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Abstract

By integrating Haar wavelets with Hidden Markov Models, we achieve drastically reduced
running times for Bayesian inference using Forward-Backward Gibbs sampling. We
show that this improves detection of genomic copy number variants (CNV) in array
CGH experiments compared to the state-of-the-art, including standard Gibbs sampling.
The method concentrates computational effort on chromosomal segments which are
difficult to call, by dynamically and adaptively recomputing consecutive blocks of
observations likely to share a copy number. This makes routine diagnostic use and
re-analysis of legacy data collections feasible; to this end, we also propose an effective
automatic prior. An open source software implementation of our method is available at
http://schlieplab.org/Software/HaMMLET/ (DOI: 10.5281/zenodo.46262).

Author Summary

Identifying large-scale genome deletions and duplications, or copy number variants
(CNV), accurately in populations or individual patients is a crucial step in indicating
disease factors or diagnosing an individual patient’s disease type. Hidden Markov Models
(HMM) are a type of statistical model widely used for CNV detection, as well as other
biological applications such as the analysis of gene expression time course data or the
analysis of discrete-valued DNA and protein sequences.

As with many statistical models, there are two fundamentally different inference
approaches. In the frequentist framework, a single estimate of the model parameters
would be used as a basis for subsequent inference, making the identification of CNV
dependent on the quality of that estimate. This is an acute problem for HMM as methods
for finding globally optimal parameters are not known. Alternatively, one can use a
Bayesian approach and integrate over all possible parameter choices. While the latter is
known to lead to significantly better results, the much—up to hundreds of times—larger
computational effort prevents wide adaptation so far.

Our proposed method addresses this by combining Haar wavelets and HMM. We
greatly accelerate fully Bayesian HMMs, while simultaneously increasing convergence
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and thus the accuracy of the Gibbs sampler used for Bayesian computations, leading to
substantial improvements over the state-of-the-art.

Introduction

The human genome shows remarkable plasticity, leading to significant copy number
variations (CNV) within the human population [1]. They contribute to differences in
phenotype [2–4], ranging from benign variation over disease susceptibility to inherited
and somatic diseases [5], including neuropsychiatric disorders [6–8] and cancer [9, 10].
Separating common from rare variants is important in the study of genetic diseases
[5, 11, 12], and while the experimental platforms have matured, interpretation and
assessment of pathogenic significance remains a challenge [13].

Computationally, CNV detection is a segmentation problem, in which consecutive
stretches of the genome are to be labeled by their copy number; following the conventions
typically employed in CNV method papers, e.g. [14–17], we use this term rather abstractly
to denote segments of equal mean value, not actual ploidy, though for homogeneous
samples the latter can be easily assigned. Along with a variety of other methods
[14–16, 18–41], Hidden Markov Models (HMM) [42] play a central role [17, 43–52], as
they directly model the separate layers of observed measurements, such as log-ratios in
array comparative genomic hybridization (aCGH), and their corresponding latent copy
number (CN) states, as well as the underlying linear structure of segments.

As statistical models, they depend on a large number of parameters, which have to
be either provided a priori by the user or inferred from the data. Classic frequentist
maximum likelihood (ML) techniques like Baum-Welch [53,54] are not guaranteed to
be globally optimal, i. e. they can converge to the wrong parameter values, which
can limit the accuracy of the segmentation. Furthermore, the Viterbi algorithm [55]
only yields a single maximum a posteriori (MAP) segmentation given a parameter
estimate [56]. Failure to consider the full set of possible parameters precludes alternative
interpretations of the data, and makes it very difficult to derive p-values or confidence
intervals. Furthermore, these frequentist techniques have come under increased scrutiny
in the scientific community.

Bayesian inference techniques for HMMs, in particular Forward-Backward Gibbs
sampling [57, 58], provide an alternative for CNV detection as well [59–61]. Most
importantly, they yield a complete probability distribution of copy numbers for each
observation. As they are sampling-based, they are computationally expensive, which is
problematic especially for high-resolution data. Though they are guaranteed to converge
to the correct values under very mild assumptions, they tend to do so slowly, which can
lead to oversegmentation and mislabeling if the sampler is stopped prematurely.

Another issue in practice is the requirement to specify hyperparameters for the prior
distributions. Despite the theoretical advantage of making the inductive bias more
explicit, this can be a major source of annoyance for the user. It is also hard to justify
any choice of hyperparameters when insufficient domain knowledge is available.

Recent work of our group [62] has focused on accelerating Forward-Backward Gibbs
sampling through the introduction of compressed HMMs and approximate sampling.
For the first time, Bayesian inference could be performed at running times on par with
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Figure 1. Overview of HaMMLET. Instead of individual computations per ob-
servation (panel a), Forward-Backward Gibbs Sampling is performed on a compressed
version of the data, using sufficient statistics for block-wise computations (panel b) to
accelerate inference in Bayesian Hidden Markov Models. During the sampling (panel c)
parameters and copy number sequences are sampled iteratively. During each iteration,
the sampled emission variances determine which coefficients of the data’s Haar wavelet
transform are dynamically set to zero. This controls potential break points at finer or
coarser resolution or, equivalently, defines blocks of variable number and size (panel
c, bottom). Our approach thus yields a dynamic, adaptive compression scheme which
greatly improves speed of convergence, accuracy and running times.
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classic maximum likelihood approaches. It was based on a greedy spatial clustering
heuristic, which yielded a static compression of the data into blocks, and block-wise
sampling. Despite its success, several important issues remain to be addressed. The
blocks are fixed throughout the sampling and impose a structure that turns out to be too
rigid if variances differ between CN states. The clustering heuristic relies on empirically
derived parameters not supported by a theoretical analysis, which can lead to suboptimal
clustering or overfitting. Also, the method cannot easily be generalized for multivariate
data. Lastly, the implementation was primarily aimed at comparative analysis between
the frequentist and Bayesian approach, as opposed to overall speed.

To address these issues and make Bayesian CNV inference feasible even on a laptop,
we propose the combination of HMMs with another popular signal processing technology:
Haar wavelets have previously been used in CNV detection [63], mostly as a preprocessing
tool for statistical downstream applications [28–32] or simply as a visual aid in GUI
applications [21, 64]. A combination of smoothing and segmentation has been suggested
as likely to improve results [65], and here we show that this is indeed the case. Wavelets
provide a theoretical foundation for a better, dynamic compression scheme for faster
convergence and accelerated Bayesian sampling. We improve simultaneously upon the
typically conflicting goals of accuracy and speed, because the wavelets allow summary
treatment of “easy” CN calls in segments and focus computational effort on the “difficult”
CN calls, dynamically and adaptively. This is in contrast to other computationally
efficient tools, which often simplify the statistical model or use heuristics. The required
data structure can be efficiently computed, incurs minimal overhead, and has a straight-
forward generalization for multivariate data. We further show how the wavelet transform
yields a natural way to set hyperparameters automatically, with little input from the
user.

We implemented our method in a highly optimized end-user software, called HaMM-
LET. Aside from achieving an acceleration of up to two orders of magnitude, it exhibits
significantly improved convergence behavior, has excellent precision and recall, and
provides Bayesian inference within seconds even for large data sets. The accuracy and
speed of HaMMLET also makes it an excellent choice for routine diagnostic use and
large-scale re-analysis of legacy data. Notice that while we focus on aCGH in this paper
as the most straightforward biological example of univariate Gaussian data, the method
we present is a general approach to Bayesian HMM inference as long as the emission
distributions come from the exponential family, implying that conjugate priors exist
and the dimension of its sufficient statistics remain bounded with increasing sample size.
It can thus be readily generalized and adapted to read-depth data, SNP arrays, and
multi-sample applications.

Results

Simulated aCGH data

A previous survey [65] of eleven CNV calling methods for aCGH has established that
segmentation-focused methods such as DNAcopy [14,36], an implementation of circular
binary segmentation (CBS), as well as CGHseg [37] perform consistently well. DNAcopy
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performs a number of t-tests to detect break-point candidates. The result is typically over-
segmented and requires a merging step in post-processing, especially to reduce the number
of segment means. To this end MergeLevels was introduced by [66]. They compare the
combination DNAcopy+MergeLevels to their own HMM implementation [17] as well
as GLAD (“Gain and Loss Analysis of DNA”) [27], showing its superior performance
over both methods. This established DNAcopy+MergeLevels as the de facto standard
in CNV detection, despite the comparatively long running time.

The paper also includes aCGH simulations deemed to be reasonably realistic by the
community. DNACopy was used to segment 145 unpublished samples of breast cancer
data, and subsequently labeled as copy numbers 0 to 5 by sorting them into bins with
boundaries (−∞,−0.4,−0.2, 0.2,0.4, 0.6,∞), based on the sample mean in each segment
(the last bin appears to not be used). Empirical length distributions were derived, from
which the sizes of CN aberrations are drawn. The data itself is modeled to include
Gaussian noise, which has been established as sufficient for aCGH data [67]. Means
were generated such as to mimic random tumor cell proportions, and random variances
were chosen to simulate experimenter bias often observed in real data; this emphasizes
the importance of having automatic priors available when using Bayesian methods,
as the means and variances might be unknown a priori. The data comprises three
sets of simulations: “breakpoint detection and merging” (BD&M), “spatial resolution
study” (SRS), and “testing” (T) (see their paper for details). We used the MergeLevels
implementation as provided on their website. It should be noted that the superiority of
DNAcopy+MergeLevels was established using a simulation based upon segmentation
results of DNAcopy itself.

We used the Bioconductor package DNAcopy (version 1.24.0), and followed the
procedure suggested therein, including outlier smoothing. This version uses the linear-
time variety of CBS [15]; note that other authors such as [35] compare against a
quadratic-time version of CBS [14], which is significantly slower. For HaMMLET, we
use a 5-state model with automatic hyperparameters P(σ2 ≤ 0.01) = 0.9 (see section
Automatic priors), and all Dirichlet hyperparameters set to 1.

Following [62], we report F-measures (F1 scores) for binary classification into normal
and aberrant segments (Fig. 2), using the usual definition of F = 2πρ

π+ρ being the harmonic

mean of precision π = TP
TP+FP and recall ρ = TP

TP+FN , where TP, FP, TN and FN denote
true/false positives/negatives, respectively. On datasets T and BD&M, both methods
have similar medians, but HaMMLET has a much better interquartile range (IQR)
and range, about half of CBS’s. On the spatial resolution data set (SRS), HaMMLET
performs much better on very small aberrations. This might seem somewhat surprising,
as short segments could easily get lost under compression. However, Lai et al. [65]
have noted that smoothing-based methods such as quantile smoothing (quantreg) [23],
lowess [24], and wavelet smoothing [29] perform particularly well in the presence of
high noise and small CN aberrations, suggesting that “an optimal combination of the
smoothing step and the segmentation step may result in improved performance”. Our
wavelet-based compression inherits those properties. For CNVs of sizes between 5
and 10, CBS and HaMMLET have similar ranges, with CBS being skewed towards
better values; CBS has a slightly higher median for 10–20, with IQR and range being
about the same. However, while HaMMLET’s F-measure consistently approaches 1 for
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Figure 2. F-measures of CBS (light) and HaMMLET (dark) for calling
aberrant copy numbers on simulated aCGH data [66]. Boxes represent the
interquartile range (IQR = Q3-Q1), with a horizontal line showing the median (Q2),
whiskers representing the range (32 IQR beyond Q1 and Q3), and the bullet representing
the mean. HaMMLET has the same or better F-measures in most cases, and on the
SRS simulation converges to 1 for larger segments, whereas CBS plateaus for aberrations
greater than 10.

larger aberrations, CBS does not appear to significantly improve after size 10. The
plots for all individual samples can be found in Web Supplement S1–S3, which can
be viewed online at http://schlieplab.org/Supplements/HaMMLET/, or downloaded
from https://zenodo.org/record/46263 (DOI: 10.5281/zenodo.46263).

High-density CGH array

In this section, we demonstrate HaMMLET’s performance on biological data. Due to the
lack of a gold standard for high-resolution platforms, we assess the CNV calls qualitatively.
We use raw aCGH data (GEO:GSE23949) [68] of genomic DNA from breast cancer
cell line BT-474 (invasive ductal carcinoma, GEO:GSM590105), on an Agilent-021529
Human CGH Whole Genome Microarray 1x1M platform (GEO:GPL8736). We excluded
gonosomes, mitochondrial and random chromosomes from the data, leaving 966,432
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probes in total.
HaMMLET allows for using automatic emission priors (see section Automatic priors)

by specifying a noise variance, and a probability to sample a variance not exceeding
this value. We compare HaMMLET’s performance against CBS, using a 20-state model
with automatic priors, P(σ2 ≤ 0.1) = 0.8, 10 prior self-transitions and 1 for all other
hyperparameters. CBS took over 2 h 9 m to process the entire array, whereas HaMMLET
took 27.1 s for 100 iterations, a speedup of 288. The compression ratio (see section
Effects of wavelet compression on speed and convergence) was 220.3. CBS yielded
a massive over-segmentation into 1,548 different copy number levels; cf. Supplement
S4 at https://zenodo.org/record/46263. As the data is derived from a relatively
homogeneous cell line as opposed to a biopsy, we do not expect the presence of subclonal
populations to be a contributing factor [69,70]. Instead, measurements on aCGH are
known to be spatially correlated, resulting in a wave pattern which has to be removed in
a preprocessing step; notice that the internal compression mechanism of HaMMLET is
derived from a spatially adaptive regression method, so smoothing is inherent to our
method. CBS performs such a smoothing, yet an unrealistically large number of different
levels remains, likely due to residuals of said wave pattern. Furthermore, repeated
runs of CBS yielded different numbers of levels, suggesting that indeed the merging
was incomplete. This can cause considerable problems downstream, as many methods
operate on labeled data. A common approach is to consider a small number of classes,
typically 3 to 4, and associate them semantically with CN labels like loss, neutral, gain,
and amplification, e.g. [27, 59, 61, 67, 71–75]. In inference models that contain latent
categorical state variables, like HMM, such an association is readily achieved by sorting
classes according to their means. In contrast, methods like CBS typically yield a large,
often unbounded number of classes, and reducing it is the declared purpose of merging
algorithms, see [66]. Consider, for instance, CGHregions [74], which uses a 3-label
matrix to define regions of shared CNV events across multiple samples by requiring
a maximum L1 distance of label signatures between all probes in that region. If the
domain of class labels was unrestricted and potentially different in size for each sample,
such a measure would not be meaningful, since the i-th out of n classes cannot be
readily identified with the i-th out of m classes for n 6= m, hence no two classes can
be said to represent the same CN label. Similar arguments hold true for clustering
based on Hamming distance [72] or ordinal similarity measures [71]. Furthermore, even
CGHregions’ optimized computation of medoids takes several minutes to compute. As
the time depends multiplicatively on the number of labels, increasing it by three orders
of magnitude would increase downstream running times to many hours.

For a more comprehensive analysis, we restricted our evaluation to chromosome 20
(21,687 probes), which we assessed to be the most complicated to infer, as it appears to
have the highest number of different CN states and breakpoints. CBS yields a 19-state
result after 15.78 s (Fig. 3, top). We have then used a 19-state model with automated
priors (P(σ2 ≤ 0.04) = 0.9), 10 prior self-transitions, all other Dirichlet parameters set
to 1) to reproduce this result. Using noise control (see Methods), our method took 1.61 s
for 600 iterations. The solution we obtained is consistent with CBS (Fig. 3, middle
and bottom). However, only 11 states were part of the final solution, i. e. 8 states
yielded no significant likelihood above that of other states. We observe superfluous
states being ignored in our simulations as well. In light of the results on the entire
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array, we suggest that the segmentation by DNAcopy has not sufficiently been merged
by MergeLevels. Most strikingly, HaMMLET does not show any marginal support for
a segment called by CBS around probe number 4,500. We have confirmed that this is
not due to data compression, as the segment is broken up into multiple blocks in each
iteration (cf. Supplement S5 at https://zenodo.org/record/46263). On the other
hand, two much smaller segments called by CBS in the 17,000–20,000 range do have
marginal support of about 40% in HaMMLET, suggesting that the lack of support for
the larger segment is correct. It should be noted that inference differs between the entire
array and chromosome 20 in both methods, since long-range effects have higher impact
in larger data.

We also demonstrate another feature of HaMMLET called noise control. While
Gaussian emissions have been deemed a sufficiently accurate noise model for aCGH [67],
microarray data is prone to outliers, for example due to damages on the chip. While it
is possible to model outliers directly [60], the characteristics of the wavelet transform
allow us to largely suppress them during the construction of our data structure (see
Methods). Notice that due to noise control most outliers are correctly labeled according
to the segment they occur in, while the short gain segment close to the beginning is
called correctly.

Effects of wavelet compression on speed and convergence

The speedup gained by compression depends on how well the data can be compressed.
Poor compression is expected when the means are not well separated, or short segments
have small variance, which necessitates the creation of smaller blocks for the rest of the
data to expose potential low-variance segments to the sampler. On the other hand, data
must not be over-compressed to avoid merging small aberrations with normal segments,
which would decrease the F-measure. Due to the dynamic changes to the block structure,
we measure the level of compression as the average compression ratio, defined as the
product of the number of data points T and the number of iterations N , divided by the
total number of blocks in all iterations. As usual a compression ratio of 1 indicates no
compression.

To evaluate the impact of dynamic wavelet compression on speed and convergence
properties of an HMM, we created 129,600 different data sets with T = 32,768 many
probes. In each data set, we randomly distributed 1 to 6 gains of a total length of
{100, 250, 500, 750, 1000} uniformly among the data, and do the same for losses. Mean
combinations (µloss, µneutral, µgain) were chosen from (log2

1
2 , log2 1, log2

3
2 ), (−1, 0, 1),

(−2, 0, 2), and (−10, 0, 10), and variances (σ2
loss, σ

2
neutral, σ

2
gain) from (0.05, 0.05, 0.05),

(0.5, 0.1, 0.9), (0.3, 0.2, 0.1), (0.2, 0.1, 0.3), (0.1, 0.3, 0.2), and (0.1, 0.1, 0.1). These values
have been selected to yield a wide range of easy and hard cases, both well separated,
low-variance data with large aberrant segments as well as cases in which small aber-
rations overlap significantly with the tail samples of high-variance neutral segments.
Consequently, compression ratios range from ∼1 to ∼2,100. We use automatic priors
P(σ2 ≤ 0.2) = 0.9, self-transition priors αii ∈ {10, 100, 1000}, non-self transition priors
αij = 1, and initial state priors α ∈ {1,10}. Using all possible combinations of the
above yields 129,600 different simulated data sets, a total of 4.2 billion values.

We achieve speedups per iteration of up to 350 compared to an uncompressed HMM
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Figure 3. Copy number inference for chromosome 20 in invasive ductal
carcinoma (21,687 probes). CBS creates a 19-state solution (top), however, a
compressed 19-state HMM only supports an 11-state solution (bottom), suggesting
insufficient level merging in CBS. Also notice the additional diagnostic gain provided
by the marginal probabilities, allowing to assess uncertainty in annotation, e.g. around
position 13,000.
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Figure 4. HaMMLET’s speedup as a function of the average compression
during sampling. As expected, higher compression leads to greater speedup. The
non-linear characteristic is due to the fact that some overhead is incurred by the
dynamic compression, as well as parts of the implementation that do not depend on the
compression, such as tallying marginal counts.

(Fig. 4). In contrast, [62] have reported ratios of 10–60, with one instance of 90. Notice
that the speedup is not linear in the compression ratio. While sampling itself is expected
to yield linear speedup, the marginal counts still have to be tallied individually for each
position, and dynamic block creation causes some overhead. The quantization artifacts
observed for larger speedup are likely due to the limited resolution of the Linux time
command (10 milliseconds). Compressed HaMMLET took about 11.2 CPU hours for all
129,600 simulations, whereas the uncompressed version took over 3 weeks and 5 days.
All running times reported are CPU time measured on a single core of a AMD Opteron
6174 Processor, clocked at 2.2 GHz.

We evaluate the convergence of the F-measure of compressed and uncompressed
inference for each simulation. Since we are dealing with multi-class classification, we use
the micro- and macro-averaged F-measures (Fmi, Fma) proposed by [76]:

Fmi =
2πρ

π + ρ
with π =

∑M
i=1 TPi∑M

i=1(TPi + FPi)
, ρ =

∑M
i=1 TPi∑M

i=1(TPi + FNi)
and
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Fma =

∑M
i=1 Fi
M

with πi =
TPi

TPi + FPi
, ρi =

TPi
TPi + FNi

, Fi =
2πiρi
πi + ρi

.

Here, TPi denotes a true positive call for the i-th out of M states, π and ρ denote precision
and recall. These F-measures tend to be dominated by the classifier’s performance on
common and rare categories, respectively. Since all state labels are sampled from the
same prior and hence their relative order is random, we used the label permutation
which yielded the highest sum of micro- and macro-averaged F-measures. The simulation
results are included in Supplement S6 at https://zenodo.org/record/46263.

In Fig. 5, we show that the compressed version of the Gibbs sampler converges almost
instantly, whereas the uncompressed version converges much slower, with about 5% of the
cases failing to yield an F-measure > 0.6 within 1,000 iterations. Wavelet compression is
likely to yield reasonably large blocks for the majority class early on, which leads to a
strong posterior estimate of its parameters and self-transition probabilities. As expected,
Fma are generally worse, since any misclassification in a rare class has a larger impact.
Especially in the uncompressed version, we observe that Fma tends to plateau until Fmi

approaches 1.0. Since any misclassification in the majority (neutral) class adds false
positives to the minority classes, this effect is expected. It implies that correct labeling
of the majority class is a necessary condition for correct labeling of minority classes, in
other words, correct identification of the rare, interesting segments requires the sampler
to properly converge, which is much harder to achieve without compression. It should
be noted that running compressed HaMMLET for 1,000 iterations is unnecessary on the
simulated data, as in all cases it converges between 25 and 50 iterations. Thus, for all
practical purposes, further speedup by a factor of 40–80 can be achieved by reducing
the number of iterations, which yields convergence up to 3 orders of magnitude faster
than standard FBG.

Coriell, ATCC and breast carcinoma

The data provided by [77] includes 15 aCGH samples for the Coriell cell line. At about
2,000 probes, the data is small compared to modern high-density arrays. Nevertheless,
these data sets have become a common standard to evaluate CNV calling methods, as
they contain few and simple aberrations. The data also contains 6 ATCC cell lines as
well as 4 breast carcinoma, all of which are substantially more complicated, and typically
not used in software evaluations. In Fig. 6, we demonstrate our ability to infer the correct
segments on the most complex example, a T47D breast ductal carcinoma sample of a
54 year old female. We used 6-state automatic priors with P(σ2 ≤ 0.1) = 0.85, and all
Dirichlet hyperparameters set to 1. On a standard laptop, HaMMLET took 0.09 seconds
for 1,000 iterations; running times for the other samples were similar. Our results for all 25
data sets have been included in Supplement S7 at https://zenodo.org/record/46263.

Discussion

In the analysis of biological data, there are usually conflicting objectives at play which
need to be balanced: the required accuracy of the analysis, ease of use—using the
software, setting software and method parameters—and often the speed of a method.
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Figure 5. F-measures for simulation results. The median value (black) and
quantile ranges (in 5% steps) of the micro- (top) and macro-averaged (bottom) F-
measures (Fmi, Fma) for uncompressed (left) and compressed (right) FBG inference, on
the same 129,600 simulated data sets, using automatic priors. The x-axis represents the
number of iterations alone, and does not reflect the additional speedup obtained through
compression. Notice that the compressed HMM converges no later than 50 iterations
(inset figures, right).
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Figure 6. HaMMLET’s inference of copy-number segments on T47D breast
ductal carcinoma. Notice that the data is much more complex than the simple
structure of a diploid majority class with some small aberrations typically observed for
Coriell data.
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Bayesian methods have obtained a reputation of requiring enormous computational
effort and being difficult to use, for the expert knowledge required for choosing prior
distributions. It has also been recognized [60, 62, 78] that they are very powerful and
accurate, leading to improved, high-quality results and providing, in the form of posterior
distributions, an accurate measure of uncertainty in results. Nevertheless, it is not
surprising that a hundred times larger effort in computation alone prevented wide-spread
use.

Inferring Copy Number Variants (CNV) is a quite special problem, as experts can
identify CN changes visually, at least on very good data and for large, drastic CN changes
(e. g., long segments lost on both chromosomal copies). With lesser quality data, smaller
CN differences and in the analysis of cohorts the need for objective, highly accurate, and
automated methods is evident.

The core idea for our method expands on our prior work [62] and affirms a conjecture
by Lai et al. [65] that a combination of smoothing and segmentation will likely improve
results. One ingredient of our method are Haar wavelets, which have previously been
used for pre-processing and visualization [21,64]. In a sense, they quantify and identify
regions of high variation, and allow to summarize the data at various levels of resolution,
somewhat similar to how an expert would perform a visual analysis. We combine, for the
first time, wavelets with a full Bayesian HMM by dynamically and adaptively infering
blocks of subsequent observations from our wavelet data structure. The HMM operates
on blocks instead of individual observations, which leads to great saving in running
times, up to 350-fold compared to the standard FB-Gibbs sampler, and up to 288 times
faster than CBS. Much more importantly, operating on the blocks greatly improves
convergence of the sampler, leading to higher accuracy for a much smaller number of
sampling iterations. Thus, the combination of wavelets and HMM realizes a simultaneous
improvement on accuracy and on speed; typically one can have one or the other. An
intuitive explanation as to why this works is that the blocks derived from the wavelet
structure allow efficient, summary treatment of those “easy” to call segments given the
current sample of HMM parameters and identifies “hard” to call CN segment which
need the full computational effort from FB-Gibbs. Note that it is absolutely crucial that
the block structure depends on the parameters sampled for the HMM and will change
drastically over the run time. This is in contrast to our prior work [62], which used static
blocks and saw no improvements to accuracy and convergence speed. The data structures
and linear-time algorithms we introduce here provide the efficient means for recomputing
these blocks at every cycle of the sampling, cf. Fig. 1. Compared to our prior work,
we observe a speed-up of up to 3,000 due to the greatly improved convergence, O(T )
vs. O(T log T ) clustering, improved numerics and, lastly, a C++ instead of a Python
implementation.

We performed an extensive comparison with the state-of-the-art as identified by
several review and benchmark publications and with the standard FB-Gibbs sampler
on a wide range of biological data sets and 129,600 simulated data sets, which were
produced by a simulation process not based on HMM to make it a harder problem
for our method. All comparisons demonstrated favorable results for our method when
measuring accuracy at a very noticeable acceleration compared to the state-of-the-art.
It must be stressed that these results were obtained with a statistically sophisticated
model for CNV calls and without cutting algorithmic corners, but rather an effective
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Figure 7. Mapping of wavelets ψj,k and data points yt to tree nodes N`,t.
Each node is the root of a subtree with n = 2` leaves; pruning that subtree yields a
block of size n, starting at position t. For instance, the node N1,6 is located at position
13 of the DFS array (solid line), and corresponds to the wavelet ψ3,3. A block of size
n = 2 can be created by pruning the subtree, which amounts to advancing by 2n− 1 = 3
positions (dashed line), yielding N3,8 at position 16, which is the wavelet ψ1,1. Thus the
number of steps for creating blocks per iteration is at most the number of nodes in the
tree, and thus strictly smaller than 2T .
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allocation of computational effort.
All our computations are performed using our automatic prior, which derives estimates

for the hyperparameters of the priors for means and variances directly from the wavelet
tree structure and the resulting blocks. The block structure also imposes a prior on
self-transition probabilities. The user only has to provide an estimate of the noise
variance, but as the automatic prior is designed to be weak, the prior and thus the
method is robust against incorrect estimates. We have demonstrated this by using
different hyperparameters for the associated Dirichlet priors in our simulations, which
HaMMLET is able to infer correctly regardless of the transition priors. At the same time
the automatic prior can be used to tune certain aspects of the HMM if stronger prior
knowledge is available. We would expect further improvements from non-automatic,
expert-selected priors, but refrained from using them for the evaluation, as they might
be perceived as unfair to other methods.

In summary, our method is as easy to use as other, statistically less sophisticated
tools, more accurate and much more computationally efficient. We believe this makes it
an excellent choice both for routine use in clinical settings and principled re-analysis
of large cohorts, where the added accuracy and the much improved information about
uncertainty in copy number calls from posterior marginal distributions will likely yield
improved insights into CNV as a source of genetic variation and its relationship to
disease.

Methods

We will briefly review Forward-Backward Gibbs sampling (FBG) for Bayesian Hidden
Markov Models, and its acceleration through compression of the data into blocks. By first
considering the case of equal emission variances among all states, we show that optimal
compression is equivalent to a concept called selective wavelet reconstruction, following
a classic proof in wavelet theory. We then argue that wavelet coefficient thresholding,
a variance-dependent minimax estimator, allows for compression even in the case of
unequal emission variances. This allows the compression of the data to be adapted to the
prior variance level at each sampling iteration. We then derive a simple data structure
to dynamically create blocks with little overhead. While wavelet approaches have been
used for aCGH data before [29, 33, 34, 63], our method provides the first combination of
wavelets and HMMs.

Bayesian Hidden Markov Models

Let T be the length of the observation sequence, which is equal to the number of probes.
An HMM can be represented as a statistical model (q,A, θ,π |y), with transition matrix
A, a latent state sequence q = (q0, q1, . . . , qT−1), an observed emission sequence y = (y0,
y1, . . . , yT−1), emission parameters θ, and an initial state distribution π.

In the usual frequentist approach, the state sequence q is inferred by first finding a
maximum likelihood estimate of the parameters,

(AML, θML,πML) = arg max
(A,θ,π)

L(A, θ,π |y),

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2016. ; https://doi.org/10.1101/023705doi: bioRxiv preprint 

https://doi.org/10.1101/023705
http://creativecommons.org/licenses/by-nd/4.0/


17

using the Baum-Welsh algorithm [53,54]. This is only guaranteed to yield local optima,
as the likelihood function is not convex. Repeated random reinitializations are used to
find “good” local optima, but there are no guarantees for this method. Then, the most
likely state sequence given those parameters,

q̂ = arg max
q

P(q | AML, θML,πML,y),

is calculated using the Viterbi algorithm [55]. However, if there are only a few aberrations,
that is there is imbalance between classes, the ML parameters tend to overfit the normal
state which is likely to yield incorrect segmentation [62]. Furthermore, alternative
segmentations given those parameters are also ignored, as are the ones for alternative
parameters.

The Bayesian approach is to calculate the distribution of state sequences directly by
integrating out the emission and transition variables,

P(q |y) =

∫
A

∫
θ

∫
π

P(q,A, θ,π |y) dπ dθ dA.

Since this integral is intractable, it has to be approximated using Markov Chain Monte
Carlo techniques, i. e. drawing N samples,

(q(i),A(i), θ(i),π(i)) ∼ P(q,A, θ,π |y),

and subsequently approximating marginal state probabilities by their frequency in the
sample

P(qt = s |y) ≈ 1

N

N∑
i=1

I(q(i)t = s).

Thus, for each position t, we get a complete probability distribution over the possible
states. As the marginals of each variable are explicitly defined by conditioning on the
other variables, an HMM lends itself to Gibbs sampling, i. e. repeatedly sampling from
the marginals (A |q, θ,y,π), (θ |q,A,y,π), (π | A, θ,y,q), and (q | A, θ,y,π), condi-
tioned on the previously sampled values. Using Bayes’ formula and several conditional
independence relations, the sampling process can be written as

A ∼ P(A |π,q, τA) ∝ P(π,q | A)P(A | τA),

θ ∼ P(θ |q,y, τθ) ∝ P(q,y | θ)P(θ | τθ),
π ∼ P(π | A,q, τπ) ∝ P(A,q |π)P(π | τπ), and

q ∼ P(q | A,y, θ,π),

where τx represents hyperparameters to the prior distribution P(x | τx). Typically, each
prior will be conjugate, i. e. it will be the same class of distributions as the posterior,
which then only depends on updated parameters τ?, e.g. A ∼ P(A | τ?A) = P(A |π,q, τA).
Thus τπ and τA(k,:), the hyperparameters of π and the k-th row of A, will be the αi of a
Dirichlet distribution, and τθ = (α, β, ν, µ0) will be the parameters of a Normal-Inverse
Gamma distribution.
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Notice that the state sequence does not depend on any prior. Though there are several
schemes available to sample q, [58] has argued strongly in favor of Forward-Backward
sampling [57], which yields Forward-Backward Gibbs sampling (FBG) above. Variations
of this have been implemented for segmentation of aCGH data before [60,62,78]. However,
since in each iteration a quadratic number of terms has to be calculated at each position
to obtain the forward variables, and a state has to be sampled at each position in the
backward step, this method is still expensive for large data. Recently, [62] have introduced
compressed FBG by sampling over a shorter sequence of sufficient statistics of data
segments which are likely to come from the same underlying state. Let B := (Bw)Ww=1 be
a partition of y into W blocks. Each block Bw contains nw elements. Let yw,k the k-th
element in Bw. The forward variable αw(j) for this block needs to take into account the
nw emissions, the transitions into state j, and the nw − 1 self-transitions, which yields

αw(j) := Anw−1
jj P(Bw |µj , σ2

j )

nw∑
i=1

αw−1(i)Aij , and

P(Bw |µ, σ2) =

nw∏
k=1

P(yw,k |µ, σ2).

The ideal block structure would correspond to the actual, unknown segmentation of
the data. Any subdivision thereof would decrease the compression ratio, and thus
the speedup, but still allow for recovery of the true breakpoints. In addition, such
a segmentation would yield sufficient statistics for the likelihood computation that
corresponds to the true parameters of the state generating a segment. Using wavelet
theory, we show that such a block structure can be easily obtained.

Wavelet theory preliminaries

Here, we review some essential wavelet theory; for details, see [79,80]. Let

ψ(x) :=


1 0 ≤ x < 1

2

−1 1
2 ≤ x < 1

0 elsewhere

be the Haar wavelet [81], and ψj,k(x) := 2j/2ψ(2jx− k); j and k are called the scale and
shift parameter. Any square-integrable function over the unit interval, f ∈ L2([0,1)), can
be approximated using the orthonormal basis {ψj,k | j, k ∈ Z,−1 ≤ j, 0 ≤ k ≤ 2j − 1},
admitting a multiresolution analysis [82, 83]. Essentially, this allows us to express a
function f(x) using scaled and shifted copies of one simple basis function ψ(x) which
is spatially localized, i. e. non-zero on only a finite interval in x. The Haar basis is
particularly suited for expressing piecewise constant functions.

Finite data y := (y0, . . . ,yT−1) can be treated as an equidistant sample f(x) by
scaling the indices to the unit interval using xt := t

T . Let h := log2 T . Then y can be
expressed exactly as a linear combination over the Haar wavelet basis above, restricted
to the maximum level of sampling resolution (j ≤ h− 1):

yt =
∑
j,k

dj,kψj,k(xt).
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The wavelet transform d =Wy is an orthogonal endomorphism, and thus incurs neither
redundancy nor loss of information. Surprisingly, d can be computed in linear time
using the pyramid algorithm [82].

Compression via wavelet shrinkage

The Haar wavelet transform has an important property connecting it to block creation:
Let d̂ be a vector obtained by setting elements of d to zero, then ŷ = Wᵀd̂ := Ŵᵀd
is called selective wavelet reconstruction (SW). If all coefficients dj,k with ψj,k(xt) 6=
ψj,k(xt+1) are set to zero for some t, then ŷt = ŷt+1, which implies a block structure on
ŷ. Conversely, blocks of size > 2 (to account for some pathological cases) can only be
created using SW. This general equivalence between SW and compression is central to
our method. Note that ŷ does not have to be computed explicitly; the block boundaries
can be inferred from the position of zero-entries in d̂ alone.

Assume all HMM states had the same emission variance σ2. Since each state is
associated with an emission mean, finding q can be viewed as a regression or smoothing
problem of finding an estimate µ̂ of a piecewise constant function µ whose range is
precisely the set of emission means, i. e.

µ = f(x), y = f(x) + ε, ε ∼iid N(0, σ2).

Unfortunately, regression methods typically do not limit the number of distinct values
recovered, and will instead return some estimate ŷ 6= µ̂. However, if ŷ is piecewise
constant and minimizes ‖µ− ŷ‖, the sample means of each block are close to the true
emission means. This yields high likelihood for their corresponding state and hence
a strong posterior distribution, leading to fast convergence. Furthermore, the change
points in µ must be close to change points in ŷ, since moving block boundaries incurs
additional loss, allowing for approximate recovery of true breakpoints. ŷ might however
induce additional block boundaries that reduce the compression ratio.

In a series of ground-breaking papers, Donoho, Johnstone et al. [84–88] showed that
SW could in theory be used as an almost ideal spatially adaptive regression method.
Assuming one could provide an oracle ∆(µ,y) that would know the true µ, then there
exists a method MSW(y,∆) = Ŵᵀ

SW using an optimal subset of wavelet coefficients

provided by ∆ such that the quadratic risk of ŷSW := Ŵᵀ
SWd is bounded as

‖µ− ŷSW‖22 = O

(
σ2 lnT

T

)
.

By definition, MSW would be the best compression method under the constraints of
the Haar wavelet basis. This bound is generally unattainable, since the oracle cannot
be queried. Instead, they have shown that for a method MWCT(y, λσ) called wavelet
coefficient thresholding, which sets coefficients to zero whose absolute value is smaller
than some threshold λσ, there exists some λ?T ≤

√
2 lnT with ŷWCT := Ŵᵀ

WCTd such
that

‖µ− ŷWCT‖22 ≤ (2 lnT + 1)

(
‖µ− ŷSW‖22 +

σ2

T

)
.
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This λ?T is minimax, i. e. the maximum risk incured over all possible data sets is not
larger than that of any other threshold, and no better bound can be obtained. It is
not easily computed, but for large T , on the order of tens to hundreds, the universal
threshold λuT :=

√
2 lnT is asymptotically minimax. In other words, for data large enough

to warrant compression, universal thresholding is the best method to approximate µ,
and thus the best wavelet-based compression scheme for a given noise level σ2.

Integrating wavelet shrinkage into FBG

This compression method can easily be extended to multiple emission variances. Since
we use a thresholding method, decreasing the variance simply subdivides existing
blocks. If the threshold is set to the smallest emission variance among all states, ŷ will
approximately preserve the breakpoints around those low-variance segments. Those of
high variance are split into blocks of lower sample variance; see [89,90] for an analytic
expression. While the variances for the different states are not known, FBG provides a
priori samples in each iteration. We hence propose the following simple adaptation: In
each sampling iteration, use the smallest sampled variance parameter to create a new
block sequence via wavelet thresholding (Algorithm 1).

Algorithm 1 Dynamically adaptive FBG for HMMs

1: procedure HaMMLET(y, τA, τθ, τπ)
2: T ← |y |
3: λ←

√
2 lnT

4: A ∼ P(A | τA)
5: θ ∼ P(θ | τθ)
6: π ∼ P(π | τπ)
7: for i = 1, . . . ,N do
8: σmin ← minσi

{σ̂MAD, σi |σ2
i ∈ θ}

9: Create block sequence B from threshold λσmin

10: q ∼ P(q | A,B, θ,π) using Forward-Backward sampling
11: Add count of marginal states for q to result
12: A ∼ P(A | τ?A) = P(A |π,q, τA) ∝ P(π,q | A)P(A | τA)
13: θ ∼ P(θ | τ?θ ) = P(θ |q,B, τθ) ∝ P(q,B | θ)P(θ | τθ)
14: π ∼ P(π | τ?π) = P(π | A,q, τπ) ∝ P(A,q |π)P(π | τπ)
15: end for
16: end procedure

While intuitively easy to understand, provable guarantees for the optimality of this
method, specifically the correspondence between the wavelet and the HMM domain
remain an open research topic. A potential problem could arise if all sampled variances
are too large. In this case, blocks would be under-segmented, yield wrong posterior
variances and hide possible state transitions. As a safeguard against over-compression,
we use the standard method to estimate the variance of constant noise in shrinkage
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applications,

σ̂2
MAD :=

(
MADk{dlog2 T−1,k}

Φ−1
(
3
4

) )2

as an estimate of the variance in the dominant component, and modify the threshold
definition to λ ·min {σ̂MAD, σi ∈ θ}. If the data is not i.i.d., σ̂2

MAD will systematically
underestimate the true variance [28]. In this case, the blocks get smaller than necessary,
thus decreasing the compression.

A data structure for dynamic compression

The necessity to recreate a new block sequence in each iteration based on the most recent
estimate of the smallest variance parameter creates the challenge of doing so with little
computational overhead, specifically without repeatedly computing the inverse wavelet
transform or considering all T elements in other ways. We achieve this by creating a
simple tree-based data structure.

The pyramid algorithm yields d sorted according to (j, k). Again, let h := log2 T , and
` := h− j. We can map the wavelet ψj,k to a perfect binary tree of height h such that all
wavelets for scale j are nodes on level `, nodes within each level are sorted according to k,
and ` is increasing from the leaves to the root (Fig. 7). d represents a breadth-first search
(BFS) traversal of that tree, with dj,k being the entry at position b2jc+ k. Adding yi as
the i-th leaf on level ` = 0, each non-leaf node represents a wavelet which is non-zero for
the n := 2` data points yt, for t in the the interval Ij,k := [kn, (k+ 1)n− 1] stored in the
leaves below; notice that for the leaves, kn = t.

This implies that the leaves in any subtree all have the same value after wavelet
thresholding if all the wavelets in this subtree are set to zero. We can hence avoid
computing the inverse wavelet transform to create blocks. Instead, each node stores
the maximum absolute wavelet coefficient in the entire subtree, as well as the sufficient
statistics required for calculating the likelihood function. More formally, a node N`,t
corresponds to wavelet ψj,k, with ` = h − j and t = k2` (ψ−1,0 is simply constant on
the [0,1) interval and has no effect on block creation, thus we discard it). Essentially, `
numbers the levels beginning at the leaves, and t marks the start position of the block
when pruning the subtree rooted at N`,t. The members stored in each node are:

• The number of leaves, corresponding to the block size:

N`,t[n] := 2`

• The sum of data points stored in the subtree leaves:

N`,t[Σ1] :=
∑
i∈Ij,k

yi

• Similarly, the sum of squares:

N`,t[Σ2] :=
∑
i∈Ij,k

y2i
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• The maximum absolute wavelet coefficient of the subtree, including the current
dj,k itself:

N0,t[d] := 0 N`>0,t[d] := max
`′≤`

t≤t′<t+2`

{∣∣∣dh−`′,2`′/t′ ∣∣∣}
All these values can be computed recursively from the child nodes in linear time. As
some real data sets contain salt-and-pepper noise, which manifests as isolated large
coefficients on the lowest level, its is possible to ignore the first level in the maximum
computation so that no information to create a single-element block for outliers is passed
up the tree. We refer to this technique as noise control. Notice that this does not imply
that blocks are only created at even t, since true transitions manifest in coefficients on
multiple levels.

The block creation algorithm is simple: upon construction, the tree is converted
to depth-first search (DFS) order, which simply amounts to sorting the BFS array
according to (kn, j), and can be performed using linear-time algorithms such as radix
sort; internally, we implemented a different linear-time implementation mimicking tree
traversal using a stack. Given a threshold, the tree is then traversed in DFS order by
iterating linearly over the array (Fig. 7, solid lines). Once the maximum coefficient
stored in a node is less or equal to the threshold, a block of size n is created, and the
entire subtree is skipped (dashed lines). As the tree is perfect binary and complete, the
next array position in DFS traversal after pruning the subtree rooted at the node at
index i is simply obtained as i+ 2n− 1, so no expensive pointer structure needs to be
maintained, leaving the tree data structure a simple flat array. An example of dynamic
block creation is given in Fig. 8.

Once the Gibbs sampler converges to a set of variances, the block structure is less
likely to change. To avoid recreating the same block structure over and over again, we
employ a technique called block structure prediction. Since the different block structures
are subdivisions of each other that occur in a specific order for decreasing σ2, there is
a simple bijection between the number of blocks and the block structure itself. Thus,
for each block sequence length we register the minimum and maximum variance that
creates that sequence. Upon entering a new iteration, we check if the current variance
would create the same number of blocks as in the previous iteration, which guarantees
that we would obtain the same block sequence, and hence can avoid recomputation.

The wavelet tree data structure can be readily extended to multivariate data of
dimensionality m. Instead of storing m different trees and reconciling m different block
patterns in each iteration, one simply stores m different values for each sufficient statistic
in a tree node. Since we have to traverse into the combined tree if the coefficient of any
of the m trees was below the threshold, we simply store the largest N`,t[d] among the
corresponding nodes of the trees, which means that the block creation can be done in
O(T ) instead of O(mT ), i. e. the dimensionality of the data only enters into the creation
of the data structure, but not the query during sampling iterations.

Automatic priors

While Bayesian methods allow for inductive bias such as the expected location of means,
it is desirable to be able to use our method even when little domain knowledge exists,
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Figure 8. Example of dynamic block creation. The data is of size T = 256, so
the wavelet tree contains 512 nodes. Here, only 37 entries had to be checked against
the threshold (dark line), 19 of which (round markers) yielded a block (vertical lines
on the bottom). Sampling is hence done on a short array of 19 blocks instead of 256
individual values, thus the compression ratio is 13.5. The horizontal lines in the bottom
subplot are the block means derived from the sufficient statistics in the nodes. Notice
how the algorithm creates small blocks around the breakpoints, e. g. at t ≈ 125, which
requires traversing to lower levels and thus induces some additional blocks in other parts
of the tree (left subtree), since all block sizes are powers of 2. This somewhat reduces
the compression ratio, which is unproblematic as it increases the degrees of freedom in
the sampler.
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or large variation is expected, such as the lab and batch effects commonly observed
in micro-arrays [91], as well as unknown means due to sample contamination. Since
FBG does require a prior even in that case, we propose the following method to specify
hyperparameters of a weak prior automatically. Posterior samples of means and variances
are drawn from a Normal-Inverse Gamma distribution (µ, σ2) ∼ NIΓ(µ0, ν, α, β), whose
marginals simply separate into a Normal and an Inverse Gamma distribution

σ2 ∼ IΓ(α, β), µ ∼ N
(
µ0,

σ2

ν

)
.

Let s2 be a user-defined variance (or automatically infered, e. g. from the largest of the
finest detail coefficients, or σ̂2

MAD), and p the desired probability to sample a variance
not larger than s2. From the CDF of IΓ we obtain

p := P(σ2 ≤ s2) =
Γ
(
α, βs2

)
Γ(α)

= Q

(
α,

β

s2

)
.

IΓ has a mean for α > 1, and closed-form solutions for α ∈ N. Furthermore, IΓ has
positive skewness for α > 3. We thus let α = 2, which yields

β = −s2
(
W−1

(
−p
e

)
+ 1
)
, 0 < p ≤ 1,

where W−1 is the negative branch of the Lambert W -function, which is transcendental.
However, an excellent analytical approximation with a maximum error of 0.025% is given
in [92], which yields

β ≈ s2
 2

√
b

M1

√
b+
√

2
(
M2b exp

(
M3

√
b
)

+ 1
) + b

 ,

b := − ln p,

M1 := 0.3361, M2 := −0.0042, M3 := −0.0201.

Since the mean of IΓ is β
α−1 , the expected variance of µ is β

ν for α = 2. To ensure

proper mixing, we could simply set β
µ to the sample variance of the data, which can be

estimated from the sufficient statistics in the root of the wavelet tree (the first entry in
the array), provided that µ contained all states in almost equal number. However, due
to possible class imbalance, means for short segments far away from µ0 can have low
sampling probability, as they do not contribute much to the sample variance of the data.
We thus define δ to be the sample variance of block means in the compression obtained
by σ̂2

MAD, and take the maximum of those two variances. We thus obtain

µ0 :=
Σ1

n
, and ν = βmax

{
nΣ2 − Σ2

1

n2
, δ

}−1
.
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Numerical issues

To assure numerical stability when working with probabilities, many HMM implementa-
tions resort to log-space computations, which involves a considerable number of expensive
function calls (exp, log, pow); for instance, on Intel’s Nehalem architecture, log (FYL2X)
requires 55 operations as opposed to 1 for adding and multiplying floating point numbers
(FADD, FMUL) [93]. Our implementation, which differs from [62] greatly reduces the
number of such calls by utilizing the block structure: The term accounting for emissions
and self-transitions within the block can be written as

Anw−1
jj

(2π)nw/2σnw
j

exp

(
−

nw∑
k=1

(yw,k − µj)2

2σ2
j

)
.

Any constant cancels out during normalization. Furthermore, exponentiation of poten-
tially small numbers causes underflows. We hence move those terms into the exponent,
utilizing the much stabler logarithm function.

exp

(
−

nw∑
k=1

(yw,k − µj)2

2σ2
j

+ (nw − 1) logAjj − nw log σj

)
.

Using the block’s sufficient statistics

nw, Σ1 :=

nw∑
k=1

yw,k, Σ2 :=

nw∑
k=1

y2w,k.

the exponent can be rewritten as

Ew(j) :=
2µjΣ1 − Σ2

2σ2
j

+K(nw, j),

K(nw, j) := (nw − 1) logAjj − nw

(
log σj +

µ2
j

2σ2
j

)
.

K(nw, j) can be precomputed for each iteration, thus greatly reducing the number of
expensive function calls. Notice that the expressions above correspond to the canonical
exponential family form exp(〈t(x), θ〉−F (θ)+k(x)) of a product of Gaussian distributions.
Hence, equivalent terms can easily be derived for non-Gaussian emissions, implying that
the same optimizations can be used in the general case of exponential family distributions:
Only the dot product of the sufficient statistics t(x) and the parameters θ has to be
computed in each iteration and for each block, while the log-normalizer F (θ) can be
precomputed for each iteration, and the carrier measure k(x) (which is 0 for Gaussian
emissions) only has to be computed once.

To avoid overflow of the exponential function, we subtract the largest such exponents
among all states, hence Ew(j) ≤ 0. This is equivalent to dividing the forward variables
by

exp

(
max
k

Ew(k)

)
,
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which cancels out during normalization. Hence we obtain

α̃w(j) := exp

(
Ew(j)−max

k
Ew(k)

) nw∑
i=1

αw−1(i)Aij ,

which are then normalized to

α̂w(j) =
α̃w(j)∑
k α̃w(k)

.
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Supporting information

The supplemental figures, our simulation data and results are available for download at
https://zenodo.org/record/46263 (DOI: 10.5281/zenodo.46263) [94], and are refer-
enced as S1–S7 throughout the text. Additionally, the figures can also be viewed through
our website at http://schlieplab.org/Supplements/HaMMLET/ for convenience. The
implementation of HaMMLET and scripts to reproduce the simulation and evaluation are
available at https://github.com/wiedenhoeft/HaMMLET/tree/biorxiv, and a snap-
shot is archived at https://zenodo.org/record/46262 (DOI: 10.5281/zenodo.46262)
[95]. The high-density aCGH data [68] is available from http://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE23949 (accession GEO:GSE23949). Coriell etc. data
[77] is available from http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16

(accession GEO:GSE16). The simulations of [66] are available from the original authors’
website at http://www.cbs.dtu.dk/~hanni/aCGH/. Notice that due to the use of a
random number generator by HaMMLET, CBS and our simulations, individual results
will differ slightly from the data provided in the supplement.
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