond 1,000 expression samples, suggesting that the expression 

panels analyzed in this manuscript nearly saturate the available power. Although these 

simulation results come with caveats (e.g. standard assumptions of additive effects and normal 

residuals), they suggest that the main benefit of larger reference panels of expression data is in 

increasing the total number of significantly cis-heritable genes available for imputation (Figure 

3). 

TWAS performance in real phenotype data 

We assessed the performance of TWAS in identifying trait-effecting genes at the 697 known 

GWAS risk loci for height6 using the YFS expression samples for which height was also 

measured. At each locus, we considered three strategies for selecting a single causal gene: 1) the 

gene nearest to the most significantly associated SNP; 2) the gene for which the index SNP is the 

strongest eQTL in the training data; 3) the most significant TWAS gene. For each strategy, we 

then constructed a risk-score using the genetic value of expression for the selected genes and 

correlated the risk score with height measurements in the YFS individuals (an independent 

sample from the original height GWAS, see Methods). The R2 between the risk score and height 

was 0.038 (nearest); 0.031 (eQTL); and 0.054 (TWAS); with TWAS significantly higher than the 

others in a joint model (Table S3). Although functional validation is required, these results 

suggest that TWAS can be used to prioritize putative risk genes at known GWAS loci. Across all 

known loci from four GWAS, 61% of genome-wide significant loci (defined as lead SNP +/-

500kb) overlapped at least one significant cis-h2g gene, and 17% contained at least one 

significant TWAS association (Table S16). This suggests a substantial correlation of cis-

expression and trait-effecting SNPs even at current power. Out of the 372(33) genes significant 

for height (BMI) in our analysis, 64 (1) are also reported in the original studies. We note that 

sensitivity may be low either due to a causal mechanism that does not involve cis-expression of 

the tested genes, or low power to identify and detect all cis-heritable genes at the locus. 

Next, we employed TWAS to identify novel expression-trait associations using summary 

association statistics from a 2010 lipid GWAS16 (~100,000 samples), i.e. associations that did 

not overlap genome-wide significant SNPs in that study. We used all three studies (METSIM, 

YFS, and NTR; Table S1) as separate SNP-expression training panels. We then looked for 
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genome-wide significant SNPs at these loci in the larger 2013 lipid GWAS4 (expanded to 

~189,000 samples). We identified 25 such expression-trait associations in the 2010 study (Table 

S4), of which 19/25 contained genome-wide significant SNPs in the 2013 study (P=1×10-24 by 

hypergeometric test, Methods) and 24/25 contained a more significant SNP (P=1×10-04), a highly 

significant validation of the predicted loci. The validation remained significant after 

conservatively accounting for sample overlap across the studies (binomial P=3×10-16; Methods, 

Table S4). As a sanity check, we compared direct and summary-level TWAS in the METSIM 

cohort, and found the two sets of imputed expression-trait Z-scores to be nearly identical, with 

summary-level TWAS slightly under-estimating the effect (Pearson ρ=0.96, Figure S5). Overall, 

we find the TWAS approach to be highly predictive of robust phenotypic associations. 

TWAS identifies novel expression-trait associations for obesity related traits  

Having established the utility of TWAS, we applied the approach to identify novel expression-

trait associations using summary data from three recent GWAS over more than 900,000 

phenotype measurements: lipid measures (high-density lipoproteins [HDL] cholesterol, low-

density lipoprotein [LDL] cholesterol, total cholesterol [TC], and triglycerides [TG])4; height6; 

and BMI5. Significantly cis-heritable genes across the three expression data sets were tested 

individually (6,924 tests) and together in an omnibus test that accounts for predictor correlation 

(1,075 tests; Methods), and we conservatively corrected for the 8,000 total tests performed for 

each trait. Overall, we identified 665 significant gene-trait associations (Table S5). Of these, 69 

gene-trait associations did not overlap a genome-wide significant SNP in the corresponding 

GWAS, residing in 60 physically non-overlapping cis-loci (Table 1, Table S6). Averaging over 

the novel genes, the TWAS explained 1.5x more phenotypic variance than the strongest eQTL 

SNP for the same gene, and was more significant for 88% of the tests (though this may include 

some winner’s curse). Our previous simulations suggest that the substantial gain over testing the 

cis-eQTL is an indication of pervasive allelic heterogeneity37 at these loci. Our results are 

consistent with a model of causality where these genes harbor inherited causal variants that 

modulate expression, which in turn has a complex effect on the cell and downstream impact on 

complex traits5. 

We further sought to quantify the significance of the expression-trait associations conditional on 

the SNP-trait effects at the locus with a permutation test (Methods). Comparing to this null 
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assesses how much signal is added by the true expression given the specific architecture of the 

locus. Of the 69 genes, this permutation test was significant for 54 (after accounting for 69 tests). 

After excluding these individually significant genes, the P-values were still substantially elevated 

with λGC of 19 (ratio of median χ2 to the expected null). For these 54 genes, we can confidently 

conclude that integration of expression data significantly refined the association to trait. 

For all expression-trait associations, including those that were not genome-wide significant, we 

estimated the aggregate contribution to phenotype using two heritability models. As has been 

shown previously, there is a relationship between the mean 𝜒! statistic and total variance in trait 

explained by the associated markers under a polygenic architecture (Methods,29,30). Leveraging 

this relationship, we estimated the variance in trait explained by all METSIM+YFS imputed 

genes (ℎ!"! ) to be 3.4% averaged over six traits (Table S7). We assumed independence between 

the two cohorts, and did not include the NTR genes because of its strong correlation with YFS. 

Height had the most variance attributable to the heritable genes at ℎ!"! =7.1%. These combined 

estimates were consistently higher than a corresponding analysis using predictions from 

permuted expression (Table S7). For the four traits with individual-level genotype and phenotype 

data in the METSIM (BMI, TG, WHR, INS), we estimated ℎ!"!  directly using variance-

components over the imputed expression values (Methods). On average, all significantly 

heritable genes in adipose + blood explained 4-6% of the trait variance (16-19% of the total trait 

ℎ!!), and were largely orthogonal between the two predictions (Table S8). The imputed 

expression consistently explained more trait variance than the best cis-eQTL in each gene and 

did not strongly depend on the cis-window size (Table S9). 

Re-evaluation using other expression cohorts 

To replicate the 69 novel expression-trait associations, we re-evaluated the GWAS summary 

statistics with expression data from two external studies: eQTLs from ~900 samples in the 

MuTHER study24 of fat, LCL, and skin cells; and separate eQTL data from a meta-analysis of 

8,086 samples across multiple tissues from ref.11 (Methods). We note that these expression 

studies only consist of summary-level associations, and are expected to be much noisier as 

reference. In the relatively smaller MuTHER sample, 20 out of 55 available genes replicated 

significantly in at least one tissue (after accounting for 55 tests, Table S6). This is substantial 
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given the apparent heterogeneity between cohorts we previously observed (Methods). 

Importantly, the correlations between discovery and replication Z-scores were strongest for 

associations found in the corresponding tissue (ρ=0.60, P=1.5×10-05 for blood/LCL; ρ=0.66, 

P=0.05 for adipose, Table S10); a significant aggregate replication and further evidence for the 

tissue-specific nature of our findings. Using the larger, but heterogeneous, training sample from 

ref.11, 24 out of 37 available genes replicated significantly (Table S6). Although these 

replications are not strictly independent (they use the same GWAS data), they demonstrate that 

many of the novel loci are consistently significant across diverse expression cohorts. 

Functional analysis of the novel associations 

To better understand their functional consequences, we evaluated the 69 novel genes in the 

Hybrid Mouse Diversity Panel (HMDP) for correlation with multiple obesity-related traits. This 

panel includes 100 inbred mice strains with extensive collection of obesity-related phenotypes 

from ~12,000 genes. Of the 69 novel TWAS genes previously identified, 40 were present in the 

panel and could be evaluated for effect on phenotype. Of these, 26 were significantly associated 

with at least one obesity-related trait (after accounting for genes tested) and 14 remained 

significant after accounting for 36 phenotypes tested (very conservatively assuming the 

phenotypes were independent) (Table S11). 77% of the genes with an association were 

associated with multiple phenotypes. For example, expression of Ftsj3 was significantly 

correlated with fat mass, glucose-to-insulin ratio, and body weight in both liver and adipose 

tissue, with R2 ranging from 0.20-0.28. Another candidate, Iih4, was significantly correlated with 

LDL and TC levels in liver. In humans, this gene is also linked to hypercholesterolemia in 

OMIM and was previously associated with BMI in East Asians38. Due to complex correlation of 

phenotypes, it is difficult to assess whether this gene set is significant in aggregate and genes in 

the HMDP are typically expected to have strong effects. We could not perform enough random 

selections of genes to establish significance for this set. However, we consider the 26 

individually significant genes to be fruitful targets for follow-up studies.  

The BMI and height GWAS evaluated functional enrichment at identified loci, and we 

performed similar analyses for the novel genes that we identified. We tested the 10 novel BMI 

genes and 33 novel height genes for tissue-specific enrichment using DEPICT39, a method based 

on large-scale gene co-expression analyses, following the protocol of the original GWAS 
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studies5,6. Analysis of BMI identified significant enrichment for hypothalamus and 

neurosecretory systems (P=2.6×10-4, significant at FDR<5%). This enrichment is consistent with 

the landmark finding in the original study5 showing enrichment in these and other central 

nervous system tissues. Notably, we recapitulated this result using only novel loci that did not 

overlap any genome-wide significant SNPs. In analysis of height, DEPICT did not identify any 

tissue-specific enrichment.  

Discussion 

In this work we proposed methods that integrate genetic and transcriptional variation to identify 

genes with expression associated to complex traits. Using imputed gene expression to guide 

GWAS has three potential advantages. First, the gene is a more interpretable biological unit than 

an associated locus, which often contains multiple significant SNPs in LD that may not lie in 

genes and/or tag variants in multiple genes. Second, the lower total number of genes (or cis-

heritable genes) means the multiple-testing burden is substantially reduced relative to all SNPs. 

Lastly, combining cis-SNPs into a single predictor may capture heterogeneous signal better than 

individual SNPs or cis-eQTLs. Focusing the prediction on the genetic component of expression 

also avoids confounding from environmental differences caused by the trait that may impact 

expression. Our approach builds upon the wealth of GWAS data in massive cohorts to directly 

implicate the gene-based mechanisms underlying complex traits. Our proposed method shares 

conceptual similarities with 2-sample Mendelian randomization approaches that aim to identify 

causal relations between traits using genetic variation predictions as a randomizer40-42. However, 

while Mendelian randomization is intended to quantify the total causal effect (in this case of 

expression on trait), our method has the less strict goal of identifying a significant genetic 

correlation (i.e. associations) and can operate on summary GWAS data. Importantly, our 

approach maintains the attractive feature of not being confounded by effects on expression and 

trait that are independent of the SNPs. 

Unlike current methods, which focus on individually significant eQTL and SNP 

associations4,5,8,9,11,13,25,28, our approach captures the full cis-SNP signal and does not require any 

individual marker to be significant. This is underscored by the fact that the TWAS estimate 

substantially outperformed its cis-eQTL analog both in predicting expression and in explaining 
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trait. Our simulations show that the imputation approach is especially effective when multiple 

variants influence expression (which in turn influences trait). The large number of novel 

associations identified in real data supports this phenomenon and suggests that it may be a strong 

contributor to common phenotypes43. In these cases, our approach can be seen as complementary 

to GWAS by identifying expression-trait associations that are not well explained by individual 

tagging SNPs. Future work could leverage the difference in performances of TWAS and GWAS 

to detect loci with allelic heterogeneity. We note that it is still possible for some loci to have an 

independent SNP-phenotype and SNP-expression association driven by the same underlying 

variant though we consider this to be an infrequent biological model. 

We conclude with several limitations of our proposed approach. First, disease-impacting variants 

that are independent of cis-expression – in general or in the training cohort – will not be 

identified. Second, as with any prediction, the number of genes that can be accurately imputed is 

still limited by the training cohort size and the quality of the training data. In particular, we found 

that prediction accuracy did not correspond to theoretical expectations and is likely driven by 

data quality. The impact of these weaknesses could be better quantified as expression from larger 

sample sizes and a more diverse set of tissues becomes available. Although in this work we 

utilized both microarray and RNA-seq as measure of gene expression thus showcasing the 

applicability of our approach to diverse data sets, the accuracy of our method intrinsically 

depends on the quality of the expression measurements. For the associated genes, it remains 

possible that the effect is actually mediated by phenotype (i.e. SNP – phenotype – cis-expression, 

Figure 2F).  We attempted to quantify this in the YFS data by conditioning the heritability 

analyses on all the evaluated phenotypes (height, BMI, and lipids) but observed no significant 

change at individual genes or in the mean cis-h2g. These results suggest that confounding from 

phenotype does not substantially affect the tested cis expression, though at the current sample 

size we cannot completely rule out such confounders for individual genes. An alternative 

confounder arises from independent effects on phenotype and expression at the same SNP/tag 

(Figure 2G, Methods). Such instances could be indistinguishable from the desired causal model 

(Methods) without analyzing individual-level data, though we believe they are still biologically 

interesting cases of co-localization. Both types of confounding could potentially be quantified by 

training the SNP-expression relationships in control individuals where phenotype is fixed, or by 

interrogating the gene experimentally. Lastly, the summary-based TWAS cannot account for rare 
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variants that are poorly captured by the LD reference panel, or optimally capture non-linear 

relationships between SNPs and expression. Additional sources of information could potentially 

be incorporated to improve the prediction, including significant trans-associations11,27; allele-

specific expression44,45; splice-QTLs effecting individual exons10; haplotype effects; and SNP-

specific functional priors19,46,47. 
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Figure Legends 

Figure 1: Overview of methods. Cartoon representation of TWAS approach. In the reference 
panel (top) estimate gene expression effect-sizes: directly (i.e. eQTL); modeling LD (BLUP); or 
modeling LD and effect-sizes (BSLMM). A: Predict expression directly into genotyped samples 
using effect-sizes from the reference panel and measure association between predicted 
expression and trait. B: Indirectly estimate association between predicted expression and trait as 
weighted linear combination of SNP-trait standardized effect sizes while accounting for LD 
among SNPs. 

Figure 2: Modes of expression causality. Diagrams are shown for the possible modes of 
causality for the relationship between genetic markers (SNP, blue), gene expression (GE, green), 
and trait (red). A-D describes scenarios that would be considered null by the TWAS model; E-G 
describes scenarios that could be identified as significant.  

Figure 3: Number of genes with significant cis-heritability observed at varying sample 
sizes. The number of genes with significant cis-heritability was estimated by down-sampling 
each cohort (YFS, METSIM, and NTR/Wright et al.) into quintiles. 

Figure 4: Accuracy of direct expression imputation algorithms. Adjusted accuracy was 
estimated using cross-validation R^2 between prediction and true expression, and normalized by 
corresponding cis-h2g. Bars show mean estimate across three cohorts and three methods: eQTL 
– single best cis-eQTL in the locus; BLUP using all SNPs in the locus; BSLMM using all SNPs 
in the locus and non-infinitesimal priors. 

Figure 5: Power of summary-based expression imputation algorithms. Realistic disease 
architectures were simulated and power to detect a genome-wide significant association 
evaluated across three methods (accounting for 15,000 eGWAS/TWAS tests, and 1,000,000 
GWAS tests). Colors correspond number of causal variants simulated and methods used: GWAS 
where every SNP in the locus is tested; eGWAS where only the best cis-eQTL is tested; and 
TWAS computed using summary-statistics. Expression reference panel was fixed at 1,000 out-
of-sample individuals and simulated GWAS sample size designated by x-axis. Power was 
computed as the fraction of 500 simulations where significant association was identified.  
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Methods 

METSIM and YFS cohorts. In this study, we included 11,484 participants from two Finnish 

population cohorts, the METabolic Syndrome in Men (METSIM, n=10,197)48,49  and the Young 

Finns Study (YFS, n=1,414)21,22. Both studies were approved by the local ethics committees and 

all participants gave an informed consent. The METSIM participants were all male with a 

median age of 57 years (range: 45-74 years) recruited at the University of Eastern Finland and 

Kuopio University Hospital, Kuopio, Finland. Whole blood was collected from all individuals 

for genotyping and biochemical measurements. Additionally, 1,400 randomly selected 

individuals from the 10,197 METSIM participants underwent a subcutaneous abdominal adipose 

biopsy of which 600 RNA samples were analyzed using RNA-seq. Traits BMI, TG, WHR, and 

INS were inverse rank transformed and adjusted for age and age-square. INS was additionally 

adjusted for T1D and T2D. There was little correlation between genome-wide SNP principal 

components and phenotype. A strictly unrelated subset of 5,501 individuals was computed by 

removing one of any individual with off-diagonal GRM entries >0.05 (with priority given to 

individuals that had expression measured). This procedure guaranteed no relatedness between the 

training set and the samples without expression. 

YFS participants were originally recruited from five regions in Finland: Helsinki, Kuopio, Oulu, 

Tampere, and Turku.  We collected whole blood into PAXgene tubes from all individuals for 

genotyping, RNA microarray assay, and biochemical measurements. Samples from 1,414 

individuals (638 men with a median age of 43 years and 776 women with a median age of 43) 

with gene expression, phenotype, and genotype data available were included in the blood 

expression analysis. Traits height, BMI, TG, TC, HDL, and LDL were inverse rank transformed 

and adjusted for age, age-square, and sex. TC was also adjusted for Statin intake. 

The biochemical lipid, glucose, and other clinical and metabolic measurements of METSIM and 

YFS were performed as described previously21,48,50.  

METSIM RNA-Seq data.	
   We prepared and sequenced mRNA samples isolated from 

subcutaneous adipose tissue using Illumina TrueSeq RNA Prep Kit and the Illumina Hiseq 2000 

platform to generate 50bp long paired-end reads. Reads were aligned to the Human reference 

genome, HG19, using the aligner STAR51, allowing up to 4 mismatches for each read-pair.  
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Transcript quantification was calculated as reads per kilobase per million (RPKM) using Flux 

Capacitor45 based on transcript and gene definitions from the Gencode ver.18 annotation. The 

gene quantification is the sum of all transcripts of a gene.  We applied Anscombe transformation 

to the RPKM values for variance stabilization followed by PEER52 correction to remove 

technical biases. The PEER-corrected gene quantification was then inverse rank transformed to a 

normal distribution to eliminate effect from outliers. 

YFS microarray data analysis. We measured mRNA expression in whole blood of the YFS 

cohort using the Illumina HumanHT-12 version 4 Expression BeadChip. Probe density data were 

exported from GenomeStudio and analyzed in R using Bioconductor packages.  We normalized 

probe density data using control probes with the neqc function from the limma package 

implemented in R53. To account for technical artifacts, we first log2 transformed the normalized 

density and adjusted for 20 potential confounding factors using PEER52. The final adjusted probe 

density was inverse rank transformed to approximate normality in order to minimize the effect of 

outliers. Probes which contained a SNP in the 1000 Genomes were removed. 

NTR expression array data. Data from the NTR was processed as described in the original 

paper23, followed by removal of any individuals with GRM values > 0.05. For genes with 

multiple probes, total gene expression was measured as the sum across all probes followed by 

standardization to unit variance (rank normalization had no substantial effect). Probes which 

contained a SNP in the 1000 Genomes were removed. Principal components and batch were 

included as covariates in all analyses. 

Heritability estimation with individual data. Cis and trans variance components were 

estimated using the REML algorithm implemented in GCTA18. As in previous studies, estimates 

were allowed to converge outside the expected 0-1 bound on variance to achieve unbiased mean 

estimates across all genes23. Standard error across gene sets was estimated by dividing the 

observed standard deviation by the square root of the number of genes that converged (this will 

lead to underestimation due to correlated genes, but is presented for completeness). Genome-

wide ℎ!! for the four traits in the GWAS cohort was estimated with GCTA from a single 

relatedness matrix constructed over all post-QC SNPs in the strictly unrelated individuals. For 

estimating expression-wide ℎ!"! , each predicted expression value was standardized to mean=0 

and variance=1, and sample covariance across these values used to define the relatedness matrix. 
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The ℎ!"!  was then estimated from this component with GCTA, with P-values for difference from 

zero computed using a likelihood ratio test. 20 principal components (PCs) were always included 

as fixed-effects to account for ancestry. Genetic correlation between traits in the GWAS cohort 

was estimated from all post-QC SNPs in the full set of 10,000 individuals with GEMMA30 

(Table S12). 

For the YFS, we quantified the mediating effects of trait on cis-expression by separately re-

estimating cis-h2g with all analyzed traits (height, BMI, TC, TG, HDL, LDL) included as fixed-

effects in addition to PCs. We did not observe significant differences in any individual gene 

(after accounting for 3,836 genes tested) nor in the mean estimate of cis-h2g.  

Heritability estimation with summary data. As shown in ref.54,55, for an association study of N 

independent samples, the expected 𝜒! statistic is 𝐸 𝜒! = 1+ 𝑁𝑙ℎ!"! /𝑀, where l is the LD-

score accounting for correlation, M is the number of markers, and ℎ!"!   is the variance in trait 

explained by the imputed expression. We estimated l directly from the genetic values of 

expression to be close to independence (1.4, 1.5 for METSIM, YFS) allowing us to solve for 

ℎ!"!   from the observed distribution of χ2 (or, equivalently Z2) statistics. We did not compute this 

value for the BMI GWAS because the conservative multiple GC-correction applied in that study 

would yield a severe downwards bias5. 

Evaluating prediction accuracy. Prediction accuracy was measured by five-fold cross-

validation in a random sampling of 1,000 of the highly heritable genes (i.e. significant non zero 

cis-heritability) for each study. We evaluated three prediction schemes: i. cis-eQTL, the single 

most significantly associated SNP in the training set was used as the predictor; ii. the best linear 

predictor (BLUP)29, estimates the causal effect-sizes of all SNPs in the locus jointly using a 

single variance-component; iii. The Bayesian linear mixed model (BSLMM)30, which estimates 

the underlying effect-size distribution and then fits all SNPs in the locus jointly. For the BLUP 

and BSLMM, prediction was done over all post-QC SNPs using GEMMA30. In all instances, the 

R2 between predicted and true expression across all predicted folds was used to evaluate 

accuracy. On average, the cis-eQTL yielded prediction R2=0.08, corresponding to half of the 

accuracy of the best possible linear prediction (as inferred from average cis-ℎ!!=0.16 for these 

genes). Using all SNPs in the locus, the BLUP attained an R2=0.09; and the BSLMM attained an 
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R2=0.10 (Methods, Fig. 2, Figure S1). The pattern was roughly the same for randomly selected 

genes (Figure S6). This empirical measure of accuracy deviates from theory in two ways: 

assuming a small number of independent SNPs at each locus, we would expect normalized 

BLUP accuracy (R2/ℎ!!) to be near 1.0 (see Equation 1 of ref. 20) but it is only 0.55 on average; 

and for a given cis-ℎ!!, accuracy is not directly proportional to training sample size (e.g. the 

highest accuracy is observed in the smallest METSIM cohort, Figure S1). This suggests that data 

quality and population homogeneity (which differ between these cohorts) play an important role 

in empirical prediction accuracy. 

Imputing expression into GWAS summary statistics. Summary-based imputation was 

performed using the ImpG-Summary algorithm3 extended to train on gene expression. Let Z be a 

vector of standardized effect sizes (z-scores) of SNP on trait at a given cis-locus (i.e. Wald 

statistics !
!" !

). We impute the z-score of the expression and trait as a linear combination of 

elements of Z with weights W (these weights are precompiled from the reference panel as 

𝛴!,!𝛴!,!!! for ImpG-Summary or directly from BSLMM). 𝛴!,!is the covariance matrix between all 

SNPs at the locus and gene expression and 𝛴!,!  is the covariance among all SNPs (i.e. linkage 

disequilibrium). Under null data (no association) and a multi-variate normal assumption  

𝑍~  𝑁(0,𝛴!,!). It follows that imputed z-score of expression and trait (𝑊𝑍) has variance 

𝑊𝛴!,!𝑊!; therefore, we use !"

!!!,!!!
 as the imputation z-score of cis-genetic effect on trait.   

In practice, for each gene, all SNPs within 1Mb of the gene present in the GWAS study were 

selected. We computed 𝛴!,!  and 𝛴!,! from the reference panel (i.e. expression and SNP data). To 

account for statistical noise we adjusted the diagonal of the matrix using a technique similar to 

ridge regression as in Pasaniuc et al3. 

We used the YFS samples that were assayed for SNPs, phenotype, and expression to assess the 

consistency of individual-level and summary-based TWAS. We first computed GWAS 

association statistics between phenotype (height) and SNP and used them in conjunction with the 

expression data to impute summary-based TWAS statistics. The TWAS statistics were compared 

to those from the simple regression of (height ~ expression) in the YFS data. We observed a 

correlation of 0.415 (Supplementary Figure S13), consistent with an average cis-h2g of 0.17 
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(≈0.415^2) observed for these genes. When restricting to a regression of (height ~ cis component 

of expression) we observed a correlation of 0.998 to the summary based TWAS, demonstrating 

the equivalence of the two approaches when using in-sample LD. 

For imputation using an external cis-eQTL study, 𝛴!,!estimated from the available cis-eQTL 

association statistics instead of directly in the training data. For the MuTHER SNPs, this was 

estimated by computing the corresponding cis-eQTL T-statistic; solving for R2=T2/(T2+N-2) 

where N was the study size; and converting back to signed r using the effect-size direction. The 

LD matrix was estimated from the METSIM as before. In the case where the LD matrix matches 

that of the eQTL study, this approach is mathematically identical to training on individual-level 

data. Otherwise, differences in LD will introduce noise which is expected to be unbiased 

assuming no relationship between these differences and eQTL effect-size. These out-of-sample 

expression effect-sizes from the MuTHER study allowed us to evaluate the impact of the LD-

reference panel size on accuracy. We compared predictors trained using an LD-reference panel 

from the ~600 METSIM expression samples to those trained on the 6,000 unrelated METSIM 

GWAS individuals and found highly significant consistency (ρ=0.97; Figure S7) with slight Z-

score inflation in the smaller panel. 

Power analysis of summary-based method. Simulations to evaluate the summary-based 

method were performed in 6,000 unrelated METSIM GWAS individuals. 100 genes and the 

SNPs in the surrounding 1MB were randomly selected for testing. For each gene, normally 

distributed gene expression was simulated as 𝐸 = X𝛽 + 𝜀; where X is a matrix of the desired 

number of causal genotypes, sampled randomly from the locus; β is a vector of normally 

distributed effect-sizes for each causal variant; and ε is a vector of normally distributed noise to 

achieve a cis-h2g of 0.17 (corresponding to the mean observed in our significant gene sets). 

1,000 individuals with SNPs and simulated expression were then withheld for training the 

predictors. For the remaining 5,000 individuals, normally distributed noise was applied to the 

expression to generate a heritable phenotype where expression explained 0.10/180 or 0.20/180 of 

the phenotypic variance (the former corresponding to the average effect-sizes for associated 

genes observed in a large GWAS of height56 and the latter to high-effect loci). Association 

between SNP and phenotype was estimated in the 5,000 individuals (standard Z-score), and the 

phenotype generation repeated with different environmental noise (up to 60 times) to generate 
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results from multiple GWAS sub-studies. Association statistics from each run were then meta-

analyzed to reach precision corresponding to a larger GWAS of desired size (up to 300,000). 

The above procedure is equivalent to assuming that LD and MAF do not change across sub-

studies, and we believe these assumptions are reasonable for large studies of a homogenous 

population where individual-level data is not used. To verify this assumption, we re-ran the main 

set of simulations using the HAPGEN2 algorithm57 to simulate new genotypes for each sub-

study from a phased reference panel of the 5,000 held-out samples. This method models 

population demography and uses a haplotype-copying model to generate new individuals based 

on a phased reference panel. Under this complex model, none of the results were substantially 

different from the previous simulations (Supplementary Figure S12), and so we used the 

phenotype regeneration procedure due to its computational efficiency. 

Detecting a locus was defined as follows. The single most significant trait associated SNP was 

taken as the GWAS association, considered detected if GWAS significance was <5×10-8. The 

single most significant eQTL in the training set was taken as the eQTL-guided association 

(eGWAS), and considered detected if GWAS significance was <0.05/15,000. The TWAS 

association was measured by training the imputation algorithm on the 1,000 held-out samples 

with expression and imputing into the GWAS summary statistics, and considered detected if 

significance was <0.05/15,000. The entire procedure was repeated 500 times (5 per gene) and 

power was estimated by counting the fraction of instances where each method detected the locus. 

As in the cross-validation analysis, training on the genetic component of expression instead of 

the overall expression consistently increased TWAS power by ~10% (Figure S8). Two null 

expression models were tested by generating gene expression for the 1,000 held-out samples that 

was standard normal as well as heritable expression (cis-h2g=0.17) with GWAS Z-scores drawn 

from the standard normal (Table S2). 

Lastly, we evaluated the confounded model where expression and trait had the same causal 

variants but independent effect-sizes (Figure 2G). The case of a single causal variant with 

independent effects is statistically indistinguishable from a true causal model. Consider the 

following generative model for expression (E) where x is the causal variant, β is the effect, and ε 

is the scaled environmental effect: 
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𝐸 = 𝑥𝛽 + 𝜀 

for two possible models for phenotype (Y): 

Independent: 𝑌 = 𝑥𝛼 + 𝜀 

Causal: 𝑌 = 𝐸𝛼! + 𝜀 = 𝑥𝛽𝛼! + 𝜀  

the models will be identical if 𝛼 = 𝛽𝛼!and therefore cannot be distinguished by a statistical test 

of 𝛼! being non-zero without direct mediation analysis. Similar intuition applies when multiple 

causal variants or tags are present, where power is expected to decrease with the r2 between the 

true and observed effect58. Consistent with theory, our simulations show that the two models are 

equally likely to be detected by all methods (Figure S9, SEEE). In the case of multiple causal 

variants, the detection rate of the independent scenario is much lower and roughly equal for 

TWAS or eGWAS (Figure S9).  

Power comparison to COLOC 

We used a similar simulation framework as above to compare TWAS to the recently proposed 

COLOC method. COLOC uses summary data from eQTL and GWAS studies and a Bayesian 

framework to identify the subset of GWAS signals that co-localize with eQTLs. Because 

COLOC relies on priors of association to produce posterior probabilities of co-localization, we 

sought to identify a significance threshold that would make a fair comparison to the TWAS p-

value-based threshold. Specifically, we ran both methods on a realistic null expression 

simulation (with the generative model described previously): the expression was sampled from a 

null standard normal for 1,000 individuals and eQTLs computed; the trait associations were 

derived from a simulated 300,000 GWAS with a single typed causal variant that explained 0.001 

variance of the trait (high effect). We believe this scenario is both realistic and consistent with 

the GWAS assumptions of COLOC. We then empirically identified the statistical threshold for 

COLOC and TWAS that would yield a 5% false discovery rate: co-localization statistic PPA > 

0.17 for COLOC, and P<0.05 for TWAS. We note that this empirical COLOC threshold is much 

less stringent than PPA>0.8 used in the COLOC paper (PPA>0.8 would yield lower power for 

COLOC in our simulations). These thresholds were subsequently used as cutoffs to evaluate the 

power to detect an expression-trait association in simulations with a true effect (Supplementary 
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Figure S11, S14). The reported power is for a single locus and we did not attempt to quantify 

genome/transcriptome-wide significance. 

Individual-level analysis of METSIM GWAS. We imputed the significantly heritable genes 

into the METSIM GWAS cohort of 5,500 unrelated individuals with individual-level genotypes 

(and unmeasured expression). We then tested the imputed expression for obesity-related traits: 

body mass index (BMI); triglycerides (TG); waist-hip-ratio (WHR); and fasting insulin levels 

(INS). Overall, the evaluated traits exhibited high phenotypic and genetic correlation as well as 

highly significant genome-wide ℎ!! ranging from 23-36% (Table S12) consistent with common 

variants having a major contribution to disease risk7. Association was assessed using standard 

regression as well as a mixed-model that accounted for relatedness and phenotypic correlation30 

with similar results. The effective number of tests for each trait was estimated by permuting the 

phenotypes 10,000 times and, for each permutation, re-running the association analysis on all 

predicted genes. For each trait Pperm, the P-value in the lowest 0.05 of the distribution, was 

computed and the effective number of tests was 0.05/Pperm, reported in Table S13. All 

phenotypes were shuffled together, so any phenotypic correlation was preserved. The effective 

number of tests corresponded to 88-95% of the total number of genes, indicating a small amount 

of statistical redundancy. 

After accounting for multiple testing in each trait, six loci were significant (Table S14); five of 

which were confirmed by genome-wide significant SNP associations in this cohort or in larger 

studies. The best cis-eQTL in each locus was less significantly associated than the imputed 

expression in 5/6 loci, further underscoring the increased power of the TWAS approach. The 

TWAS identified one novel gene that had not been previously observed in this or published 

GWAS: ENO3 associated with TG and fasting insulin (INS). We investigated this gene further in 

the METSIM samples with both phenotypes and expression, and found a nominal association 

between the genetic value of expression and INS at P=0.02, explaining 1.8% of trait variance 

(with phenotypes which had not been used to identify the initial association). This association 

was primarily driven by the top eQTL (rs9914087, P=8×10-09 for eQTL, P=0.03 for association 

to INS). Though validation in a larger cohort is needed, this initial result supports a link between 

ENO3 expression and fasting insulin in this population. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 7, 2015. ; https://doi.org/10.1101/024083doi: bioRxiv preprint 

https://doi.org/10.1101/024083


To evaluate the TWAS approach, we computed phenotype association statistics for the 5,500 

unrelated individuals and re-ran the analysis using only these summary statistics and the same 

expression reference panels. The resulting TWAS associations were nearly identical to the direct 

TWAS associations across the four traits (Pearson ρ=0.96). Reassuringly, the TWAS was 

generally more conservative than the direct estimates (Figure S5). 

Refining trait-associated genes at known loci. We first sought to validate the performance of 

TWAS in identifying trait-effecting genes at previously implicated loci. We focused on GWAS 

data from a recent large study of height6 that identified 697 genome-wide significant variants in 

423 loci, and conducted the summary-based TWAS over all genes in these loci using YFS as 

training data. If the TWAS was identifying trait-effecting genes, we would expect the expression 

of these genes to be associated with height in an independent sample. Because the YFS 

individuals had been phenotyped for height and not tested in the GWAS, we could evaluate this 

directly. At each locus, we considered three strategies for selecting a single causal gene: 1) the 

gene nearest to the most significantly associated SNP; 2) the gene for which the index SNP is the 

strongest eQTL in the training data; 3) the most significant TWAS gene. For each strategy, we 

then constructed a risk-score using the genetic value of expression for the selected gene weighted 

by the corresponding TWAS Z-score (see Methods). The R2 between the risk score and the 

height phenotype was 0.038 (nearest); 0.031 (eQTL); and 0.054 (TWAS); with TWAS 

significantly higher than the others (Table S3). Further restricting to the 263 loci where the 

TWAS gene was not the nearest, the R2 was 0.011 (nearest) and 0.032 (TWAS); with only the 

latter significant in a joint model (P=7x10-3). We separately used GCTA to estimate the 

heritability of height explained by all of the genes selected by each algorithm by constructing a 

GRM from the selected genes. In contrast to the risk score, this does not assume pre-defined 

weights on each genes but allows them to be fit by the REML model. Results were comparable, 

with only the TWAS-selected genes explaining significantly non-zero heritability (Table S3). 

Validation analysis in lipid GWAS data. We evaluated the performance of TWAS by 

identifying significantly associated genes in the 2010 lipid study that did not overlap a genome-

wide significant SNP, and looking for newly genome-wide significant SNPs in the expanded 

2013 study. The P-value for the number of genes with increased significance and genome-wide 

significance in the 2013 study was computed by a hypergeometric test, with background 
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probabilities estimated from the set of significantly heritable genes. Of the genes not overlapping 

a significant locus in the 2010 study, 70% had a more significant SNP in the 2013 study and 

3.5% overlapped a genome-wide significant SNP (P<5×10-08). 

Meta-analysis of imputed expression from multiple tissues. We proposed a novel omnibus 

test for significant association across predictions from all three cohorts. Because the imputation 

is made into the same GWAS cohort, correlation between predictors must be accounted for. For 

each gene i, we estimated a correlation matrix Ci by predicting from the three tissues into the 

~5,500 unrelated METSIM GWAS individuals (though any large panel from the study 

population could be used). This correlation includes both the genetic correlation of expression as 

well as any correlated error in the predictors, thus capturing all redundancy. On average, a 

correlation of 0.01, 0.01, and 0.43 was observed between YFS:METSIM, NTR:METSIM, and 

YFS:NTR, highlighting the same tissue of origin the last pair. We then used the three-entry 

vector of TWAS predictions, Zi, to compute the statistic omnibusi = Zi’ Ci
-1 Zi which is 

approximately χ2 (3-dof) distributed and provides an omnibus test for effect in any tissue while 

accounting for correlation59,60. Though the correlation observed in our data was almost entirely 

driven by the YFS:NTR blood datasets, we expect this to be an especially useful strategy for 

future studies with many correlated tissues. An alternative approach would be to perform 

traditional meta-analysis across the three cohorts and then predict the TWAS effect. However, 

this would lose power when true eQTL effect-sizes (or LD) differ across the cohorts, which we 

have empirically observed to be the case looking at predictor correlations above.	
  The proposed 

omnibus test aggregates different effects across the studies, at the cost of additional degrees of 

freedom. 

Gene permutation test. We conducted a permutation test to quantify the TWAS contribution 

conditional on the observed trait effects. For each gene, the expression labels were randomly 

shuffled and the summary-based TWAS analysis trained on the resulting expression to compute 

a permuted expression-trait Z-score. This procedure was repeated 1,000 times for every locus to 

establish a null expression distribution, and a p-value for the real expression Z-score was 

computed by Z-test against this null. Because the GWAS statistics were unchanged, this 

procedure computes a distribution for (trait ~ SNP + GE) where GE is null but the true SNP 

effect is retained, testing whether the GE contribution is individually significant beyond the 
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contribution of the SNP. For example, consider a locus with a single highly significant GWAS 

association Zi, and expression weights trained in N individuals: the resultant TWAS weights 

would be normally distributed with variance=1/N, and the TWAS Z-score would be normally 

distributed with variance=Zi
2/N, which may yield inflated estimates when Zi

2 > N or when both 

distributions have non-zero means. The permutation evaluates this null while accounting for the 

true correlation between markers in the locus. Note that failing the permutation test only 

indicates lack of power to show that the expression significantly refines the direct SNP-trait 

signal. 

We again sought to validate this test by focusing on known loci in the height GWAS and the 

YFS cohort with height measured independently (see above). Using YFS expression as training, 

we used the TWAS approach in the independent height GWAS data to identify 181 significant 

genes that overlapped previously known height loci, of which 33 passed the permutation test. 

These 33 genes had evidence of a significant contribution to trait beyond the SNP-trait effects at 

the locus, indicative of allelic heterogeneity at these loci. As before, we constructed a risk score 

using the genetic value of these 33 genes weighted by their Z-score in the TWAS; and a standard 

genetic risk score61 using the best GWAS SNP in each locus. The two scores were evaluated for 

association to the true height phenotype in the YFS, yielding an R2 of 0.008 (best SNP) and 

0.016 (TWAS gene) respectively (Table S3). In a joint regression with both scores, only the 

TWAS score was significant (P=2x10-3). This confirms that TWAS predictions which remain 

significant after permutation are more strongly associated with phenotype than the single best 

SNP at the locus. 

Relationship to genetic covariance. Our tests relate to previously defined estimators of genetic 

correlation and covariance between traits. We consider two definitions of genetic covariance at a 

locus: 1) the covariance between the genetic component of expression and the genetic 

component of trait; 2) the covariance between the causal effect sizes for expression and the 

causal effect-sizes for trait. Under assumptions of independent effect-sizes, these definitions 

yield asymptotically identical quantities62. Assuming a substantially large training set where the 

genetic component of expression can be perfectly predicted, the direct TWAS tests for a 

significant association between the genetic component of expression and the trait; equivalent to 

testing definition #1 for a polygenic trait. Likewise, the TWAS tests for a significant sum of 
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products of the causal expression effect sizes and the causal trait effect sizes; equivalent to 

definition #2 up to a scaling factor. The TWAS approach therefore fits naturally with the broader 

study of genetic of multiple phenotypes. 
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