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ABSTRACT 
Summary: To evaluate and compare the performance of variant 
calling methods and their confidence scores, comparisons between 
a test call set and a “gold standard” need to be carried out. Unfortu-
nately, these comparisons are not straightforward with the current 
Variant Call Files (VCF), which are the standard output of most vari-
ant calling algorithms for high-throughput sequencing data. Compar-
isons of VCFs are often confounded by the different representations 
of indels, MNPs, and combinations thereof with SNVs in complex 
regions of the genome, resulting in misleading results. A variant 
caller is inherently a classification method designed to score putative 
variants with confidence scores that could permit controlling the rate 
of false positives (FP) or false negatives (FN) for a given application. 
Receiver operator curves (ROC) and the area under the ROC (AUC) 
are efficient metrics to evaluate a test call set versus a gold stand-
ard. However, in the case of VCF data this also requires a special 
accounting to deal with discrepant representations. We developed a 
novel algorithm for comparing variant call sets that deals with com-
plex call representation discrepancies and through a dynamic pro-
graming method that minimizes false positives and negatives global-
ly across the entire call sets for accurate performance evaluation of 
VCFs. 
Availability: RTG Tools is implemented as a multithreaded Java 
application and source code is available under BSD license at: 
https://github.com/RealTimeGenomics/rtg-tools 
Contact: len@realtimegenomics.com 
Supplementary information: Supplementary data are available at 
Bioinformatics online. 

1 INTRODUCTION  
High-throughput sequencing enables the identification of genetic 
variants in whole human genomes and exomes at a scale that is 
useful for population studies (1000 Genomes Project Consortium 
et al., 2012) and clinical applications (Yang et al., 2013). The out-
put of such process is typically a set of variant, or indeed genotype 
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“calls” (for diploid organisms) in the form of a Variant Call File 
(VCF), following the definitions set by the community standard 
(Danecek et al., 2011).  

When developing and validating sequencing pipelines and vari-
ant calling algorithms, the comparison of variant call sets is a 
common aim. One problem for benchmarking pipelines has been 
the lack of gold standards to which comparisons should be made 
and instead researchers have resorted to drawing Venn diagrams, 
which cannot resolve what caller works better (ORawe et al., 
2013). With the advent of comprehensive gold standards for se-
lected human samples (Zook et al., 2014) the latter problem is 
going away, but the question of how to appropriately compare 
VCFs remains. 

The naïve way of comparing VCFs is to look at the same refer-
ence genome locations in the baseline (i.e. the gold standard) and 
called (test) variant call sets, and see if variants and genotype calls 
match at the same position. However, complications arise due to 
possible differences in representation for indels and complex vari-
ants between the baseline and the call sets.  This often happen for 
indels within repeats or homopolymers, where their positions can 
be ambiguous due to alignment artifacts and how the variants are 
aligned with respect to the 5' or 3' ends of the reference. Another 
problem arises with multiple-nucleotide polymorphisms (MNPs) 
and complex variants which encompass combinations of simpler 
variants where calls can be locally phased (see Supplementary 
Note for examples).  
VCFtools is a commonly used tool to manipulate and compare 

VCF files (Danecek et al., 2011). However, its comparison func-
tion does not deal with the complex call representations issues and 
it is slow. Other tools have appeared recently that deal with some 
of these problems, such as SmaSH (Talwalkar et al., 2014), 
VCFlib and bcbio.variation, typically by reducing com-
plex calls into “primitives” (i.e. decomposing complex calls and 
MNPs into individual SNVs). Besides primitive representations 
being erroneous in some cases (a MNPs is a linked set of nucleo-
tides, not independent SNVs), these methods still suffer from con-
founding given the multiple haplotypes possible, and do not at-
tempt to globally optimize the comparison between call set and 
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baseline in any way, resulting in a larger number of discrepancies 
than warranted between the two.  

Here we present vcfeval, an algorithm that is implemented 
as part of the freely available RTG Tools software package that 
include functions for the fast manipulation and analysis VCF files, 
correctly dealing with variant representation confounders, optimiz-
ing globally to minimize discrepancies between a call set and the 
baseline, and providing utilities to perform ROC curve analysis, 
filtering and annotation of variant calls. We demonstrate that our 
method returns more accurate comparisons than previous methods 
and showcase a number of examples where others methods stum-
ble but vcfeval returns correct results. 

2 METHODS 
2.1 Assumptions 
vcfeval aims to match a baseline and called variants so as to 
maximize true positives (TPs) and minimize false positives (FPs) 
and false negatives (FNs) across the entire variant call set, which 
could include calls for an entire human genome. This is done in 
such a way that the number of TPs plus the number of FNs equals 
the total number of calls in the baseline for proper accounting and 
generations of receiver-operator curves (ROC).  

Three pieces of information are needed when evaluating call sets 
of a reference sample: i) the reference sequence against which the 
variants were called (which needs to be the same; for example, a 
given reference genome assembly); ii) a baseline set of variants on 
the reference sample (the ground truth); and iii) a called set of 
variants on the reference sample. The called variant set will be the 
best possible if it correctly includes everything in the baseline 
(TPs), has no incorrect calls (FPs), and has not missed any call in 
the baseline (FNs). To deal with variant representation confound-
ing, vcfeval implements a method that replays the variants from 
both the baseline and called sets to the reference genome assembly 
in a uniform way. While this normalization simplifies compari-
sons, replay does not guarantee a unique set of TP, FP, and FNs, as 
there might be alternative representations (haplotypes) at a given 
locus. Therefore, a global optimization method to select the most 
parsimonious among these options is needed. To simplify the ex-
position of the algorithm, we will first present the case of compar-
ing two haploid call sets before proceeding to the more common 
diploid case. 

2.2 Haploid Case 
Let R = {r1,r2,…,rm}  denote a reference nucleotide sequence of 
length m. Represent a haploid variant v on R by a triple (a,s,e) 
where a is the nucleotide sequence (possibly of length 0) of the 
variant allele, s ≥ 1 is the inclusive start locus and e ≤ m + 1 is the 
exclusive end locus. Given a variant v = (a,s,e), we define accessor 
functions a(v) = a, s(v) = s, and e(v) = v. The cardinality of a se-
quence or vector X is denoted by |X|. 

Given a vector of variants V = (v1,v2,…,vn )  with s(vk ) ≥ e(vk−1) , we 
recursively define a haplotype function, h, that replays the variants 
V into the reference R as follows: 

 
 h(V ) = h(V ,n)+ Re(vn )..(m+1),    (1) 

where 

 

h(V ,k) =
ε if k = 0
h(V ,k −1)+ Re(vk−1 )..s(vk ) + a(vk ) otherwise

⎧
⎨
⎪

⎩⎪
,   (2) 

where + is understood to mean concatenation,  ε  denotes the emp-
ty string, and Rα ..β  indicates the reference nucleotides from posi-
tion α  up to but excluding β . Any nucleotide within h(V )  is ei-
ther drawn from the reference or from a variant in V . 

Let B  denote the set of baseline variants and C  denote the set 
of called variants. We seek sequences of variants X  and Y  which 
maximize the number of agreements in the set X : 

M (B,C) = arg max 
X⊆B,Y⊆C

1h(X ),h(Y ) | X |   (3) 

where the maximization is over all possible subsequences of vari-
ants X  in B  and variants Y  in C  and 1h(X ),h(Y )  is the indicator 
function that is 1 iff the nucleotide sequences h(X)  and h(Y )  are 
the same; that is, h(X) = h(Y ) . 

2.3 Diploid Case 
Generalizing to the diploid case, each variant now has two alleles 
(not necessarily distinct) which we represent by (a0 :a1,s,e) . We 
introduce a phasing vector PV = (p1, p2,…pn )∈{0,1}

n , where pi  is 0 
or 1 for each variant in X  indicating whether a0  or a1  is used, 
respectively. Given a phasing vector PV , we use P ′V  to denote the 
alternate phasing vector; defined by, P ′V = (1− p1,1− p2,…,1− pn ).  
Thus if PV  represents the alleles selected by one of the haplotypes 
through the variants, then P ′V  represents the alleles in the alternate 
haplotype. 

The haplotype function is modified to take the phasing vector in-
to account: 

h(V ,PV ) = h(V ,PV ,n)+ Re(vn )..(m+1),   (4) 
where 

 

h(V ,PV ,0) =
ε k = 0
h(V ,PV ,k −1)+ Re(vk−1 )..s(vk ) + apk (vk ) otherwise

⎧
⎨
⎪

⎩⎪
,   (5) 

The corresponding global maximization is now additionally over 
all possible phasings of the variants: 

 
M (B,C) = arg max

X⊆B,Y⊆C
PX∈{0,1}|X|,PY∈{0,1}|Y |

1h(X ,PX ),h(Y ,PY )1h(X ,P ′X ),h(Y ,P ′Y ) | X | .   (6) 

 

2.4 Path Creation 
A path through a variant sequence is a selection of a subset of 
variants along with a choice in their phasing. vcfeval selects 
baseline and called paths ensuring that the variants included in 
these will be equal (after being replayed); these are thus classified 
as TPs. The calls excluded from the baseline path will correspond 
to FNs and the calls excluded from the called variant path will be 
classified as FPs. As noted above, potentially there are an exponen-
tial number of cases to be explored. Given diploid variant sets B  
and C , there are 3|B|+|C|  possible combinations of X , PX  , Y  , and 
PY , since for each variant, i , there is the possibility for it to be 
excluded, included with pi = 0 , or included with pi = 1 . 

We call a partially constructed X  and PX  a half path. So a half-
path through a set of variants is a selection of a subset of variants 
along with a choice in their phasing. Two half-paths taken togeth-
er, i.e. a combination of X , PX , Y , PY , is a path. 
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It is possible to ‘step’ through each path, generating the full se-
quence of nucleotides in the (diploid or haploid) haplotypes repre-
sented by the path. This is termed replaying the path, resulting in a 
partial version, hα ..β , of the h  function in the formulation above. 
Further, for a position r  in a reference of length m , provided 
| h1..r (Xr ) |=| h1..r (Yr ) | , the indicator function can be factored as 

 

 
1h(X ),h(Y ) = 1h1..r (Xr ),h1..r (Yr ) ×1h( r+1)..(m+1) (X!Xr ),h( r+1)..(m+1) (Y!Yr ),    (7) 
 

where Xr = {x ∈X :e(x) ≤ r}  is those variants of X  corresponding to 
the reference region up to and including r . 

In practice, the number of paths to be explored can be reduced in 
three ways: 

a) For homozygous variants both phasings are effectively the 
same, so only one of them need be explored. 

b) Usually it is possible to determine that the indicator function 
will be 0 without computing the entire path.  Once the indicator 
function is determined to be 0, the path can be discarded. 

c) Finally, if two paths have reached the same reference position, 
r , and have the same replayed haplotype lengths, we retain the 
one maximizing | X |  since any extension of these paths is inde-
pendent of the path so far. 

More precisely, for case (c) in a haploid situation, let S = (Xr ,Yr )  
and ′S = (X ′′r ,Y ′′r )  be two partial paths such that r = ′r  and 
| h(Xr ) |=| h(Yr ) |  and | h(X ′r ) |=| h(Y ′r ) | . These conditions ensure 

 ′′B = B! Br  and  ′′C = C!Cr  (that is, the remaining candidate 
variants) are the same for both paths and that we can split the indi-
cator function using Eq. No. 7. The contribution to | X |  in the 
maximal solution of the remaining portion (r +1)..(m +1)  will then 
be the same for both paths: 

 

max{1h1..r (Xr ),h1..r (Yr ) | Xr |,1h1..r (X ′r ),h1..r (Y ′r )
| X ′r |}

+max ′′X ⊆ ′′B
′′Y ⊆ ′′C

1h( r+1)..(m+1) ( ′′X ),h( r+1)..(m+1) ( ′′Y ) | ′′X | .    (8) 

Since the maximization over ′′B  and ′′C is the same for all ex-
tensions of S  and ′S , the global optimum solution for such a pair 
is determined by the optimal of the initial portion. The existence of 
the recurrence (8) permits a dynamic programming solution to be 
applied. With the addition of a phasing vector and dual haplotypes 
as per (3), these same simplifications to the computation can be 
applied in a diploid situation. Figure 1 shows a representation of 
best paths for a set of variants in the baseline and called sets (see 
the Supplementary Note for additional examples). 

2.5 Dynamic Programming Implementation 
 vcfeval selects baseline and called paths ensuring that the vari-
ants included in these will be equal (after being replayed); these 
included variants are classified as TPs. The calls excluded from the 
baseline path will correspond to FNs and the calls excluded from 
the called variant path are classified as FPs. (This notion of ‘cor-
rectness’ is with respect to the baseline, one could equivalently 
think of vcfeval as performing an advanced set intersection 
between two variant sets, and the terminology could alternatively 
be expressed as B∩C ,  B!C ,  C! B , respectively.) 
vcfeval takes a dynamic programming approach to finding 

the best path of replayed variants that globally maximizes TPs and 
minimizes FPs and FNs, by incrementally stepping through the 
haplotypes of each of the paths in a current working set of candi-

date paths.  The size of the current working set is kept as small as 
possible by using the simplifications detailed above. 

At any point during path replay, the next nucleotide to be gener-
ated will either be a reference base (if the haplotype is not current-
ly within a variant), or a base from a variant allele (there is no 
particular distinction between a reference versus alternate allele). 
A path can be incrementally constructed during replay by delaying 
the decision of whether to exclude or include each variant until the 
replay has reached a point on the reference where that decision 
must be made in order to output the next haplotype base. At that 
point, the path is forked into three alternatives: one excluding the 
variant; one including the variant in a default phase; and one in-
cluding the variant in the opposite phasing (actually by case (a) 
this last alternative is only required for heterozygous variants). 
Each of the alternatives is added to the working set, replacing the 
original. 

Any path that results in haplotype disagreement during replay 
can be discarded from the working set according to case (b). If two 
(replayed) paths converge at the same position on the reference 
such that case (c) can be applied, then a path which maximizes the 
number of true positives up to that point can be kept and the other 
discarded. Partial paths which have converged, are said to be c-
equivalent. 

In practice such situations happen frequently keeping the 
memory and processing requirements reasonable. Note that our 
method considers zygosity when comparing variants (diploidy is 
assumed, except for sex chromosomes in humans), and thus to 
match, variants should have the same genotype (for some applica-
tions this requirement can be relaxed to allow a more lenient com-
parison that does not penalize mis-calling heterozygous as homo-
zygous and vice versa). See the Supplementary Note for the pseu-
do-code of the path creation and dynamic programing algorithms. 

All heterozygous variants are treated as non-phased, allowing 
the best path procedure to discover the consistent phasing. Indeed, 
the phasing vector PV  in the best solution permits comparison with 
a provided phasing to measure phasing consistency, count switch 
errors, and so on.  In principle, this algorithm could incorporate 
phasing information when provided in the input call-sets, by only 
including variants in a path having phasing consistent with the 
phase PV  of already added variants in the same phase set, thereby 
further reducing the search space. However, the current implemen-
tation is more general and performs well in practice. 

 
Figure 1. Best paths for baseline and called variants showing cases for false 
positives and negatives. Vertical lines are sync points. The inset table 
shows the total counts for the example after weighting. 

False positive (excluded)!

False negative (excluded)!

1! 1! 1! 1! 0.5! 0.5!

Baseline!

Called!

Weights!

1!

1!

Type! Weighted!

TP! 5!

FP! 1!

FN! 1!

Sync points!
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2.6 Weighting 
When comparing different variant call sets the number of true posi-
tives plus the number of false negatives should equal the total 
number of calls in the baseline, rather than being dependent on 
representational conventions of a particular call set.  Generally, 
each called variant will have a corresponding baseline variant, but 
due to both variant representation confounding and repeat struc-
tures in the genome, there can be a many-to-many relationship 
between baseline and called mutation (see examples in the Sup-
plementary Note). To keep the number of TPs plus the number of 
FNs equal to the total number of variants in the baseline, each 
called TP call must be weighted. To avoid pitfalls due to ambiguity 
when looking for equivalences in repeat regions, we perform 
weighting within unambiguous boundaries in the path. A sync 
point is a location where baseline and called paths are at the same 
position on the reference and they are not currently in the middle 
of any variant location after replay (see Figure 1 and Supplemen-
tary Note). An optimization in the best path creation skips all the 
genomic locations which does not contain any variants, thus the 
sync points occurs just before the next available variant. Once all 
the sync points are created, each called variant is weighted using 
following formula 

 w =
BSn−Sn−1
CSn−Sn−1

   (9) 

where B is the number of baseline variants between the current (Si) 
and previous sync points (Si-1) and C is the number of called vari-
ants between the current and previous sync points. Figure 1 shows 
an example of the results of weighting when a complex call is rep-
resented as a single variant in the call set, but as two variants in the 
baseline. The inset table in Figure 1 shows the total numbers of 
TP/FP/FN for this case after weighting. vcfeval outputs the sets 
of TP, FP and FN as separate VCF files for further analysis (see 
additional examples in the Supplementary Note). 

2.7 Identifying variants of discrepant representation  
To find complex variant examples to test variant comparison tools, 
we selected calls from two high-confidence variant call sets for the 
human cell line NA12878 which is the pilot reference material of 
the Genome-in-a-Bottle (GiaB) consortium: a) the NIST arbitration 
v.2.19 high-confidence calls (Zook et al., 2014) (hereafter ARB), 
and b) the RTG phasing consistent calls (Cleary et al., 2014) 
(hereafter PHS).  These two VCFs files were chosen because they 
prefer to output complex variants in different ways.  ARB tends to 
separate complex events into simple SNPs and indels without local 
phasing information whereas PHS tends to output complex variants 
as block substitutions and includes pedigree-based phasing for 
variants.  

To find these complex regions, first we used BedTools 
v.2.22.1 to select variants from the ARB calls that were in regions 
in which there was < 50 bp between variants. Then, we added 49 
bp on either side of these regions and then merged regions within 
50 bp of each other to make sure we capture different representa-
tions of complex variants.  Then, to distinguish between regions 
that had only SNPs from regions with at least one indel, we anno-
tated each region with the number of SNPs and indels from ARB 
(see Supplementary Materials). Note that complex variants in ARB 
are in the default output format of GATK HaplotypeCaller v.2.8, 

which prefers to output complex events as separate SNPs and in-
dels rather than as block substitutions. Next, we used BedTools 
to select variants in ARB and PHS VCFs that were inside the com-
plex variants bed files calculated above. Finally, we used vcfe-
val v.3.4.2 to compare these two VCFs containing different rep-
resentations of complex variants.  We manually inspected sites that 
were deemed discordant and found that they were in fact discord-
ant, either because the calls were completely missing in one of the 
VCFs or because only part of a complex event called by PHS was 
in ARB.  For these partially called sites (where part of a complex 
event is called in one file and the full event is called in the other 
file), some normalization/comparison tools will find that one part 
is the same while the other is different.  

2.8 Comparison of vcfeval with other tools 
For normalization of variant representations, we tested:  a) norm 
from bcftools v.7fa0d25 downloaded from GitHub on 2/19/15; 
b) vt v.b8219fd downloaded from GitHub on 3/5/15; c) SMaSH 
v.0ff627a downloaded from GitHub on 3/5/15; d) vcfallel-
icprimitives from vcflib downloaded from GitHub on 
3/6/15; e) bcbio.variation v.0.2.4 prep and normalize. 

For variant comparison, we tested: a) vcfintersect from 
vcflib downloaded from GitHub on 3/6/15, before and after 
normalization with vcfallelicprimitives; b) stats from 
bcftools v.7fa0d25 downloaded from GitHub on 2/19/15, be-
fore and after normalization with bcftools norm; c) diff 
from vcftools v.0.1.12b after normalization with vt or 
bcftools norm; d) smash python v.0ff627a downloaded from 
GitHub on 3/5/15 with --normalization flag; e) smash 
calldiff v.0ff627a downloaded from GitHub on 3/5/15 without 
normalization; f) bcbio.variation v.0.2.4 variant-compare 
with bcbio.variation prep and normalize. 

2.9 Generation of ROC curves 
vcfeval provides a number of useful outputs to draw ROC 
curves and for the debugging of variant calling algorithms, includ-
ing VCFs with the TP, FN, and FP of the test call set. The 
rocplot command of RTG Tools allows the user to select one 
or multiple comparisons to the same baseline, select the score to 
use for sorting the points, and in interactive mode provides the 
number of TP, precision, recall (sensitivity), and F-measure at a 
given threshold score in a plot. For the ROC curves presented in 
Figure 2, we compared call sets produced by a number of callers 
with the PHS baseline. The input for the variant calling pipelines 
was FastQ data for run ERR174327 available in the EBI ENA in 
project Acc. No. PRJEB3246. We selected a subset of lanes to 
reach about 40X depth of 2x100bp paired reads for the sample 
NA12878 produced on the HiSeq 2000 by Illumina 
(http://www.illumina.com/platinumgenomes/). This data was 
mapped to the hg19 human reference genomes with decoys (1000 
Genomes Project Consortium et al., 2012) and variants were called 
by the following pipelines: i) BWA-MEM v0.7.10/GATK UG 
v3.2.2 (99.5% SNV and indel 99% cut-off); and ii) BWA-MEM 
v0.7.10/GATK HC v 3.2.2 (99.5% SNV and indel 99% cut-off%); 
and iii) RTG Variant 3.3.2 (RTG map and snp). 

2.10 Other utilities of RTG Tools 
In addition to vcfeval, the RTG Tools software package in-
cludes a number of utility functions to manipulate and analyze 
VCFs, some of which are summarized here. The command vcf-
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stats provides summary statistics for the VCFs, such as the 
number of each type of variants and global quality metrics like 
Ti/Tv and the heterozygote/homozygote ratios. When variants are 
called in related samples a statistic that correlates with the quality 
of the call set is the number of Mendelian inconsistency errors 
(MIEs). The mendelian command performs this count when 
provided with a PED file describing the family structure (see Sup-
plementary Note for output example). Other common tasks sup-
ported include the merging (vcfmerge), splitting (vcfsubset), 
annotation (vcfannotate), creating tabix index (index), and 
filtering of VCF files by scores or annotations (vcffilter). 
Note that most RTG Tools commands require that the VCF tabix 
index is available and that the reference used in variant calling is 
present in an internal format − the SDF format (Cleary et al., 2014) 
−  which facilitates indexing and storage of associated metadata 
such as chromosome ploidy, PAR region location, etc. Thus, we 
provide the command format to create an SDF version of the 
reference from FASTA files. Further, RTG Tools can operate in 
block compressed VCFs directly to save space, and provides a 
command to block-compress such files (bgzip). 

3 RESULTS 
3.1 Comparative performance of vcfeval 
When variants are near each other and within repetitive regions 
there are several possible representations of them in the VCF for-
mat. To find complex variant examples to test comparison tools, 
we identified regions containing variants within 50bp of each other 
in the arbitration calls developed by Zook et al. (2014) for the 
sample NA12878 (ARB), and compared these to phasing con-
sistent calls we derived from the analysis of the 17 member CEPH 
1463 pedigree to which the sample belongs (PHS) (Cleary et al., 
2014).  

In the regions containing only SNPs, we found that 546,712 calls 
from the ARB VCF were consistent with 526,928 calls in the PHS 
VCF.  Of these calls, 41,572 have different representations (based 
on them being determined to be discordant when using bcftools 
stats without normalization).  In the regions containing one or 
more indels, we found that 184,634 calls from the ARB VCF were 
consistent with 148,833 calls in the PHS VCF.  Of these calls, at 
least 70,239 have different representations (based on them being 
determined to be discordant when using bcftools stats 
without normalization).  Note that the remaining calls may have 

the same representation apart from differences in phasing infor-
mation. 

We next tested whether other normalization and comparison ap-
proaches are able to determine that the calls are consistent when 
vcfeval determines they are consistent. From each comparison 
tool, we tallied sites the tool determined to be specific to ARB 
VCF, sites specific to PHS VCF, sites in ARB that were also in 
PHS (Both), and sites that the tool could not compare because they 
were too complex or overlapping (Table 1).  

We found vcflib vcfintersect with vcfallel-
icprimitives was the only other tool able to determine that all 
of the sites were consistent in the VCF files without indels, though 
bcbio.variation incorrectly called 2 sites inconsistent out of 
546,712.  No tool except for vcfeval was able to determine that 
all of the sites in the regions containing indels were consistent.  
The python version of SMaSH came closest, determining that 
171,227 of 184,634 sites were consistent, but it was not able to 
handle compound heterozygous variants.  Even though the Java 
version of SMaSH (calldiff) has a phasing-aware realignment 
algorithm, it determined that the fewest number of sites were con-
sistent.  This low number is because it requires that both VCF files 
have exactly the same phasing information, and ABR VCF does 
not contain phasing information while the PHS VCF does. 

3.2 ROC curves 
Once the variant representation problem has been addressed at the 
global level for a call set, comparison of test VCFs to a gold stand-
ard can be performed.  Since NGS technology is not perfect and 
errors need to be distinguished from sequencing errors, variant 
calls usually come accompanied with quality scores that try to 
provide an assessment of the probability a new allele (QUAL) or 
genotype call (GQ) is an error. Sometimes empirical recalibration 
scores based on machine learning approaches are preferred since is 
difficult to model all experimental artifacts in the NGS protocol 
(DePristo et al., 2011). Identifying FPs and FNs as compared with 
the gold standard for a given a number of sorted score thresholds 
permit the construction of receiver-operator curves (ROC) which 
can be used to assess the performance of such scores and to com-
pare the performance of different variant calling pipelines.  In a 
ROC curve the true positives and false positives are plotted over 
various threshold values. The thresholds commonly used in variant 
analysis are the genotype quality (GQ) or recalibration scores from 
the VCF file.  

Table 1. Comparison of normalization and VCF comparison tools. We provided as input two VCFs (ARB, NIST arbitration or PHS, RTG Phasing), either 
as raw calls or in pre-normalized format, to a number of comparison tools and counted the number of variants that were deemed discrepant for each of the 
files. Since some tools deal differently with SNVs vs indels, we performed the test with VCFs where all indels were filtered, or with the full set of calls 
including indels. The column “Complex” lists sites that were deemed too complex for the tool to assess. 

  No indels One or more indels 
Normalization Comparison ARB PHS Both Complex ARB PHS Both Complex 
None vcfeval 0 0 546,712  0 0 184,634  
None Vcflib/vcfintersect 35,101 15,317 511,611  58,267 22,466 126,367  
vcflib/vcfallelicprimitives Vcflib/vcfintersect 0 0 546,712  23,814 18,625 160,820  
None bcftools stats 41,572 21,788 505,140  70,239 34,438 114,395  
bcftools norm bcftools stats 39,186 19,402 507,526  67,178 31,377 117,456  
vt vcftools diff 0 2,328 546,710 2 34,753 1,974 124,247 25,634 
bcftools norm vcftools diff 19,784 0 507,526 19,402 36,166 365 121,584 26,884 
None SMaSM calldiff 164,060 153,248 382,313  71,940 50,853 112,124  
SMaSH normalize SMaSH python 4,347 0 542,363 2 12,578 12,253 171,227 828 
bcbio prep and normalize bcbio 2 2 546,710  27,746 23,977 156,888  
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Figure 2 shows a ROC curve produced with the rocplot 
command from the output of vcfeval comparing several call sets 
with the PHS call set as baseline. A variant call set and scoring 
system will be considered best when the curve gets closer to the 
top right of the plot (i.e. larger AUC). Although TP and TN rates 
and other metrics can be calculated for a given score threshold in 
the curves, and these can be used for overall comparisons of sensi-
tivity and specificity, the analysis of the ROC permits to better 
justify a given threshold and assess the discriminative power of the 
variant quality scoring or recalibration schemes of each method.  

 
Figure 2. ROC curve comparing multiple call sets from the Illumina Plati-
num data for NA12878 (2x100bp, 40X) made with GATK Unified Geno-
typer (UG) and Haplotype Caller (HC) v3.2 (DePristo et al., 2011) and  
RTG Variant v3.3 (RTG) versus the PHS gold standard (Cleary et al., 
2014), sorted by recalibration scores (VQSLOD for GATK and AVR for 
RTG, some thresholds indicated in the lines).  

4 CONCLUSIONS 
The genomics and medical genetics communities are rallying to 
develop reference standard samples and associated ground truth 
sets of variants to evaluate both experimental and bioinformatic 
pipelines for human whole-genome and exome sequencing produc-
tion (Zook et al., 2014). The US National Institute of Standards 
(NIST), had recently released the first standard reference material 
for such applications (RM 8398 - Human DNA for Whole-Genome 
Variant Assessment – for the sample NA128768) and through the 
GiaB consortium gold standard variant sets have been generated in 
VCF format from multiple approaches to be used as ground truth 
in comparisons.  

The availability of such references allows to objectively com-
pare variant calling algorithms, identify their flaws, and drive algo-
rithm improvement. This permits going beyond Venn diagrams 
(ORawe et al., 2013) and instead moving to ROC curve analysis 
(Cleary et al., 2014), much more useful in the assessment of high-
throughput sequencing pipelines for clinical applications. This 
workflow requires the analysis of VCF files and the ability to accu-
rately compare different VCFs with such baselines, appropriately 
dealing with complex variant representation issues and looking at 
the call sets as a whole.  

We developed vcfeval to enable performing such compari-
sons in an optimized fashion together with a set of useful VCF 

manipulation tools that are fast, and easy to use. We show that 
vcfeval produces the most accurate and parsimonious compari-
sons between VCF files among existing tools and permits the anal-
ysis of ROC curves to select the optimal variant score threshold to 
achieve the TP/FP balance that a given application requires. If the 
downstream analytics could utilize the variant confidence scores 
rather than consider all provided variants as true, no filtering 
would be necessary, but the ROC analysis would still allow opti-
mizing scoring and recalibration systems. Together with the addi-
tional utilities included in the RTG Tools package, we believe 
these tools will find extensive use. While our focus has been to 
compare a test call set with a baseline, which is assumed to be the 
ground truth, the algorithms we developed could be extended for 
the case of comparing multiple VCF files. Such is the case of the 
harmonization of calls coming from single sample pipelines or 
different sequencing platforms, a topic which will be the subject of 
future work. 

The Global Alliance for Genomics and Health benchmarking 
team is currently working to develop standardized definitions for 
performance metrics (e.g., true positive, false positive, and false 
negative) to ensure comparability between benchmarking tools.  
The authors are working with this team to ensure vcfeval pro-
vides outputs consistent with these definitions. 
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