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Abstract

Introduction: A cell’s epigenome arises from interactions among chromatin factors — tran-
scription factors, histones, and other DNA-associated proteins — co-localized at particular ge-
nomic regions. Identifying the network of interactions among chromatin factors, the chromatin
network, is of paramount importance in understanding epigenome regulation.

Methods: We developed a novel computational approach, ChromNet, to infer the chromatin
network from a set of ChIP-seq datasets. ChromNet has three key features that enable its
use on large collections of ChIP-seq data. First, rather than using pairwise co-localization of
factors along the genome, ChromNet identifies conditional dependence relationships that better
discriminate direct and indirect interactions. Second, our novel statistical technique, the group
graphical model, improves inference of conditional dependence on tightly correlated datasets.
These datasets include transcription factors that form a complex or the same transcription
factor assayed in di↵erent laboratories. Third, ChromNet’s computationally e�cient method
allows network learning among thousands of factors, and e�cient relearning as new data is
added.

Results: We applied ChromNet to all available ChIP-seq data from the ENCODE Project,
consisting of 1,415 ChIP-seq datasets, which revealed previously known chromatin factor in-
teractions better than alternative approaches. ChromNet also identified previously unreported
chromatin factor interactions. We experimentally validated one of these interactions, between
the MYC and HCFC1 transcription factors.

Discussion: ChromNet provides a useful tool for understanding the interactions among chro-
matin factors and identifying novel interactions. We have provided an interactive web-based
visualization of the full ENCODE chromatin network and the ability to incorporate custom
datasets at http://chromnet.cs.washington.edu.

Introduction

Chromatin factors — such as transcription factors, histones, and other DNA-associated proteins —
interact with each other to regulate gene expression [10], the physical structure of the genome [7],
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cell di↵erentiation [4], and other cellular processes. Identifying this network of interactions among
chromatin factors, the chromatin network, is important for understanding genome regulation and
the function of each chromatin factor [49, 3]. To find interactions in the chromatin network we can
use chromatin immunoprecipitation-sequencing (ChIP-seq) to measure genome-wide localization of
chromatin factors, and then compare ChIP-seq datasets to find chromatin factors that co-localize
[36, 8]. Co-localization may indicate that two factors interact directly, by forming a complex, or
indirectly, such as by regulating similar DNA targets.

However, identifying pairwise co-localization alone fails to distinguish direct interactions from
indirect interactions. Consider a simulated chromatin network among four factors, where factor C
recruits A and B, and A in turn recruits D (Figure 1A, top). Because all pairs of ChIP-seq datasets
are correlated to each other (Figure 1A, middle), a simple co-localization method would incorrectly
infer indirect interactions among the factors (Figure 1A, bottom left). In a conditional dependence
network (Figure 1A, bottom right), if two variables (here, factors) are conditionally dependent, then
there is an edge between them. The conditional dependence between two factors measures their
co-localization after accounting for information provided by other factors. If we infer a conditional
dependence network, we eliminate indirect edges from the network, such as between factors A and
B, because their co-localization at peaks 3 and 5 can be explained away by another factor C (C
recruits A and B). Hence, incorporating more ChIP-seq datasets allows more indirect edges to be
removed, resulting in a higher quality inferred network.

Here we present ChromNet, an approach that estimates the human chromatin network using a
conditional dependence network among chromatin factors from 1,415 human ENCODE ChIP-seq
datasets (Figure 2; Supplementary Table 1). Integrating all ENCODE datasets from many cell
types into a single network provides several advantages. It enables extraction of global patterns in
the relationships among chromatin factors. It also expands the chromatin network to include the
union of all chromatin factors measured in any cell type. This is because a dataset for a chromatin
factor in one cell type can serve as a proxy for a missing dataset on that factor in another cell type.

Learning this network involves two key challenges. First, learning a network among thousands
of ChIP-seq datasets based on millions of samples (here, genomic positions) is computationally
very intensive. To solve this challenge, we utilized an e�cient approach that involves the com-
putation of an inverse correlation matrix from binary data, which does not require an expensive
iterative learning procedure. We show that our approach is as e↵ective as more complex models
in identifying validated protein-protein interactions. Second, identical or closely-related chromatin
factors are often measured in di↵erent labs, conditions, or cell types. When some variables are
highly correlated with each other, standard methods often learn edges only among these variables
and disconnect them from the rest of the network (Figure 1B, middle) [2]. Incorporating more
ChIP-seq datasets would exacerbate this problem. To solve this challenge, we developed the Group
Graphical Model (GroupGM) that learns a network not only between individual chromatin fac-
tors, but also between groups of factors (Figure 1B, bottom). We show that GroupGM makes a
conditional dependence network robust against data redundancy.

Previous work on learning interactions among chromatin factors from ChIP-seq data used much
smaller data collections. ENCODE identified conditional dependence relationships among groups
of up to approximately 100 datasets in specific genomic contexts [14]. Other authors used partial
correlation on 21 datasets [25], Bayesian networks for 38 datasets [27], or partial correlation and
penalized regression on 27 datasets [43]. Still other authors used a Markov random field with
73 chromatin factors in Drosophila melanogaster [55], or a Boltzmann machine with 116 human
transcription factors [35].

ChromNet departs from previous approaches by enabling the inclusion of all 1,415 ENCODE
ChIP-seq datasets into a single joint conditional dependence network. GroupGM and an e�cient
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Figure 1: (A) Top: Interaction network among four simulated chromatin factors. Middle: Binding
activity from simulated ChIP-seq datasets, where each peak represents a putative binding position
of a protein. Bottom: Networks inferred from ChIP-seq datasets based on co-occurrence (left)
or conditional dependence (right). (B) Redundant information obscures conditional dependence
connections. Top: Without redundancy, standard methods robustly infer a conditional dependence
network. Middle: Highly correlated variables (such as A and A

0) are strongly connected with
each other and lose their connections with other variables. Bottom: A Group Graphical Model
(GroupGM) represents the conditional dependence between groups of correlated variables, which
restores the connection between A and B. (C) An inverse correlation matrix with highlighted
columns for A, A0, B, and B

0. The strength of the group edge between (A,A0) and (B,B

0) is the
sum of the entries between the groups (purple).
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Figure 2: (A) Uniform processing pipeline includes aligning sequences using Bowtie2, calling peaks
with MACS2, and then binning them into 1,000–base-pair regions. (B) We inferred the GroupGM
from all 1,415 ChIP-seq datasets and integrated the learned model into a web interface to facili-
tate broad use. (C) We evaluated the learned model against known physical protein interactions
(BioGRID), mapped global patterns through network embedding, and validated a novel predicted
MYC-HCFC1 interaction with a Proximity Ligation Assay (PLA).

learning algorithm allow seamless integration of all datasets comprising 223 transcription factors and
14 histone marks from 105 cell types without requiring manual removal of potential redundancies
(Supplementary Table 1). We show that this increases the power to detect previously known
protein-protein interactions by approximately 50% (Supplementary Figure 1). We also demonstrate
the potential of ChromNet to make new discoveries by experimentally validating a novel interaction.

Results

Uniformly processed binary data reduces noise when learning conditional depen-
dence

To ensure comparable signals across all ChIP-seq datasets, we re-processed raw ENCODE sequence
data with a uniform pipeline (Figure 2A). We downloaded raw FASTQ files from the ENCODE
Data Coordination Center [8, 45, 11] and mapped them using Bowtie2 [24] to the human genome
reference assembly (build GRCh38/hg38) [13]. Using MACS2 [54], we created a set of lenient peak
calls that captured signal from both narrow and broad peaks. We binarized these peak calls within
1,000–base-pair bins across the entire genome, which results in a 3,113,000 ⇥ 1,415 binary data
matrix X where genomic positions are viewed as samples (Figure 2A). Binarized data has less
noise in long stretches of no-signal regions compared to transformed or raw read counts. We show
that a network inferred from binarized peak calls better reveals previously known protein-protein
interactions (Supplementary Figure 2; Supplementary Note 1).
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A conditional dependence network can be e�ciently learned from binary data

Learning a conditional dependence network among thousands of ChIP-seq datasets each containing
millions of samples (genomic positions) requires an e�cient algorithm (Figure 2B). It is well known
that the nonzero pattern of the inverse covariance matrix of Gaussian random variables represents
the conditional dependence network [26, 32]. The inverse correlation matrix, ⌃�1, is just a nor-
malized version of the inverse covariance matrix and also represents conditional dependence. A
zero element (

�
⌃�1

 
ij

= 0) means that the ith and jth variables are conditionally independent
of each other given all other variables—they are not connected by an edge. While it is common
practice to learn the conditional dependence network among continuous-valued variables based on
the estimation of ⌃�1 [19], recently Loh et al. showed that ⌃�1 also reveals conditional dependence
in binary data for simple acyclic networks [30]. Through simulation, we found that ⌃�1 can often
reveal dependence from binary data for more complex networks as well (Supplementary Note 2).

ChromNet first computes the inverse sample correlation matrix ⌃̂�1 from the binary data
matrix X of 1,415 variables and 3,113,000 samples, and then uses elements of ⌃̂�1 as weights of
network edges (Figure 2B). We compared ChromNet with a conventional method for learning the
conditional dependence network from binary data, the pairwise Markov random field model that has
been applied to binary ChIP-chip data [55]. We evaluated both methods on fly modENCODE data
(73⇥ 150,000) [55] with and without L1 regularization [19, 12]. To match the data processing used
by the Markov random field implementation we did not normalize the data matrix, which results in
an inverse covariance matrix instead of an inverse correlation matrix. We then examined how well
these methods recovered known protein-protein interactions annotated in BioGRID [50]. ChromNet
performed similarly to the Markov random field (Supplementary Figure 3; Supplementary Note 4),
but runs much more e�ciently. While learning a Markov random field is challenging for over
100 datasets, relying on ⌃̂�1 allows ChromNet to learn a network from more than a thousand
datasets across millions of samples in only a few minutes.

Group modeling mitigates the e↵ects of redundancy

Many ENCODE ChIP-seq datasets contain redundant positional information. These redundancies
arise from transcription factors in a complex or the same chromatin factor measured in di↵erent
labs or di↵erent cell types. Conventional conditional dependence methods have a key limitation in
modeling redundant data. If datasets A and A

0 are tightly correlated, a conventional method would
connect A with A

0 but connect A to the rest of the network only weakly (Figure 1B). Arbitrarily
removing or merging redundant datasets can hide or eliminate important information in the data
(Figure 4B).

GroupGM overcomes challenges with redundant data in conditional dependence models. To
do this, we define edges that connect groups of datasets (such as [A,A0] and [B,B0]). A group
edge weight represents the total dependence between the variables in the two groups that the edge
connects, and is computed from ⌃�1 as (Figure 1C, Methods):

G[A,A0][B,B0] = ⌃�1
AB + ⌃�1

AB0 + ⌃�1
A0B + ⌃�1

A0B0 .

An edge in a GroupGM model implies conditional dependence between the linked groups, but
does not specify the involvement of individual factors in each group. We prove that GroupGM can
reveal conditional dependencies in the presence of redundancy (Supplementary Note 3). In this
paper, we learn the groups using hierarchical clustering applied to the correlation matrix among
all ChIP-seq datasets, which results in only 2p� 1 groups, where p is the total number of ChIP-seq
datasets (here, p = 1,415).
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Conditional dependence and group modeling improve the recovery of known
protein-protein interactions

To evaluate how conditional dependence and group modeling both contribute to the performance
of ChromNet we estimated networks using the following methods, where each method produces a
set of weighted edges:

1. Correlation: We learned a naive co-occurrence network, using pairwise Pearson’s correlation
between all pairs of datasets.

2. Inverse correlation: We learned a conditional dependence network, by computing the
inverse of the correlation matrix.

3. GroupGM: We learned a group conditional dependence network, using our novel method
that addresses tight correlation among datasets.

To assess the quality of the estimated networks, we identified the edges corresponding to published
protein-protein interactions. As ground truth, we used the BioGRID database’s assessment of
physical interactions between human proteins from experiments deemed low throughput [50]. For
evaluation, we excluded edges involving a histone mark because they do not exist in BioGRID. We
also excluded edges connecting the same chromatin factor even when measured in di↵erent labs, cell
types, or treatment conditions. These edges were excluded from evaluation to prevent them from
artificially inflating the accuracy of the methods. When we measured the conditional dependence
between a pair of ChIP-seq datasets in GroupGM, to avoid the inclusion of many redundant edges,
we picked the maximum edge weight out of all network edges connecting groups that include the
corresponding datasets. A large group would tend to contain a heterogeneous set of datasets; thus,
we only considered the edges between groups that contain datasets corresponding to the same
chromatin factor.

Dependencies learned within cell types

We compared performance of the three methods described above across a range of prediction
thresholds. For each network, we varied a number N of evaluated edges from 1 to the total
number of edges. For each value of N , we identified the set of N edges with the largest weights.
We also randomly picked N edges without regard to weight rank as a background set. We then
calculated how many edges in each set matched known protein-protein interactions from BioGRID.
We computed fold enrichment by dividing the number of matched edges in the prediction set by
the expectation of the number in the background set.

We first measured performance within all cell types, excluding edges between datasets in dif-
ferent cell types (Figure 3A). Since the limited number of annotations in BioGRID imperfectly
represent the human chromatin network, one cannot draw too many inferences about absolute per-
formance from this benchmark. Relative performance of the methods, however, is clear. Inverse
correlation performed better than correlation, and GroupGM outperformed inverse correlation.
This indicates that better resolution of direct versus indirect interactions contributes to improved
performance of inverse correlation over correlation; and greater robustness against relationship-
hiding redundancy contributes to improved performance of GroupGM over inverse correlation.

To assess the variability of the enrichment estimate, we performed bootstrap re-sampling of
chromatin factor targets (Figure 3A and B, light curves). All datasets with the same factor are
sampled together, leading to a conservative (high) estimated variability (Methods). GroupGM
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Figure 3: Enrichment of BioGRID-supported edges between transcription factors in networks es-
timated by correlation (yellow), inverse correlation (red), and GroupGM (blue). In the top plots,
light lines represent bootstrap resampling variability, and dark lines represent average performance
over all re-sampled networks. (A) Enrichment against evaluated proportion of network edges,
excluding edges between di↵erent cell types. (B) Enrichment against evaluated proportion of net-
work edges, only including edges between di↵erent cell types. (C) Enrichment within cell types
that have 25 supported edges or more, where the network density was set to match number of
BioGRID supported edges in each cell type. Beneath each cell type name is the number of datasets
in that cell type.
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showed a statistically significant improvement over both correlation (P = 0.0055) and inverse
correlation (P = 0.016) for edges within cell types (Supplementary Figure 1).

To assess variability over cell types, we estimated enrichment separately for each cell type with
25 or more BioGRID-supported edges. In each cell type, we identified the number N of BioGRID-
supported edges in that cell type. Then, we calculated the enrichment for BioGRID-supported
edges among the top N edges in that cell type (Figure 3C). GroupGM performed consistently
better than correlation or inverse correlation in individual cell types (Supplementary Figure 4).

Dependencies learned between cell types

We integrated data from all cell types into a single model for three reasons. First, a dataset for a
chromatin factor in one cell type can serve as a proxy for a missing dataset for that factor in another
cell type. This expands the chromatin network to include the union of chromatin factors measured
in any cell type. This proves useful in analyzing data from ENCODE, which only measured a few
chromatin factors in some cell types. Second, learning a single network enables comparisons of
connections within di↵erent cell types, because the network in each cell type is conditioned on a
common set of other datasets. Third, we can see high-level patterns in the joint chromatin network
that would not otherwise be visible.

To assess how ChromNet leverages a joint model across all cell types, we checked edges be-
tween di↵erent cell types for enrichment in known protein-protein interactions. Our GroupGM
network was enriched for BioGRID-supported edges when compared to a background set of ran-
dom edges (Figure 3B). Bootstrap resampling showed this enrichment was significant (P = 0.0095;
Supplementary Figure 5; Methods).

An example of the importance of conditional dependence: SMC3 separates
RAD21 and MXI1

A specific example illustrates how conditional dependence reveals experimentally-supported direct
interactions better than pairwise correlation (Figure 4A). In the correlation network among RAD21,
SMC3, and MXI1, the three factors were tightly connected with one another in HeLa-S3 cervical
carcinoma cells. The conditional dependence network, however, separated RAD21 and MXI1. This
separation arose from the ability of SMC3 to explain away the correlation between RAD21 and
MXI1. The factor pairs left connected in the conditional dependence network, RAD21–SMC3
and SMC3–MXI1, have physical interactions described in BioGRID [31, 16]. BioGRID lacks any
direct connection between RAD21 and MXI1. Panigrahi et al. discovered more than 200 RAD21
interactors using yeast two-hybrid screening, immunoprecipitation–coupled mass spectrometry, and
a�nity pull-down assays [38]. They did not identify a RAD21–MXI1 interaction, which implies
that RAD21 may not directly interact with MXI1.

An example of the importance of group dependency: recovering a connection
between H3K27me3 and H3K4me3

Another specific example shows how GroupGM mitigates the e↵ect of redundancy on conventional
conditional dependence models. We examined edges between multiple H3K27me3 and H3K4me3
datasets from H7-hESC embryonic stem cells, collected at di↵erent time points in di↵erentiation
[37]. Since the datasets observe discrete portions of the di↵erentiation process, one should not
average them or pick a reference dataset arbitrarily. But both H3K27me3 datasets are very similar
to one another, and so are the four H3K4me3 datasets. This means conventional conditional
dependence methods identify edges between the two histone marks incorrectly. Edges estimated by
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Figure 4: (A) Left: RAD21, MXI1, and SMC3 all co-localize with one another, suggesting they may
all interact. Right: ChromNet reveals that the co-localization of RAD21 and MXI1 was largely me-
diated by the presence of SMC3. (B) GroupGM overcomes edge instability between tight clusters
of H3K27me3 (blue) and H3K4me3 (red) modification datasets in H7-hESC at di↵erent di↵eren-
tiation time points. Edge darkness indicates connection strength. Dashed lines indicate negative
interactions. We have removed within-group edges for clarity. Left : Correlation. Middle: Inverse
correlation. Right : GroupGM. (C) The part of the ChromNet network that interacts with EZH2
in H1-hESC embryonic stem cells. This is a screen capture from the web interface with a search
for “EZH2 H1-hESC”. Shaded regions represent GroupGM hierarchical clustering. Darker regions
represent tighter clusters. Dashed lines represent negative associations. We set the edge threshold
to capture the six strongest edges connected to EZH2.

inverse correlation become weak and unstable, some even showing negative correlation (Figure 4B,
middle). By allowing group edges, GroupGM has power to recover the positive correlation between
H3K27me3 and H3K4me3 in developing embryonic stem cells (Figure 4B, right). This reflects
the well-known bivalent co-occurrence of the repressive mark H3K27me3 and the activating mark
H3K4me3 in embryonic stem cells [4].

An example of network accuracy: recovered interactions with EZH2 in H1-hESC
recapitulate known functions

As an example illustrating the utility of ChromNet in revealing the potential interactors of a specific
chromatin factor we examined a small portion of the network associated with the well-characterized
protein EZH2 (Figure 4C). We focused on the H1-hESC cell type because it had the highest number
of strong EZH2 connections in ChromNet.

Examining connections to EZH2 in H1-hESC highlighted many known interactions, which we
discuss in decreasing order of edge strength. The strongest connection was from H3K27me3, a
methyltransferase involved in H3K27me3 maintenance [1]. The next strongest connection was from
SUZ12, an essential part of the Polycomb repressive complex required for EZH2’s methyltransferase
activity [6]. The connection from H3K4me3 is specific to H1-hESC (a negative association is
observed in other non-embryonic cell types) and fits a model of “bivalent” chromatin marking
of developmental genes in embryonic stem cells [4]. A connection from the histone demethylase
KDM4A [15], may reflect a coordinated replacement of constitutive heterochromatin (H3K9me3)
and active transcription (H3K36me3) states with the facultative heterochromatin (H3K27me3)
state applied by EZH2. The final linked factor, TCF12, co-immunoprecipitates with EZH2 [28]. In
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summary, most of the strongest interactions with EZH2 have support in the literature. We found
this mixture of positive controls and potential novel connections in many parts of the network.

An example of a novel protein interaction: experimental validation of an inter-
action between MYC and HCFC1

The c-MYC (MYC) transcription factor is frequently deregulated in a large number and wide variety
of cancers [33, 41]. It heterodimerizes with its partner protein MAX to bind an estimated 10-15%
of the genome to regulate the gene expression programs of many biological processes, including
cell growth, cell cycle progression, and oncogenesis [33, 41, 5]. The mechanisms by which MYC
regulates these specific biological and oncogenic outcomes are not well understood. Interactions
with additional co-regulators are thought to modulate MYC’s binding specificity and transcriptional
activity [18, 51]; however, only a few MYC interactors have been evaluated on a genome-wide level.
Analysis of the large number of ENCODE ChIP-seq datasets can therefore further elucidate MYC
interactions at the chromatin level.

ChromNet showed that MAX is the strongest interactor of MYC in multiple cell types (Sup-
plementary Table 2), highlighting the ubiquitous nature of this interaction. Top-scoring ChromNet
connections also included other known MYC interactors, like components of the RNA polymerase II
complex such as POLR2A, TBP, and GTF2F1, and chromatin-modifying proteins such as EP300
(Supplementary Table 2). This shows how ChromNet analysis of transcription factors and co-
regulators can help better understand transcription factor complexes.

In addition to the known interactors above, ChromNet also revealed previously uncharacterized,
high-scoring interactions, including the transcriptional regulator Host Cell Factor C1 (HCFC1; Sup-
plementary Table 2). HCFC1 binds largely to active promoters [34] and is involved in biological
processes, such as cell cycle progression [40, 44] and oncogenesis [39, 9, 42]. This further sup-
ports its possible role as an interactor of MYC in regulating these activities. To validate the novel
MYC-HCFC1 interaction, we performed a proximity ligation assay (PLA) in MCF10A mammary
epithelial cells. This technique detects protein-protein interactions in intact cells [48]. When two
proteins that are probed with specific antibodies are within close proximity of each other, fluores-
cence signals are produced and measured using fluorescence microscopy. We saw only background
fluorescence when incubating with antibody against MYC (Figure 5A, top) or HCFC1 (Figure 5A,
middle) alone. Incubation with both MYC and HCFC1 antibodies yielded a significant increase in
fluorescence signal in the nuclear compartment (Figure 5A, bottom; Figure 5B). This suggests that
MYC and HCFC1 interact in the nucleus.

We have shown that HCFC1 may be a novel co-regulator of MYC. Future investigation will
reveal the importance of HCFC1 in regulating the biological functions of MYC, such as cell cycle
progression and oncogenesis. This discovery demonstrates how ChromNet can suggest novel protein-
protein interactions within chromatin complexes.

Spatial embedding reveals global patterns in the human chromatin network

By integrating all ENCODE datasets from many cell types into a single network, ChromNet enables
extraction of global patterns in the relationships among chromatin factors. Using Cytoscape’s
additive force model [47], we visualized the entire network (Figure 6; Methods). In this embedding,
the spatial proximity of two nodes correlates with the edge weight between those nodes. Nodes for
the same chromatin factor in di↵erent cell types form a tight cluster when that factor’s genomic
position is conserved across cell types. For example, CTCF forms a tight cluster in this manner
(Figure 6A). Relationships between chromatin factors are represented by their proximity in the
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Figure 5: (A) Proximity ligation assay showing MYC and HCFC1 interaction in the nucleus.
Representative micrographs show DAPI nuclear staining (left), proximity ligation signal (middle),
and overlay (right) at 20⇥ magnification, with insets at 100⇥ magnification. Top: Cells probed
with MYC antibody alone. Middle: Cells probed with HCFC1 antibody alone. Bottom: Cells
probed with both antibodies. (B) Proximity ligation assay signal quantified as number of foci per
cell. Mean ± standard deviation from three independent experiments is shown; *** p < 0.001,
one-way analysis of variance with Tukey post test.
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embedding. For example, MYC and MAX nodes are closely located. So are CTCF and RAD21.
In contrast to the GroupGM network, proximity between related factors in a correlation network
embedding is much less distinct (Supplementary Figure 8)

Relative positions of chromatin factors in the embedded graph highlight important aspects of
biology. This is especially apparent among histone marks, where a clear pattern of two repressive
marks are separated by a continuum of di↵erent activating marks. H3K9me3 and H3K27me3
are both repressive marks, but form very distinct clusters because they target distinct regions
of the genome. H3K27me3 marks facultative heterochromatin, thought to regulate temporary
repression of gene-rich regions [21]. H3K9me3 marks constitutive heterochromatin, and acts as a
more permanent repressor [23]. Next to H3K9me3 is the H3K36me3 activating mark. H3K36me3
specifically marks zinc finger proteins when combined with H3K9me3 [17]. Next to H3K36me3 is
H3K79me2, and both activating marks are found on gene bodies [8]. After H3K79me2 is a core
set of activating marks centered around H3K4me3. The activating marks are separated from the
H3K27me3 by a group of EZH2 nodes. This is consistent with prior knowledge that EZH2 deposits
H3K27me3.

Positions of chromatin factor datasets reflect both their cell type identities and association with
chromatin states. Highlighting the three Tier 1 ENCODE cell types shows a clustering of chromatin
factor datasets by cell type (Figure 6B). K562 and GM12878 overlap spatially in the network
and are both derived from blood cell lines, while H1-hESC (embryonic cells) is more distinctly
separated. Coloring the network by correlation with chromatin state also reveals spatial patterns.
We chose three (out of seven) Segway [20, 53] annotation labels that highlight distinct areas of the
network (Figure 6C). Spatially embedding chromatin factor datasets using the ChromNet network
simultaneously captures many important aspects of their function, such as chromatin state, cell
lineage, and known factor-factor interactions.

Discussion

ChromNet enables understanding the chromatin network

Characterizing the chromatin network, the network of interactions among chromatin factors, is
a key part of understanding gene regulation. ChromNet provides a new way to learn the chro-
matin network from ChIP-seq data. ChromNet addresses key problems encountered when learning
protein-protein interactions from ChIP-seq correlations, such as the need to distinguish direct from
indirect interactions and be robust to dataset redundancy. We demonstrated that ChromNet’s
GroupGM network infers known protein-protein interactions in the chromatin network more accu-
rately than simpler methods. We also showed that ChromNet outperforms other approaches for
several individual analyses.

Unlike most previous methods, ChromNet is also e�cient enough to integrate thousands of
genome-wide ChIP-seq datasets into a single joint network. To our knowledge, this study repre-
sents the first construction of an interaction network from all 1,415 ENCODE ChIP-seq datasets.
ChromNet already scales to the number of datasets necessary to represent all 1,400–1,900 human
transcription factors [52], once such data is available.

ChromNet provides a general computational framework to identify a joint dependence network
from many ChIP-seq datasets. It can build a custom joint dependence network by incorporating
user-provided ChIP-seq datasets or a combination of the ENCODE ChIP-seq datasets and user-
provided datasets. To allow easier exploration of chromatin factor interactions and to facilitate
generation of novel hypotheses, we have created a dynamic search and visualization web interface
for both the ENCODE network and networks built from custom datasets (http://chromnet.cs.
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Figure 6: Force-directed 2D embedding of the entire human chromatin network, estimated by
ChromNet. Spatial proximity of nodes and node groups reflects the strength of their inferred
connection. In three views of this embedding, we have highlighted three di↵erent aspects: (A)
Specific chromatin factors discussed in this article. (B) Datasets from the three ENCODE Tier
1 cell types, showing a separation of chromatin factors by cell type. (C) Correlation with three
Segway genome annotation labels. We only colored the datasets from cell types where the Ensembl
Regulatory Build had a corresponding Segway annotation. Node size represents correlation to a
label, in comparison to all other nodes assigned to that label.
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washington.edu). By building a large model and allowing easy inspection of small sub-networks,
ChromNet combines a large-scale conditional dependence model with practical accessibility.

To demonstrate ChromNet’s ability to reveal novel chromatin factor interactions, we experimen-
tally validated the interaction between the MYC and HCFC1 proteins. The biological functions of
the MYC oncoprotein are complex and dependent on its protein-protein interactions. Uncovering
these interactions will provide insights into MYC transcriptional complexes involved in the onco-
genic process and may also reveal potential targets for anti-cancer therapies. Through ChromNet,
we identified HCFC1 as a novel interactor of MYC that may be involved in regulating biological
and oncogenic functions of MYC.

Future directions

We envision several future extensions to the approach described in this article. First, while we have
demonstrated the utility of applying ChromNet to ChIP-seq data alone, we plan to incorporate
other data types into the network. RNA-seq expression datasets could resolve chromatin factor
relationships that occur as a consequence of mutual involvement in gene expression. Incorporating
feature annotations such as gene models could highlight direct interactions between factors and
genomic regions of interest. The human genome’s billions of base pairs provide a large sample size
that allows joint comparisons of many genome-wide signals in a single model. Robust conditional
dependence networks provide a benefit that is likely not limited to ChIP-seq data.

Second, we plan to consider relationships between chromatin factors at genomic position o↵sets.
Here, we considered only co-occurrence relationships within the same 1,000 bp region. To model
positional ordering constraints, we can also consider relationships between a factor in one region
and another factor in an adjacent or nearby region. This would allow us to learn phenomena such
as promoter-associated factors preceding gene-body–associated factors.

Third, just as the co-occurrence of di↵erent chromatin factors has been used to automatically
annotate the genome, variations in the chromatin network at di↵erent positions may also prove
useful to annotate functional genomic regions. This would also provide insight into the biological
mechanisms behind specific chromatin factor interactions.

Methods

Data processing

ENCODE has the largest collection of high-quality ChIP-seq datasets [8], and continues depositing
new datasets. ENCODE has processed many ChIP-seq datasets through a uniform pipeline. How-
ever, we reprocessed all the datasets from raw ChIP-seq reads (Figure 2) for two reasons. First, this
allowed us to incorporate datasets not yet through ENCODE’s uniform pipeline. Second, specifying
our own pipeline makes it easier to process external users’ data in an identical way. This facilitates
adding non-ENCODE data to the ChromNet network.

We aligned reads from 3,543 FASTQ files to GRCh38/hg38 [13] using Bowtie2 [24]. To reduce
noise before processing we filtered resulting Binary Alignment/Map (BAM) files to quality level 13
(P ⇡ 0.05) using SAMtools [29]. We grouped BAM files by dataset and matched them with controls
using metadata from the ENCODE web site [11]. Then, we pooled and processed target and control
BAM files using MACS2 [54]. We ran MACS2 without peak shift adjustments and with a P -value
peak threshold of 0.05. This lenient threshold was chosen in an e↵ort to capture both broad and
narrow genomic binding signals across the genome. A more stringent threshold of 0.001 did not
significantly change enrichment for known protein-protein interactions (Supplementary Figure 6).
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We binned peak data from MACS2 into 1,000 bp windows by labeling a window 1 if any
peak overlapped the window and 0 otherwise. Binning all datasets in this way yielded a
X 2 {0, 1}3,113,000⇥1,415 binary data matrix. Each bin has a corresponding row in the matrix.
We interpreted each of the 3,113,000 rows as a sample from a set X = {X1 . . . Xp} of p = 1415
binary random variables representing presence or absence of each chromatin factor at a given po-
sition. Using this interpretation, we computed a sample correlation matrix ⌃̂ 2 Rp⇥p among the
standardized variables in X .

To create the correlation network, we set the weight of every edge between two datasets i and j

equal to the corresponding entry ⌃̂i,j in the sample correlation matrix. This captures the pairwise
linear dependence between two datasets (Figure 1A; bottom left).

E�cient estimation of conditional dependence from binary data

Given datasets drawn from a set X of binary random variables, we can represent a joint pairwise
model of these datasets without loss of generality as a pairwise Markov random field:

P (x) =
1

Z

exp

0

@�
X

Xi2X ,Xj2X
�i,jXiXj

1

A (1)

where � is a matrix of pairwise interaction terms and Z is a normalizing constant. Previous work
on estimating a smaller subset of the chromatin network from binary data used Markov random
fields and higher-order extensions [55, 35]. These works employ iterative or approximate methods,
as exact inference on their models with many variables is computationally intractable. For certain
graph classes, however, the sparsity structure of � and of the inverse correlation matrix ⌃�1 are
equivalent [30].

To justify using ⌃�1 to approximate arbitrary networks, we compared with estimates of condi-
tional dependence from a pairwise Markov random field of binary data [55] (Supplementary Note
2). The Markov random field implementation was based on unnormalized binary data, so for com-
parison we used the inverse covariance matrix which results from an unnormalized dataset. We
used the original processed data kindly provided by the authors of [55] (J. Zhou, personal commu-
nication). These data are from 73 modENCODE ChIP-chip datasets on Drosophila melanogaster
S2-DRSC cells. We calculated precision for the inverse covariance of binary data using the same
bootstrap procedure as the authors, and compared against Markov random field precision numbers
from their published precision-recall plot [55].

The ordering of coe�cient magnitudes in �̂ and the inverse covariance matrix were similar across
a wide range of Markov random fields (Supplementary Figure 3). This near-equivalence between
the orderings means we can use an inverse covariance (or correlation) matrix to estimate edge
strength in a pairwise Markov random field. This dramatically increases computational e�ciency,
but maintains results similar to a full binary pairwise Markov random field.

To create the inverse correlation network (Figure 3), we began by inverting ⌃̂ to get an inverse
sample correlation matrix ⌃̂�1 [32, 26]. We then set the weight of every edge between two datasets
i and j equal to the corresponding entry {⌃̂�1}i,j . This inverse correlation network captures the
pairwise linear dependence between two datasets when conditioned on all other variables in the
network.

Group graphical model

To create the Group Graphical Model (GroupGM) network, we began with the inverse correlation
matrix created above. We extended the idea of pairwise relationships to groups of datasets by
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considering a set G of q groups chosen by hierarchical clustering (see below). We let Ĝ 2 Rq⇥q

represent pairwise interaction strengths between all groups in the model. For any two groups i and
j in the model their weight is given by the sum of entries between them in the inverse correlation
matrix (Figure 1C).

Ĝi,j =
X

k2Gi,l2Gj

⌃̂�1
k,l (2)

We prove that Equation 2 correctly maintains the original edge magnitude in the case of redun-
dancy (Supplementary Note 3).

To select the set G of groups, we used complete-linkage hierarchical agglomerative clustering
of the correlation matrix [19]. This clustering methods starts by merging the two groups with
the smallest maximum correlation distance between their datasets, then continues recursively until
all groups have been merged. The use of hierarchical clustering eliminates the need to chose a
fixed arbitrary number of clusters in advance. From the clustering results we chose all the leaf
and internal nodes from the clustering algorithm as groups G. Then, G became a q ⇥ q matrix
filled according to Equation 2, where q = 2p � 1 (the total number of internal and leaf nodes).
This method avoids comparing all possible subsets of datasets, which would make calculating G

prohibitively expensive.
Since GroupGM uses the cluster assignments to mitigate strong redundancy, clustering accuracy

is most important for tightly correlated datasets. When two datasets are highly correlated, it
is important to group them together to mitigate the outcome of correlated datasets in network
inference. When two datasets are only mildly correlated, the e↵ects of their redundancy will also
be mild, so it is not important to group them together. Hierarchical clustering is an attractive
choice because it starts by creating groups among the most correlated datasets.

Visualization of the hierarchical chromatin network

To enable exploration of the chromatin network, we built an interactive visualization tool (http://
chromnet.cs.washington.edu). This tool displays the nodes and edges of the chromatin network
using a real time force model (Figure 4C). The tool’s responsive interface lets users control which
nodes and edges it displays. It immediately changes its display after a user types a search term to
restrict displayed nodes. It also immediately changes its display when a user moves a slider that
controls the minimum strength of a displayed edge. Our visualization tool facilitates exploring the
chromatin network without excessive visual distraction.

The ChromNet visualization tool displays hierarchical groups from GroupGM by shading areas
that enclose a group’s members. It shades these areas with some amount of transparency. It
displays the strongest groups with the highest opacity. The parents of two connected groups in the
GroupGM hierarchy are themselves very likely connected. Therefore, for clarity we hide redundant
parental edges.

To find a reasonable lower bound for the user-defined strength threshold, we examined the
relationship between edge magnitude and known physical interactions. Within cell type edges from
all cell types were sorted by magnitude and then binned into 200 groups. For each bin we computed
the number of edges matching low throughput physical interactions in BioGRID and plotted how
this varied over the bins. This enrichment curve suggested a lower bound of 0.03 to capture only
edges enriched for known interactions (Supplementary Figure 7).
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A conservative bootstrap estimate of protein-protein interaction enrichment vari-
ability

We estimated the variability of enrichment for known protein-protein interactions in the chromatin
network (Figure 3) using bootstrap re-sampling over chromatin factors. We performed re-sampling
over chromatin factors, and not over edges or individual datasets, because valid bootstrap re-
sampling assumes independent and identically distributed samples. If we had re-sampled over
the edges, we would have estimated a much smaller variability. This is because edges do not
vary independently, and changes in a single dataset can a↵ect all edges connected to that dataset.
Variation specific to a single chromatin factor would a↵ect all datasets measuring that factor. Those
individual datasets, therefore, lack the independence assumed by the bootstrap sampling.

Under a chromatin factor bootstrap, we might sample a widely-measured chromatin factor a
number of times. For example, ChromNet contains 150 CTCF datasets. Every time we sample
CTCF, we add all 150 of these columns (where a column represents a variable in the data matrix
X) to the bootstrap data matrix. Adding many datasets in unison greatly increases variability
in the re-sampled data matrix. This yields conservative high variability estimates, ensuring that
enrichment performance is not solely due to a few commonly measured factors. Using these boot-
strap samples we compared the area under the enrichment rank curves (Figure 3A,B) between
methods. The statistical significance of GroupGM’s improvement was quantified as the fraction
of bootstrap samples where GroupGM outperformed the other methods (Supplementary Figure 1;
Supplementary Figure 5).

Proximity ligation assay

We seeded 2.5 ⇥ 104 MCF10A cells (a kind gift from S. Muthuswamy, Princess Margaret Cancer
Centre) onto glass cover slips. After one day, we fixed cells in 2% paraformaldehyde, permeabilized
the cells, and blocked them with bovine serum albumin. We then incubated the cells overnight with
a mouse monoclonal antibody against MYC (1:25; C-33, Santa Cruz Biotechnology, Dallas, TX) and
a rabbit polyclonal antibody against HCFC1 (1:50; A301-400, Bethyl Laboratories, Montgomery,
TX) overnight. Then, we incubated cells with Duolink In Situ PLA anti-mouse MINUS and anti-
rabbit PLUS probes (Sigma-Aldrich, St. Louis, MO). We processed cells using Duolink In Situ
Detection Reagents Red following manufacturer’s instructions (Sigma-Aldrich, St. Louis, MO). We
imaged slides with a LSM700 confocal fluorescence microscope (Zeiss, Oberkochen, Germany). We
quantified proximity ligation assay signal in at least 100 nuclei per condition using ImageJ [46].

Embedding the full chromatin network into a single plot

We embedded the full ChromNet network into a two-dimensional plane using force-directed lay-
out (Figure 6). Because the GroupGM is inherently multi-scale, we sought a force model that
accurately represented forces between individual nodes, and between all possible node groupings.
In GroupGM, the edge weights between two groups are sums of the conditional dependence weights
between all the individual datasets of those groups. This means we can correctly model the cumula-
tive forces between groups using an additive force model with edge weights equal to the magnitude
of the non-group edges between datasets. Cytoscape’s standard spring layout [47], driven by ad-
ditive spring coupling forces, implements this model. Using the same layout with weights derived
from correlation instead of conditional dependence results in much tighter clustering and much
weaker relationships between chromatin factors (Supplementary Figure 8).

We overlaid chromatin state annotation on the graph embedding by computing the correla-
tion between each dataset and each Segway [20] region from the Ensembl Regulatory Build for
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GRCh38/hg38 [53]. We drew a separate network labeling for each region by sizing each dataset
node by its correlation with that Segway region. We normalized the size of the largest node in each
network to a constant value and overlaid three of these network colorings (Figure 6C). For clarity,
we showed only the largest node from each of the three networks for each dataset.
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