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ABSTRACT2

Brain-machine interfaces rely on extracting motor control signals from brain activity in real time3
to actuate external devices such as robotic limbs. Whereas biomimetic approaches to neural4
decoding use motor imagery/observation signals, non-biomimetic approaches assign an arbi-5
trary transformation that maps neural activity to motor control signals. In this work, we present6
a unified framework for the design of both biomimetic and non-biomimetic decoders based on7
kernel-based system identification. This framework seamlessly incorporates the neural popula-8
tion dynamics in the decoder design, is particularly robust even with short training data records,9
and results in decoders with small filter delays. The theory and results presented here provide a10
new formulation of optimal linear decoding, a formal method for designing non-biomimetic deco-11
ders, and a set of proposed metrics for assessing decoding performance from an online control12
perspective. The theoretical framework is also applicable to the design of closed-loop neural13
control schemes.14
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1 INTRODUCTION

The last decade witnessed tremendous advances in efferent brain-machine interface (BMI) control. At17
the core of BMI operation lies the so-called neural ‘decoder’ – a mathematical mapping that maps pat-18
terns of neural activity (input signals) into a ‘decoded’ signal (output signal) that is subsequently used to19
control external devices. Traditionally, decoders are designed such that the decode mimics actual kine-20
matics (Serruya et al., 2002; Carmena et al., 2003; Paninski et al., 2004; Hochberg et al., 2006) or21
kinetics (Fagg et al., 2009; Song and Giszter, 2011; Suminski et al., 2013). In both cases, biomimetic22
decoder design requires a synchronized set of recorded neural activity and kinematic/kinetic correlates to23
estimate the filter functions. An alternative approach to neural decoder design is non-biomimetic deco-24
ding. Rooted in the pioneering work of Fetz (1969), non-biomimetic decoding directly assigns arbitrary25
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mathematical mappings from the neural input signals to the decode via arbitrary filter functions. To date,26
non-biomimetic decoders rely on heuristics to design these filter functions. For example, exponential ave-27
raging (Fetz, 1969; Fetz and Finocchio, 1971; Fetz and Baker, 1973) and moving average filters (Moritz28
et al., 2008; Moritz and Fetz, 2011; Koralek et al., 2012; Clancy et al., 2014) have been used for non-29
biomimetic decoding. Yet, the link between biomimetic and non-biomimetic decoder designs has been30
lacking.31

Recently, we proposed a formal non-biomimetic decoder design method that rely on mathematical opti-32
mization (Badreldin et al., 2013; Badreldin and Oweiss, 2014). In this work, we formalize the decoder33
design problem using the general class of kernel-based system identification methods. We first demon-34
strate the connection between neural decoding and system identification, and then we review results from35
the machine learning and systems identification literature (Pillonetto et al., 2014) to link both biomimetic36
and non-biomimetic decoders from a ‘matched filter’ perspective that only differ in the objective function37
to be optimized.38

2 THEORY AND METHODS

2.1 OPTIMAL LINEAR DECODER AND WIENER FILTERING

Optimal linear decoding has been widely used in the BMI community (Warland et al., 1997; Serruya39
et al., 2002; Carmena et al., 2003; Paninski et al., 2004; Patil et al., 2004; Hochberg et al., 2006;40
Fagg et al., 2009; Suminski et al., 2010). Neural spike trains from single- or mutli-unit activity are first41
converted to neural spike counts in predefined time bins to form a neural response time series for each42
individual unit, which is subsequently filtered (convolved) with linear filters of finite duration. In the final43
step, the unit filter outputs (referred to as unit outputs for short) are added together to obtain the ‘decode’,44
i.e. the quantity that is being decoded. These steps are pictorially illustrated in Figure 1.45

If we denote raw spike trains by rm(t), binned spike trains by xm(t), the unit filter coefficients as a46
function of time by gm(t), and the ‘decode’ by y(t), then the optimal linear decoder equation (Warland47
et al., 1997; Paninski et al., 2004) is given as148

y(t) =
C∑

m=1

L−1∑
k=0

xm(t− k)gm(k). (1)

The inner sum is the filtering operation for binned spike trains from a particular unit to produce a unit49
output, and then the outer sum simply sums all unit outputs to produce the final ‘decode’. Given a synch-50
ronized set of input-output pairs {(xm(t), y(t)) : t = 0, 1, 2, . . . , T − 1;m = 1, 2, . . . , C}, the unit filter51
coefficients are solved for by rewriting Equation 1 in matrix form (Paninski et al., 2004)52


y(0)
y(1)

...
y(T − 1)


︸ ︷︷ ︸

y

=

 x1(0) x1(−1) . . . x1(−L+ 1) . . . xC(0) xC(−1) . . . xC(−L+ 1)
x1(1) x1(0) . . . x1(−L+ 2) . . . xC(1) xC(0) . . . xC(−L+ 2)

...
...

. . .
...

. . .
...

...
. . .

...
x1(T − 1) x1(T − 2) . . . x1(T − L) . . . xC(T − 1) xC(T − 2) . . . xC(T − L)


︸ ︷︷ ︸

X



g1(0)
g1(1)
. . .

g1(L− 1)
...

gC(0)
gC(1)
. . .

gC(L− 1)


︸ ︷︷ ︸

θ
(2)

1 For convenience, the bias term will be dropped throughout this work, without loss of generality, as it can be taken care of by proper offset removal.
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The solution is obtained by solving the so-called normal equations, X>Xθ = X>y, and the ‘optimal53
linear filters’ are given succinctly by54

θ∗ = (X>X)−1X>y, (3)

where the matrix X† , (X>X)−1X> is known as the pseudo-inverse matrix of X (Strang, 2009).55

Hence, by stacking all filter coefficients for all units {gm(t) : m = 1, 2, . . . , C; t = 0, 1, . . . , L− 1} into56
a parameter vector θ and arranging the binned neural spike counts into an input data matrix X, we obtain57
the pseudo-inverse solution as in (3). According to the projection theorem, the pseudo-inverse solution58
can be interpreted as the solution that minimizes the error between the decode ŷ = Xθ, and the actual59
output y (Strang, 2009)60

θ∗ = argmin
θ
‖y −Xθ‖2 (4)

Hence, the decoder’s underlying generative data model is61

y = Xθ + ε (5)

where ε = [ε(t) : t = 0, . . . , T − 1]> is assumed to be white Gaussian noise. This assumption on the62
additive noise term makes the solution in (3) the maximum likelihood solution for the unknown decoder63
coefficients {gi(t) : i = 1, 2, . . . , C; t = 0, 1, . . . , L− 1} (Bishop, 2006).64

This optimal linear decoder solution is commonly referred to as finite duration Wiener filte-65
ring (Carmena et al., 2003; Sanchez et al., 2004; Patil et al., 2004; Kim et al., 2007; Fagg et al.,66
2009; Suminski et al., 2010), in which it is assumed that the input-output second order statistics are67
known (Sanchez et al., 2005; Kim et al., 2006). Given the LC × LC correlation matrix between the68
inputs as69

R =


r11 r12 . . . r1C
r21 r22 . . . r1C

...
... . . . ...

rC1 rC2 . . . rCC

 , (6)

where rmn is a L × L correlation matrix between units m and n at different time lags L (autocorrelation70
in case m = n and crosscorrelation in case m 6= n), and the LC × 1 cross-correlation vector between the71
inputs and the output as72

p =
[
p>1 p>2 . . . p>C

]>
, (7)

where pm is a L× 1 cross-correlation vector between unit m and the output y(t) at different time lags L,73
the weights of the finite-duration Wiener filter are estimated using the Wiener-Hopf solution in the time74
domain (Wiener, 1949; Kim et al., 2006)75

w∗ = R−1p. (8)

The intimate relationship between optimal linear decoding and Wiener filtering is seen when we consider76
the definitions of the correlations in R and p given by77

(rmn)k = E[xm(t)xn(t− k)], (9)

and78
(pm)k = E[y(t)xm(t− k)] (10)

respectively. Thus, the solution given in (3) is the large-sample approximation of the idealized solution79
given in (8). In fact, the matrix80

R̂ , X>X (11)
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has its elements81

(r̂mn)k =
T−1∑
t=0

xm(t)xn(t− k). (12)

Therefore, the data-based matrix R̂ is an unnormalized estimate of the sample covariance matrix, which82
is a biased estimator of R. Similarly, the vector p̂ is an unnormalized biased estimate of p. Given a large83
data set for estimating the decoder, we expect the data-driven solution (3) to converge to the idealized84
solution (8). The problem that is faced in practice is: how fast is this convergence? It is widely reported85
that estimating Wiener-like filters requires about 10 minutes of data (Carmena et al., 2003; Paninski86
et al., 2004; Patil et al., 2004; Flint et al., 2012, 2013). The implications of using short finite-data87
samples to estimate the decoder filters are investigated below.88

2.2 CONNECTION WITH SYSTEM IDENTIFICATION

The optimal linear filters structure presented in Figure 1 is a very general structure for modeling black-89
box input-output data. In the general case, the filter coefficients for each unit can be of infinite length.90
For example, the Kalman filter employed in the context of neural decoding gives exponentially decaying91
filter weights to all of the temporal history of the neural input, due to its recursive nature, as was formally92
derived in Appendix A.3 in Wu et al. (2006) (see also the linear dynamical system formulation by (Gowda93
et al., 2012, 2014)). With unit filters of infinite duration, the linear decoding equation (compare to (1))94
becomes95

ŷ(t) =
C∑

m=1

∞∑
k=0

xm(t− k)gm(t). (13)

Hence, decoders with finite-duration linear filters2 are indeed lower-order approximations of general96
infinite-duration linear filters3 (Ljung, 1999). The goodness of these approximations depends on the97
dynamics of the approximated filters. Slower dynamics necessitate unit filters of longer duration to fully98
capture their temporal extent, whereas faster dynamics can be captured using unit filters of a shorter dura-99
tion. In other words, the approximation error is bounded by the rate at which the individual unit filter100
coefficients decay to zero as a function of time (Ljung, 1999; Wahlberg et al., 2005). The dynamics of101
the unit filter coefficients depend on the decode dynamics, where for the latter it is desirable to have a102
dynamical bandwidth on the order of 1-3 Hz in case the decode represents a command signal that directly103
drive a robot, i.e. a motor control signal (Willett et al., 2013). Therefore, as widely reported, the unit104
filter length is expected to be around one second (Serruya et al., 2002; Carmena et al., 2003; Hochberg105
et al., 2006; Fagg et al., 2009; Suminski et al., 2010).106

2.3 SINGULAR VALUE DECOMPOSITION OF OPTIMAL LINEAR DECODERS

Consider the SVD of the neural data matrix X, which is a rectangular T × LC matrix with T � LC,107

X = ŨΣ̃V>, (14)

where Ũ = [u1 . . .uT ] is the matrix of output eigenvectors (e.g. hand velocity), V = [v1 . . .vLC ] is the108
matrix of neural eigenvectors, and109

Σ̃ =

[
Σ
0

]
(15)

with a diagonal matrix Σ that has the singular values {σi : i = 1, . . . , LC} on the diagonal. The eigenve-110
ctors {vi : i = 1, . . . , LC} form an orthonormal basis for the LC-dimensional space of possible linear111

2 Also known as Finite Impulse Response (FIR) filters
3 Also known as Infinite Impulse Response (IIR) filters
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decoder filters, and the eignevectors {ui : i = 1, . . . , T} form an orthonormal basis for the T -dimensional112
space of possible decoder outputs from decoding the neural data matrix X (Hansen, 1998; Shlens, 2014).113
The SVD formula can also be written in a ‘scalar’ form (Shlens, 2014)114

X
vi
σi

= ui, (16)

for i = 1, . . . , LC. Comparing this form to Equation (2), we see that indeed the vectors vi/σi are candi-115
date linear decoder filter coefficients tailored for the neural data matrix X, with the corresponding model116
output represented by the vectors ui. To further emphasize this, we consider the Principal Component117
Analysis (PCA) of the neural data matrix which can be obtained – up to a scaling factor (Shlens, 2014) –118
by the eigenmode analysis of the matrix119

R̂ , X>X = VΣ2V>. (17)

This shows that the PCs of the neural data matrix X are indeed the same as the eigenvectors vi. In other120
words, an eigenmode analysis of the neural data reveals that the candidate vectors for the filter coefficients121
are exactly the eigenmodes of the neural data matrix. Additionally, if we consider only a subset of the122
output eigenvectors {ui : i = 1, . . . , LC} and stack them in a matrix U = [u1 u2 . . . uLC ], then the123
pseudo-inverse solution from Equation (3) has an equivalent form124

θ∗ = VΣ−1U>y. (18)

This last result can also be written in a ‘scalar’ form125

θ∗ =
LC∑
i=1

〈ui,y〉
vi
σi

=
LC∑
i=1

yui
vi
σi
, (19)

where yui , 〈ui,y〉 is the dot product (or degree of similarity) between the actual kinematic samples y126
and a particular decode eigenmode ui. Thus, the pseudo-inverse solution is indeed a linear combination127
of the neural data eigenmodes scaled by a gain term, 1/σi.128

It is worth noting that, whereas the matrix Ũ is comprised of T different vectors that can express any129
possible decode samples of length T , the matrix U is only comprised of LC vectors that can express a130
subset of such possible decode samples, with LC � T . This subset is a much limited subset, comprised131
mainly of linear combinations of the output eignvectors ui that correspond to the scaled neural eigenmo-132
des, implying that the set of signals that can be linearly decoded from the neural data matrix X is a very133
small set as compared to the huge space of T -dimensional signals.134

2.4 RIDGE REGRESSION AND REGULARIZATION

In inverse problems, the gain term 1/σi associated with the pseudo-inverse solution can become arbitrarily135
large whenever the singular values σi become arbitrarily small. In particular, the minimization problem (4)136
– for very small σi’s – becomes an ill-conditioned problem4 and the solution becomes highly sensitive to137
small noise in the actual data y (Hansen, 1998; Pillonetto et al., 2014). Intuitively, any small degree138
of similarity between the measurements y and a particular decode eigenmode ui results in an arbitrarily139
small dot product value yui that is close to – but not equal to – zero. This small dot product gets sub-140
sequently ‘amplified’ by the gain term 1/σi and results in a large weight in the linear combination (19).141
This effect is particularly evident whenever the neural data record is of very short length. In such cases,142
the neural data matrix X becomes ill-conditioned, and its low-rank singular values become numerically143

4 In fact, the decoder filter coefficients estimation problem is a deconvolution problem as presented in Pillonetto et al. (2014).
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close to zero (Hansen, 1998; Bishop, 2006; Strang, 2009). Moreover, such low-rank singular values144
typically correspond to ‘noisy’ eigenmodes of the neural data, resulting in noisy decoder filter structures145
and correspondingly noisy decode.146

These numerical issues were recognized and addressed starting with the seminal works of Phillips147
(1962) and Tikhonov and Arsenin (1977) using regularization techniques – which are a special case148
of kernel-based regularization as presented in the next subsection. One of the simplest regulariza-149
tion techniques is the ‘Truncated SVD’ which limits the pseudo-inverse solution to the the first M150
eigenmodes (Hansen, 1987).151

θ∗ =
M∑
i=1

〈ui,y〉
vi
σi

=
M∑
i=1

yui
vi
σi
, (20)

where M < LC is determined numerically. Another popular regularization technique that has been used152
in decoder design (Suminski et al., 2010; Collinger et al., 2013; Wodlinger et al., 2015) is Tikhonov153
regularization (Tikhonov and Arsenin, 1977), which is also known as ridge regression (Bishop, 2006).154
The minimization problem (4), which is originally ill-posed, is slightly modified to become155

θ∗ = argmin
θ
‖y −Xθ‖2 + µ2‖θ‖2, (21)

where µ2 is a regularization parameter. This regularization technique adds a ‘penalty’ term to the156
cost function that penalizes the magnitude of the decoder filter coefficients. The regularized solution157
is (Bishop, 2006)158

θ∗ = (X>X + µ2I)−1X>y. (22)

To gain more insight into the underpinnings of ridge regression, we look at the SVD of the correlation159
matrix X>X (17). Noting that µ2I = V(µ2I)V>, we get160

θ∗ =
LC∑
i=1

σ2i
σ2i + µ2

yui
vi
σi
. (23)

This solution converges to the pseudo-inverse solution as µ → 0, and converges to the zero solu-161
tion (θ = 0) as µ→∞, making µ2 a ‘tuning’ parameter for this solution.162

As noted by Hansen (1998), regularization techniques are rooted in the idea of filtering out (i.e. sup-163
pressing) ‘noisy’ SVD eigenmodes. Both the truncated SVD solution and the ridge regression solution can164
be viewed from this ‘filtering’ standpoint. Whereas the pseudo-inverse solution has a ‘gain’ term of 1/σi165
for each eigenmode, the truncated SVD pre-multiplies that gain term by a filter factor166

fi =

{
1 if i ≤M,
0 if i > M, (24)

which is similar to an ‘ideal low-pass’ filter. Similarly, ridge regression uses a filter factor167

fi =
σ2i

σ2i + µ2
. (25)

Therefore, the essence of regularization techniques is to limit the solution to a particular subspace with168
desirable properties that reflect prior knowledge. The techniques presented in this subsection limit the169
solution to a SVD-based subspace. This idea is generalized in the next subsection to arbitrary subspaces170
using kernel methods.171
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2.5 KERNEL METHODS FOR SYSTEM IDENTIFICATION

In this subsection, we present a unified framework for linear extraction of motor control signals from172
neural data for both biomimetic and non-biomimetic approaches. We generalize the single-input single-173
output (SISO) system identification methods reviewed by Pillonetto et al. (2014) to handle the multiple-174
input single-output (MISO) case5. This generalization is needed in order to be able to extract motor175
control signals by linear filtering of multiple signal sources, e.g. multiple units. We also note that this176
approach can be generalized to any neural signal modality, e.g. local field potentials. We further extend177
this framework for non-biomimetic decoding in subsection 2.10.178

The first key step to this generalization is to note that the ultimate goal of the system identification179
procedure is to estimate the unit filter coefficients as a function of time. In other words, these unit filter180
coefficients are treated as functions of time that take a discrete time index as an input and produces a181
a unit filter coefficient as an output. Whereas in the SISO case (Pillonetto et al., 2014) only one filter182
function was estimated, the MISO case involves joint estimation of multiple unit filter functions. This183
joint estimation problem is intimately related to the so-called multi-task learning (see Álvarez et al.184
(2012) for a review), for which two mathematically equivalent formulations exist. The first formulation185
is to stack all the unit filter functions into one vector-valued function and then use vector-valued kernels186
for the estimation, and the second – somewhat simpler – formulation is to augment the input space by187
another unit index and then use scalar-valued kernels on this new input space (Evgeniou et al., 2005).188
For simplicity of the presentation, we use this second formulation here. Let Z = {t1, t2, . . . , tL} be the189
set of time indices for all unit filter functions gm(t). For example, t1 = 0, t2 = 1, . . . , tL = L − 1 for190
L filter coefficients at L time indices. Let U = {1, 2, . . . , C} be the set of indices that index all units.191
Let the time-unit index tuple tim ∈ X , Z × U be a pair of indexes tim , (ti,m) that can index all192
possible time indices for all unit filter functions. Then, given the input-output data, we seek to estimate193
a scalar function g : X → R that captures all unit filter coefficients at all possible time indices such that194
gm(ti) = g(tim). We define a positive semidefinite kernel, K : X × X → R195

K(tim, tjn) = kim,jn. (26)

Intuitively, the scalar kim,jn defines an inner product (a generalization of a vector dot product) which196
denotes the degree of coupling (or covariance, see next subsection) between two filter coefficients gm(ti)197
and gn(tj). A well-known theorem in kernel methods is the Moore-Aronszajn theorem (Aronszajn,198
1950) which gives a one-to-one correspondence between Reproducing Kernel Hilbert Spaces (RKHS)199
of functions and positive semi-definite kernels. (For a lengthier treatment of RKHSs, see (Rasmussen200
and Williams, 2005; van der Vaart et al., 2008; Paiva et al., 2010; Park et al., 2013; Pillonetto et al.,201
2014).) For our purpose, the implication of this theorem is that, once a kernel is defined, the space of202
possible unit filter functions gm(t) is restricted to the corresponding RKHS H. Since this space enco-203
des some notion of ‘smoothness’ of its member functions (Rasmussen and Williams, 2005; Pillonetto204
et al., 2014), we immediately see the practical advantage of such restriction: the unit filter functions are205
restricted to ‘smooth’ functions of time. In essence, the space H corresponding to the defined kernel206
becomes the hypothesis space within which we seek unit filter functions that minimize the error betw-207
een the decode and the actual kinematics. Adopting a RKHS as a hypothesis space takes care of the208
ill-conditioning of the minimization problem at hand, since the modified minimization problem (stated209
below) is well-conditioned (Pillonetto et al., 2014).210

Referring to Figure 1, we define a unit output zm(t) as the output of filtering the mth unit binned spike211
counts6, xm, with the corresponding unit filter gm. Using the ‘functional’ notation as in Pillonetto et al.212

5 MIMO decoding using linear filters is handled by cascading multiple MISO decoders.
6 The bin size can be made arbitrarily small, only limited by the highest possible resolution of the sample rate of the raw electrode waveform (Badreldin and
Oweiss, 2014)
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(2014), a unit filter output is written as213

zm(t) = Lt[gm] ,
L−1∑
k=0

xm(t− k)gm(k), (27)

where Lt[gm] is a ‘functional’ (i.e. a function that takes another function as an input) that represents a unit214
output at time t. With this notation, the decode is expressed as215

ŷ(t) =
C∑

m=1

Lt[gm] =
C∑

m=1

L−1∑
k=0

xm(t− k)gm(k). (28)

This equation – with minor notational changes – is the same as the optimal linear decoder presented earlier216
in (1). With this notation, the variational minimization problem for the MISO case can be succinctly217
written as218

min
g∈H

T−1∑
t=0

(
y(t)−

C∑
m=1

Lt[gm]
)2

+ µ2‖g‖2H, (29)

where ‖g‖2H is the induced norm of the RKHSH (Pillonetto et al., 2014).219

This abstraction is quite powerful. It can be readily extended to filters of infinite duration or even conti-220
nuous time filters. Nonetheless, we greatly simplify the presentation here to give the algorithmic methods221
and refer the interested reader to Pillonetto et al. (2014) and Appendix 1 for more details on the case222
of infinite-duration filters. Corresponding to the kernel K, we can construct a kernel matrix Q (Bishop,223
2006; Pillonetto et al., 2014) at a finite set of time-unit indices. The construction of the kernel matrix is224
similar to the construction of the correlation matrix R (see subsection 2.1), by stacking C × C submatri-225
ces, qmn, into a big matrix Q. A submatrix qmn is a L × L covariance matrix between filter coefficients226
of units m and n at L different time indices (from the set Z). This matrix Q can be interpreted as a cova-227
riance matrix as presented in the next subsection. The individual elements of a submatrix qmn are given228
by229

(qmn)ij = K(tim, tjn) = kim,jn. (30)

The modified minimization problem can be simplified – with a slight abuse of notation – by stacking the230
coefficients of all the finite-duration unit filters in one vector θ as in (2)231

min
θ∈H
‖y −Xθ‖2 + µ2‖θ‖2H, (31)

where the notation θ ∈ H means that the elements of θ are taken as samples from the scalar function g ∈232
H, and ‖θ‖2H is simply used to denote the norm ‖g‖2H. This latter norm is greatly simplified (Pillonetto233
et al., 2014) for finite-duration filter functions as7234

‖θ‖2H = θ>Q−1θ. (32)

Therefore, this squared norm is indeed the squared Mahalanobis distance between the vector θ and a mul-235
tivariate Gaussian distribution with zero-mean and a covariance matrix Q (Rasmussen and Williams,236
2005). By comparing this norm to the corresponding `2-norm employed in ridge regression (Equa-237
tion (21)), we see that both ridge regression and kernel-based solutions employ a penalty term. Whereas238
ridge regression penalizes large decoder coefficients uniformly across all eigenmodes, kernel-based regu-239
larization only penalizes large decoder coefficients in the directions of eigenmodes with small singular240
values (See Remark 1 in Pillonetto et al. (2014) for SVD interpretation of a kernel matrix).241

7 Since the kernel matrix Q is positive semidefinite and in general does not have an inverse, the notation θ>Q−1θ must be understood as presented in
Remark 1 in Pillonetto et al. (2014)
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Table 1. Summary of the optimal linear decoding algorithms

Algorithm Solution Equation No. Remarks

Pseudo-inverse θ∗ = (X>X)−1X>y 3 Special case of ridge regression with µ→ 0
Ridge regression θ∗ = (X>X+ µ2I)−1X>y 22 Special case of kernel-based solution with Q = I
Kernel-based θ∗ = (QX>X+ µ2I)−1QX>y 33 See Pillonetto et al. (2014)

The solution to this minimization problem (see Appendix 2 in the supplementary material) is242

θ∗ = (QX>X + µ2I)−1QX>y. (33)

We conclude this subsection by a few remarks on the connection between the pseudo-inverse, ridge243
regression, and kernel-based solutions. The ridge regression solution is a special case of the kernel-based244
solution with Q = I. In other words, the ridge regression solution assumes no coupling between unit filter245
coefficients across different time indices, and no coupling between the different unit filters across units.246
Further, the pseudo-inverse solution is a special case of the ridge regression solution with µ → 0. These247
remarks together with an overview of these solutions are summarized in Table 1.248

2.6 BAYESIAN INTERPRETATION

Both ridge regression and kernel-based solutions have an equivalent probabilistic interpretation in a Baye-249
sian framework (Rasmussen and Williams, 2005; Bishop, 2006; van der Vaart et al., 2008; Pillonetto250
et al., 2014). Consider the generative data model y = Xθ + ε. In a Bayesian treatment, the parameters251
to be estimated – which are the decoder filter coefficients – are treated as random variables. In par-252
ticular, if we assume for the random vector θ a Gaussian distribution with zero mean and covariance253
matrix Q – same as the kernel matrix – then the combined data and parameters vector has a joint-Gaussian254
distribution (Pillonetto et al., 2014)255 [

θ
y

]
∼ N

([
0
0

]
,

[
Q QX>

XQ XQX> + µ2I

])
. (34)

The kernel matrix Q acts as the covariance matrix of a prior distribution on the parameters. Moreo-256
ver, standard results from Gaussian-process regression directly give us a posterior distribution on the257
parameters after observing the data y258

θ|y ∼ N
(

(QX>X + µ2I)−1QX>y,Q−QX>(XQX> + µ2I)−1XQ
)
. (35)

Thus, the mean of the posterior distribution – which is also the mode or the maximizer of the posterior in259
the Gaussian case – is precisely the kernel-based solution (33). Moreover, the Bayesian treatment gives260
us uncertainty bounds that can be calculated from the posterior covariance. Thereby, on the one hand,261
the pseudo-inverse solution can be interpreted as the maximum likelihood (ML) solution to the parameter262
estimation problem. On the other hand, the kernel-based solution – as well as the ridge regression solution263
as a special case – can be interpreted as the maximum a posteriori (MAP) solution. The quality of the264
solution for short data records largely depends on the chosen kernel matrix Q. Pillonetto et al. (2014)265
proved that the optimal kernel matrix should have exactly one eigenmode in the direction of the ‘true’266
solution. Of course, since the ‘true’ solution is never known beforehand, we need to carefully design267
a kernel matrix that reflects prior knowledge about how the solution should look like in terms of its268
eigenmode directions, and the extent of how large the filter coefficients should be in these particular269
directions.270
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2.7 PROPOSED KERNELS FOR BIOMIMETIC DECODING

As we noted earlier, ridge regression is equivalent to an identity kernel matrix Q = I. However, this271
kernel structure assumes that all decoder filter coefficients are uncorrelated. The hypothesis that we put272
forward is that optimal unit filter functions possess a well-defined structure that coincides with the eigen-273
modes of the neural data (Badreldin et al., 2013). This hypothesis is motivated by several empirical274
observations and theoretical considerations. First, from a matched filter perspective, we note that unit275
filter functions operate as ‘correlators’ that look for specific neural patterns of co-activation in the input276
binned spike counts. Second, for the case of decoding natural velocity trajectories, we conjecture that the277
characteristic velocity peaks with smooth profiles that are typically observed in primate reaching behavior278
can be decoded using ‘matched filters’ that operate on the neural input (Badreldin and Oweiss, 2014).279
Third, regularized decoders calibrated using biomimetic data typically possess characteristic unit filter280
structures with exponentially decaying oscillations. This empirical observation is also reported elsewh-281
ere (Fagg et al., 2009; Willett et al., 2012; Flint et al., 2012). Fourth, single-unit dynamics quantified282
by peri-event time histograms (PETHs) constructed around the velocity peaks – as shown in the results –283
exhibit characteristic structures that resemble the structures of unit filters. Fifth, as was shown in subsecti-284
ons 2.3 and 2.4, unit filter functions are markedly expressed as a linear combination of neural co-activation285
eigenmodes.286

Based on this hypothesis, the first kernel matrix we propose is to use the estimated unnormalized neu-287
ral covariance8 matrix R̂ as a kernel matrix. This gives more preference to filter functions that mimic288
neural eigenmodes. However, this also gives higher weights to units that exhibit strong modulations from289
their baseline firing rates, possibly masking other units that are naturally more silent or do not modu-290
late as strongly. This potential drawback motivates the second kernel matrix that we propose, which is291
a diagonal-normalized version of the first one. By normalizing the kernel matrix such that all diagonal292
entries are ones, this kernel gives more uniform weights to all units. The diagonal-normalized kernel293
matrix is calculated from the matrix R̂ in two steps. First, a symmetric matrix is constructed using the294
reciprocal of the diagonal elements of the matrix R̂295

(D)ij =
1√

di
√
dj
, (36)

where {di : i = 1, 2, . . . , LC} are the diagonal elements of the matrix R̂. Second, the diagonal-normalized296
kernel matrix, R̂N, is calculated using element-wise matrix product (or Hadamard product) of R̂ and D.297

R̂N = R̂ ◦D. (37)

Finally, for numerical conditioning, any diagonal element in R̂ that is strictly less than one is replaced by298
one in the matrix D.299

At this point, it is informative to examine the SVD of the kernel-based solution in (33). With the first300
proposed kernel, Q = R̂, we get301

θ∗ =
LC∑
i=1

σ2i
σ2i + µ2/σ2i

yui
vi
σi
. (38)

Hence, the SVD filter factor of this kernel matrix is302

fi =
σ2i

σ2i + µ2/σ2i
. (39)

8 We make no distinction here between a correlation matrix and a covariance matrix because the mean of the unit firing rates and/or the mean of the decode
can be removed online using proper offset removal.
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Table 2. Summary of the SVD formulas of different decoding algorithms

Algorithm Full Solution Equation No. Truncated Solution

Pseudo-inverse θ∗ =
∑LC
i=1 yui

vi

σi
19 θ∗ =

∑M
i=1 yui

vi

σi

Ridge regression θ∗ =
∑LC
i=1

σ2
i

σ2
i+µ

2 yui

vi

σi
23 θ∗ =

∑M
i=1

σ2
i

σ2
i+µ

2 yui

vi

σi

Neural covariance kernel θ∗ =
∑LC
i=1

σ2
i

σ2
i+µ

2/σ2
i
yui

vi

σi
38 θ∗ =

∑M
i=1

σ2
i

σ2
i+µ

2/σ2
i
yui

vi

σi

Compared to the ridge regression filter factor in Equation (25), we see that the weight of the regularization303
parameter is varying as a function of the rank of the singular values. High-ranked singular values, which304
are typically large, dilute the regularization parameter, thereby giving more SVD gain to the corresponding305
eigenmodes, whereas this effect is reversed for low-ranked singular values which are typically small. We306
conclude by summarizing the SVD formulas of different truncated and non-truncated (i.e. full) solutions307
to the decoder design problem as presented in Table 2.308

2.8 UNIT-FILTER MATCH METRICS

From a ‘matched filter’ standpoint, we hypothesize that the structure of the single-unit firing rates around309
the natural velocity peaks should match the structure of the corresponding unit filter functions. We propose310
to quantify this ‘degree of matching’ using two different metrics. By constructing single-unit PETHs in311
one-second windows prior to the times of the velocity peaks with the same bin size used for the unit filters,312
we can compute Pearson correlation coefficients rm between single-unit PETHs and corresponding unit313
filter functions. The first metric we propose is314

pM =

√√√√ C∑
m=1

r2m. (40)

We refer to this metric as the unit-filter match magnitude. The second metric – which relies on the statisti-315
cal significance of these correlations – is the fraction of units for which rm is significantly different than316
zero (p < 0.05) under a t-test. We refer to this metric as the unit-filter match unit fraction.317

2.9 PERFORMANCE METRICS OF DECODERS

Performance of different decoders has been traditionally assessed based on the ability of a decoder model318
to calculate a decode that is as close as possible to actual test data. For this performance aspect, we use319
the R2 metric – which is known in the literature as the coefficient of determination and also as the fraction320
of variance accounted for (Fagg et al., 2009)321

R2 = 1−

T−1∑
t=0

(
y(t)− ŷ(t)

)2
T−1∑
t=0

(
y(t)− ȳ

)2 , (41)

where ȳ is the mean of the actual data samples, y(t). This metric is a unitless metric in the range [−∞, 1],322
with the upper limit indicating perfect model output.323
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In addition to this standard metric, we propose five additional metrics that can be used to judge the324
online performance of a decoder and its fitness for real-time robotic control – even before closing the325
loop with this decoder. In other words, we conjecture that deterioration in performance as assessed by326
these metrics can inform a decoder re-calibration decision. The first metric we propose is to quantify the327
signal-to-noise ratio (SNR) of a kinematic signal. In particular, we note that hand velocity trajectories328
during reaching by primates – which is the main motor control signal we are attempting to extract –329
typically exhibit characteristic peaks that are approximately bell-shaped (Soechting, 1984; Flash and330
Hogan, 1985). These characteristic peaks are also referred to as submovement primitives (Gowda et al.,331
in press). Aside from these characteristic peaks, a velocity trajectory mainly consists of small-amplitude332
oscillations. Consequently, the histogram of the absolute values of a hand velocity trajectory in one degree333
of freedom (DOF) is typically bimodal, where one mode around zero is due to the ‘noise’ component, and334
the other mode – which is typically a heavy tail of the histogram – is due to the characteristic hand335
velocity peaks, i.e. a ‘signal’ component. Therefore, discriminating the ‘signal’ component from the336
‘noise’ component becomes a binary detection problem that is mathematically similar to detection of337
spike waveforms in extracellular potentials (Oweiss and Aghagolzadeh, 2010). A ‘spike’ waveform to338
be detected here, however, is a characteristic velocity peak – which we refer to as a ‘velocity spike’. We339
therefore propose to detect these velocity spikes in a similar manner to detection of extracellular spikes by340
simple thresholding (Oweiss and Aghagolzadeh, 2010; Aghagolzadeh et al., 2014). For a hand velocity341
signal y(t) – or in general for any kinematic signal that exhibits characteristic ‘spikes’ – we detect velocity342
spikes as a waveform ‘snippet’ between two event times. The first (second) event time is the time at which343
the absolute signal |y(t)| crosses above (below) a predefined threshold. Algorithmically, the first event344
time is345

t1 = min{t > t0 : |y(t)| > c}, (42)

where c is a predefined threshold and t0 is some initial time that can be taken as the start of a record or the346
end time of a previously detected velocity spike. The second event time is347

t2 = min{t > t1 : |y(t)| ≤ c}. (43)

A velocity spike snippet is a collection of absolute velocity samples stacked up in a vector348

y0 = [|y(t1)| |y(t1 + 1)| . . . |y(t2)|]> . (44)

Next, we define the SNR of velocity spikes similarly to the SNR of spikes detected in extracellular349
potentials350

SNRy(t) = 10 log

(
1

K

K−1∑
i=0

max(yi)

)2

var(y(t) : |y(t)| ≤ c)
(dB), (45)

where K is the number of extracted velocity spikes. In other words, it is the ratio of the squared average351
peak of velocity spikes (‘signal’) to the variance of the subthreshold velocity values (‘noise’). The ‘noise’352
threshold c is calculated as the center of mass of the empirical probability mass function (i.e. the normali-353
zed histogram) of the absolute velocity values |y(t)|. This center of mass is mathematically equivalent to354
an expectation taken over the empirical probability mass function of the values |y(t)|355

c =
B∑
i=1

vipi, (46)

where vi is a center of histogram bin number i and pi is the empirical probability associated with this356
bin. Numerically, the total number of bins B can be taken as the ceiling integer to the square root of the357
number of velocity samples d

√
T e (Maciejewski, 2011).358
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The second metric we define, which has been introduced earlier (Badreldin et al., 2013; Badreldin and359
Oweiss, 2014), is the average number of zero-crossings per second, ζ , which is calculated as360

ζy(t) =
1

T∆

T−1∑
t=1

I
(

sgn(y(t))− sgn(y(t− 1)) 6= 0
)
, (47)

where ∆ is the bin width of the kinematic signal y(t), I(.) is the indicator function, and sgn(.) is the361
signum function.362

The third metric, which we call the filter latency, quantifies the average feed-forward delay introduced363
by the decoder filters. It is calculated using the phase response of the individual unit filters of a decoder.364
Denote the frequency response of a unit filter function gm(t) by Gm(jω), then the phase response of a365
unit filter is366

φm(ω) = ∠Gm(jω), (48)

and the filter delay as a function of frequency – also known as the group delay of a filter (Oppenheim367
and Willsky, 1997) – is given by the negative of the first-order derivative of the phase response, −φ′m(ω).368
We define the filter latency as the average filter delay across all frequencies and across all units369

δg =
1

C

C∑
m=1

µ
(
− φ′m(ω)

)
, (49)

where µ(.) is the mean of a filter’s group delay.370

The fourth metric – which was also introduced earlier in Badreldin et al. (2013) – quantifies the number371
of units that dominate the computation of the decode. Since a typical decoder does not assign the same372
weights to all units, it may be desirable – from a pragmatic standpoint – to have more unit contributions to373
the computation of the decode. This can help in maintaining a decoder fixed across multiple days – even374
if some of the decoder units disappear for a few days (Heliot et al., 2010; Eleryan et al., 2014). A unit’s375
contribution to the decode can be quantified in terms of its output zi(t). By stacking up all the unit output376
samples in one vector zi, we define the unit contribution index ν as the fraction of units whose outputs377
constitute more than 90% of the total sum magnitudes of all unit outputs. Algorithmically, let378

u(n) =

∑n
m=1 ‖zm‖∑C
m=1 ‖zm‖

, (50)

where the unit numbers, m = 1, . . . , C, are sorted in descending order of unit output magnitude. From379
this, ν is calculated by380

νz =
n∗

C

∣∣∣
u(n∗)≥0.9

. (51)

We note that this metric assesses unit contributions in a way that is comparable to the ‘neural push’ unit381
contribution metric proposed by Stavisky et al. (2015).382

The fifth metric we propose is a variation on the sample skewness that we used in earlier383
work (Badreldin et al., 2013; Badreldin and Oweiss, 2014). Sample skewness roughly quantifies the384
degree of non-symmetry of a decode distribution. A symmetric decode is desirable because it spans the385
entire task space with no bias to particular directions. However, the sample skewness metric is only limi-386
ted to one-dimensional signals, and it has consistency problems since a sample skewness value of zero387
does not necessarily imply that the distribution is symmetric (Székely and Móri, 2001). To address these388
problems, we make use of another metric of asymmetry of a distribution. In particular, Székely and389
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Móri (2001) proved that for two random vectors x and y that are independently sampled from the same390
distribution, the following result holds391

E(‖x + y‖)− E(‖x− y‖) ≥ 0. (52)

Which can be rearranged as392
E(‖x− y‖)
E(‖x + y‖)

≤ 1. (53)

Moreover, equality holds if and only if the underlying distribution is perfectly symmetric, i.e. when the393
random variables x and −x have exactly the same distribution. Using this fact, we define a sample-based394
symmetry metric395

Γy(t) , − log

(
1−

∑T−1
i,j=0 |y(i)− y(j)|∑T−1
i,j=0 |y(i) + y(j)|

)
. (54)

This metric is in the range [0,∞], with the upper limit indicating a perfectly symmetric distribution around396
zero (Székely and Móri, 2001).397

2.10 EXTENSION TO NON-BIOMIMETIC DECODING

One advantage of using kernel methods in decoder design is the possibility to exploit the same pro-398
posed kernels for design of non-biomimetic decoders in the absence of actual or observed kinematic399
signals (Badreldin et al., 2013; Badreldin and Oweiss, 2014). In a biomimetic approach, the cost400
function is defined in terms of an error metric between the decode and the actual kinematics. Howe-401
ver, in the absence of the latter, it is necessary to optimize a different cost function. In Badreldin and402
Oweiss (2014), we proposed to maximize the kurtosis of the decode as a proxy for its SNR. Here, we403
instead propose to directly maximize the SNR of the decode as defined in (45). Similar to Badreldin and404
Oweiss (2014), we propose a constrained maximization problem405

θ∗ = argmax
θ∈H

SNRŷ(t)

subject to Γŷ(t) ≥ Γ0 , ζŷ(t) ≤ ζ0
(55)

where ŷ(t) is the decode, and the parameters Γ0 and ζ0 are determined from prior knowledge. This con-406
strained maximization problem attempts to maximize the SNR of the decode, SNRŷ(t), while maintaining407
a symmetric motor control signal, Γŷ(t) ≥ Γ0, and bounding the average number of zero-crossings per408
second, ζŷ(t) ≤ ζ0. This last metric is roughly related to the amount of ‘noise’ in a signal since – in409
the absence of velocity spikes – the number of zero-crossings per second approximately represents the410
fundamental frequency of the ‘noise’ component.411

The choice of a particular kernel fully defines the hypothesis spaceH (see subsection 2.5). In Badreldin412
et al. (2013), we made use of the neural covariance kernel, whereas in Badreldin and Oweiss (2014) we413
made use of a variation on the diagonal-normalized kernel – albeit with infinite duration, high-resolution,414
filters. In both cases, we found that it is computationally more feasible to use truncated kernels that are415
comprised of a finite number of basis functions (see Table 2). Hence, we propose to use the truncated416
versions of the neural covariance and the diagonal-normalized kernels presented in subsection 2.7. Since417
kernel methods allow the use of prior knowledge to inform how the solution should look like, we propose418
to choose the unit filters basis functions that produce decode components with desirable features for motor419
control. This way, we favor particular directions in the solution space that better meet the constraints420
in (55). Following the design methodology in Badreldin et al. (2013), we limit the hypothesis space to421
neural eigenmodes that produce decode components that satisfy the constraint ζŷ(t) ≤ ζ0.422

This is a provisional file, not the final typeset article 14

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 1, 2015. ; https://doi.org/10.1101/023689doi: bioRxiv preprint 

https://doi.org/10.1101/023689
http://creativecommons.org/licenses/by-nc-nd/4.0/


Badreldin et al. Biomimetic and Non-biomimetic Extraction of Motor Control Signals

Another important characteristic of the solution is that the unit filters as a function of time should have423
an envelope that decays exponentially. The importance of this envelope stems from the relative weighting424
it introduces with regard to immediate neural input history versus far history. Putting the emphasis of425
the filter weights on immediate neural input history results in decoders that have lower latencies – as426
demonstrated in the results. To this end, we propose to synthetically ‘taper’ the chosen neural eigenmodes427
by windowing their filter functions with a predefined time window function428

w(t) = e−αt
2

, (56)

where α is chosen to control the decay rate. Example window functions for practical values of α are429
shown in Supplementary Figure 1. In practice, a particular value of α to achieve a 50% decay of the filter430
weights at a predefined time point t0.5 can computed as431

α = − log(0.5)

t20.5
. (57)

Therefore, t0.5 can be computed in such a way as to mimic the structure of regularized biomimetic deco-432
ders. To this end, it is useful to define a decoder half-RMS point for a particular decoder. By first stacking433
up all unit filter coefficients at each time point in a vector434

g(ti) = [g1(ti) g2(ti) . . . gC(ti)]
>
, (58)

we define the decoder half-RMS point435

t0.5 = min
{
ti :

‖g(ti)‖
maxti{‖g(ti)‖}

≤ 0.5
}
. (59)

3 RESULTS

In this section, we demonstrate the underpinnings and performance of the proposed algorithms for both436
biomimetic and non-biomimetic decoding using publicly available data from the Database for Reaching437
Experiments and Models (DREAM) (Walker and Kording, 2013), hosted by the Collaborative Research438
in Computational Neuroscience (CRCNS) website (Teeters et al., 2008). In particular, we use synchro-439
nized kinematic and neural data recorded during an eight-target center-out task from one rhesus macaque440
(monkey C in Flint et al. (2012)). The monkey was trained to perform a center-out reaching task while441
grasping a two-link manipulandum. The monkey was required to reach to one of eight 2-cm2 targets442
spaced at 45◦ intervals around a circle of radius 10 cm. Neural data were recorded using a 96-channel443
microelectrode array implanted in M1. More details on the experimental procedure and the collection of444
data can be found in Flint et al. (2012).445

3.1 KERNELS AND REGULARIZATION

As noted in subsection 2.6, kernel methods are equivalent to a Bayesian approach where a prior distri-446
bution on the decoder filters is combined with the likelihood function from the data to get a posterior447
distribution, from which the decoder filters are obtained as the distribution mean. Here we demonstrate448
the properties of the decoder filters sampled from different priors corresponding to the proposed kernels449
in order to justify the choice of these kernels.450

Figure 2 demonstrates the spatiotemporal structure of random samples taken from different kernels. The451
first kernel is the identity matrix, which is the kernel used in ridge regression (RIDG). The second kernel452
is the truncated neural covariance kernel (COV|T). The third kernel is the diagonal-normalized, trunca-453
ted neural covariance kernel (COV|N|T). The fourth kernel is the windowed, truncated neural covariance454
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kernel (COV|T|W). The fifth kernel is the diagonal-normalized, windowed, truncated neural covariance455
kernel (COV|N|T|W). All truncated kernels in this figure are constructed from the first 13 basis functions456
to emphasize slow dynamics. The tapered kernels used a time window function with t0.5 = 0.35 (sec).457
The ‘typical’ samples demonstrated in panel B are selected from 100 samples taken from the respective458
distributions, where the selected sample has the minimum Mahalanobis distance to the respective distri-459
bution. The spatial structure is captured in terms of the unit filter magnitude (panel C), and the temporal460
structure is captured in terms of the filters RMS as a function of time (panel D).461

The temporal structure of the RIDG kernel samples is similar to that of white noise. This is because the462
off-diagonal entries of the kernel are all zeros which represents uncorrelated filter coefficients. Moreover,463
samples from this kernel have unit filters that have the same magnitude (on average), because the kernel464
diagonal entries are all ones. Lastly, the average temporal profile of the kernel samples is flat. The COV|T465
kernel samples typically have non-uniform unit filter magnitudes, where some unit filters have higher466
magnitudes than others. This effect can be seen in Figure 2 (B and C). The reason is that the unnormalized467
neural covariance kernel assigns relative ‘variance’ values for the unit filters that are similar to the relative468
variances of the unit firing rates. Samples from this kernel clearly show structured temporal dynamics469
as seen in Figure 2B. However, this effect is not clear in Figure 2D. The reason is that, although this470
kernel encodes temporal covariations between different unit (relative phase coupling), it does not encode471
absolute phase values. Hence, samples taken from this kernel typically ‘peak’ at relatively fixed locations,472
but not absolutely fixed locations.The COV|N|T kernel possesses similar properties, except that it assigns473
more uniform filter magnitudes to all units. The ‘tapered’ kernels COV|T|W and COV|N|T|W are similar474
to their respective untapered versions, except that the temporal profiles of the unit filters are forced to475
follow the time window function as revealed in Figure 2D.476

Figure 3 illustrates a different aspect of kernel methods based on SVD analysis. The first few (low-477
ranked) neural eigenmodes typically consist of slow oscillations, whereas the last (high-ranked) neural478
eigenmodes are high-frequency oscillations and ‘noise’. By comparing pseudo-inverse (PINV), RIDG,479
and COV solutions in terms of their SVD gain and filter factors, we note that they give different weights480
to different neural eigenmodes. Whereas PINV solution amplifies high-ranked neural eigenmodes – giving481
rise to ‘noisy’ filters, RIDG and COV solutions attenuate such high-ranked eigenmodes – giving rise to482
less noisy filters.483

3.2 BIOMIMETIC DECODING PERFORMANCE

We use all the data from Flint et al. (2012) to evaluate the offline decoding performance of natural move-484
ment from spike data. The data set comprises four files, where each file contains one or more sessions485
(approximately 10 minutes each) of the center-out task, totaling 11 sessions. Each session consists of natu-486
ral reach ‘trials’. For each session, we concatenated all trials back to back and resampled the kinematic487
data on a uniform time grid of 50-millisecond time bin width. We used the spike counts with the same bin488
width as the kinematics to decode the first component of the natural hand velocity using one-second-long489
(20 time bins) decoder filters. We used all data from all 11 sessions, without excluding any data segments.490
We employed a variation on the generalized cross-validation scheme (Bishop, 2006) for reporting deco-491
ding performance. Each session was divided into 10 ‘blocks’ of data, where each block is approximately492
one minute. We used three blocks for ‘training’ the decoders using all algorithms, i.e. to estimate the deco-493
der filters. Then, we used seven blocks as ‘test’ data to report decoding performance. Each session had494
10 different training/test arrangements as illustrated in Supplementary Figure 2, resulting in a total of 110495
block arrangements on which we report performance. We further divided the three blocks of training data496
into two blocks for estimating the neural and kinematic covariance matrices, R̂ and p̂, and one block for497
tuning the regularization parameters. We compare the three main algorithms from Table 1, namely: PINV,498
RIDG, COV, and COV|N. Additionally, we also compare the ‘truncated’ versions of these algorithms by499
using only the first M basis vectors from the SVD analysis. We refer to these truncated version using the500
same mnemonic with added ‘|T’ suffix, i.e. PINV|T, RIDG|T, COV|T, and COV|N|T, respectively. Finally,501
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since PINV does not have any regularization parameters, its best performance is achieved with longer data502
records. Therefore, for PINV, we used the entire three blocks of training data with no further partitioning.503

Supplementary Figure 3 demonstrates – on a typical block arrangement – the procedure for tuning504
the regularization parameters for all algorithms (except for PINV which does not have a regularization505
parameter). The non-truncated algorithms have only one regularization parameter, µ2. The value of this506
regularization parameter is chosen to maximize generalization performance (in terms of R2) on unseen507
data. For the truncated algorithms, two parameters need to be tuned, which are the truncation order M508
and the regularization parameter µ2. We select these parameters using a (possibly suboptimal) greedy509
algorithm – by first selecting M followed by µ2.510

Using these block arrangements and parameter tuning procedures, we conducted a multi-faceted analy-511
sis of the decoding performance of all algorithms. Performance data from all 110 block arrangements are512
presented in Figure 4. We emphasize that optimization tuning of all algorithms was done to maximize513
only one metric, which is the R2. Variations in performance in all other metrics are mainly reflecting the514
different priors. We used Wilcoxon signed rank test with Bonferroni correction for multiple comparisons515
for conservative post-hoc comparison of algorithmic performance. On the one hand, PINV performed516
significantly worse than all others in terms of R2 with its median near zero (p < 0.05). Moreover, it had517
significantly worse decode SNR than all others (p < 0.05) with a median of 5.38 dB. Similarly, its decode518
had significantly higher zero-crossings per second (p < 0.05) with a median of 3.77 zero-crossings/sec.519
Additionally, the average decoder filter latency for PINV decoders was significantly worse than all others520
(p < 0.05) with a median of 0.43 sec. Finally, PINV decoders had significantly the highest unit contribu-521
tion index among all others (p < 0.05) with a median of 0.69. On the other hand, COV|N demonstrated522
the best overall performance – it outperformed all other algorithms across all block arrangement in terms523
of R2 (69%), SNR (37%), zero-crossings per second (47%), and low latency (58%). COV|N performed524
significantly better than all others in terms ofR2 (p < 0.05) with a median of 0.68, decode SNR (p < 0.05)525
with a median of 6.12 dB (except for COV|N|T not significant), zero-crossings per second (p < 0.05) with526
a median of 2.06 sec−1, and low latency (p < 0.05) with a median of 0.29 sec. COV|N had a unit contri-527
bution index that is significantly higher (p < 0.05) than all others except for PINV and COV|N|T with a528
median of 0.44.529

We also used the same statistical test to study the effect of ‘truncation’ on all algorithms. Trunca-530
tion simultaneously improved PINV and worsened all others in terms of R2 (p < 0.05), possibly due531
to the suboptimal greedy algorithm for tuning M and µ2. The same effect was observed in terms of532
SNR (p < 0.05), except for COV|N|T (not significant). For the zero-crossings per second, truncation533
significantly reduced this metric for PINV only (p < 0.05), whereas the result is not significant in all534
others. Truncation significantly increased decoder filters latency in all algorithms (p < 0.05), except for535
RIDG (not significant). Finally, truncation significantly decreased unit contribution index of all algorithms536
(p < 0.05), except for COV|N where the effect was reversed (p < 0.05).537

Linear decoding of velocity signals involves a strong trade-off between reconstruction of characteristic538
velocity spikes versus low-amplitude ‘noise’ bands. A linear decoder can be made to better reconstruct539
velocity spikes simply by applying a ‘decoder gain’ that scales up the decode (Sussillo et al., 2012). How-540
ever, such a decoder is expected to perform very badly in terms of ‘target hold time’ because the uniformly541
applied gain also amplifies the ‘noise’ band – making it more difficult to ‘stop’ near the target (Sussillo542
et al., 2012; Gowda et al., 2012, 2014; Golub et al., 2014; Marathe and Taylor, 2015). This pheno-543
menon can be seen in the representative examples in Supplementary Figure 4, where PINV solution was544
able to reconstruct a negative velocity spike at the expense of amplifying the ‘noise’ bands surrounding545
this velocity spike. Regularized solutions generally do not suffer from this effect, since the regularization546
parameter can be tuned to find the best compromise. Figure 5 examines this trade-off from a different per-547
spective. For each algorithm, the block arrangement that produced highest decode SNR on test data was548
selected, and the average velocity spikes are shown for that block arrangement. These average velocity549
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spikes only represent the ‘signal’ – as opposed to ‘noise’ – component. Even though PINV almost repro-550
duced the average velocity spikes of the actual hand kinematics, its decode has a relatively lower SNR –551
indicating that this algorithm is also amplifying the ‘noise’ component. Additionally, whereas both RIDG552
and COV|N produce comparable decode SNR, they achieve this result by two different mechanisms – as553
can be seen from the respective average velocity peaks – where RIDG puts more emphasis on ‘noise’554
suppression and COV|N emphasizes the ‘signal’ component more.555

Supplementary Figure 5 demonstrates the spatio-temporal structure of decoder filters, and echoes the556
same observations related to sampling from prior distributions as was shown in Figure 2.557

3.3 SINGLE-UNIT DYNAMICS AND UNIT FILTER FUNCTIONS

To provide more evidence for our ‘matched filter’ hypothesis, we calculated single-unit PETHs as descri-558
bed in subsection 2.8. The event time we used in constructing the PETHs was the time of the positive559
velocity peak (global maximum) of each trial. We then calculated the unit-filter match magnitude and unit560
fraction metrics. Whereas decoder filters are constructed from limited training data, PETHs are constru-561
cted from all trials in a given session. In most units, we found significant correlations (p < 0.05) between562
a unit filter function and the corresponding unit PETH. One representative example is shown in Figure 6.563
By pooling performance data across all algorithms, we investigated the correlation between different per-564
formance metrics introduced in subsection 2.9 and the strength of unit-filter matching (Figure 7). We565
found highly significant correlations (p < 10−10) mostly in the direction of better decoding performance566
with higher unit-filter matching strength.567

3.4 EFFECT OF DECODING PAST AND FUTURE MOVEMENTS

Training of linear Wiener-style decoders is typically done on synchronized sets of neural and kinematic568
data where the history of the neural input prior to a specific time t, is used to decode current kinematic569
signal at the same time t. This problem is known in estimation theory as the filtering problem. However,570
it is also possible to decode future kinematic signals at times t + k, with positive k – which is known as571
the prediction problem – and to decode past kinematic signals at times t − k – which is known as the572
smoothing problem (Wiener, 1949). We analyzed the decoding performance as it relates to decoding of573
past, current, and future data. We trained regularized decoders (RIDG, COV, and COV|N) to decode past,574
current, and future data by artificially changing the temporal alignment of the velocity signal. Decoding575
future (past) data amounts to moving the velocity signal k bins backward (forward) in time. Figure 8 shows576
the results. We also examined the decoder filters structure and their relation to unit PETHs constructed577
using the same time shifts in the velocity signal. Figure 9 demonstrates one representative example. This578
effect is also quantified in Figure 8 using the filter half-RMS time t0.5.579

To determine the statistical significance of the trends seen in Figure 8, we pooled the data from the three580
algorithms and used Wilcoxon signed rank test with Bonferroni correction for multiple comparisons.We581
found that with increasing k the R2 metric significantly decreased (p < 0.01), the zero-crossings per582
second significantly increased (p < 0.01), and the filter half-RMS time t0.5 significantly decreased. The583
SNR significantly decreased only for k ∈ [−1, 3] (p < 0.01), and did not significantly change for k ∈584
[−3,−1] (p < 0.01). This means that the SNR deteriorates with decoding future data, improves with585
decoding past data for one bin only, and does not improve with decoding further bins in the past. Filter586
latency of the resultant decoders significantly decreased with increasing k up to +2 (p < 0.01). However,587
it significantly increased with increasing k from +2 to +3 (p < 0.01). The unit contribution index did not588
significantly change with increasing k up to +2 (p < 0.01, double-sided), and it significantly increased589
with increasing k from +2 to +3.590
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3.5 NON-BIOMIMETIC DECODING PERFORMANCE

Lastly, we used the same data set to study generalization performance of non-biomimetic decoders with591
one DOF. We partitioned the neural data from each session in block arrangements similar to Supple-592
mentary Figure 2 – albeit with five blocks for training data and the remaining five for test data 9. We593
compared the following kernels: the truncated neural covariance kernel (COV|T) and its windowed ver-594
sion (COV|T|W), and the truncated diagonal-normalized kernel (COV|N|T) and its windowed version595
(COV|N|T|W). For windowing the basis functions of the kernels, we used t0.5 = 0.35 sec as determined596
empirically from biomimetic decoders in Figure 8. For truncation of the kernels, i.e. selection of which597
basis functions to retain, we used all basis functions with output eigenmodes that have zero-crossings per598
second less than a predefined threshold ζ0 = 3.5 sec−1 based on Figure 4. This selection automatically599
satisfies the corresponding constraint in the optimization problem (55). To solve this constrained optimi-600
zation, we employed a two-step approach to avoid local optima. The first step is Monte Carlo sampling601
from the priors (see subsection 3.1. The decode produced from these Monte Carlo decoders are then che-602
cked against the Γ ≥ Γ0 constraint (with Γ0 = 2.5 as determined empirically from natural reach trials),603
and the decode with the highest SNR is subsequently selected to initialize the constrained optimization604
solver in MATLAB R2014b (MathWorks, Inc.) to find the final decoder.605

As a baseline, we compare these non-biomimetic decoders to heuristic decoders designed using half-606
second moving-average filters (Moritz et al., 2008; Moritz and Fetz, 2011; Koralek et al., 2012; Clancy607
et al., 2014). Decoded units are partitioned into two partitions contributing positive and negative velocity608
spikes. The decode is computed by subtracting the average firing rate of the negative partition units from609
that of the positive partition units. For this scheme to produce nearly symmetric decode, it may be neces-610
sary to relatively scale the two averages (Koralek et al., 2012; Clancy et al., 2014). Alternatively, we611
force the two partitions to have nearly equal firing rate variances. This is known as the partition problem,612
and there exists a simple greedy algorithm to solve it (Faigle et al., 1989). We sort the units in descending613
order of firing rate variance, and then assign the unit with the highest variance to the positive partition614
and the unit with the next highest variance to the negative partition. Each subsequent unit is assigned to615
the partition that has the least cumulative firing rate variance. Unit filter coefficients are all ones for half a616
second followed by all zeros for the other half. The filter functions for units in the negative partition are617
multiplied by -1.618

We trained decoders with C = 150 units, where this number is selected similar to (Flint et al., 2012).619
For simplicity, we select these units in each session as the top-C units that correlate with actual hand620
velocity, although we note that a fully non-biomimetic unit selection scheme can be achieved based on the621
functional connectivity between the units (Eldawlatly et al., 2009). Figure 10 shows the overall decoding622
performance of non-biomimetic decoders in a format that is similar to Figure 4. Unlike the biomimetic623
decoding case, there is not a single algorithm that represents the best trade-off between different aspects624
of decoding performance. We used Wilcoxon signed rank test with Bonferroni correction for multiple625
comparisons to post-hoc compare algorithmic performance. MA had significantly the worst SNR among626
all others (p < 0.05) with a median of 5.0 dB, and had significantly the highest unit contribution index627
(p < 0.05) with a median of 0.37. MA decode distributions were not significantly more symmetric than628
all others (p < 0.05, double-sided) with a median of 2.54. COV|N|T had significantly the best SNR as629
compared to all others (p < 0.05) with a median of 6.9 dB, and significantly the highest unit contribution630
index as compared to all other kernels (p < 0.05) with a median of 0.33. It also had significantly lower631
zero-crossings per second only when compared to COV|T|W (p < 0.05) with a median of 1.85 sec−1.632
Finally, COV|N|T|W had significantly the smallest decoder filters latency compared to all others (p <633
0.05) with a median of 47 ms, except for COV|T|W (not significant).634

We also investigated the effects of windowing on the proposed performance metrics. Windowing did635
not have a significant effect on the symmetry (p > 0.05, double-sided), significantly decreased the SNR636

9 The same duration was used for training/test data to facilitate the assessment of the symmetry of the decode between the two data sets.
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(p < 0.05), significantly increased the zero-crossings per second (p < 0.05), significantly decreased the637
unit contribution index (p < 0.05), and significantly decreased decoders filter latency (p < 0.05).638

For visual comparison, Supplementary Figure 5 shows representative decode traces from test data for639
all algorithms and for the natural hand velocity (TRUE). Figure 11 shows representative average positive640
and negative velocity spikes for all algorithms as compared to natural hand velocity spikes. Notably, the641
MA decode has the worst SNR and also the ‘widest’ average positive velocity spikes as compared to642
corresponding actual hand velocity, which may indicate an ‘over-smoothing’ effect due to averaging.643

4 DISCUSSION

4.1 EXTRACTION OF MOTOR CONTROL SIGNALS FROM NEURAL POPULATION
DYNAMICS

Optimal linear decoders have been widely used for over a decade in the BMI community (Serruya et al.,644
2002; Carmena et al., 2003; Paninski et al., 2004; Patil et al., 2004; Hochberg et al., 2006; Fagg et al.,645
2009; Suminski et al., 2010). A neural decoder can be viewed as an extraction algorithm that derives646
motor control signals from neural data – where in optimal linear decoding this extraction algorithm is647
a MISO linear system that takes in neural data as an input and produces the decode as an output. The648
decode is subsequently used online in closed-loop BMI control typically as a position or velocity motor649
control signal. We demonstrated that the design procedure of optimal linear decoders is indeed equivalent650
to system identification (Ljung, 1999, 2002). State-of-the-art system identification methods rely on direct651
estimation of a filter function (Pillonetto et al., 2014). However, this function estimation procedure –652
when performed on short data records – can lead to an overfitting problem, where the estimates overly fit653
the noise component present in the actual output leading to poor generalization performance (Pillonetto654
et al., 2014). One way to circumvent this problem is to use regularization methods such as ridge regres-655
sion, which is recently witnessing more widespread use in the BMI community (Suminski et al., 2010;656
Willett et al., 2013; Collinger et al., 2013; Balasubramanian et al., 2013; Willett et al., 2014; Wodlin-657
ger et al., 2015). We demonstrated that ridge regression is a special case of the general class of function658
estimation methods known as kernel methods (Pillonetto et al., 2014), which also admit a Bayesian659
interpretation using the Gaussian processes framework (Rasmussen and Williams, 2005; van der Vaart660
et al., 2008; Pillonetto et al., 2014). This Bayesian approach enables the incorporation of prior knowledge661
in a rigorous probabilistic framework. For optimal linear decoding, one way to utilize prior knowledge is662
to specify the spatiotemporal structure of the unit filters. Recent studies have shown that motor cortical663
activity in non-human primates (Churchland and Shenoy, 2007; Churchland et al., 2010, 2012; She-664
noy et al., 2013) and in humans (Pandarinath et al., 2015) exhibits a temporal oscillatory component665
that is well-described by a dynamical system, suggesting that these decaying oscillatory dynamics can666
form a dynamical basis from which more complex waveforms can be generated. In a series of studies, we667
hypothesized that the unit filters structure – for non-biomimetic decoding – should match the neural popu-668
lation dynamics as captured by the neural population covariances (Badreldin et al., 2013; Badreldin and669
Oweiss, 2014). Here we presented for the first time, to our knowledge, a formal approach that can exploit670
these neural population dynamics in the context of biomimetic decoding. We demonstrated the superior671
decoding performance of decoder filters that are based on the neural covariance kernels in comparison to672
pseudo-inverse, truncated SVD, and ridge regression methods. Together, these results suggest that optimal673
linear decoders should be designed as ‘matched filters’ that correlate with the neural population dynamical674
basis set in order to produce high-SNR decode waveforms.675

4.2 BIOMIMETIC AND NON-BIOMIMETIC DECODING PERFORMANCE

Offline decoding performance have long been quantified in terms of how well the decode reconstructs676
actual kinematic or kinetic data (Carmena et al., 2003; Patil et al., 2004; Fagg et al., 2009; Koyama677
et al., 2010). However, performance improvements quantified by this metric does not necessarily lead to678
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performance improvements in closed-loop online BMI control (Koyama et al., 2010). Here, we proposed679
five additional performance metrics posed from the perspective of online control. All these metrics are680
designed to be independent of the scale, or gain, of the decode. In fact, since the gain term can typically be681
tuned online for BMI control (Sussillo et al., 2012; Marathe and Taylor, 2015), we attempt to directly682
quantify the characteristic shapes and dynamics of both the decoder and the decode – which does not683
change with a varying gain term.684

The first metric we proposed is the SNR of a decode. This metric quantifies how well the velocity ‘signal’685
component is separable from the ‘noise’ component. High SNR leads to better noise suppression, and686
consequently to better ‘stopping’ ability. In fact, to improve the performance of Kalman filter decoders, a687
recent study suggested dampening the decoded speed in order to improve its ‘stopping’ ability represented688
by the target hold time (Golub et al., 2014). This strategy is similar to dead-band suppression – in689
which velocity values that are below a predefined threshold are suppressed in order to avoid coupling tiny690
velocity fluctuations to robotic control (Balasubramanian et al., 2013; Badreldin et al., 2013; Badreldin691
and Oweiss, 2014). Our analysis revealed that the SNR typically drops with linear decoding, where the692
median drop with the pseudo-inverse algorithm was 1.5 dB, and the median drop range for regularized693
linear decoders was 0.8–1.0 dB. The smallest SNR drop occurred with the diagonal-normalized neural694
covariance kernels (see supplementary Figure 7), which suggests that designing unit filters as matched695
filters may improve the decode SNR.696

The second metric we proposed is a decode’s average zero-crossings per second. We showed that the697
median increase in this metric due to linear decoding with the pseudo-inverse algorithm was 1.09 sec−1698
with a maximum of 4.79 sec−1, indicating that these decoders produce more noisy outputs. On the other699
hand, this metric decreased with regularized linear decoders, with a median drop range of 0.34–0.57 sec−1700
(see supplementary Figure 7).701

The third metric quantifies the average delay, or filter latency, associated with a given decoder. This filter702
latency is a major contributor to feedforward delays in a closed-loop control system, and it can adversely703
affect BMI control (Willett et al., 2013; Marathe and Taylor, 2015). We showed that the pseudo-inverse704
decoders have the highest latency with a median of 430 ms, and the diagonal-normalized neural covariance705
kernels produce decoders with the lowest latency with a median of 290 ms.706

The fourth metric is a unit contribution index which quantifies the number of units that contribute more707
than 90% of the overall magnitude of all unit outputs. This fourth metric is posed from a pragmatic stand-708
point to minimize the impact of unit loss on decoding performance (Heliot et al., 2010; Eleryan et al.,709
2014). We showed that among all regularized algorithms, the diagonal-normalized neural covariance710
kernel performed best in terms of this metric.711

The fifth metric – which we mainly used for the non-biomimetic decoder design – is concerned with712
the degree of symmetry in the distribution of a decode. Most BMI tasks involve some form of symmetry713
in the task space, and this metric ensures that non-biomimetic decoders can still span the task space as714
efficiently as their biomimetic peers.715

These five proposed metrics are not only scale-invariant, but they are also agnostic of the actual kine-716
matic signals – making them particularly suited to assess the performance of non-biomimetic decoders717
and compare them to their biomimetic counterparts. On the one hand, non-biomimetic decoding using718
the moving average filters had the worst decrease in SNR, with a median of 1.8 dB. On the other hand,719
kernel-based non-biomimetic decoders did not suffer as much drop in SNR, with a median range of 0.1–720
0.6 dB, thereby exceeding their biomimetic peers for which the median SNR drop range was 0.8–1.0 dB721
(see Supplementary Figure 7). Additionally, the windowing approach we used to ‘taper’ the basis functi-722
ons of the proposed kernels resulted in a great reduction of the decoder filters average latency by about723
ten folds – without much reduction in other performance metrics (see Figure 10). With the diagonal-724
normalized neural covariance kernels having the highest SNR and also highest unit contribution index725
values, we conclude this analysis by pointing out that these kernels provide a good compromise in terms726
of the decoding metrics that we used.727
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4.3 OPTIMAL LINEAR DECODERS AS MATCHED FILTERS

The main hypothesis we put forward in this study is that the unit filters of optimal linear decoders should728
match the spatiotemporal dynamics of the decoded units. To this end, we quantified this ‘matching’ effect729
using the PETHs of the decoded units. We proposed two metrics based on Pearson correlation coeffici-730
ents between unit filter functions and corresponding unit PETHs. These metrics are the unit-filter match731
magnitude – which quantifies the correlation magnitude, and the unit-filter match unit fraction – which732
quantifies the fraction of units significantly correlated with the filters. Using these two metrics, we demon-733
strated universal and significant correlations – using pooled data from all biomimetic linear decoders –734
between improvements in the unit-filter matching and improvements in the proposed decoder performance735
metrics. In particular, the unit-filter match metrics positively correlated with the coefficient of determi-736
nation and the SNR, whereas they negatively correlated with the average zero-crossings per second and737
the filters latency. It is worth noting that the PETHs were computed using all data on a given session,738
whereas linear decoders were only computed using a very limited subset of the data on the same session.739
Our results suggest that the better the matching between the filters and the PETHs, the better these filters740
approach optimal performance. Moreover, consistent with a matched filter hypothesis, our results indicate741
that decoding of past and future data using finite filters is equivalent to the ‘causal’ truncation of these742
filters 10.743

The decode SNR improvement with better unit-filter matching provides further evidence that harnessing744
the neural population dynamics may improve decoding performance. Since the population vector algori-745
thm (Moran and Schwartz, 1999) – as well as its optimal linear estimation variant (Koyama et al., 2010)746
– and the velocity Kalman filter algorithm (Kim et al., 2008, 2011) do not take these neural population747
dynamics into account, we surmise that performance of kernel-based linear decoders that account for neu-748
ral dynamics may in general surpass other linear decoding algorithms both in terms of the coefficient of749
determination as well as the decode SNR.750

4.4 EFFECT OF DECODING FUTURE MOVEMENT

To our knowledge, there is only one study that have investigated the effect of decoding future move-751
ment on BMI performance (Willett et al., 2013). The results presented here provide more insight into the752
online performance improvement reported therein. It is known that motor cortical activity leads natural753
movement by approximately 100–200 ms (Moran and Schwartz, 1999; Paninski et al., 2004). In fact,754
visual inspection of the spatiotemporal PETHs presented here and also the spatiotemporal unit tuning755
plots in (Paninski et al., 2004) confirms that motor cortical activity reaches its maximum around this lead756
time. Our analysis further demonstrates – in agreement with a ‘matched filter’ hypothesis – that optimal757
linear decoders coefficients also have their maxima around the same lead time (see e.g. Figure 9). Conse-758
quently, the effect of decoding future movement on the decoders structure is simply to ‘push’ the decoder759
coefficients towards immediate neural firing history. This temporal shift in the unit filters structure may760
also be the main reason for reducing the filters latency (Figure 8). Moreover, the drop in the decoding761
performance of future data may be explained by comparing the large magnitudes of the decoder coeffici-762
ents that ‘move out’ of the decoder’s one-second window to the small magnitudes of the coefficients that763
‘move in’ into the same window, which also results in the unit filters structure becoming more ‘flat’. In764
this process, the decoder loses its matched filter structure thereby reducing its decode SNR and – in the765
extreme case of decoding k = +3 future bins – increasing its latency. This observation also resonates well766
with the deteriorating decode SNR of moving-average decoders (Figure 10 and Supplementary Figure 7)767
– mainly because of their ‘flat’ structure that uniformly weights neural activity across time.768

These insights also justify our non-biomimetic decoder design. The neural covariance kernels ensure769
the necessary ‘match’ between the unit filter structures and the corresponding unit dynamics. Further-770
more, ‘tapering’ of the kernel basis filter functions promotes decoders with low filter latency. These771

10 These results are also linked to the orthogonality principle and the mathematical fact that discrete-time filter coefficients at different time bins represent
orthogonal spaces.
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factors, together with the symmetry of the decode, are expected to lead to improved online BMI control772
performance.773

5 CONCLUSIONS AND FUTURE DIRECTIONS

This study presented, for the first time, a unified framework for design of both biomimetic and non-774
biomimetic decoders. Through the proposed scale-invariant decoding performance metrics, we showed775
advantages of kernel-based system identification methods for decoder design. Moreover, we provided776
theoretical and data-based justifications for designing unit filters from a ‘matched filter’ standpoint. We777
also investigated the effect of decoding future data on the unit filters structure and the decoding performa-778
nce. We showed that decoding future data can result in lower decoder latency mainly due to the temporal779
shift in the decoder weights in a manner that is consistent with a ‘matched filter’ hypothesis. This temporal780
shift in the decoder structure with decoding future data resulted in lower decoder latency at the expense of781
deterioration in the coefficient of determination and the SNR. Another approach to reduce average filter782
latency without much deterioration in the SNR was demonstrated using non-biomimetic decoding with783
synthetically ‘tapered’ filter basis functions. The extent to which improvements in the proposed deco-784
ding performance metrics (e.g. filter latency and SNR) can result in improvements in online BMI control785
remains to be tested in a future study. Our decoder design approach relies on the estimation of the neu-786
ral covariances from data and then using these covariances as a kernel. Therefore, we posit that Bayesian787
covariance estimation could outperform the ML covariance estimation used here – and result in even more788
decoding performance improvements with short data records. This hypothesis is supported by the optimal789
kernel theory for system identification (Pillonetto et al., 2014) and can be tested in a future study.790

The results presented here are for decoding only one DOF. In biomimetic decoder design, optimal linear791
decoders for different DOFs are designed simply by optimizing one DOF decoder at a time11. However,792
for non-biomimetic decoders, this is not generally the case. One multi-DOF decoding approach we have793
used earlier is to partition the pool of recorded units into a number of partitions equal to the number794
of DOFs based on the unit functional connectivity (Balasubramanian et al., 2013; Badreldin et al.,795
2013). An alternative approach would be to generalize the theoretical decoder optimization problem (55)796
to handle multiple DOFs, for example by using the vectorized version of the symmetry metric proposed797
here. We also note that the theory presented in this study is very abstract and can be extended for the design798
of infinite-duration neural filters (see Appendix 1 in the supplementary material) that admit a recursive799
implementation that is hardware-friendly (Badreldin and Oweiss, 2014) . Similarly, continuous-time800
filters can be implemented using mixed-signal integrated circuits to design low-power real-time neural801
decoding hardware.802

In control systems, it is often desirable to obtain an ‘inverse model’ of a plant to be used in a closed-803
loop control scheme to elicit a desired response from the controlled plant. This ‘inverse model’ – or804
‘internal model’ – control scheme can be used for closed-loop neurocontrol by choosing the neurostimu-805
lation patterns as outputs of an inverse model of the plant. To this end, the theory we presented is also806
applicable in this case, where an inverse model of the plant takes the place of a ‘decoder’ (Liu et al.,807
2011; Li et al., 2013). Finally, kernels based on a finite number of basis functions can be easily adapted808
online using the least mean squares (LMS) algorithm (Ninness and Hjalmarsson, 2005). This is particu-809
larly useful for online adaptation in the presence of non-stationaities, for example in closed-loop decoder810
adaptation (Orsborn et al., 2012) and in the adaptation of the inverse model for control (Li et al., 2013).811

11 Similarly in linear system identification, MIMO identification is performed as a collection of MISO systems.
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Figure 1 | Linear decoder block diagram. Raw spike trains, ri(t), are counted using predefined time
bins to produce binned spike counts, xi(t), which are subsequently filtered using a unit filter function,
gi(t), to produce unit outputs, zi(t). The decode is computed as the summation of all unit outputs.
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Figure 2 | Sampling from prior distributions. (A) Visualization of the absolute values of the kernels
as heat-maps. (All kernel matrices were normalized to have a maximum absolute value of one.) (B) A
‘typical’ sample from the corresponding prior distribution with zero mean and covariance equal to the
kernel matrix in A. (Colors represent different units.) (C) Unit filter magnitude for each unit, averaged
over 1000 samples, and normalized to have a maximum of one. (Error bars represent standard error of the
mean.) (D) Filter RMS values as a function of time, averaged over 1000 samples, and normalized to have
a maximum of one. (Error bars represent standard error of the mean.)
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Figure 3 | Neural eigenmodes and the effect of regularization. (A) The gain term given by the different
algorithms to the neural eigenmodes (SVD basis vectors). Whereas the pseudo-inverse solution gives
large weights to lower-ranked SVD basis, the regularized solutions give less weight to such indices which
typically correspond to high-frequency output eigenmodes. Truncated versions of these algorithms follow
the same pattern up to the point of the truncation index, after which the gain drops to zero. Inset shows
a typical distribution of the singular values that give rise to such gain terms. Low-ranked singular values
are typically very small, specially for dominantly low-frequency inputs. Such small singular values, when
inverted, give rise to large SVD gains as seen in the main plot. (B) and (D) illustrate a typical structure of
the top-50 (B) and bottom-50 (D) output eigenmodes. (C) The first two output eigenmodes from B and the
last two output eigenmodes from D. These plots demonstrate the ubiquitous empirical observation that,
for some bandlimited low-frequency input, the low-ranked SVD output eigenmodes are dominated by
low-frequency components whereas the high-ranked ones are dominated by high-frequency components.
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Figure 4 | Generalization performance of biomimetic decoding algorithms. (A) Percentage of block
arrangements across all sessions in which a particular algorithm performed better than all other algori-
thms. Each percentage is computed as the number of times a particular algorithm outperformed all others,
normalized by the total number of block arrangements across all sessions. Error bars represent the standard
error of the mean. (B-F) Performance plots as quantified by different performance metrics. Performance
metrics on all block arrangements for all sessions are shown. Each ‘dot’ represents performance on one
block arrangement, where each session (containing 10 dots) is displayed in one vertical column, and 11
columns representing 11 sessions are grouped together in the same color for each algorithm, with a solid
line representing the median of one group. The performance metrics evaluated on the actual hand velo-
city (TRUE) in the same block arrangements is also displayed where applicable (red color). In all panels,
statistical significance for the PINV algorithm was assessed using Wilcoxon signed rank test with Bon-
ferroni correction for multiple comparisons. (B) Decoding performance as measured by the coefficient
of determination, R2, where the PINV algorithm performed significantly worse than all other algorithms
(p < 0.05), and in some cases had negative R2 values (trimmed in the current plot). (C) Decoding per-
formance as measured by SNR, where the PINV algorithm performed significantly worse than all other
algorithms (p < 0.05). (D) Average decode zero-crossings per second, where the PINV algorithm had
significantly higher values than all other algorithms (p < 0.05). (E) Decoding performance as measured
by decoder filters latency, where the PINV algorithm performed significantly worse than all other algori-
thms (p < 0.05). (F) Unit contribution indices for decode computation in all algorithms, where PINV had
the highest values than all other algorithms (p < 0.05).
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Figure 5 | Representative average velocity spikes. Average velocity spikes corresponding to test blocks
with best SNR for respective biomimetic decoding algorithms (solid lines, different colors for different
algorithms), plotted against average velocity spikes of the natural hand velocity signal taken from the same
blocks (dashed red lines). Dashed black lines represent zero baseline. Average positive (correspondingly,
negative) velocity peaks are shown above (correspondingly, below) the zero baseline.
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Figure 6 | Correlation between single-unit PETHs and corresponding unit filters. (A) Top-3 PETHs
that correlate with corresponding unit filter shapes in a representative session with a unit-filter match
magnitude greater than 0.5. PETHs are constructed relative to the time of the peak events in B (dashed
line). (B) Representative positive velocity spikes extracted from the trials of the same session as in A.
Dashed line marks the global velocity peak of each velocity spike. (C) Visualization of the top-3 PETHs
(z-scored) from B overlaid with the corresponding z-scored, time-reversed, unit filter functions (dashed
lines). (D) Visualization of the top-50 correlated PETHs and unit filters (both are z-scored).
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Figure 7 | Relationship between unit-filter match metrics and other decoding performance metrics.
(A–E) Relationship between unit-filter match magnitude and decoding performance metrics for all block
arrangements from all algorithms after excluding outliers. Outliers in each metric were excluded using
the same criterion used in box plots to detect outliers, which relies on interquantile ranges. (F–J) Same
for unit-filter match unit fraction.
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Figure 8 | Effects of decoding past and future data on decoding performance and filters structure.
Effect of decoding past and future data on: R2 (A), SNR (B), zero-crossings per second (C), decoder
filter latency (D), unit contribution index (E), and filter half-RMS time (F). In all cases, at each future
bin value (in the range [-3,3]), each column shows results on test data from all 110 block arrangements
corresponding to (from left to right) RIDG, COV, and COV|N kernels.
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Figure 9 | Representative example of changes in the unit-filter match with decoding past and future
data. (A) Representative PETHs from three units selected as the units with top-3 correlation coefficients
between their PETHs and unit filter functions at no lag. The PETHs are constructed for decoding future
bins running from -2 (leftmost) to +3 (rightmost). Different colors represent different units. (B) Same
PETHs as in A after z-scoring (solid lines) for visual comparison of their match to corresponding z-scored
unit filter functions (dashed lines). Same color scheme and future bins scheme as in A.
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Figure 10 | Generalization performance of non-biomimetic decoding algorithms. (A) Percentage of
block arrangements across all sessions in which a particular algorithm performed better than all other
algorithms. Each percentage is computed as the number of times a particular algorithm outperformed all
others, normalized by the total number of block arrangements across all sessions. Error bars represent the
standard error of the mean. (B-F) Performance plots as quantified by different performance metrics. Per-
formance metrics on all block arrangements for all sessions are shown. Each ‘dot’ represents performance
on one block arrangement, where each session (containing 10 dots) is displayed in one vertical column,
and 11 columns representing 11 sessions are grouped together in the same color for each algorithm, with
a solid line representing the median of one group. The performance metrics evaluated on the actual hand
velocity (TRUE) in the same block arrangements is also displayed where applicable (red color). (B) Deco-
ding performance as measured by the decode skewness (or asymmetry) metric. (C) Decoding performance
as measured by SNR, where the MA algorithm performed significantly worse than all other algorithms
(p < 0.05; Wilcoxon signed rank test with Bonferroni correction for multiple comparisons) (D) Average
decode zero-crossings per second. (E) Decoding performance as measured by decoder filters latency. (F)
Unit contribution indices for decode computation in all algorithms.
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Figure 11 | Representative average velocity spikes. Average velocity spikes corresponding to test blo-
cks with best SNR for respective non-biomimetic decoding algorithms (solid lines, different colors for
different algorithms), plotted against average velocity spikes of the natural hand velocity signal taken
from the same blocks (dashed red lines). Dashed black lines represent zero baseline. Average positive
(correspondingly, negative) velocity peaks are shown above (correspondingly, below) the zero baseline.
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