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1 Abstract

Insert size distributions from paired read protocols are used for inference in bioinformatic applica-
tions such as genome assembly and structural variation detection. However, many of the models
that are being used are subject to bias. This bias arises when we assume that all insert sizes within
a distribution are equally likely to be observed, when in fact, size matters. These systematic errors
exist in popular software even when the assumptions made about data are true. We have previ-
ously shown that bias occurs for scaffolders in genome assembly. Here, we generalize the theory
and demonstrate that it is applicable in other contexts. We provide examples of bias in state-of
the-art software and improve them using our model. One key application of our theory is structural
variation detection using read pairs. We show that an incorrect null-hypothesis is commonly used
in popular tools and can be corrected using our theory. Furthermore, we approximate the smallest
size of indels that are possible to discover given an insert size distribution. Two other applica-
tions are inference of insert size distribution on de movo genome assemblies and error correction
of genome assemblies using mated reads. Our theory is implemented in a tool called GetDistr
(https://github.com/ksahlin/GetDistr).

2 Introduction

Insert size distribution When sequencing paired reads (e.g. paired end sequencing, mate pair
sequencing, fosmid or BAC ends [1, 24]), one targets a specific insert size (the genomic distance
between the reads in a read pair). The insert size is dependent on the aims of the project. For
example, genome assembly can benefit from using libraries with a range of insert sizes [16, 26].
Another example is detection of structural variants. Longer insert sizes improves span coverage
which yields more observations over a variant and they also span longer insertions. On the other
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hand, shorter insert size libraries tend to have less variation around its mean which facilitates more
accurate predictions.

Although targeting an insert size when sequencing paired reads, the insert size of fragments
varies. This variation gives an uncertainty that can expressed as a probability distribution. We will
have a mean insert size 1 and a standard deviation ¢ around its mean. This probability distribution
is discrete since it is given in number of base pairs. In some cases, one can approximate the insert size
distribution with a normal distribution (a common assumption in various tools, [18, 15, 4, 8, 14]),
going from discrete to continuous support. This approximation is in many cases not accurate as
insert size distributions often have more observations far out from the mean (thicker tails) while
some distributions deviates strongly from a normal distribution on most of it’s support [16].

Truncated and skewed insert size distribution Inferring insert size distribution is easy if
we can observe all insert sizes from a read pair library. In that case, all insert sizes contribute
with equal “weight” when calculating e.g. p and o. In many applications we do not observe the
insert size of all read pairs, for example, when inferring the insert size distribution of paired reads
spanning over a region of § base pairs. The insert size distribution of the spanning read pairs will
not follow the same distribution as the insert size distribution of the whole library. This is seen
from the fact that read pairs with insert size smaller than § base pairs will not span over the region.
But this is not the only reason to why the observed distribution is different; longer sequences have
more positions from where it can span over the region. Thus, in terms of probability, it is more
likely for longer read pairs to span over d base pairs. The probability for given insert size to span
a region is not only determined by the insert size distribution. It also depends on the length of the
insert size compared to the region it is supposed to span. We can think of the latter criterion as
the “weight” to observe a given read pair from the library distribution. The weight is given by the
number of possible placements a read pair of given insert size can have [19].

Our contributions We state a generative model (DRISM) and derive probabilities for insert
size parameters in different scenarios. Using these probabilities, we derive more accurate mate
pair library insert size estimations on fragmented (de novo) assemblies. We correct a commonly
assumed null-hypothesis for detecting structural variants with insert size based methods. We also
show how the corrected null-hypothesis evens out the detection of insertions to deletions for the
insert size based variant caller CLEVER [15]. Furthermore, we improve size prediction of insertions
for CLEVER and BreakDancer [3]. We also study what size of indels that are possible to discover
given DRISM. The theory presented in this work also generalizes to other applications using insert
size based inference such as genome assembly evaluation with paired reads [6, 10, 23].

3 Model

We now state the Distribution of Read Insert Sizes Model (DRISM), based on the Lander-Waterman
model [11], which we use for deriving probabilities in section 4. We will refer to target sequence
as a DNA fragment on which read pairs are aligned, e.g., a genome, contig or exon. DRISM
assumes that read pairs are sampled randomly with a uniform distribution over the genome, giving
a Poisson distributed coverage (i.e., the Lander-Waterman model). Let G denote the length of
the genome (estimated or known). Data for the model comes from alignment of reads where we
observe: distance o between reads in a read pair, read length r, number of allowed softclipped
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Figure 1: Constant and variable notations in DRISM.

bases [13] in an alignment s, the length of target sequence(s) a (and b), see Figure 1. Furthermore,
DRISM assumes that reads pairs comes from some library distribution f(z) where f(z) may or
may not be known, dependent on application (see section 3). Finally, a parameter 6 models the
number of base pairs that is unobserved between two reads in a pair. For example, § models
the gap between two contigs in de novo assembly or the size of an insertion/deletion in structural
variant detection. J € Z where negative values represent overlapping sequence while positive values
represent a missing sequence. We will discuss the model in two different settings.

e Complete target sequence: Inference of p and o (e.g. for estimation of mate pair distributions
in de novo assembly, the target sequences are the contigs with known length, hence § = 0).

o Incomplete target sequence: Inference of p and o of the truncated and skewed insert size
distribution (e.g. for detection or size estimation of structural variants, or size estimation of
gaps between contigs in de novo assembly).

These scenarios are two examples of when DRISM is useful. Having an explicitly formulated
generative model will aid deriving probabilities where reads are sequenced from a genome.

4 Deriving probabilities from DRISM

4.1 Distribution over complete target sequence

We assume that the target sequence is known and therefore 6 = 0. We will derive the probability
that we observe a read pair with insert size of length x placed on a target sequence of length «
coming from a genome of length G. Let f(x) be the insert size distribution and w(z) be the number
of possible placements of a read pair with insert size x onto a. We then write

_ wa,G(x|(S - O)f(x)
> Wa,c(@]0 = 0) f(x)

where P, ¢(z|0 = 0) is the probability to observe an insert size x on a target sequence of length a
from a genome of length G. The denominator is a normalization constant to make P a probability.
Subscript on a, G is used instead of conditions in functions (e.g., P, ¢(x) instead of P(x|a,G)) due
to readability. Note that f is independent of @ and G. We have that w, ¢(z) can be written as

P, c(z]6 =0) (1)

a—z+1
wedl) = G T ®
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For example, wip20(4) = %gjﬁ = 7/17, which states that a read pair of insert size 4 will have

7 possible placements on a target sequence of length 10 (the nominator). It also has 17 possible
placements on a genome of length 20 (denominator). This together gives a probability of 7/17 that
it places within a target sequence of length a.

Softclipping Reads can be partially aligned to a target sequence with the remaining part “hang-
ing off the end”. The number of bases that falls outside the target is referred to as softclipped
bases [13]. To allow for softclipped bases, we introduce an additional parameter s denoting how
many base pairs are allowed to be softclipped. We get w,(z) as

a—x+2s+1

G—z+1 (3)

Wa,G,5(7) =
For example, wig20,1(4) = % = 9/17. The probability has now increased compared to (2)
since the read pair is allowed two more placements (we can slide it outside the target sequence one
extra position to the left, and one to the right). Notice that s is not introduced in the denominator
since read pairs are assumed to come from the genome.

Simplifications From now on, we will let the denominator of (3) be approximated by the constant
G. This is motivated by the small variation effect of x has on the number G—x+1, (i.e., in practice
G —x+1 =~ G). This will make calculations of likelihood functions easier. We will not consider the
special case where a target sequence is the very end of a genome (in case of a linear genome), which
will implicate that we cannot have softclipped bases on one end of the target sequence. In that
particular case, it would slightly change the nominator (3). The effect of these two modifications
on the probabilities is however vanishingly small. Thus, we write

a—x+2s+1

! @)

Wa,G s(T) =

Several target sequences In case we have u target sequences, e.g. contigs in a genome assembly,
we need to generalize the weight function (3) to give the probability of observing a read pair with
insert size x on any of the target sequences. This is done by summing over all possible positions

on the target sequences of lenghts a;, i = 1,...,u as
1 u
Wa,q,s(T) = G;ai—x+28+1. (5)

4.2 Distribution over incomplete target sequence

In this section we will discuss the case when ¢ is unknown. There are cases where we can not
observe true insert size of observed reads, they might be located on different target sequences, e.g.,
in contig scaffolding or they might span a gap of unknown length on the target sequence (e.g. over
a structural variation. We want to find the probability to observe a read pair with insert size x
over a given gap 0 and given target sequence(s) with length(s) a (and b). We will make use of the
following relation § = z — o (see Figurel). To give a probability for this scenario, we proceed to
describe the adjustments to the probability in model (1).
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Modifying f(z) The stochastic variable X is now unknown since we can not observe §. The
distribution of f will not change since it is the full insert size distribution. However, we change the
variable to write f(o+ 9).

Modifying w(z,d) With the simplifications of the denominator in section 4.1, w can be regarded
as a weight function that indicates how many placements a read pair can have over § since the
denominator is fixed for any x. In the case of one target sequence, there are two boundaries on
the number of placements. The read pair needs to be larger than § and have sufficiently many
base pairs on each side to be mapped (lower boundary). It also needs to be shorter than a (upper
boundary). We have

1 . {max{x52(rs)+1,0}
G

Wa,G,s(,0) = = min max{a+d —z+2s+1,0}

The 0’s in the max function are there to keep the function weights to 0 in case we have no possible
placing of a paired read. However, we can simplify this function to be expressed in o, which is
known, instead of x and §. We have

1 { max{o — 2(r — s) + 1,0}

wa,G’,s(O) = 5 Tnin maX{CL — (0 - 23) +1, 0}

If there are two different target sequences,e.g. two contigs, the number of placements can be limited
in three different ways [19]. We have the two boundaries above, plus the case where one of the
target sequences are so small that it restricts the positions of all paired reads that spans the two
target sequences.

1 max{o —2(r —s) + 1,0}
W(a,p),c,s(0) = el min ¢ max{a+b— (0 —2s)+ 1,0}
min{a,b} — (r —s) +1

Probability for 6 For clarity, we will from now on omit the subscripts over a, (b), G, s. We assume
that we have no information of § beforehand, thus we let the distribution over § be uniform. We
can express the probability for § given observations as

PRPERCULL

The first proportionality comes from the fact that o is known which makes P(0) a constant and
the second because we assume a uniform prior for P(5). We now have

w(0]d) f(0 + 0|d)

P(ols) = ()

2oy w(t —06)f(t)
Where the denominator is the sum of all possible insert sizes that can be observed given § and f.
A practical interval for ¢ would be ¢t € {0 + 2(r — s), u + 60}. We can now find the most likely &
using maximum likelihood estimation (MLE) over (6). Note that we implicitly get P(x|d) since

x P(0]d)P(5) xx P(o|d)

P(x|6) = P(o + 6|6) = P(ol5).

Also note that we have G as a constant denominator in w and w occurs both in the nominator and
denominator of (6), therefore it can be canceled out when computing the MLE.
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Naive estimation of 4 Many tools that estimates unknown sequence length (e.g. in assembly
and structural variation detection) by observed insert sizes use the following formula

b=pu—2o (7)

where 0 is the mean observation [3, 15, 7, 21, 4, 2, 5]. At first glance this formula seems reasonable
since we take the expected insert size and subtract the mean of the observations. However, this
formula has strong limitations. One of the most obvious is that 4 has an upper bound of ©—2(r—s)
in this case (since o > 2(r — s)). This equation implies that we can never span over a sequence
longer than u — 2(r — s). This is of course not correct.

5 Applications and Results

The following section shows how the probabilities derived in (1) and (6) can be used to improve
inference with read pairs. We compare our results against some popular state-of-the-art algorithms
in their respective fields. We want to stress that it is our aim to illustrate examples of biases in
popular tools. We do not infer general performances of the tools we use in the evaluation. The
software tested here are some of the most popular and best suited for their respective tasks. Making
inference with an exact insert size distribution may or may not be a of high importance in their
respective applications. Nevertheless, being aware of biases that occur improves analysis of results.
Also, it is important to be aware of these biases for future method development. Here, we show
how to apply our theory on two applications (other than scaffolding as was shown in [19]).

We have performed our experiments under ideal circumstances, and show that there exist biases
due to model errors. That is, we simulate data that follows the assumptions of the tools we test
and are still able to show that systematic errors occur. It is not our intention to give a model
that handles alignment errors or library preparation biases. However, the authors believe that it is
possible to extend the theory for this and it is subject for future work.

5.1 Library insert size estimation from alignment

In de novo assembly projects, data sets are often obtained at different time points since it is not
always clear at first what data is needed to assemble a genome and also, technology might improve
during the period of a project. Draft assemblies are created while new read libraries are obtained.
In order to make good use of additional libraries, we want to obtain correct read library metrics.
Inference of these metrics without a reference genome is difficult and a common procedure is to
map the new library to a draft assembly (also, this mapping can reveal erroneous regions in the
assembly). We will here discuss issues with inference of read library metrics in de novo assembly.

We compared insert size estimation on a mate pair library from Rhodobacter sphaeroides [17]
using picard [9], BWA [12] and GetDistr. BWA and picard use a pre filtering step when estimating
u and 0. BWA uses reads that have a PHRED mapping quality > 20 and insert size within
[Q1-2(Q3—-Q1),Q3+2(Q3—Q1)] where Q1, Q3 are the first respectively third estimated quartile.
Picard selects reads between [T — 10MAD,Z + 10MAD], where Z is the median and MAD is the
median absolute deviation. For this data set, the lower and upper boundary of insert sizes used for
each tool were approximately [0,6500] for BWA and [0, 11000] for picard. GetDistr was used with
both of the heuristic filters from BWA and picard. We first estimated p and o on the reference
genome of Rhodobacter sphaeroides using all tools and then compared these to estimates obtained
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Figure 2: Estimation of library mean and standard deviation for a mate pair library of R. sphaeroides. Input
to GetDistr and picard is from mapping reads with BWA on the reference sequence (leftmost point on x-axis) and
different contig sets from the Allpaths-LG assembly (numbers on x-axis). The number on the x-axis denotes that
contigs with size less than Nz are used for inferring mean and standard deviation. Library estimations decreases
in quality as shorter contigs are used. Our probabilities accounts for contig lengths and gives more accurate and
consistent estimations across different lengths of contigs.

by mapping the reads to contigs of the Allpaths-LG assembly from GAGE [22]. Figure 2a and 2b
illustrates the results where x-axis starts with estimates on the reference sequence followed by
estimates from mapping the read library to contigs with size < Nz of the assembly. That is, x =0
corresponds to the full Allpaths-L.G assembly, z = 10 corresponds to the remaining assembly after
removing contigs with size < N10, etc. GetDist has a subscript denoting which heuristic that was
used to select reads. As seen in figure 2a and 2b, the filtering does not affect GetDistr estimates
much. Since picard and GetDistr agrees on roughly 2600 as mean insert size and 1325 as standard
deviation, this is believed to be close to the truth. Even though the assembly is of very high quality
and contiguity compared to the insert size (N50 of 42.5kbp), we see that the estimates are affected
(e.g. shifted downwards for the mean). The effect becomes clearer as estimates are obtained from
smaller contigs (as x increases). GetDistr is unaffected by this until x = 80, when most contigs are
smaller than the true mean insert size. The same method can be used to adjust e.g. the median
and MAD of the library as well.

5.2 Structural variation

Under the null-hypothesis, no variant is assumed, i.e. § = 0, thus = 0. Let Z denote the average
insert size observed over a position p on the reference sequence and, as before, u be the mean of
the library insert size distribution f. Assuming the DRISM model with f normally distributed, a
commonly used null-hypothesis is then Hy : £ = p [3, 15], and statistical testing of variants are
performed using Hy. That is, a test showing if the Z deviates significantly from p over p. We claim
that this null-hypothesis is wrong because p is not the expected mean over p. Using the theory in
section 4.2 we have

2

Resultl. Given DRISM, f ~ N(u,0), we have pgq = pp + ——F—
p—(2(r—s)+1)
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4

Result2. Given DRISM, f ~ N(u,0), we have 049 = 0?2 — ——F—
(n-(2(r—s)+1))

See appendix A.3 for derivation. From a theoretical point of view, we can also derive an
approximate formula for the smallest size of indels we can expect to find with insert size based
methods. We let the smallest indel size be denoted by m and coverage be denoted by c. Given
parameters (u,o,7,s,¢) and f ~ N, we want to find the smallest size of an indel m that we can
detect given the DRISM model and a controlled of false positive rate . As real data introduce
noise, m can be seen as a lower boundary. We can state this problem as finding the smallest value
m such that the probability below holds.

(L™ g <Mty Sy,

Tgd Tgd

vn Vn
Note that the smallest m will give an equality sign in the equation above. From this equation, we
get

g

m = ZI:QQ%: (8)

where ¢, denotes the quantile value at «. Since this formula depends on the number of observations,
it is base pair specific. To get an approximate estimate of m across the genome, we need to find
the expected number of observations n over a base pair. We get this estimate similarly to [25] with
the modification of adding parameters r and s to their formula. Table 1 shows some examples of m
given o = 0.05 and the Bonferroni correction to control the family-wise error rate. Considering that
significance tests are correlated in this context, Bonferroni correction is conservative for these tests.
Due to the approximations and assumptions used in this derivation we not place too much weight
on analyzing the exact numbers in the tables. However, it is important to note the effect of these
parameters on m. Not only is o and ¢ important as reported [15, 3], p contributes a substantial
amount to the quality as it increases n for each test (higher span coverage).
I 300 400 500
o 25 50 75 25 50 75 ‘ 25 50 75
20 | 53.2 106.2 157.2 | 37.6 753 1129 | 30.7 61.5 92.2
¢ 50 |33.7 672 994 |23.8 476 714 |194 389 58.3
100 | 23.8 475 70.3 | 16.8 33.7 504 | 13.7 275 41.2

Table 1: Approximate values of m given given G = 3-107%, a = 0.05 r = 100 and s = 0. With a two sided test

. . L . . 5 5
and Bonferroni correction, a significant p-value lies outside [%, 1- Gﬂ‘gig].

Size estimation of insertions We compared estimation of insertions of two insert size based
structural variation tools, BreakDancer [3] and CLEVER [15]. From a simulated reference genome,
we generated insertions in a donor genome and a paired read library with f ~ N(500,0), o €
[25,50,75,100], » = 100 and ¢ = 100 (f ~ N is assumed in CLEVER and BreakDancer). 100
insertions with size ¢ where generated where ¢ = 25, 50, 100, 150, 200, 250, 300, 350. We aligned the
reads back to the reference genome with BWA [12].
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Relationship between estimated gap size and true gap size
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Figure 3: Length estimates of insertions on a simulated genome.

BreakDancer CLEVER

o\i|25 50 100 150 200 250 300 350 |25 50 100 150 200 250 300 350
25 |44 8 98 97 99 100 99 100 |13 100 100 100 100 100 100 2
50 0 28 91 95 98 98 98 97 | 0O 1 100 100 100 100 100 75
75 0 2 60 97 95 99 97 98 | 0 0 8 100 100 100 100 94
100 | 0 1 7 49 90 99 97 97 | 0O 0 0 3 65 94 92 76

Table 2: Number of insertions detected by CLEVER and BreakDancer for each point in figure 3.

Panel 1 and 2 in figure 3 show GetDistr predictions vs naive predictions (using equation 7) of
insertion size. These predictions were obtained from all reads spanning over the insertions. Panel
3-6 show predictions from BreakDancer and CLEVER, together with predictions by GetDistr from
the same set of reads as in the tools. Similarly to [15], a prediction is classified as a true positive,
hence included in the size analysis, if the break point prediction is within the internal segment size
base pairs away from the true breakpoint (i.e. at most u — 2r base pairs away). BreakDancer gives
a confidence interval for its predictions. We therefore used the median point as inferred break point
position. We see that without changing the methodology for detecting variants in the tools, we are
able to improve predictions using our theory. Because of different methodologies in BreakDancer
and CLEVER, the biases are different. BreakDancer uses only reads with |0 — pu| > ko (with £ =3
default). CLEVER uses more sophisticated statistical testing, taking all read pairs into account
in a first step, but uses only subsets of them to predict the variant. It should be noted that even
though GetDistrs probabilities are not tailor made for BreakDancers and CLEVERs heuristics (i.e.,
using subsets of reads with special properties), we still improve the predictions considerably. When
using insert size for variant detection, our recommendation is to not restrict the analysis only to
anomalous read pairs. Also note that the number of insertions detected are highly dependent on i
and o. Some points in Figure 3 contains few predictions (see Table 2).
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Figure 4: True and false positives for CLEVER when detecting insertions and deletions on a simulated genome with
100x (uniform) coverage from a normally distributed read pair library N(u, o), according to model assumptions by
CLEVER. The reference insert size distribution was correctly estimated in all cases. Shaded area displays difference
between number of insertions and deletions detected. Bars on negative y-axis shows the number of false positives.
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Detection of indels In this section we illustrate how the corrected hypothesis Hgd can even
out the ratio between detected insertions and deletions. We simulated 100 insertions and deletions
respectively with sizes 10, 20, 30, 40, 50, 75, 100. We also simulated three different paired end
libraries with p = 300, 400, 500 and o € 25,50, 75. All variations were on a distance of p 4+ 60 from
each other and enough reads were generated so that CLEVER estimated p and ¢ within 0.5 base
pairs accuracy in all experiments to give perfect conditions. We ran CLEVER as default (Hp) and
with Hgd by inserting the corrected values into CLEVER’s code. The results are shown in figure 4.
We see that the method used by CLEVER detects more deletions than insertions of the same sizes.
Using H, gd, we can reduce this bias to some extent. That is, in general, Hgd reduces the number of
deletions but increases the number of insertions detected. We also reduce the overall false positive
rate.

6 Conclusions

We have derived probabilities from a commonly assumed read pair model which we referred to
as DRISM. The probabilities are useful for any method making inference based on read pair li-
braries. We use the probabilities in different settings to improve predictions of state-of-the-art
software. For instance, we derive a more accurate distribution under the null-hypothesis for variant
callers. Furthermore, the authors believe that including information such as GC-bias and alignment
probabilities in DRISM can be done.
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A Appendix

A.1 Conditional mean and standard deviation of insert size

Using the DRSIM model with the probabilities we have derived, we can now get theoretical estimates
of the expected insert size over an sequence of length 4. In figure 5a, we can see how the expected
insert size E[X], varies with § and o if f ~ N(p, o) and the reference(s) is longer than most of the
insert sizes (e.g. > pu+ 4o if f & N). Naive estimation would be E[X]| = 500 independent of 4, 0.
The expected value can be calculated as

Eq[X]0] =
> aP(z[6) = Y (0+3)P(old)
TeEX 0€X -6 (9)
w(o)f(o+96)
PR sy icees

Here, T is the domain of all possible unknown sequence lengths § given o. Figure 5b illustrates
how expected standard deviation decreases as § increases. This is expected since a smaller range of
insert sizes are able to span a gap of 0 base pairs as ¢ becomes larger, this is also discussed in [20].

13


https://doi.org/10.1101/023929
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/023929; this version posted August 4, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

50 100 150 200 250 300 350 400

(a) Expected insert size (b) Expected standard deviation of in-
sert size

Figure 5: We used f ~ N(500,0) r = 100 and s = 0 in both plots. a) Expected insert size as o and & varies. The
mean insert size will deviate more from the full insert size distribution mean u as 6 and o increases. b) Expected
standard deviation of insert size over different . The expected standard deviation of insert sizes o). will deviate
more from the standard deviation of the full insert size distribution ¢ as § and o increases.

A.2 Computational complexty

Let & w1 be the maximum likelihood estimate of & and let m be the length of the interval where
we search for & mr in. Without loss of generality, we can assume that we search for 5ML € [0,m]
(m depends on the full library distribution and can be set heuristically). Let n as before be
the number of links. For each § € [0,m] (i.e. m times), we need to do n calculations in the
nominator and m — § calculations in the denominator. m — ¢ will go from m to 0 but the highest
complexity is reached when we sum up m values. This gives the complexity O(m(n 4+ m)). From
experience, usually m dominates n, thus we can write O(m?). This is the complexity for brute
force calculation of the likelihood function when convexity of the likelihood function can not be
guaranteed. If we can assume convexity, the computational complexity decreases to O(mlogm)
as binary search or Newton-Raphson algorithm can be employed. Furthermore, if f(z) follows a
normal distribution, [19] showed that the ML value can be obtained with O(logm) complexity
using an analytic expression of the maximum likelihood equation.

A.3 Insert size estimation - simulated data

In this section we compare our model to BWA’s insert size estimation. This experiment is conducted
as follows. Mate pair reads with distribution N(u,0?) are uniformly simulated from a repeat free
genome. A reference sequence of length a is extracted from this genome (e.g. a contig). BWA is
used as read aligner to map the mate pair reads to the shorter sequence. BWA'’s estimate of the
parameters p and o is obtained by parsing it’s output. GetDistr’s estimation is obtained from the
SAM file produced by BWA. To avoid external effects GetDistr uses only mate pairs with the same
characteristics as the mate pairs selected for insert size estimation by BWA. That is, they must
have a PHRED mapping quality > 20 and insert size within [Q1 — 2(Q3 — Q1),Q3 4+ 2(Q3 — Q1)]
where Q1,3 are the first respectively third estimated quartile. For each combination of u, ¢ and
a, 100 experiments were run. The results are illustrated in figure 6a and 6b.
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Figure 6: Estimations of library mean and standard deviation. Read library is simulated from N(10000,¢),
o € {500,1000, 1500, 2000, 2500} with » = 100. Sequencing depth is 100x coverage. A single line corresponds to
different o for one fixed reference length (marker at the end of each line). Reference lengths are 10000, 12000, 15000,
20000, 30000 base pairs. a) Estimations of p (y-axis) for different o (x-axis). GetDistr has most of its estimations
tightly clustered around the line p = 10000 which is the true mean. b) Estimations of difference between true and
estimated standard deviation (y-axis) for different library variations (x-axis). GetDistr performs well as long as not
a significant part of the library distribution cannot be observed.

Estimations become more biased with shorter reference sequence and higher library standard devi-
ation. GetDistr obtains unbiased estimations of u for all reference length and standard deviation
combinations down to 15 000 (figure 6a). It also gives accurate predictions of p even though a
significant part of the insert size library cannot be observed (u = 1000,12000). BWA obtains
reasonable estimations only when reference length is 30 000 base pairs. For estimation of o, we are
performing better than BWA for reference sequences down to 15 000 base pairs. When a = 12000
and 10000, a large part of the distribution falls outside the reference sequence and therefore, an
underestimation of ¢ is inevitable. For example, when a = 10000, GetDistr, estimates o to almost
half of the true standard deviation. This makes sense since only the lower half of the distribution,
hence half of the variance, is observed. BWA'’s slightly better estimations of ¢ in these cases are a
consequence of the underestimated fipw 4.

A.4 Derivation of Result 1 and 2

From [19] we have Z > pu + :—fl, since p + %21 is the expected insert size over any base pair.

The greater sign comes from the lack of the constraint that at least r — s bases should be aligned
on each side of p. Such constraint is needed in practice. For example, CLEVER uses s = 2 in
its implementation which means that at least » — 2 base pairs from both reads must be located
on respective sides of the variation. BreakDancer has no such criterion, but the criterion is then
imposed on the read aligner being able to map at least r — s bases on respective sides. This gives
the condition = > 2(r — s).

Let 149 denote the mean of the distribution of reads spanning p. An exact value of pgq can be
obtained for arbitrary distributions f by calculating the expected insert size in equation 9 with
0=0,a=G and x > 2(r — s). We can however give an accurate approximation of p,q by letting
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q¢ = 2(r — s) + 1 and substituting the 1’s to ¢’s in [19] (section 2.4, derivation of equation 2). We
get Result 1 from this calculation. The derivation is identical, we therefore omit it here and only
discuss why it’s an accurate approximation.

The approximation is motivated as follows. The derivation in [19] (section 2.4) is assuming infinite
support. Therefore, the above approximation is only accurate if the upper and lower boundaries are
far not located near high density regions of f (e.g.. near the mode if f ~ N). It is easy to motivate
that G (the upper boundary) satisfies this. The lower boundary ¢ is in practice also small enough
to make the area between —oo and ¢ be negligible. The general conclusion that z > p is already
stated in [19]. Here, we also observe that Z increases as the constraint = > 2(r — s) increases.
Similar to above, let o4q be the standard deviation of the distribution of reads spanning a position
p. Using the relation x f(z) = uf(x) — o f'(x), we have

Varg(X) =

— Bl - By = [0 gy T

B /x3f($) ey /x?f(x) o (us Ty

r=q r=q B=q
pE[X? +20%E[X] qE[X? o?
r—q B—q rw—q
4
202_44145
(h—q)

From this derivation. We immediately get Result 2. The approximation in Result 2 is following
from the same assumptions as in the derivation of p4q above and is a special case of the result
in [20]. For hypotheses testing of variants with the assumptions above, 144 should be used in Hy
and 044 in the significance test.
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