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Abstract

Clustering individuals to subpopulations based on genetic data has become commonplace in
many genetic studies. Inference of population structure is most often done by applying model-
based approaches, aided by visualization using distance-based approaches such as multidimen-
sional scaling. While existing distance-based approaches suffer from lack of statistical rigor,
model-based approaches entail assumptions of prior conditions such as that the subpopulations
are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference of
population structure using genetic data by defining population structure using network theory
terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of
all sampled individuals. The community partition, a partition of a network to dense subgraphs,
is equated with population structure, a partition of the population to genetically related groups.
Community detection algorithms are used to partition the network into communities, interpreted
as a partition of the population to subpopulations. The statistical significance of the structure
can be estimated by using permutation tests to evaluate the significance of the partition’s mod-
ularity, a network theory measure indicating the quality of community partitions. In order to
further characterize population structure, a new measure of the Strength of Association (SA) for
an individual to its assigned community is presented. The Strength of Association Distribution
(SAD) of the communities is analyzed to provide additional population structure characteristics,
such as the relative amount of gene flow experienced by the different subpopulations and identi-
fication of hybrid individuals. Human genetic data and simulations are used to demonstrate the
applicability of the analyses. The approach presented here provides a novel, computationally
efficient, model-free method for inference of population structure which does not entail assump-
tion of prior conditions. The method is implemented in the software NetStruct, available at
https://github.com/GiliG /NetStruct.

1 Introduction

Inference and analysis of population structure from genetic data is often used to understand un-
derlying evolutionary and demographic processes experienced by populations, and is an important
aspect in many genetic studies. Such inference is mainly done by clustering individuals into groups,
often referred to as demes or subpopulations. Evaluation of population structure and gene flow
levels between subpopulations allows inference of migration patterns and their genetic consequences
[1, 2]. As sequencing of larger portions of the genome is becoming more readily available, there is
an increasing need for a variety of computationally-efficient statistically-testable methods for such
inference.
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Analysis of population structure can be done at the subpopulation-population level by assuming
putative subpopulations and studying how these relate genetically (e.g. F-statistics, AMOVA[3],
phylogenetic methods [4, 5, 6]), or at the individual-subpopulation level by attempting to cluster
individuals to subpopulations. The methods for clustering individuals based on genetic data can
be further divided to two categories: Model-based approaches and distance-based approaches[7, 8,
9]. Model-based approaches evaluate the likelihood of the observed data assuming that they are
randomly drawn from a predefined model of the population, for example that there are K subpop-
ulations and that these subpopulations are at Hardy-Weinberg equilibrium (HWE). Distance based
approaches aim at identification of clusters by analysis of matrices describing genetic distances or
genetic similarities between individuals or populations, for example by visualization using multidi-
mensional scaling (MDS) methods such as Principle Component Analysis (PCA). Distance-based
methods are ususally model-free and do not require prior assumptions, as with the model-based
methods. Over the last decade or so, model-based methods have been more dominant as proce-
dures for inference of population structure, mostly with implementation of Bayesian clustering and
maximum-likelihood techniques in programs such as STRUCTURE[7|, ADMIXTURE[8]| and BAPS[10]. It has
been pointed out that distance-based methods have several disadvantages: they are not rigorous
enough and rely on graphical visualization, they depend on the distance measure used, it is difficult
to assess significance of the resulting clustering, and it is difficult to incorporate additional informa-
tion such as geographical location of the samples[7] ([11] and [12] address this last concern). Given
these disadvantages, it would seem that distance-based measures are less suitable for statistical
inference of population structure. On the other hand, model-based approaches suffer from the ne-
cessity to restrict the interpretation of the results by heavily relying on the prior assumptions of the
model, for example that the populations meet certain equilibria conditions, such as migration-drift
or HWEI7].

There has recently been a flourish of network theory applications to genetic questions in ge-
nomics[13], landscape genetics[14], migration-selection dynamics[15], and population structure at
the subpopulation-population level [16, 17, 18, 19]. Recently, a network-based visualization tool
(NETVIEW[20]) of fine-scale genetic populations structure, using a Super Paramagnetic Clustering
algorithm[21], has been proposed and successfully applied to analysis of livestock breeds[22, 23],
and other network clustering approaches have also been implemented on genetic data[24]. However,
these methods still suffer from the many disadvantages of distance-based clustering approaches, and
a more rigorous and statistically testable distance-based approach is still missing.

Development of a suitable distance-based network approach, that will coherently address infer-
ence of population structure from genetic data and not suffer from the disadvantages listed above,
necessitates a clear definition of genetic population structure in equivalent network theory terminol-
ogy. A genetically defined subpopulation is commonly thought of as a group of individuals within
the population which are more genetically related (or more genetically similar) to each other than
they are to individuals outside the subpopulation, as a result of many possible genetic processes
such as genetic drift, migration, mutation and selection. In a network, a group of nodes which are
more densely and strongly connected within the group than outside the group, relative to the given
topology of the network, is called a community[25]. Therefore, in network theory terminology,
the equivalent of a genetic population structure should be the community partition of a network
constructed with individuals as nodes and edges defined using an appropriate genetic distance or
similarity measure. In network science, clustering nodes into groups has been extensively studied,
and specifically community detection has attracted much interest[26]. Since there is no single rigid
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definition of a community, and identifying optimal partitions is computationally expensive, many
approaches and algorithms to optimally detect communities in networks have been proposed[27,
28].

We propose a network-based approach for analyzing population structure based on genetic data.
We show that by applying recent advances in network theory, it is possible to design a distance-
based approach that overcomes the limitations of other distance-based approaches, and does not
suffer from the disadvantages of model-based approaches. We also show how rigorous statistical
inference can be incorporated into this network-based approach in a manner that does not entail
prior assumptions or conditions about the data.

The process can be used with a large number of loci (e.g. microsattelites, SNPs) since it is
computationally efficient in regards to the number of loci incorporated in the analysis. Moreover,
we define a new measure for the strength to which an individual is associated with its assigned com-
munity, called Strength of Association (SA), and we show how Strength of Association Distribution
(SAD) analysis can be used to infer further details regarding population structure, such as gene flow
patterns of each subpopulation and identification of potentially hybrid individuals. The analysis
is demonstrated on genetic data from human population extracted from the HapMap project[29],
as well as on simulated data. In addition to presentation of a new distance-based method for pop-
ulation structure inference, we believe that defining the problem of genetic population structure
analysis in network terminology will allow future adoption and adaptation of network methods and
techniques to address population genetic questions.

2 Methods

In this section we provide the relevant theory and describe a network-based approach for con-
structing genetic networks and inferring population structure by detecting community partitions in
these networks. Following detection of community structure, we propose an additional exploratory
analysis, based on a measure of the strength of association of individuals to communities, that may
shed light on finer details of the community structure and therefore on the population structure.

2.1 Constructing networks from genetic data

A network is a set of discrete entities, nodes, where each pair of nodes may be connected by an
edge, possibly characterized by a weight. Networks can be described by adjacency matrices, where
the element in column ¢ and row j is the weight of the edge connecting node ¢ and node j. For most
network applications, dyads connected by edges with high-valued weights are interpreted as being
strongly connected. Therefore, a genetic-similarity matrix (a matrix describing some measure
of genetic similarity or relatedness between all pairs of individuals, based on their genotypes)
of a population can be regarded also as the adjacency matrix of a genetic-similarity network.
The more classic genetic-distance (genetic dissimilarity) matrices are similar, only that in these
high values indicate weakly connected dyads, and therefore such matrices must be appropriately
transformed in order to be considered as network adjacency matrices. There is no fundamental
difference, for our purpose, between similarity and distance matrices. Many genetic similarity,
distance and relatedness measures have been proposed[30], but if we restrict the discussion to
symmetric similarity measures, where similarity between individual ¢ and j is the same as between
individual j and ¢, the genetic network thus described is a weighted undirected network, where
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each edge is characterized by a weight but does not have directionality. Since we would like
to consider not only allele sharing between individuals, but also differences in allele frequencies
between subpopulations, we further restrict the discussion to genetic similarity measures which are
expressed relative to allele frequencies in a reference population, i.e. measures that incorporate
the allele frequencies of the total sampled population. These measures should not incorporate
allele frequencies other than those of the total sample (e.g. allele frequencies in sample sites
or other locally-defined sampled populations), since this would mean that the null hypothesis is
other than that there is no population structure. From a distance-matrix perspective, the null
hypothesis is that the adjacency matrix, appropriately transformed, is a symmetric individual-
pairwise distance matrix, such that all individuals are equally distant from the multi-loci centroid
of the total population, with no sub-clustering.

In a network such as described above, the strength of the connection between each dyad is
relative to the genetic similarity between them, where shared rare alleles convey a stronger con-
nection than do common alleles. This is different from many commonly-used distance measures
for construction of individual-level distance matrices, such as in AMOVA [3], where distances are
measured by mismatch of alleles, irregardless of their frequencies. Since even unrelated individuals
may share many alleles, especially when many loci are examined, it is likely that this network will
be extremely dense. It may therefore be useful, both from a computational point-of-view and in
order to emphasize strong genetic relations within the population so as to increase detection power
of network procedures, to remove edges which describe weak connections. This can be done in
different ways, but the most straightforward approach is to remove edges with weights below a
certain threshold, which is the approach we implement here. In this way a sparser network that
consists of strong relatedness interconnections is attained.

Since using different thresholds will result in different networks which may give, for the analyses
described below, different population structures, we recommend systematically exploring different
threshold values. For very low threshold values many weak relatedness interconnections will be
included in the network, which may result in very dense networks which could mask related groups
within the population. Very high thresholds may result in the network breaking down into many
disconnected components (a network component is a group of nodes that are connected within
themselves but are not connected to any other node in the network), up to a point when the network
includes only very small groups of connected nodes. Such networks are most likely not informative
of population structure since they represented too few related dyads, and the community partition
will likely consist of many one- or two-node communities. Each community is confined to be within
a component, and if the network consists of many small components then the community partition
is constrained to include many small communities. Therefore the informative structures should
be detected at the intermediate thresholds, and different thresholds in this range may describe
structure at different hierarchical levels (seeAnalysis of human SNP data section for an example of
a systematic exploration of threshold values).

2.2 Network communities and genetic population structure

In network theory, the term community refers to a subset of nodes in a network more densely
connected to each other than to nodes outside the subset [31]. There are now several algorithms
for efficiently partitioning a network into communities [27, 28]. Most commonly, a partition of
a network into communities is evaluated by calculating the modularity of the partition, a quality
measure (between -1 and 1) indicating whether the partition is more or less modular than would be


https://doi.org/10.1101/024042
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/024042; this version posted February 3, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

expected if connections were randomly distributed[32]. The modularity of a particular community
partition of a weighted network A (a network with weights assigned to its edges) is defined as
the weight of the intra-community connections minus the expected weight of the intra-community
connections in a random network preserving the edge weights of each node[33]:

Q= ALZ (Az‘j - %ZAMZAU)MCM) (1)
i k 1
where A* =) Ay, is the sum over all edge weights in the network and d(c;, ¢;) is a delta function
k,l

with value one if nodes 7 and j are in the same community and zero otherwise. A positive modularity
value indicates that the partition is more modular than expected. Many community detection
algorithms try to approximate an optimal partition, in which the modularity measure is maximal
over all possible partitions. A partition of one community, which includes all nodes in the network,
results in a modularity of zero, and therefore for every network the optimal partition, maximizing
the modularity, is always non-negative. Community detection algorithms do not generally require
a priori knowledge of the number of clusters present in the network.

Since in a genetically subdivided population the individuals in a subpopulation are expected
to be more highly related in comparison to a random redistribution of relatedness levels between
individuals, communities in the genetic network are expected to coincide with the subpopulations
of the underlying population structure. We therefore propose that population structure can be
ascertained by constructing a genetic network based on a genetic similarity measure, and then
applying community detection methods to identify a partition which maximizes modularity. Since
it is possible that an optimal partition consists of just one community (i.e. the entire network),
community detection algorithms can also identify scenarios with no population subdivision.

A partition of the network into two or more communities may be indicative of population
structure, but community partitions may also be detected in panmictic populations due to chance
alone. In order to test whether the detected population structure is significant, we test whether
it is significantly different than the null hypothesis of no population structure. Several approaches
have been suggested in order to evaluate the statistical significance of community partitions [27],
but here we pursue a significance test based on permutations of the genetic network, which focuses
on testing whether the null hypothesis can be rejected or not. With no population structure,
dense subgraphs are not expected to appear in networks constructed as described above, and
if such subgraphs do appear, the modularity of an optimal partition of the network should be
relatively low. In randomly permuted networks, dense subgraphs are expected to be present as
often as in unstructured populations, and hence optimal partitions of permuted networks can be
used to represent the expected modularity of optimal partitions of unstructured populations. If
the modularity of the detected community partition is not significantly higher than modularities
of optimal partitions of the permuted networks, we cannot reject the null hypothesis. We can,
therefore, use permutations to test the statistical significance of detected community partitions.

With the application of this significance test, population genotypes are considered to describe
a structured population if, and only if, more than one community is detected, and the detected
partition is more modular than would be expected in a population with no structuring. Note that
the permutation can be done at the level of the genotypes, or, if the network is large enough, at
the adjacency matrix level, with symmetry-preserving permutations of the matrix. Permutations
of the genotypes require constructing many matrices, which would be computationally expensive
when many loci are involved. Therefore permuting the adjacency matrix should be considered as
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an alternative when the network contains many edges, since in large networks weight values should
not constrain the possible attainable modularity values of optimal partitions.

2.3 Strength of Association Distribution (SAD) analysis

Revealing the division of the population into subpopulations may shed light on many aspects of
the underlying evolutionary and ecological processes; however, more information can be attained
by further analyzing the characteristics of the partition. The partitioning of the network into
dense subgraphs, as presented above, does not convey information regarding how important each
individual is to the detected partition. Here we introduce a measure intended to evaluate this
aspect, the Strength of Association (SA) of individual ¢ to its community. Given a community
partition C' and an individual i, we define the Strength of Association as

SA(C,i) = min (Qc = Qoym) (2)

Cr()#C

where Q¢ is the modularity of the partition C' and Cy(4) is the partition identical to C' except that
node ¢ is assigned to community k instead of its original community. Thus, high S A values indicate
that the partition C is sensitive to the assignment of 7, and that the assignment of 7 to its community
is essential, whereas low SA values indicate that there is another community that the individual
is well assigned to. From a population genetic perspective, the measure evaluates how strongly
individuals are related to the group to which they were assigned to, and SA is expected to be low
when individuals are recent descendants from individuals from more than one subpopulation. For
example, potential hybrids are expected to show low S A values, and the k that minimizes equation
2 is the probable origin of the second lineage of the individual (see Identifying hybrids and recently
admized individuals section for an example).

The S A measure is a measure at the individual level, taking into account genetic data of the
entire population. We introduce an exploratory analysis that evaluates characteristics of subpop-
ulations relating to the cohesion of the subpopulation and the association of individuals to the
subpopulation, the Strength of Association Distribution (SAD) analysis. This analysis examines
the distribution of the SA values of the different communities and compares the statistical at-
tributes of these distribution (e.g. the mean, variance and skew of the SA distributions). Since
different scenarios are expected to result in different cohesion of the subpopulations, it may be
possible to hypothesize what underlying processes were responsible for shaping the genetics of the
population.

For example, a closed disconnected subpopulation is expected to display a narrow SAD with high
mean (high community cohesion), since in a closed population individuals will be strongly related
relative to the entire population, and individuals descended from lineages outside the subpopulation
are rare. A subpopulation experiencing constant moderate gene flow levels is expected to display
a wide or left-skewed SAD with high mean, since there should be many individuals with lineages
that are mostly from the subpopulation, but recent migrant and descendants of recent migrants are
expected to have low SA values, increasing the variance and the left-skewness of the distribution.
A subpopulation experiencing constant strong gene flow levels is expected to display a SAD with
low mean, as many individuals will be descendants of migrants.
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3 Analysis of human SNP data

In order to demonstrate the applicability of the network approach to infer population structure and
the SAD analysis, we have selected a data set of human SNP data, extracted from the Hapmap
database [29]. This data set is well suited for the demonstration of a new approach since it is taken
from a population where structure and demographic history are well known from archaeological,
historic and genetic studies. The genetic data for this analysis consisted of 50 randomly selected
individuals from each of the 11 sampled populations of the HapMap project (overall 550 individuals):
African ancestry Americans (Al), Africans from west Kenya (A2), Masai Africans (A3), Africans
from Nigeria (A4), Europeans from Italy (E1), European ancestry Americans (E2), Han Chinese
(C1), Chinese ancestry Americans (C2), Japanese (J), Indian ancestry Americans (I) and Mexican
ancestry Americans (M). For each individual, 1000 polymorphic SNPs from each autosome were
randomly selected (overall 22,000 sites per individual). In order to compare the results with a model-
based approach, the same data were analyzed with the most widely-used model-based software,
STRUCTURE([7].

3.1 Network construction

A genetic network was constructed from the genotypes (without any information on the origi-
nal grouping of the individuals) using, for calculation of genetic similarity, a simple symmetric
frequency-weighted allele-sharing similarity measure. Analogous to the molecular similarity in-
dex[30, 34], we defined the frequency-weighted similarity at locus [ for diploid individual i with
alleles a and b, with frequencies f, and f;, (in the total sample) respectively, and individual j with
alleles ¢ and d:

Siji = i<(1 — fa)Tae + Taq) + (1 — fp)(Tpe + Ibd)> (3)

where I, is one if alleles a and ¢ are identical and zero otherwise, and the other indicators similarly
defined. Note that this measure is a multi-allelic measure, and is commutative with respect to 4
and j. Given a sample with L loci, the weight of the edge connecting individuals ¢ and j is defined
as the mean frequency-weighted similarity over all loci:

L
1
Aij =7 D Siju (4)
=1

The relatedness measure defined in equation 3 is a very simple symmetric relatedness measure, that
measures diversity relative to the entire population, since it takes into account the allele frequencies
at the level of the entire population (with sharing of rare alleles conveying a stronger connection than
sharing common ones). Other, more sophisticated, measures are likely to construct more accurate
networks and may be specific to the type of marker considered (e.g. for microsatellites the length of
the repeat might be taken into account) or include additional information (e.g. geographic locations
of the samples). The formulation presented here is designed to analyze diploid populations, but it
can be easily generalized to any level of ploidy.

3.2 Community partition

There are currently many algorithms used for detecting population structure, relying on different
network theory concepts (reviewed by Fortunato[27] and Lancichinetti[28]). We have used several
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of the commonly used algorithms (implemented using igraph[35]), presented in Appendix A, and
we show here the results from the classic Girvan-Newman algorithm[26] (the results using different
algorithms are not qualitatively different).

The edge-removal threshold parameter was systematically explored by examining thresholds
from 0 until all edges were removed, in steps of 0.001. For very low thresholds (0-0.181) the con-
structed networks were very dense and no population structure was detected (only one community
was found which included all nodes). As mentioned above, this is to be expected from all but the
most distinctly structured populations, since including connections between very weakly related
individuals decreases the capability of the community detection algorithms to detect dense sub-
graphs within the network. For very high thresholds (above 0.209) the networks break up into many
disconnected components, many of which include only one or two nodes. Such networks cannot be
coherently analyzed for communities (see Methods section).

For thresholds between 0.182 and 0.208, different community partitions were detected for dif-
ferent threshold ranges (Fig. 1). For thresholds in the range 0.182-0.188 two communities were
detected, and Figure 1C shows results for threshold 0.188, referred to as ”low threshold”. For
the range 0.189-0.195 three communities were detected, and Figure 1B shows results for threshold
0.194, referred to as "medium threshold”. For thresholds above 0.196 the network was no longer
connected and broke into several components, most notably a dense East Asian component and the
rest of the network composed of one or more components. For the range 0.196-0.200 one commu-
nity was detected in the East Asian component and four communities in the rest of the network.
For thresholds above 0.201 only the East Asian component remained intact while the rest of the
network broke into many small components and could no longer be meaningfully analyzed. The
East Asian component consisted of one community for the threshold range 0.196-0.206 and two
communities for the threshold range 0.207-0.208. Figure 1A shows the results of the community
partition with threshold 0.207 of the East Asian component, with two communities, and for thresh-
old 0.198 for the rest of the network, with four communities (referred to as "high threshold”).
Within the edge-removal threshold ranges mentioned above, there was no significant change in the
assignment of the individuals to communities. Therefore, three qualitatively different community
partitions of the network into communities have been found by systemically testing different edge-
removal thresholds, with either two, three or six communities for low, medium and high thresholds
respectively (Fig. 1).

Permutation tests using 1000 permutations of the genotypes were conducted, and all detected
community partitions were strongly significant (p < 0.001). With the low threshold the partition
corresponded to an African\Non-African division (Fig. 1C), with the medium threshold to an
African\Indo-European\East Asian division (Fig. 1B), and with the high threshold to one of six
communities: African, Indian, European, Mexican, Chinese and Japanese (Fig. 1A; Some of the
other community-detection algorithms also detected the Masai population as a distinct community
for the high threshold, Appendix A). The trend where higher thresholds reveals more detailed struc-
ture is correlated with the historically known patterns of human population differentiation. The
low threshold coarse division of the population into two groups corresponds with the more ancient
?out-of-Africa” migrations, the medium threshold division of the Eurasian population corresponds
with the more recent migrations to Asia and the long-lasting Indo-European ethnic ties, and lastly
the high thresholds correspond with the most recent events of migration and isolation leading to
the formation of cohesive populations in India, Japan and Mexico.

The analysis with STRUCTURE was done for different K values (K is the number of subpopulations
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Figure 1: Community detection on three networks with different thresholds. Each node
represents an individual, with colors representing the community assigned by the community de-
tection algorithm. (A) high threshold (0.207 for East Asian component, 0.198 for the rest of
the network) (B) medium threshold (0.194) (C) low threshold (0.188). For visualization purpose,
individuals are placed on the world map roughly corresponding to their ancestry.

assumed by the model). There is no statistical test available to evaluate the significance of the
results for different models, but the most widely used heuristic is the one presented by Evanno[36].
This heuristic shows that the most likely K value is K = 2, but K = 3 and K = 6 are also indicated
as likely values (Appendix B, Fig. B1). For K =2 and K = 3 the partition was the same as with
the network approach (Appendix B, Fig. B2). For K = 6 the detected partition consisted of five of
the six subpopulations detected by the network approach: African, Indian, European, Mexican and
East Asian. The Japanese\Chinese division was not detected, but the Masai individuals, assigned


https://doi.org/10.1101/024042
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/024042; this version posted February 3, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Indo-European community
East-Asian community

African community

Density

A e . O ~
0.000 0.001 0.002 0.003 0.004

Strength of association (SA)

Figure 2: SAD Analysis for the network in Figure 1B. Shown are the distributions of the
S A values for each of the three communities detected. Mean SA for each community is indicated
by dashed line.

to the African subpopulations, were shown to be also likely to belong to a sixth subpopulation
(Appendix B, Fig. B2).

Al A2 A3 A4 E1 E2 Cl C2 J I M

Figure 3: Model-based analysis of human SNP data assuming three subpopulations
(K = 3) using the program STRUCTURE. The sampled population labels are the same as in Figure
1. The colors of the subpopulations correspond to the colors in Figures 1B and 2.

3.3 SAD analysis

As a demonstration of the SAD analysis, the network with medium threshold (Fig. 1B) was
analyzed, and the distribution of the SA values for the three communities detected are shown in
Figure 2. Figure 3 shows the equivalent analysis of the model-based results using STRUCTURE and
assuming three subpopulations (K = 3).
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Figure 4: SAD Analysis for the Indo-European (blue) community. (A) Distribution of
the Indo-European community as shown in figure 2. (B) SA Distribution of the individuals in the
community for different sampled subpopulations. It can be seen that the individuals with European
ancestry are responsible for the higher SA values in the distribution in (A), while the individuals
with Mexican or Indian ancestry have lower association to this community.

A B

African ancestry Americans
Masai ancestry

Kenyan ancestry

Nigerian ancestry

Density

e

0.0020  0.0025  0.0030  0.0035  0.0040  0.0045 0.0020  0.0025  0.0030  0.0035  0.0040  0.0045
Strength of association Strength of association

Figure 5: SAD Analysis for the African (orange) community. (A) Distribution of the African
community as shown in figure 2. (B) Distribution of the individuals in the community for different
sampled populations. The left mode in (A) is due to Masai individuals, which were detected as a
distinct population by some algorithms (appendix A). The African ancestry American individuals
have slightly lower association to the community than individuals from Nigeria and Kenya, as well
as a distinct left-tail, perhaps due to recent admixture with people of European or Native American

origin.

The SAD of the East Asian community (Fig. 2) has a high mean and is a very narrow distribu-
tion, consistent with a subpopulation experiencing limited gene flow. This can be explained from
the known historical trend of the relative isolation of East Asia from Europe and Africa.
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The SAD of the Indo-European community (Fig.2) is the one with the lowest mean SA, and is a
wide left-skewed distribution, consistent with a subpopulation with defined core and periphery that
experienced extensive gene flow relative to the other subpopulations. Given that the individuals be-
longing to this community are from European, Indian or Mexican ancestry, a probable explanation
is that the core consists of the two European sampled populations and that the Indian and Mexican
ancestry individuals have lower association with this group. This can be clearly observed when the
distribution is decomposed to three distributions based on the sampled populations (Figure 4).

The distribution of the African community (orange) has a high mean, and is narrow and bimodal.
This is consistent with a cohesive subpopulation with limited gene flow, but also that two or more
distinct subgroups exist within the population with different levels of association to the community.
Figure 5 shows the decomposition of the distribution to the four sampled populations composing it,
and it can be seen that the the bi-modality can be explained by the fact that the Masai population
(A3) is found to be a distinct population, as detected by some of the community detection algorithms
(Appendix A). The STRUCTURE analysis also point out to this possibility, as for K = 6 it seems that
the Masai individuals could possibility be assigned to a different subpopulation, although they are
more likely to be assigned to the African subpopulation (Appendix B).

Comparing these results with the results from the model-based analysis, both methods show
that the African subpopulation is composed of the same group of individuals (Fig. 1B and Fig.
3). With the model-based analysis, it can be seen that while individuals from Kenya (A2) and
Nigeria (A4) have almost no probability to be assigned to other subpopulations, African-ancestry
Americans (A1) and Masai individuals (A3) have non-negligible probability to be assigned to other
subpopulations, which could be interpreted as that these two groups, while belonging to the African
subpopulation, have experienced more gene flow from other subpopulations, mostly from the Indo-
Furopean subpopulation. This finding is similar to the one found with the network analysis: these
groups are likely to have experienced more gene flow, indicated by the lower mean SA of both
Masai and African-ancestry Americans than that of the Nigerian and Kenyan groups (Figure 5).
However, the S A distribution of A1 and A3 are quite different, which implies different evolutionary
histories. The A1 SAD is skewed with a long left-tail, indicating that there are a number of African
ancestry Americans who are significantly less associated to the community, and are possibly recently
admixed individuals. The A3 SAD has a low mean but is symmetric without a wide or skewed tail,
possibly indicating that the Masai population has experienced more gene flow, but not in recent
times. The recent admixture in the African-ancestry Americans group is consistent with recent
higher gene flow experienced by the African ancestry Americans from other American groups.

4 Analysis of simulated data

In order to get a better intuition on the performance of the method, and specifically on the SAD
analysis and detection of hybrid and recently admixed individuals, several scenarios were simulated.
These simulations consisted of three diploid populations (P1, P2 and P3) of size N (2N haploids),
that have been split N generations ago from an ancestral population, also of size N. Following the
split, migration is assumed to have occurred only between P1 and P2 at rate m (proportion of the
population per generation). This allowed us to explore the effects of gene flow between P1 and P2
in comparison with an isolated population, P3. Four scenarios with different levels of gene flow
between P1 and P2 were examined: no gene flow (S1), low gene flow (S2), medium gene flow (S3)
and high gene flow (S4). Table 1 summarizes m values for the different scenarios. The coalescence
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process for 5000 independent SNPs and for N = 50 was simulated using the coalescence simulator
SIMCOAL2 [37].

4.1 SAD analysis of simulated scenarios

For the four simulated scenarios, genetic networks were constructed using equation 3, as done for
the human genetic data explained above. Community detection, using the computationally efficient
FastGreedy algorithm [38], was performed for edge-removal thresholds starting from 0 in steps of
0.01, until the network was decomposed to many disconnected components. In scenarios S1 and S2,
three communities were detected for all thresholds examined, fully corresponding with the three
simulated populations (we therefore refer to these communities as P1, P2 and P3). In scenario S3,
two communities were detected for low thresholds (0-0.04), fully corresponding to the combined
population of P1 and P2 and to population P3 (we refer to these as P1P2 and P3), while for
high thresholds (0.05) three communities were detected, fully corresponding to the three simulated
populations. For S4, two communities were detected, as for low thresholds in S3. The results are
summarized in Table 1, with further details given in Appendix C.

When gene flow was at most medium, the three simulated subpopulations were recovered by
community detection, while for high gene flow the procedure was unable to distinguish between
P1 and P2. In addition to the detection of subpopulations as the units of structure, the procedure
also provided information on hierarchical population structure. For medium gene flow the low
edge-removal thresholds P1 and P2 were detected as one community, P1P2, and two separate
communities for high edge-removal thresholds. The structure at the two hierarchical levels was
detected only at intermediate gene flow levels - with low or high gene flow the same community
structure was detected at all thresholds, as structure at one hierarchical level was much stronger
and masked the structure at the other level.

The SA for all individuals was calculated, and the SAD of the communities was characterized
by the mean and Coefficient of Variation (CV), as a measure of dispersion. The analysis was done
for networks with high edge-removal thresholds (before network decomposition), but no significant
differences were observed for lower thresholds. While for S1 there was no difference in SAD mean
of the three detected communities, for the three communities detected in S2 and S3, the mean was
significantly higher for P3 (Appendix C, Figure C1). The lower association of individuals from P1
and P2 to their assigned communities, relative to P3, can be attributed to gene flow between these
subpopulations. When two communities were detected, the mean for P3 was also higher than the
mean of P1P2 (Appendix C, Figure C1), however, in this case, it is not possible to tell if this is a
result of gene flow between P1 and P2 or a result of the different number of individuals in P1P2
and P3. Subpopulations represented by a smaller sample size may show higher SA values due to
the fact that common alleles in these subpopulations may be rare in the entire sample (rare alleles
in equation 3 result in edges with higher weights), whereas alleles common in subpopulations with
large sample sizes should be relatively common in the entire sample, even if they are rare in other
subpopulations.

SAD dispersion may also be an indicator for gene flow, as dispersed SA distributions should
occur when lineages of many individuals are shared with other subpopulations. While for S2 there
was no noticeable difference in dispersion between the communities, for S3 (high threshold) the CV
of P3 was significantly smaller than for P1 and P2 (Appendix C, Table C1). For the networks where
P1 and P2 were not distinguished (S4 and low thresholds in S3), there was no significant difference
in dispersion between the communities. Generally, CV was very low, except for subpopulations
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experiencing medium gene flow levels, in S2 (Appendix C, Table C1). These results indicate that
the high levels of SAD dispersion can be used as an indicator for intermediate levels of gene flow.
Overall, the characteristics of the distribution of individual’s S A, specifically mean and CV, are
correlated with gene flow levels, and allows for the distinction between the four simulated scenarios.

4.2 Identifying hybrids and recently admixed individuals

Genetically identifying hybrids or recently admixed individuals of two or more distinct subpopu-
lations is the focus of many studies in ecology and coservation biology [2, 39, 40]. The simulated
scenarios were used to test the ability of SAD analysis to identify hybrids (offspring of individ-
uals from two different subpopulations) and recent descendants of hybrids. In each scenario, a
first-generation hybrid, H1, was simulated by randomly selecting one individual from P1 and one
individual from P2, and generating a random offspring from the parents’ genotypes. Similarly,
H1 was backcrossed with a randomly selected individual from P1 to produce a second-generation
hybrid, H2. These individuals were then added to the simulated population, and the SAD was
analyzed to see whether the hybrid individuals can be identified as outliers (the analysis was done
separately for H1 and H2). This process was repeated 20 times in all scenarios where the three
subpopulations were identified (S1, S2, and high threshold of S3).

As all repeated simulations showed similar results qualitatively, we show only one example of
the outlier identification process (Figure 6). For S1 and S2, both H1 and H2 were easily identified as
outliers with noticeably lower S A values than the rest of the individuals in their assigned community.
For S3, H1 was revealed as a hybrid with lower SA values, but H2 was not.

In all cases when H1 or H2 were identified, equation 2 was examined to determine which k& min-
imizes the equation. This was done in order to identify the second subpopulation that the hybrid
individual is associated with. The second population of origin was identified for H1 in all scenarios,
while for H2 it was recovered only for low levels of gene flow. Further details regarding identifi-
cation of hybrid individuals and more detailed results appear in Appendix C. The results of these
simulations show that outliers of SA distributions may be considered as potential hybrids, but the
ability of the method to identify such individuals decreases with decreasing differentiation between
the populations in question, as well as with the number of generations after the hybridization event.

5 Discussion

We present a model-free distance-based approach for analysis of population structure at the individual-
subpopulation level, which does not entail the assumptions of an underlying model or any prior
conditions. The approach is set in a network theory framework and uses the concepts of community
and modularity, which allows for computationally efficient assignment of individuals to sub popu-
lations. The computational efficiency makes this approach applicable also in cases where many loci
are studied. An additional exploratory analysis of the SA distributions of the communities can be
used to study population structure beyond assignment of individuals to populations, by evaluating
the strength to which individuals are associated with their assigned subpopulations. This may be
useful to detect hybrid and recently admixed individuals, as well as to explore finer details of the
population structure, as demonstrated by analysis of simulated and real data sets.

Clustering individuals based on genetic composition has become important for many studies in
various fields such as ecology, conservation, medicine and anthropology, and there are now several
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Table 1: Strength of Association Distribution (SAD) analysis for simulated scenarios. After
the split to three subpopulstions, gene flow occurs between P1 and P2 at rate m, and P3 remains isolated.
Further details are presented in Appendix C.

Scenario parameters SAD characteristics
Detected
Scenario  Gene flow m communities SAD mean SAD dispersion
S1 None 0 P1, P2, P3  same for all 3 subpopulations  same for all 3 subpopulations
S2 Low 0.01 P1, P2, P3 P3 has higher mean same for all 3 subpopulations
S3 Medium 0.05 P1, P2, P37 P3 has higher meant P3 has lower dispersiont

P1P2, P31 P3 has slightly higher meanf  same for all 3 subpopulationsi

S4 High 0.1 P1P2, P3 P3 has higher mean same for all 3 subpopulations

tHigh edge-removal thresholds
iLow edge-removal thresholds

methods and programs addressing this task[9, 41]. The more developed approach is the model-based
approach, which utilized Bayesian or maximum-likelihood methods to estimate allele frequencies
of K hypothetical populations, under model assumptions such as HWE, and assign probabilities
of assignment for individuals to these populations. The alternative, model-free, approach is based
on analysis of distance (dissimilarity) or similarity matrices, which summarize some measure of
distance or similarity between all pairs of individuals. These matrices are usually analyzed using
multidimensional scaling (MDS) such as PCA, and projected to two or three coordinates for visual-
ization (e.g. PLINK[42], EIGENSOFT[43], GENEALEX[44, 45]). Clusters are determined either visually or
using other clustering methods, such as k-means[46], often requiring a priori definition of the num-
ber of clusters to be found, K. Similarly, other distance-based methods apply spectral clustering
techniques and analyze the eigenvalue spectra of similarity matrices ([47]). Since model-based and
distance-based approaches differ significantly in methodology and prior assumptions, researchers
often apply both approaches to the same data set in order to ensure that interpretations are not
biased by methodology.

The network approach we present here falls under the distance-based clustering category, and
no underlying model is assumed. Clustering is done by locating groups of nodes that are strongly
connected within the group but weakly connected to nodes outside the group. The strength of the
intra-community connections is not defined by a fixed value, but rather is determined relative to
the network structure. For example, spectral community detection methods [31, 48] do not analyze
the spectra of the similarity matrix itself, but rather address the modularity matrix which is
constructed by comparing the strength of connection between nodes with what would be expected
in a random network with similar structural properties (i.e. same node degrees). Community
detection methods, used in our approach, therefore differ from other distance-based clustering
methods in what is considered a ”good cluster”, and have been shown to detect meaningful clusters
in many systems where clusters are better defined by relative relations between elements than
by other distance-based definitions[26, 27]. In this sense, community detection is more similar to
model-based approaches, but here no prior assumptions are required. This also makes it more
natural to weigh pairwise genetic similarity by allele frequencies to strengthen similarity between
individuals sharing rare alleles relative to those sharing common alleles (equation 3), whereas other
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Figure 6: An example of hybrid identification using SAD analysis. Distribution charts
show the SADs for the three detected communities, with the SA of the hybrid shown as red dot
(distribution of P3 in S3 is out of scale). The analysis was performed on simulated scenarios S1,
S2 and S3, where H1 is a hybrid between populations P1 and P2, and H2 is a second-generation
hybrid between H1 and P1. Hybrids are identified as low SAD outliers in all cases except for H2
in S3.

distance-based methods more commonly employ only identity-by-state (IBS) measures to define
similarity or distance between individuals.
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Ideally, population-level studies would benefit from exploring structure using our network ap-
proach in combination with model-based clustering methods and MDS visualization, as these com-
plement each other and may give a more robust and detailed picture. In the example analyzed in
this paper using human SNP data, the model-based analysis and the network analysis were rela-
tively in agreement regarding assignment of individuals to subpopulations. However, the network
analysis did detect the difference between the Chinese and Japanese groups which was not detected
by the software STRUCTURE. Additionally, the SAD analysis revealed differences in gene flow experi-
enced by the Masai and African-ancestry American groups, but these groups appear very similar
in the STRUCTURE analysis (Figure 3).

The STRUCTURE analysis did indicated biologically-meaningful structure at different hierarchi-
cal levels, however this was done using a heuristic, and the hypothesis of population structure at
any hierarchical level is not statistically testable. Statistically testable hierarchical partitioning of
population structure is, of course, feasible and common in subpopulation-population level methods
(e.g. F-statistics, AMOVA), but is not common in individual-subpopulation procedures, where
putative subpopulations are not defined a priori. With the approach presented here, a similar hi-
erarchical structure was detected through systematic examination of edge-removal thresholds, but
here each hierarchical level was statistically tested and shown to be significant. Statistically testing
hierarchical structure is important since, otherwise, analyses are forced either to recover only the
strongest level, missing biologically-relevant information about the system, or report many hierar-
chical levels, without a procedure for determining which are meaningful and which are not. With
the network method presented here, different significant community structures emerge, producing
a semi-hierarchical structure, in the sense that a community partition at a given level does not
depend on "higher” level partitions. True hierarchical community partition procedures[49, 50] can
possibly be useful for hierarchical population structure analysis, but in most of these procedures
each level is constrained by higher levels.

Another related issue, that has been a concern in model-based implementation, is the assessment
of the number of subpopualtions, K[7, 36], as K is usually one of the model parameters. This
problem arises also when applying clustering techniques on results of distance-based methods, such
as k-means on MDS results. By setting K, these procedures regard the subpopulations as equivalent,
even though this is often not the case. For example, for the network shown in Figure 1B, K = 3,
however the three subpopulations show very different distributions of within-population relatedness
(Fig. 2). In the network-based approach there is no such issue, as most community detecting
methods do not a priori assume K, but rather find the optimal K that maximizes modularity (e.g.
[32, 38]), or acquires K as part of the detection process (e.g. [31, 51, 52]), without assuming any
equivalence of the communities. This is due to the fact that modularity is a trusted and well-studied
measure for the quality of community partitions[32].

With whole genome sequencing becoming more and more accessible, procedures for popula-
tion structure analysis must also take into account computational considerations. The procedure
presented here is composed of three consecutive steps, with construction of the network taking
O(Ln?) time, where n is the number of individuals in the sample and L is the number of loci
involved in the analysis. Computation time for community detection depends on the algorithm
used, but fast near-linear algorithms, taking O(n + m) time, where m is the number of edges in
the network, and approaching O(n) time for sparse networks (which can be constructed using high
enough edge-removal thresholds), are already available[51]. SAD analysis depends on m and on
the number of communities detected, ¢, and takes O(cnm) time, approaching O(cn?) for sparse
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networks. Only the first step involves L, therefore the computation time of the entire procedure
is linear with respect to the number of loci, and there should be no computational limitation for
including full genome sequences in analyses.

Since the genetic-similarity measure, the threshold and the community detection algorithm
remain, for now, used-defined, and may result in different population structures, care must be
taken when defining these parameters, and preferably several options should be explored. Further
studies may provide guidelines for setting these parameters as a function of the particulars of the
system under study. Network theory, and particularly community detection, is a highly active field
of research, but our understanding of the usefulness of particular community detection procedures to
different types of networks is still minimal, and future advancements in network theory may provide
clearer guidelines for algorithm and threshold choice. As with most other individual-subpopulation
level clustering methods, significant linkage disequilibrium (LD) between loci should be avoided,
and data should be screened to ensure that loci can be regarded as independent. The extent to
which LD will affect both community partition and the significance test presented here should also
be explored in the future.

We believe a network approach may provide an additional complementary viewpoint on popu-
lation structure analysis, one less hampered by prior assumptions. Moreover, defining population
genetic problems in network terminology is important for establishing the usage of network theory
in population genetics. Currently, many tools and methods are developed within network theory in
order to study complex systems, and these methods may become accessible to the field of popula-
tion genetics once network terminology is appropriately incorporated in population genetic theory
and practice.

The method presented here is implemented in the program NetStruct, which uses commu-
nity detection algorithms implemented in the software package igraph[35], and is available at
https://github.com/GiliG /NetStruct.
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