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ABSTRACT
Motivation: DNA methylation is an important epigenetic modification
related to a variety of diseases including cancers. One of the key
issues of methylation analysis is to detect the differential methylation
sites between case and control groups. Previous approaches
describe data with simple summary statistics and kernel functions,
and then use statistical tests to determine the difference. However,
a summary statistics-based approach cannot capture complicated
underlying structure, and a kernel functions-based approach lacks
interpretability of results.
Results: We propose a novel method D3M, for detection of
differential distribution of methylation, based on distribution-valued
data. Our method can detect high-order moments, such as shapes
of underlying distributions in methylation profiles, based on the
Wasserstein metric. We test the significance of the difference
between case and control groups and provide an interpretable
summary of the results. The simulation results show that the
proposed method achieves promising accuracy and outperforms
previous methods. Glioblastoma multiforme and lower grade glioma
data from The Cancer Genome Atlas and show that our method
supports recent biological advances and suggests new insights.
Availability: R implemented code is freely available from
https://cran.r-project.org/web/packages/D3M/

https://github.com/cran/D3M.
Contact: ymatsui@med.nagoya-u.ac.jp

1 INTRODUCTION
DNA methylation is an epigenetic chemical alternation in which a
methyl group is attached to a carbon cytosine (C) base. It is closely
related to gene expression, silencing, and genomic imprinting,
including oncogenesis. Typically, methylation is explained as
occurring in cytosine-phosphate-guanine (CpG) islands. The
methylation of promoter regions, in particular, silences cancer
suppressor genes.

One of the key issues for methylation analysis is to detect
differential methylation site, i.e., significant difference in
methylation patterns between case and control groups at a site.
When comparing groups, we often summarize (or aggregate)
data in summary statistics, such as mean and variance, and
then investigate the difference between the groups. For example,
limma (Smyth, et al., 2005), minfi (Aryee, et al., 2014), edgeR
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(Robinson, et al., 2010), DESeq (Anders, et al., 2010) and DiffVar
(Phipson, et al. 2014) detect the differential methylation sites by
testing for significant differences in mean and variance. Other
nonparametric approaches exist, such as the Mann-Whitney-Wilcox
test (MWW), based on rank statistics, and the Kolmogorov-Smirnov
test (KS) or kernel-based approaches, such as M3D (Mayo et al.,
2014) with maximum mean discrepancy (MMD) (Gretton, et al.,
2012). In particular, since KS and MMD consider the underlying
distribution structure, they are better suited for use with complicated
distributions than methods based on summary statistics.

These approaches are effective in detecting typical differential
methylation sites, but are insufficient from some perspectives,
such as the following. The limma, minfi, edgeR, DESeq, and
DiffVar methods are inappropriate when underlying distributions
are complicated by being skewed, heavy-tailed, and multimodal. In
particular, since cancer cells include heterogeneities, measurements
of methylation potentially include complex distribution shapes.
This observation indicates that we need to consider the underlying
structure. The disadvantage of KS and MMD is infeasible
interpretability of results because they measure the maximum and
kernel distances of distributions, respectively, which are difficult
to interpret corresponding to the actual difference of underlying
distributions.

We develop a method to detect differential methylation sites with
distribution-valued data (Irpino and Verde, 2014a). Distribution-
valued data are an example of symbolic data analysis (Diday, 1989).
This framework can treat complex data such as functional (Ramsey
and Silverman 2005), tree (Wang and Marron, 2007), set, interval,
and histogram values (Bock and Diday, 2000; Billard and Diday,
2006; Noirhomme-Fraiture and Diday, 2008). The proposed method
describes case and control groups using distribution values. We
measure the differences between distributions using the Wasserstein
metric. We detect the differential methylation sites using a statistical
test of significant differences of distribution functions.

2 METHODS
Our method is aimed at a distribution-based comparison of
methylation patterns in two groups, through site-by-site resolution.
We construct distribution functions representing the two groups
at each site. Next, we compare the groups using a dissimilarity
measure and test statistical significance through site-by-site
resampling. We adopt an L2-Wasserstein metric (Ruesehen, 2011)
as a dissimilarity measure, a distribution function-based measure
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of statistical distance. The advantage of this distance is the
interpretability of results because the distance can be decomposed
into three components, i.e., mean, variance, and distribution shape.
This fact leads to visualization of results using a Q-Q plot to
interpret the detected distribution difference including hypo- or
hyper-methylation status.

2.1 Construction of objects
X(si) and Y (si) (i = 1, 2, . . . , S) represent the beta values in a
case group (e.g., cancer subjects) and control group (e.g., normal
subjects) at a CpG site si. We represent the data as distribution
values by

Fi(x) = Pr{X(si) ≤ x};x ∈ [0, 1].

Gi(y) = Pr{Y (si) ≤ y}; y ∈ [0, 1]. (1)

In practice, let the beta value observations be xj(si); j =
1, 2, . . . , n and yj(si); j = 1, 2, . . . ,m following Fi(x) and
Gi(y), respectively, where n and m are the respective numbers
of observations at si. From the data, we construct the empirical
distribution functions;

F̂i(x) :=
1

n

∑
j=1

1(xj(si) ≤ x)

Ĝi(y) :=
1

m

∑
j=1

1(yj(si) ≤ y) (2)

where

1(a ≤ b) =
{

1 if a ≤ b
0 otherwise.

(3)

2.2 Dissimilarity measure for distributions
The Wasserstein metric is defined by

dq(Fi, Gi) :=

∫ 1

0

|F−1
i (u)−G−1

i (u)|qdu (4)

where 1 ≤ q ≤ 2 and F−1
i (x) and G−1

i (y) indicate quantile
functions.

In particular, in the case of q = 2, the metric can be decomposed
into three components that describe the distribution characteristics,
i.e., mean, variance, and shape (Irpino and Verde, 2014a):

d2(Fi, Gi) =

∫ 1

0

|F−1
i (u)−G−1

i (u)|2du

= (µi − µ′i)2 + (σi − σ′i)2 + 2σiσ
′
i(1− ρi,i′)(5)

where µi and σ2
i (respectively, µ′i and σ′i

2) are mean and variance
of Fi(x) (respectively, Gi(y)), and ρi is the correlation index of the
points in the Q-Q plot of Fi and Gi.

The empirical estimator of the Wasserstein metric is given by

dq(F̂i, Ĝi) =

∫ 1

0

|F̂−1
i (u)− Ĝ−1

i (u)|qdu. (6)

Technically, we use quantiles to compute the approximation of the
(??) for reducing computational costs. Let (Qi,1, Qi,2, . . . , Qi,K)

and (Q′i,1, Q
′
i,2, . . . , Q

′
i,K) be k-quantiles of Fi(x) and Gi(y). We

calculate d2(F̂i, Ĝi) ≈
∑K

l=1(Qk,l − Q′k,l)
2 in the case of q =

2, instead of evaluating the integral in (??). Here we simply write
di := d(F̂i, Ĝi).

2.3 Detection of differential methylation sites
We use the metric to investigate whether two distributions are
significantly different. We pose statistical hypotheses as follows.

Null hypothesis: Fi = Gi

Alternative hypothesis: Fi 6= Gi
(7)

We use resampling to construct a null distribution. From the null
hypothesis (??), we permute the observations (x1(si), x2(si), . . . ,
xn(si)) and (y1(si), y2(si), . . . , ym(si)) to obtain the new
distribution functions F̂ ∗i (x) and Ĝ∗i (y). Next, we obtain the new
distance d∗i = d(F̂ ∗i , Ĝ

∗
i ) according to (??).

Let D∗i = (d∗i,1, d
∗
i,2, . . . , d

∗
i,Ball

) be all possible distances for
the permutation process. Then p-value is

Pall(di) =

∑Ball
b=1 1(d∗i,b ≥ di)

Ball
. (8)

Approximation of (??) uses the subset of D∗i , d̃∗i,1, d̃
∗
i,2, . . . , d̃

∗
i,B

where B ≤ Ball :

Psub(di) =

∑B
b=1 1(d̃

∗
i,b ≥ di)

B
. (9)

In the simulation of section 3 and data analysis in section 4, we set
B = 10000.

The number of permutations B is closely related to the accuracy
of the p-value. However, resolution of Psub is limited to 1/B, if we
need the very small p-values. One solution is to perform a large
number of permutations, but it is computationally expensive. A
semi-parametric estimation of p-value is proposed by Knijnenburg
et al. (2009) to obtain more accurate p-values.

We use an exponential distribution to estimate the distribution tail
as follows,

P (di) =


1
B

∑
j=1 1(d̃

∗
i,b ≥ di) for di < d

(min)
i

exp(−λi(di − d(min)
i )) for di ≥ d(min)

i

(10)

where λi is a scale parameter and d(min)
i is a threshold that we set

to 99th percentile of null distributions. We estimate λi using data
above the threshold. Technically, we perform the semi-parametric
estimation only if Psub(di) reaches to zero.

2.4 Graphical representation of results
Since the method for detection of methylation, which is based on
distance, cannot distinguish the “direction” of the hyper- or hypo-
methylation. One approach is to plot all the distribution (density)
functions of candidate sites, but this is infeasible for hundreds of
sites. We use a Q-Q plot with two distributions. It enables us to
visualize many pairs of distributions at a time, with the directions
being easy to interpret. In the actual example shown in section 4,
we plotted 1,000 pairs of differentially methylated distributions (Fig
??). We can see the hyper-methylation with the most significant
1,000 sites (blue lines in Fig ??).
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3 SIMULATION
3.1 Simulation setting
We evaluated the proposed method with simulated datasets. Our
simulation is intended for the detection of differential methylation
sites when there is cancer heterogeneity. Here, the cancer
heterogeneity is described by the multiple modes of distributions.
We conduct a statistical test for H0 : Fi = Gi ↔ H1 : Fi 6= Gi

under significance levels 5% and 1%, and we compare the results
to those of the other methods, i.e., DiffVar, MMD, KS, MWW
and Welch test (Welch). We used R packages for this simulation,
MissMethyl (Phipson, et al. 2014), kernlab (Karatzoglou,
et al., 2004), and base. The setting of MissMethyl is default
and that of kmmd in kernlab with resampling number (ntimes)
is set by 10,000. Since the distribution distance is decomposed
into mean, variance, and shape in (??), we conduct seven cases
of H1 (Table 1). Figure 1 shows seven differential methylation
cases with beanplot (Kampstra, 2008) in which the distribution
density functions are described as upper and lower for control and
case groups, respectively. The vertical black solid line indicates
the distribution mean. Here, we define shape differences of the
distributions as the number of modes, i.e., unimodal and bimodal
distributions are regarded as different.

We describe the outline of the simulation as follows. We generate
the data using two types of distribution. The control and case
groups are represented by normal and normal mixture distributions,
respectively. In each case, there are 300 samples; 160 and 140
for case and control group, respectively. The details of simulation
models are shown in supplemental file S1. First, we evaluate type I
errors in case 1 using 5,000 datasets. Next, we evaluate the power in
cases 2-8 using 5,000 datasets for each group.

3.2 Simulation results
The results are shown in Table 2. In the first case, it is shown that
error rates of D3M, DiffVar, KS, Welch, and WMM are close to the
significance levels, which indicates that they effectively control type
I errors. In contrast, MMD cannot control type I error at both of the
levels of 5% and 1%, i.e., the significance level actually fails.

Furthermore, we investigate the power with cases 2-8. KS
detects most of the cases with low variance, with case 8 being
an exception. However, KS cannot recognize the difference when
the majorities of the two groups overlap with each other (Figure
1, case 8). DiffVar shows high power and low variance for cases
where the variances differ. However, DiffVar might capture the other
distribution features for the cases with equal variances, leading to
uninterpretable results. In this simulation, Welch can appropriately
distinguish only the mean difference. MMD succeeds in identifying
shape differences in cases 2, 5, and 6. However, it decreases the
accuracy in cases 3, 4, and 7, in which the mean and variance differ,
and it cannot detect case 8. WMM can detect case 4, 5, and 7, but
cannot detect cases in which the means differ under non-normality.
D3M outperforms all these other methods and achieves promising
accuracy in all cases.

case1 case2

case3 case4

case5 case6

case7 case8

Fig. 1. The beanplot of eight cases

4 ACTUAL EXAMPLE
4.1 Datasets
We apply our method to methylation data of glioblastoma
multiforme (GBM) and lower grade glioma (LGG) from The Cancer
Genome Atlas (TCGA). GBM is the primary brain tumor that
progresses with malignant invasion destroying normal brain tissues
(TCGA, 2008), arising through two pathologically distinct routes,
de novo and as secondary tumors from LGG (Wiencke et al., 2006).
In this analysis, we compare the methylation patterns in the LGG
and GBM groups, and then specify the differential methylation
sites. Detection of differential methylation patterns is a clue for
revealing epigenetic mechanisms of development from LGG to
GBM. We focus on mean, variance, and shape differences using
Welch, DiffVar, and D3M and compare the results.

Here we briefly describe the datasets and preprocessing as
follows. All the samples are hybridized to Illuminas Infinium
HumanMethylation450K arrays, including 485,577 CpG sites,
which is downloadable from TCGA portal sites. Each CpG
site contains 145 samples and 530 samples in GBM and LGG,
respectively. First, we remove CpG sites on the X and Y
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Table 1. Simulation models of eight cases

Fi = F2 F1 6= F2

case1 case2 case3 case4 case5 case6 case7 case8
µ1 = µ2 T T T F T F F F
σ1 = σ2 T T F T F T F F
s1 = s2 T F T T F F T F

Table 2. 5,000 simulations in each case

Type I Power
case1 case2 case3 case4 case5 case6 case7 case8

D3M mean α=0.05 5.04 99.95 100.00 100.00 100.00 100.00 100.00 100.00
α=0.01 0.95 99.81 100.00 100.00 100.00 100.00 100.00 100.00

sd α=0.05 0.64 0.17 0.00 0.00 0.00 0.00 0.00 0.00
α=0.01 0.28 0.56 0.00 0.00 0.00 0.00 0.00 0.00

DiffVar mean α=0.05 5.05 74.70 100.00 4.10 100.00 74.89 100.00 100.00
α=0.01 0.99 34.01 100.00 0.78 100.00 33.88 100.00 100.00

sd α=0.05 0.67 1.25 0.00 0.64 0.00 1.49 0.00 0.00
α=0.01 0.33 1.67 0.00 0.28 0.00 1.44 0.00 0.00

MMD mean α=0.05 0.00 100.00 60.88 69.43 100.00 100.00 89.99 0.00
α=0.01 0.00 100.00 42.49 60.54 100.00 100.00 85.91 0.00

sd α=0.05 0.00 0.00 48.39 46.01 0.00 0.00 30.30 0.00
α=0.01 0.00 0.00 47.05 48.96 0.00 0.00 35.02 0.00

KS mean α=0.05 4.32 100.00 99.60 99.84 100.00 100.00 100.00 21.93
α=0.01 0.80 100.00 97.88 99.48 100.00 100.00 100.00 6.60

sd α=0.05 0.62 0.00 0.21 0.13 0.00 0.00 0.00 1.23
α=0.01 0.30 0.00 0.51 0.23 0.00 0.00 0.00 0.85

Welch mean α=0.05 4.95 0.85 3.89 99.97 0.00 89.25 99.99 100.00
α=0.01 0.97 0.05 0.69 99.84 0.00 65.04 99.98 100.00

sd α=0.05 0.64 0.29 0.63 0.05 0.00 1.11 0.03 0.00
α=0.01 0.27 0.06 0.24 0.13 0.00 1.35 0.05 0.00

WMM mean α=0.05 5.02 45.25 7.00 99.96 100.00 33.81 99.99 30.87
α=0.01 0.90 24.17 1.74 99.80 100.00 16.73 99.96 12.23

sd α=0.05 0.67 1.61 0.82 0.06 0.00 1.36 0.03 1.41
α=0.01 0.24 1.55 0.39 0.14 0.00 0.98 0.07 0.96

chromosomes and control probes. Missing values in both groups
are inferred using R package pcaMethods. To distinguish the
mean, variance, and shape components, we standardized the values
by (X − E[X]) /

√
V [X] to remove mean and variance effects.

Finally, 394,363 sites were used for further analysis.

4.2 Analysis results
Significant differential methylation sites were identified as those
having p-values less than 1%. As a result, D3M, Welch, and
DiffVar detected 55,796, 254,334, and 178,395 sites, respectively.
Among them, we investigated sites with the smallest 1,000 p-values,
including 568, 543, and 513 genes with D3M, Welch, and DiffVar,
respectively. Heat map and Q-Q plots of the top 1,000 sites are

shown in Figures 3 and 4. Comparing heat maps and Q-Q plots,
the methylation patterns are easy to interpret in the latter. From
the Q-Q plot, we could see that the top 1,000 sites tend to be
hyper-methylated in LGG (with the reverse in GBM).

The Venn diagram shows the number of CpG sites tested for
differential methylation using the three methods (Figure 2). The
overlaps between D3M, Welch, and DiffVar are small, indicating
that the differential methylation sites based on the shapes include
distinct information not relevant to Welch and DiffVar.

Among distributions of the top 1,000 sites, we can observe that
there are mainly two distribution types in GBM, and we divide
the 1,000 sites into two classes using the distributions in GBM.
The clustering procedure is based on the Wasserstein metric (Irpino
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and Verde, 2014b). Clusters 1 and 2 contain 713 and 287 sites,
respectively. Typical distribution examples in each cluster are shown
in Figure 5. Cluster 1 shows two modes for distributions in GBM,
whereas cluster 2 shows heavy-tailed distributions in GBM.

Next, we perform enrichment analysis on gene sets in clusters 1
and 2. We used ingenuity pathway analysis (IPA) for 423 and 184
genes in clusters 1 and 2, respectively, and significantly enriched
pathways in each cluster using Fisher’s exact test. Table ?? shows
five pathways and related genes, ranked with p-values in each
cluster.

Nearly all the pathways in clusters 1 and 2 have been previously
reported as significant pathways in GBM, even though we do not
include any information on GBM. The axonal guidance signaling
pathway in cluster 1 has been suggested as prompting the cell
invasion of GBM (Dominique, et al., 2007). The protein kinase
A (PKA) pathway that is dysregulated has been considered to
trigger the important steps to cancer genesis (Kiran, et al., 2005),
and Prasad, et al., (2003) have indicated that PKA-activated c-
AMP inhibits the proliferation and differentiation of GBM. The
neuregulin signaling pathway in GBM is investigated by Patricia, et
al., (2003), and the effects of death receptor pathway dysregulation
is mentioned in Murphy, et al., (2013), Ziegler, et al., (2008), and
Krakstad, et al., (2010). In cluster 2, the thioredoxin pathway has
been found to play a key role in cancer, including GBM (Powis,
et al., 2007; Yacoub, et al., 2010), and Lai, et al., (2014) show that
the transcriptional regulatory network in embryonic stem cells is the
most significant pathway with genome-wide methylation analysis in
GBM. The remaining pathways might be explained elsewhere. Our
prediction using D3M provides a hypothesis that DNA methylation
in these pathways might cause the phenotypical difference between
GBM and LGG.

We further focus on phosphatase and tensin homolog (PTEN) in
neuregulin signaling and protein kinase A signaling pathways, and
then compare the ranking based on p-value by D3M with those by
other methods. The methylation of PTEN promoter is frequent in
LGG and secondary GBM patients, but rare in normal and de novo
GBM patients (John, et al., 2007). In our result, PTEN belongs
to cluster 1, for which the distribution shape for LGG is bimodal,
with the majority and minority being hyper- and hypo-methylation,
respectively, and the distribution for GBM is unimodal with hypo-
methylation. This suggests that demethylation of PTEN in some
LGG might trigger transformation from LGG to GBM. PTEN is
ranked 922nd out of 394,363 sites (0.23%) with D3M. However,
PTEN is not included in the top 1,000 sites with Welch and Differ,
being ranked 11,424th out of 394,363 sites (2.89%) with Welch and
10,856th out of 394,363 sites (2.75%) with DiffVar.

5 DISCUSSION
Here we summarize the advantages and disadvantageseps of D3M,
DiffVar, and MMD, which have all been recently developed. These
methods are designed for detecting differential methylation patterns
focusing on cancer heterogeneity, which is caused by epigenetic
instability and diversity. Cancer heterogeneity can often be confused
with outliers. In fact, in our simulations and real data analysis,
DiffVar, which is robust to outliers, regards important features of
heterogeneity as outliers, and as a result, it fails to detect differential
methylation sites. For example, DiffVar detects simulation case 2 as

Fig. 2. Venn diagram of genesets with top 1000 sites

Fig. 3. Heat map of GBM 145 samples (upper) LGG 530 samples (lower)
with top 1000 sites

differential methylation, even though we set the mean and variance,
but not the shapes, to be the same for the two groups. This is because
DiffVar deals with minority distributions as outliers and evaluates
only those in the majority.

In general, the significance of an outlier depends on the
context of analysis (Aggarwal, 2013). When an outlier arises from
measurement error not relevant to signals of interest, we must
remove them prior to analysis. In contrast, when an outlier arises
from an unusual event including new findings that we seek, we use
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Table 3. Pathways detected with the proposed method

Cluster Pathway −log(P -value) Genes
Cluster 1 Axonal Guidance Signaling 3.96 C9orf3, NFATC4, PLCD1, EFNB2, SEMA6B, GNAO1

SEMA3E, EPHB4, ADAM8, NTN1, TUBA8, ITGA5
ITGA2, EPHA2, NFATC1, MET, EFNA1, PDGFA
PRKCZ, BMP7, SEMA5A

Proten Kinase A Signaling 3.73 NFATC4, PLCD1, PTPN14, CDC14B, PTEN, PDE4A
PYGL, NTN1, PTPRN, TGFB2, NFATC1, PDE8A
DUSP5, CNGA3, PDE4D, PTPRA, SIRPA, PRKCZ
ADCY9

Neuregulin Signaling 3.53 PTEN, PICK1, ITGA2, NRG3, NRG2
PRKCZ, ITGA5, GRB7

Death Receptor Signaling 3.40 CFLAR, ACTG1, ACTC1, TNFSF10, PARP14, CASP8
BIRC3, CASP6

Adipogenesis pathway 3.10 BMPR2, NFATC4, ARNTL, CTBP2, ZNF423, KLF5
RPS6KA1, BMP7, FGFRL1

Cluster 2 Thioredoxin Pathway 3.01 NXN, TXNRD1
Transcriptional Regulatory Network in Embryonic Stem Cells 2.37 MEIS1, ZFHX3, SET
Vitamin-C Transport 2.25 NXN, TXNRD1
Hepatic Fibrosis / Hepatic Stellate Cell Activation 2.24 KLF6, BCL2, COL21A1, TGFB2, COL9A1, COL9A2
Factors Promoting Cardiogenesis in Vertebrates 2.16 BMP8A, TGFB2, PRKCB, DKK1

Fig. 4. Q-Q plot of significance and insignificance for top 1,000 sites

Fig. 5. Distribution instance in clusters 1 and 2

them for further analysis. In this case, cancer heterogeneity could
be regarded as an abnormal event compared with normal cases, and
thus must be included in the analysis.

MMD is designed to detect higher-order changes, such as shape
in methylation profiles based on kernels (Mayo, et al., 2014).
However, in our simulation, p-value does not work in the sense
of type I error control. M3D based on MMD also cannot derive
p-values, substantially just ordering distances over regions. Then,
we cannot evaluate error rates probabilistically, which could be a
crucial disadvantage when working with actual data.

D3M detects differences of all moments with underlying
distributions based on the Wasserstein metric.

Simulation results indicate that D3M can detect not only shape
differences but also mean and variance differences, as effectively
as Welch and DiffVar. Thus, the proposed method can be applied
to differential methylation analysis for general purposes. The
limitation of D3M is that it requires sufficient sample size to
construct distribution values to some extent. Empirically, because
quantiles are used in the calculation of the Wasserstein metric, it
requires at least 100 samples. The statistical test relies on resampling
and requires computational time to calculate p-values. However, we
could reduce the resampling time using a semi-parametric approach
(Knijnenburg, et al., 2009).

6 CONCLUSION
In this study, we proposed a novel method, D3M, for detecting
differential methylation sites based on distribution-valued data.
We showed that distribution shape includes interesting information
other than that found using mean- and variance-based methods.
A simulation study indicated that D3M can detect differential
methylation sites in various cases of distributions for which other
methods, Welch, DiffVar, KS, MWW, and MMD, failed.

In the application to the GBM and LGG dataset in the TCGA
cohort, we identified 1,000 sites with the smallest p-values. Most
of the sites detected by D3M show strong heterogeneity and tend
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to be hyper- and hypo-methylated in LGG and GBM, respectively,
as found in previous studies. Furthermore, mean-, variance-, and
shape-based methods mutually detected differential methylation
sites, because overlapped sites included up to approximately 20%
of each other. Thus, distribution shape differences can provide new
insights regarding methylation patterns.

Since the GBM and LGG dataset contains a large number
of significantly different sites, including 55,796, 254,334, and
178,395 sites for D3M, Welch, and DiffVar, respectively, at the
1% significance level, it is difficult to understand the methylation
patterns at these sites. In the future, it would be of interest to develop
a method that describes the diversity of methylation patterns.
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