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Summary

The history of particular genes and that of the species that carry them can be different due to different
reasons. In particular, gene trees and species trees can truly differ due to well-known evolutionary
processes like gene duplication and loss, lateral gene transfer or incomplete lineage sorting. Different
species tree reconstruction methods have been developed to take this incongruence into account, which
can be divided grossly into supertree and supermatrix approaches. Here, we introduce a new Bayesian
hierarchical model that we have recently developed and implemented in the program Guenomu, that
considers multiple sources of gene tree/species tree disagreement. Guenomu takes as input the
posterior distributions of unrooted gene tree topologies for multiple gene families, in order to estimate

the posterior distribution of rooted species tree topologies.

1 . Estimation of species trees

If we define a species as a group of interbreeding individuals, then a species tree will describe the series
of reproductive isolation events leading to the extant composition of species. However, this process
seldomly will be in perfect agreement with a randomly chosen gene since the evolutionary model of a
gene only takes into account point mutations and insertions/deletions. At the species level, on the other
hand, we also observe the duplication of whole genes or chromosomes, acquisition of new material by
lateral transfer from unrelated species, as well as the loss of genomic regions. Furthermore within a
given extant or ancestral population, the segregation pattern of a particular allele does not always match
exactly the speciation events due to ancestral polymorphisms or deep coalescences (1), a phenomena
called incomplete lineage sorting. All these biological phenomena, gene duplication and loss, lateral
gene transfer and incomplete lineage sorting can lead to gene trees in disagreement with the history of

the species, even assuming we can reconstruct the gene phylogenies without error.
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Figure 1: Comparison between the supertree and supermatrix approaches. In the top panel we have an example data set
composed of two gene families (homologous sets), already aligned. In this example we have several sequences from the same
species in each gene family, which might represent paralogs within an individual sample or more than one sampled individual
from the species. A supertree approach (middle panel) would then estimate the gene tree for each alignment independently
and then summarise the information from all resulting gene trees into a single tree. A supermatrix approach, on the other hand,
would first concatenate all gene family alignments into one single alignment, which would then be used in the phylogenetic
reconstruction. Notice how for the supermatrix approach it is essential to find the correspondent sequences for all gene families,
a limitation also imposed by several supertree methods. Therefore the user must decide which representative from each
species to use, for all gene families. That is, does the sequence sp71_1 from gene family 1 corresponds to sp7_1 or sp71_2 from

gene family 2?

Many methods have been developed to infer the evolutionary history of the species as a whole. One
strategy is to judiciously select a “core” gene set that can be assumed to be a good representation of the
phylogeny of the species, and then proceed with standard phylogenetic reconstruction approaches (2,
3). Other attempts include analysing the phylogenetic profiles (presence or absence of gene families) (4,

5), protein domain organization (6), conserved gene pairs (7, 8), and gene order information (9, 70).
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In general, the most successful species tree method should make most use of the available genetic
information, and therefore should incorporate gene tree reconstruction while accounting for the
disagreement between the gene and species phylogenetic histories. Such species methods can be
broadly divided between the supertree (171, 712) and supermatrix (13, 714) approaches, which are
represented visually in Figure 1. What we will call a gene family are actually the homologous sets — the
collection of sequences that can be aligned and safely assumed to have a common ancestor.
Supermatrix methods depend on an exact correspondence between sequences from different genes,
such that they can be concatenated. Supertree methods also have been historically limited to one
individual from each species per gene family, although recent improvements have made it possible to
analyse more general data sets, as the distance matrix-based inference under the coalescent (715) or the

Gene Tree Parsimony reconciliation (16, 17).

2. Bayesian inference of species trees

The Bayesian paradigm offers an elegant solution to the problem of reconciling gene trees and species
trees, since it makes the hierarchical relation between them explicit. In the same way as the dependence
between the gene alignment D and the gene tree G can be be described probabilistically by the
phylogenetic likelihood function P(D|G) (18), the gene tree can also be treated as a stochastic parameter
depending on a species tree S, as in P(G|S) — where the particular form of P(G|S) varies depending on
our assumptions about the G-S disagreement. This will lead to a hierarchical Bayesian model of the form
P(S|D) «< P(D|G) P(G|S) P(S), where multi-gene data sets can be naturally partitioned as P(S|D) o<
P(S) [1P(D;|G;) P(G;|S) (where we exclude other parameters for clarity.)

This idea has been implemented, with more or less success, under a few models — for a review, see
(19). A full Bayesian inference model for incomplete lineage sorting has been developed under the
multispecies coalescent model (20, 21), which however has a heavy computational burden. Using a
birth-death model for the evolution of genes inside the species tree, a Bayesian model for gene tree
estimation has been devised (22), being restricted however to a fixed species tree. A
maximume-likelihood approach based on a simplified version of this birth-death model has recently been
shown to allow for species tree estimation under a hierarchical model (23). Recently, we developed a
Bayesian model that takes into account several sources of disagreement between G and S by assuming
that P(G|S) follows a multivariate exponential distribution over distances between G and S (24). This
distribution works as a penalty against species and gene trees that are very dissimilar under several
biologically plausible scenarios. Under this assumption, the model can work with data sets where the

orthology relations are unknown, in contrast to the other implementations.
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3. The software Guenomu

Here we will focus on our novel hierarchical Bayesian procedure for species tree estimation, which is

part of the Guenomu package (openly available at http://bitbucket.org/leomrtns/guenomu/.) The main

program in this package is called guenomu, which takes as input a collection of gene trees (posterior
distributions or point estimates) and generates a posterior sample of species trees under a multivariate
model for the similarity between genes and species trees. At the same time, guenomu resamples the
gene trees, as well as estimates several other parameters like the distance penalty values and the
distance values themselves. The multivariate model assumes that the probability of a species tree
generating a given tree is proportional to the similarity between them according to a predefined set of
distance measures. Several such distances can be used, and a natural choice are the reconciliation
costs: the number of duplications, losses or deep coalescences. That is, the model penalises species
trees that must invoke too many duplications or deep coalescences to explain the observed evolution of
genes. Another possibility is to use well-known distances even if they lack such a direct biological
interpretation, like the Robinson-Foulds distance. In fact guenomu can work with all these distances at
once, with the only caveat that it neglects branch length information — the multivariate model looks only
at the topological disagreement. Another limitation is that it is best suited for distances (or dissimilarity
measures, in general) that can work with trees of different sizes, since the gene trees can have several
sequences from the same species. To emphasize the generality of these gene data sets, we will call

them “gene families” in what follows.

3.1 Guenomu programs

The Guenomu package is composed of several programs, of which the main one is the Bayesian
sampler, called guenomu. Besides the main MCMC sampler and analyser, the package also includes a
few auxiliary programs that can be executed independently from the main program. We will discuss
mainly the Bayesian sampler, but below is a description of other auxiliary functionality offered by the

package.
3.1.1 Bayesian sampler

Given a collection of gene families, guenomu will estimate the posterior distribution of species trees
together with other parameters pertaining to the model. By using a resampling technique, the species
tree inference is done through two Bayesian procedures, where first the gene family alignments are
used one at a time to sample the distributions of gene trees, and then these individual gene distributions
are incorporated into a second, multigene Bayesian model. guenomu is responsible for the later,
multigene Bayesian sampling, that will sample species trees respecting the distance constraints

imposed by the multivariate model. The user is then free to use her favorite single gene phylogenetic
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inference algorithm to estimate the gene tree distributions (e.g., MrBayes (25), PhyloBayes (26), BEAST

(27)), that will then be given as input to guenomu.

Even gene trees that did not come from a Bayesian analysis can be used in guenomu, and a set of
compatible species trees will still be inferred. However, besides the probabilistic interpretation being lost
in such an attempt, care must be taken to preserve the uncertainty in the gene tree estimation. In other
words, even bootstrap replicates should be preferred over point estimates, since guenomu relies on the
gene tree uncertainty to explore the space of species trees. The primary output of guenomu is a file or
a set of files in a compact binary format, that must be interpreted by the same program guenomu in

order to output human-readable files.

3.1.2 Maximum likelihood (ML) estimation of species trees

Usually an MCMC Bayesian sampler can also be used as a ML estimator by simply controlling the
temperature of the Monte Carlo chains, as in simulated annealing (28). This can be easily achieved by

changing a few options in the same program guenomu, as we will see shortly.

3.1.3 Summary-statistics coalescent species trees

One important auxiliary functionality of the Guenomu package is offered through the program
bmc2 maxtree, which estimates the species tree under the multispecies coalescent using several
distance-based algorithms, namely GLASS (29), SD (30), STEAC (31), and MAC (15). It only needs a
file with the species names (as guenomu, as we will see below) and the files with the gene trees, and it
will output four species tree estimates, one under each modification of the main algorithm. These
algorithms rely strongly on the branch lengths of the gene trees, but if they are absent then the program

will assume that they are all equal to one.

3.1.4 Pairwise distances between trees

Another useful auxiliary program is bmc2 tree, which calculates all pairwise distances between a set
of gene trees and a set of species trees. Given two tree files, it will create a file named “pairwise.txt” with
a table consisting of the gene tree and species tree indexes, followed by the list of distances between
them.

As usual, the program assumes that the names of each species can be found within the gene leaves,
and therefore it is sensitive to the order: the gene tree file must be given before the species tree file, in
the command line. Furthermore it neglects the root location of the gene trees, since the distances are
defined between unrooted gene trees and rooted species trees — hence it does consider the root of the

species trees, when defined.
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3.1.5 Simulation of tree inference error

The guenomu program can benefit from the uncertainty in the estimation of individual gene trees, since
it allows the model to consider alternative trees that, however unlikely in isolation, can provide a better fit
when analysed in conjunction to other gene families. For each given input gene tree with branch lengths,
the auxiliary program bmc2 addTreeNoise tries to generate a collection of trees similar to it, based on
the premise that shorter branch lengths are more likely to be wrong. In other words, it will transform each
tree from an input file into a distribution of trees, increasing the space of possibilities. It also works on
trees without branch lengths, and can be used to preprocess the gene tree files estimated by the user

before the Bayesian analysis conducted by guenomu.

4 . Input files

The guenomu sampler estimates the set of species trees compatible with the phylogenetic information
from a set of gene families, which are represented by the so-called input gene tree distributions. These
distributions are ideally a good representation of their posterior distributions as estimated by a gene-wise
independent Bayesian phylogenetic inference, using state-of-the-art software such as MrBayes (25),
PhyloBayes (26) or BEAST (27). Therefore previous to the species tree estimation with guenomu, the

user should already have tree estimates for each gene family.

The idea behind guenomu is that the researcher should not have to decide beforehand which genes,
partitions or sequences are appropriate — that is, which sequences comprise a locus and which to
discard as paralogs, for instance. Therefore, as long as the sequences can be assumed to come from a
common ancestor, be it from individuals from a population or from paralogy or speciation, they should be

included in the alignment that we call a “gene family”.
Guenomu accepts as input gene tree distributions tree files of one of two forms:

1. standard nexus format, where each tree represents a sample from the posterior distribution of a
gene-wise independent phylogenetic inference program (like MrBayes, PhyloBayes or BEAST).

1. a compact nexus format, where only topologically distinct trees are represented, together with
their representativity (frequency). This file is a valid nexus tree file, but where frequencies (or
weights) are annotated as comments alongside each tree. This is e.g. the . trprobs file output

by MrBayes’ sumt command. We will therefore call such files “trprobs” files.

Files from the compact form represent the exact same information as standard nexus files, where the

weight values describe how many times each tree was observed in the posterior distribution output by
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phylogenetic inference programs. Both forms can have the “TRANSLATE” table (from the nexus
specification) or not, and branch lengths are allowed despite the fact that they will be ignored by
Guenomu’s sampler. The trees must not contain multifurcations (except for a deepest trifurcation,
characteristic of unrooted trees), and it treats all gene trees as unrooted, even if explicitly defined as

rooted.

In practice the input gene tree distributions don’t need to be generated by a Bayesian analysis, and can
actually be bootstrap replicates or even a point estimate as the maximum likelihood tree — but we warn

that in such cases the probabilistic interpretation is lost.

5. Running Guenomu

You can run guenomu by including all settings into a control file (and run it like “guenomu run.ctrl”), or by
setting the parameters as command line arguments. You can also include the default parameters in the
control file, and then overwrite some of these parameters in the command line (which take precedence).
The control file can contain a series of arguments, and accepts commentaries inside square brackets,

that are then ignored by the program. Absent parameters are replaced by default values.

The only exception is the collection of gene tree files, and a list with the names of all species, that must
be given by the user. Many programs demand for a gene-wise mapping between each gene leaf and the
species it represents, but guenomu only assumes that the species name can be found within the gene
leaf name and does the mapping automatically. For instance, if one has for a given gene family, three
sequences “al”, “b1” and “x” all from Escherichia coli (they might be paralogous sequences, or
individuals from the same locus, or a combination of both), then it is enough to rename the sequences to
something like “ecoli_a1”, “ecoli_b1” and “ecoli_x" while including “ecoli” into the list of species. And
remembering that in this case all gene families must use the name “ecoli” to refer to this species. It is
allowed for a given species not to be found in some gene family, but a gene family member that cannot

be mapped to any species in the list will result in error.

Both lists (of gene tree files and species names) can be given as a text file, or added directly into the
control file. If included directly in the control file, then they must be between the commands
“begin_list_of ” and “end_of list’, like in the example of Figure 2.

begin_list_of_tree_files [ nexus files with distribution of gene family trees]
gene@fl.tre
genedb2.tre
genedf3.tre

end_of_1list [ of tree files ] [ <<this command must be in separate lines>> ]

begin_list_of_species_names [ names of species]
ecoli homo pongo mus gallus danio
end_of_1list [ of species names ] [ <<this command must be in separate line>> ]
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Figure 2: Excerpt of an example control file for guenomu showing the list of gene tree files and the list of species names, that

should be found within the leaves of the gene trees.

Notice how the comments in brackets are ignored, but still may contain useful tips. Alternatively, if the
lists of gene tree files and species names are written in files — let us say, “list_of trees.txt” and
“list_of_species.txt”, respectively —, then these file names can be included in the control file, as shown in

Figure 3.

param_file_with_tree_files = list_of_trees.txt [ <filename> ]
param_file_with_species_names = list_of_species.txt [ <filename> ]

Figure 3: Control file options for guenomu that describe the file names containing lists of gene trees and of species names.

Or, equivalently, these file names can be given at run time to guenomu as arguments
“--genetrees=list_of genes.txt --species=list_of species.txt”. With exception of the “begin_list of ”
parameters, all other control file options expect a specific number of values after the equal sign. Other

relevant options in the control file are (with examples of values):

e param_reconciliation_prior = 0.0001 : should be set to a reasonable mean value for the
distance penalty parameters. Must be a very small value, to account for our expectation of few
disagreements, and furthermore this value is shared across distances (since they are all rescaled
to the interval [0,1]). Corresponds exactly to the parameter controlling the hyperhyperprior
P(lambda_zero) (see Martins et al., 2014).

e param_n_generations = 10000 500000 : number of iterations for the burnin stage followed by
the number of iterations of the main sampling stage of the Bayesian posterior sampling. In this
example, the program will run for 10k iterations without sampling at all, and then it will run for
another 500k iterations where now it will sample at regular intervals to compose the posterior
distribution.

e param_n_samples = 1000 : number of posterior samples to save. That is, if we ask for 500k
iterations after the burnin (as in the example above), then it will save the state of the chain at
every 500 iterations, to form the requested sample size of 1000.

e param_anneal = 10 1000 0.5 20 : values for the simulated annealing stage that is run even
before the burnin stage. They are, respectively, the number of annealing cycles we want,
followed by the number of iterations for each cycle, followed by the initial and final (inverse)
temperatures of the chain, within each cycle. During this stage no information is saved, unless
the program is in “optimization mode”, as we will see later.

e param_execute_action = importance : which action should be executed by guenomu, to run
the importance sampler (regular MCMC run) or to analyse its results, generating human-readable
output files. The options are then “importance” or “analyse” (“analyze” is also accepted.)

e param_use_distances = 1111000 : which group of distances should be included in the penalty

model, in bit-string representation. The bit-string representation is composed of a one in the n-th
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position if the n-th distance is used, and zero otherwise. The distances are, from left to right: 1)
number of duplications, 2) number of losses, 3) number of deep coalescences, 4) the mulRF
distance (32), 5) Hdist_1, 6) Hdist_2, and 7) the approximate SPR distance. The Hdist distances
are very experimental, and are based on a matching between branches (33). The approximate
SPR distance was developed for detection of recombination (34) and may help resolve horizontal
gene transfer (35), but is also experimental since, as with the Hdist, it cannot handle the
so-called multrees — that is, gene trees with more than one leaf mapping to the same species.

That is why in our example these bits are set to zero.

All of the above options have command-line equivalents, which can be consulted by running the
program with the help argument “guenomu --help”. For instance, we find that in practice it is easier to set
the execution mode for the program at the command-line that at the control file. In this case, instead of

setting the param_execute action option, we run the program with the option “-z 0” for running the

MCMC sampler and then run it once more, this time with the option “-z 1” to analyse its output.

5.1 Optimization by simulated annealing

If the number of iterations for the main sampling stage of the Bayesian sampling is set to zero, then the
program will behave differently: it will assume that we are interested in the simulated annealing results.
That is, we are using guenomu as an optimization tool, and it will store the chain status at the final
iteration of each cycle. The simulated annealing will sample from a ‘modified’ distribution, which is the
Bayesian posterior distribution exponentiated to a value (the inverse of its temperature, on a
thermodynamic interpretation). In the simulation annealing step, several cycles are performed serially
where each cycle is composed of many iterations with an initial and a final temperature. That is, within
each cycle the temperature changes across iterations, and the chain state at the end of one cycle is

used as the initial state for the next one.

The simulated annealing step was devised to control the initial state of the chain, for the posterior
sampling. That is, even within the Bayesian sampling one can benefit from the simulated annealing: if
one wants to start the chain at a really random initial value, it is enough to set both the initial and final
temperatures to a value below one — which will allow the chain to explore freely even regions of very low
probability. This is a safe choice for convergence checks. On the other hand, if one is interested in
starting the sample at a good initial estimate of trees, then it might be worth to set the final temperature
to a high value, such that only moves increasing the posterior probability are accepted. Increasing the

number of cycles allows for the chain to escape local optima.

If one is interested in using guenomu as an optimization tool, then we suggest that several cycles of

optimization are employed to avoid local optima, and that the initial and final (inverse) temperatures
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should span a large interval. The output given by guenomu (after running it with the option “-z 17, for
instance) will have the optimal estimated species tree at the end of each cycle. We might then look at
the most frequent or best species tree overall, remembering that the optimal values are the set of genes
and species trees that minimize their overall distances between each other. In such scenario,
guenomu’s results are therefore a generalization of the SPR supertree approach (35), the mulRF
supertree (32) or the GTP methods (717), and can be directly comparable by choosing only the

appropriate distances.

5.2 Output

The main sampler will store its output with all trees and parameters in a binary, compact format that can
be not be used by other programs. This file is named “job0.checkpoint.bin”, and if you are running the
parallel version then each job will generate its own file, like in “job1.checkpoint.bin”, “job2.checkpoint.bin”
etc. Such files must be interpreted by another run of guenomu (with option “-z 1”), which will generate a
single output file with all numeric parameters as well as the set of posterior species and gene family

trees.
5.2.1 Posterior sample of numeric parameters

The output file with the discrete and continuous numeric parameters from all posterior samples is called
‘params.txt”. One example file is shown in Figure 4 below. It is a tab-formatted file with a header row
followed by samples from the posterior distribution, one iteration per row. The header row contains the
parameter names, where the order for gene-wise parameters follows the same order as input in the list
of gene tree files. Each column represents one variable or statistics (function of the variables) from the

posterior sample.

iter sptree dup_hyperprior los_hyperprior Inl dup los Inl_0 dup_0 los_0 dup_lambda_0 los_lambda_0 Inl_1 dup_1 los_1 dup_lambda_1 los_lambda_1
0 0 0.0010 0.0010 -164.3669 32 18 -80.2878 14 14 0.0224 0.0275 -75.0791 18 4 0.0242 0.0152
100 1 0.0010 0.0010 -1708870 32 17 -88.9733 15 15 0.0246 0.0213 -71.9138 17 2 0.0231 0.0087
200 2 0.0010 0.0010 157781788 31 W15 -81.6237 14 13 0.0238 0.0210 -76.1579 17 2 0.0215 0.0055
300 0 0.0010 0.0010 -182.9566 31 16 -105.1715 14 14 0.0182 0.0197 -77.7851 17 2 0.0204 0.0065
400 2! 0.0010 0.0010 =151.997198 31 E15 -76.6495 14 13 0.0365 0.0249 -75.3475 17 2 0.0210 0.0082
500 3 0.0010 0.0010 -170.8747 30 16 -102.2037 13 14 0.0178 0.0187 -68.6710 17 2 0.0259 0.0081
600 4 0.0010 0.0010 -1734719 31 16 -82.0407 14 14 0.0181 0.0257 -81.4312 17 2 0.0169 0.0064
700 3 0.0010 0.0010 -180.3990 30 16 -97.3111 13 14 0.0250 0.0182 -83.0878 17 2 0.0169 0.0051
800 4 0.0010 0.0010 -169.7152 31 16 -89.5524 14 14 0.0223 0.0228 -80.1628 17 2 0.0196 0.0086
900 5 0.0010 0.0010 -166.6404 31 17 -100.8945 14 15 0.0198 0.0242 -65.74590 17 2 0.0189 0.0090
1,000 6 0.0010 0.0010 -170.3713 31 16 -102.8706 14 14 0.0218 0.0192 -67.5008 17 2 0.0224 0.0067
1,100 6 0.0010 0.0010 -176.8397 31 16 -97.5535 14 14 0.0192 0.0200 -79.2862 17 2 0.0208 0.0068
1200 7 0.0010 0.0010 -162.7474 31 16 -85.9524 14 14 0.0202 0.0281 -76.7950 17 2 0.0221 0.0075
1,300 8 0.0010 0.0010 -195.0731 30 17 -108.2947 14 16 0.0207 0.0216 -86.7785 16 1 0.0202 0.0057
1400 9 0.0010 0.0010 -163.1009 30 17 -97.6203 14 16 0.0204 0.0257 -65.4807 16 1 0.0190 0.0037
1,500 9 0.0010 0.0010 -167.0248 30 17 -93.8525 14 16 0.0245 0.0221 -73.1724 16 1 0.0232 0.0030
1,600 8 0.0010 0.0010 -183.2758 30 17 -108.3877 14 16 0.0147 0.0217 -74.8881 16 1 0.0227 0.0059
1,700 9 0.0010 0.0010 -162.0510 30 17 -94.5557 14 16 0.0253 0.0209 -67.4952 16 1 0.0213 0.0047
1,800 8 0.0010 0.0010 -170.0601 30 17 -81.0428 14 16 0.0226 0.0210 -79.0173 16 1 0.0236 0.0057
1,900 9 0.0010 0.0010 -178.3039 30 17 -108.5818 14 16 0.0203 0.0191 -69.7220 16 1 0.0209 0.0042
2,000 8 0.0010 0.0010 -166.8673 30 17 -86.4994 14 16 0.0201 0.0237 -70.3678 16 1 0.0190 0.0062
2,100 8 0.0010 0.0010 -1545166 30 17 -87.4300 14 16 0.0232 0.0292 -67.0866 16 1 0.0258 0.0065
2200 9 0.0010 0.0010 -169.2316 30 17 -91.5442 14 16 0.0309 0.0209 -77.6874 16 1 0.0200 0.0029

Figure 4: Example of file params.txt with posterior samples of parameters from the MCMC chain. The first columns,
represented in red, are the global parameters, while the remaining columns represent the parameters per gene family. For this

example only duplications and losses were used for two gene families.
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Notice that only iterations after the burnin period are sampled, and that furthermore they are already
“thinned” to avoid correlation between successive samples — this is accomplished by selecting a number
of iterations much larger than the number of posterior samples to save in the parameter input options.
The first columns are variables relating to the overall model, followed by gene-wise variables. Therefore
the total number of columns depend on the number of gene families being analysed. The overall
parameters are, respectively:
1. iter — the iteration number of the MCMC run
2. sptree —the ID of the species tree, as they appear on output file species.tre
3. dup_hyperprior, los_hyperprior , dco_hyperprior , rfd_hyperprior — the
hyperhyperparameters from the multivariate exponential model, that is, the genome-wise
parameters controlling the gene-wise penalties for each distance. The prefixes are the possible
distances, namely duplications (“dup”), losses (“los”), deep coalescences (“dco”), and the mulRF
distance (“rfd”).
4. Inl —the unscaled posterior probability

5. dup, los, dco, rfd — the sum of distances over all gene families

While the set of parameters for gene X are:
1. Inl_X - the contribution of this gene family to the unscaled posterior probability
2. dup_X, los_X, dco_X, rfd_X — the distances between the gene and species trees, for this
iteration
3. dup_lambda_X, los_lambda_X, dco_lambda_X, rfd_lambda_X — the estimated lambda of the

exponential distribution, that is, the penalty for this gene family

This file can be used directly by convergence diagnostic programs like Tracer (36) or Coda for R (37),
where the behaviour of the global parameters is specially relevant to evaluate if the MCMC has been run
for long enough. Within a single run the parameters should appear to be stationary when plotted against
the iterations, and their distributions should be similar across independent runs. These are necessary
but not sufficient conditions for good convergence, and programs like Tracer and Coda can better

assess how the posterior distribution has been explored by our sampler.

5.2.2 Output trees

Besides the output file with numeric parameters, guenomu also outputs the resampled gene tree files as
well as the posterior distribution of species trees in several formats. The resampled gene trees will
contain the same trees as in the input tree files, but with their posterior frequencies — that is, taking into
account information from other gene families. These files will have the same name as the input, but with
the prefix “post” and in the trprobs format, such that e.g. an input gene tree file named “gene001.tre” will

originate a posterior file called “post.gene001.trprobs”.
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The posterior species tree distribution is output to three files: “species.tre”, “species.trprobs” and
“‘unrooted.trprobs”. The model in guenomu works with rooted species trees, and therefore the files
“species.tre” and “species.trprobs” are comprised of rooted species trees. The difference between these
two files is the format, where “species.tre” is in standard nexus format and contains all sampled species
trees in the order in which they appeared in the MCMC chain. The file “species.trprobs”, however, is in
the compact nexus format where only distinct trees are represented, together with their posterior
frequencies. The trees inside this file will be named “tree_0”, “tree_1", etc. where the number is the
same as in the “sptree” column of the numeric parameters file, and is used to identify them. This number
also appears as comments inside the “species.tre” file, to allow for the mapping of trees between both
files. Please be careful since most phylogenetic analysis software cannot handle the trprobs format
properly, and therefore the standard nexus file should be used to estimate the consensus tree or in other

analyses.

If one is interested in obtaining a consensus tree from the “species.tre” file, then we suggest a few
options: 1) the “sumt” option of MrBayes (25); 2) the “consensus()” function of the ape library for R (38);
3) the “consensus” method of the dendropy module for python (39). We do, however, suggest to always
check also the posterior frequencies directly from the trprobs files to have an idea about the sharpness
of the distributions. On Figure 5 we show an example of the file “species.tre”, that can be compared to

the file “species.trprobs” from Figure 6.

#NEXUS

Begin trees;
Translate

1 schizosaccharomyces_pombe,
saccharomyces_cerevisiae,
drosophila_yakuba,
monosiga_brevicollis,
caenorhabditis_elegans,
schistosoma_mansoni,
drosophila_melanogaster,
gallus_gallus,
homo_sapiens

LY e Tt e I R - PV 8

tree tree 8 [idx = 0] = ((((((6,5),(2,1)),(7,3)),4),8),9);
tree tTEE_l [‘ld}( = 1] = (((((((2:1)15):6):(?33))14)19).13);
tree tree_2 [idx = 2] = (((((7,3),(2,1)),(6,5)),4),(9,8));
tree tree_3 [idx = 3] = ((((((7,3),(2,1)),(6,5)),4),9),8);
tree tree_4 [idx = 4] = (((((((2,1),5),6),(7,3)),4),8),9);
tree tree 5 [idx = 5] = (((((6,5),(2,1)),(7,3)),4),(9,8));
tree trEE_ﬁ [idx = 2] = (((((713)1(2}1)):(6:5))14)1(9)3));
tree tree_7 [idx = 2] = (((((7,3),(2,1)),(6,5)),4),(9,8));
tree tree_8 [idx = 0] = ((((((6,5),(2,1)),(7,3)),4),8),9);
tree tree 9 [idx = 6] = ((((((6,5),(2,1)),(7,3)),4),9),8);

(...)

tree tree_1000 [idx = 6] = ((((((6,5),(2,1)),(7,3)),4),9),8);

End;
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Figure 5: Example of “species.tre” file output by guenomu. In this file we have one tree topology per MCMC iteration, where
identical trees can be identified by the descriptor “idx” (which is a comment according to the nexus format and therefore does

not interfere with other programs.)

#NEXUS

Begin trees;
Translate

1 schizosaccharomyces_pombe,

2 saccharomyces_cerevisiae,

3 drosophila_yakuba,

4 monosiga_brevicollis,

5 caenorhabditis_elegans,

6 schistosoma_mansoni,

7 drosophila_melanogaster,

8 gallus_gallus,

9 homo_sapiens
tree tree_ 3 [p = 0.1748, P = 0.1748] = [&W 0.1748251] ((((((7,3),(2,1)),(6,5)),4),9),8);
tree tree_ 8 [p = 0.1658, P = 0.3407] = [&W 0.1658341] ((((((6,5),(2,1)),(7,3)),4),8),9);
tree tree_ 2 [p = 0.1618, P = 0.5025] = [&W 0.1618381] (((((7,3),(2,1)),(6,5)),4),(9,8));
tree tree 6 [p = 0.1499, P = 0.6523] = [&W 0.1498501] ((((((6,5),(2,1)),(7,3)),4),9),8);
tree tree_7 [p = 0.1479, P = 0.8002] = [&W 0.1478521] ((((((7,3),(2,1)),(6,5)),4),8),9);
tree tree_5 [p = 0.1469, P = 0.9471] = [&W 0.1468531] (((((6,5),(2,1)),(7,3)).4),(9,8));
tree tree 4 [p = 0.0110, P = 0.9580] = [&W 0.0109890] (((((((2,1),5),6),(7,3)),4),8),9);
tree tree 9 [p = 0.0100, P = 0.9680] = [&W 0.0099980] (((((((2,1),6),5),(7.3)),4),8),9);
tree tree_ 1 [p = 0.0090, P = 0.9770] = [&W 0.0089910] (((((((2,1),5),6),(7,3)),4),9),8);
tree tree_10 [p = 0.0080, P = 0.9850] = [&W 0.8079920] ((((((2,1),5),6),(7,3)),4),(9,8));
tree tree_11 [p = 0.0070, P = 0.9920] = [&W 0.80699308] ((((((2,1),6),5),(7,3)),4),(9,8));
tree tree_ 8 [p = 0.0060, P = 0.9980] = [&W 0.6059940] (((((((2,1),6),5),(7,3)).,4),9),8);
tree tree_12 [p = 0.0020, P = 1.0000] = [&W 0.8019980] (((((7,3),(2,1)),(6,5)).,(9,8)),4);

End;

Figure 6: Example of guenomu’ s “species.trprobs” output file. Unlike the “species.tre” file (see Figure 5), distinct topologies

appear only once, and furthermore are ordered according to their posterior frequencies (described within comments.)

Notice how in this file the trees are ordered by frequency, where for instance the tree number 3 is the
so-called maximum a posteriori (MAP) tree, with frequency of 17.5%. Notice, also, that some of the

trees (e.g. tree_2, tree_3, tree_7 and tree_12) differ only in the root location.

The file “unrooted.trprobs” also contains the posterior distribution of species trees in the compact trprobs
format, but this time neglecting the information about the root location. That is, it summarises the
posterior distribution assuming that the sampled species trees are unrooted. It is helpful to compare it
with “species.trprobs” in order to verify if the samples differ only in their rooting, in which case we might
conclude when the data does not allow the model to distinguish between different root locations.In

Figure 7 we show the “unrooted.trprobs” file equivalent to the rooted file described in Figure 6.
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H#NEXUS

Begin trees;

Translate
schizosaccharomyces_pombe,
saccharomyces_cerevisiae,
drosophila_yakuba,
monosiga_brevicollis,
caenorhabditis_elegans,
schistosoma_mansoni,
drosophila_melanogaster,
gallus_gallus,
homo_sapiens

=

O 00~ h bW

]

tree tree_8601 [p
tree tree_0602 [p
tree tree_08663 [p
tree tree_0604 [p

0.4865,
0.4625,
0.0280,
0.0230,

0.4865]= [&W 0.4865134]
0.9491]= [&W 0.4625374]
0.9770]= [&W 0.0279720]
1.0000]= [&W 6.0229770]

3),(2,1)),(6,5)),4),(9,8));
5),(2,1)),(7,3)),4),8),9);
,»1),5),6),(7,3)),4),9),8);
»1),6),5),(7,3)),4),9),8);

LTt
Lo Ean W X o
L Ean T an ¥ o
L T T an X ot

(7,
((6
(((
(((

b B~ e e~
mw uw uwn

k]
2
2
End;

Figure 7: Example of “unrooted.trprobs” output file from the guenomu software. This file has the same information as
“species.trprobs” (Figure 6) but where the root location of each topology was neglected — therefore joining several trees that
differ only in the root location. Notice how the trees are still represented as rooted (deepest node is a dichotomy), just to ease

reading and visualization.

The trees are still rooted according to the newick format, but its root node can be safely ignored. In the
above example we can see how the information from trees 2, 3, 7 and 12 from file “species.trprobs”all

are condensed into the same unrooted tree (tree_0001), with an accumulated frequency of 48.6%

Note that guenomu can very fast, such that a single run on a data set with 447 gene family tree

distributions and 37 species (40) would take less than 6 hours using a single processor.

6. Conclusion

The evolutionary history of the species can not be reduced to the phylogeny of a few genes without too
many arbitrary assumptions, while the accumulation of data poses new challenges to extracting most
information from genomes. Recent Bayesian methods promise to bridge this gap between single-gene
and genomic tree inference, while at a high computational cost. On the other hand, novel supertree
methods can tackle large data sets, offering however a limited view of the possible evolutionary
pathways. Here we show a model, implemented in the program guenomu, that tries to integrate
strengths from both approaches, allowing at the same time for full utilization of complex data sets under

minimal assumptions.
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