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Abstract 

Genome-wide association studies (GWAS) have proven a valuable tool to explore the 

genetic basis of many traits. However, many GWAS lack statistical power and the 

commonly used single-point analysis method needs to be complemented to enhance 

power and interpretation. Multivariate region or gene-wide association are an 

alternative, allowing for identification of disease genes in a manner more robust to 

allelic heterogeneity. Gene-based association also facilitates systems biology analyses 

by generating a single p-value per gene. We have designed and implemented FORGE, 

a software suite which implements a range of methods for the combination of p-

values for the individual genetic variants within a gene or genomic region. The 

software can be used with summary statistics (marker ids and p-values) and accepts as 

input the result file formats of commonly used genetic association software. When 

applied to a study of Crohn’s disease susceptibility, it identified all genes found by 

single SNP analysis and additional genes identified by large independent meta-

analysis. FORGE p-values on gene-set analyses highlighted association with the Jak-

STAT and cytokine signalling pathways, both previously associated with CD. We 

highlight the software’s main features, its future development directions and provide a 

comparison with alternative available software tools.  FORGE can be freely accessed 

at https://github.com/inti/FORGE. 

Contact: gerome.breen@kcl.ac.uk and intipedroso@gmail.com  
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Introduction 

Genome-wide association studies (GWAS) have led to the discovery of hundreds of 

replicated variants associated with diverse human phenotypes 1. However, most 

GWAS have low statistical power to detect true effects due to the low effect-sizes of 

common risk alleles and the need for robust genome-wide significance thresholds, to 

allow for multiple testing, e.g. 7.2 x 10-8 2. Multivariate analytical strategies, such as 

gene-wide association, are an attractive alternative to single SNP approaches. They 

have the capability to allow for allelic heterogeneity (independent associated alleles in 

the same region) (e.g. 3), result in fewer tests genome-wide 4 and provide gene p-

values that can be used with gene-set analysis methods 5. Increasing evidence suggest 

that allelic heterogeneity is a common feature of the genetic architecture of complex 

traits and that gene-set methods can improve the interpretation and statistical power of 

GWAS by using prior biological knowledge 6-8.  

Numerous gene-wide association methods have been proposed, for example 9-13,13,14. 

The simplest form consists of correcting the minimum p-value in the region or gene 

by its number of single nucleotide polymorphisms (SNPs), e.g., a Bonferroni 

correction or a measure of effective number of tests 15,16. This approach ignores 

possible allelic heterogeneity, i.e., independent potentially associated alleles. 

Multivariate methods are an alternative but they can require computationally 

expensive simulations to derive significance if the test statistic’s null distribution is 

unknown, as may be due to the correlation between genetic markers. 

Currently available software to perform gene-based association include: i) VEGAS 

that implements a simulation-based strategy to estimate significance 13; ii) PLINK 
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with an implementation of Hoteling’s T2-statistics and Makambi’s modified Fisher’s 

test statistic 17, --T2 and --set-screen options respectively; and iii) GATES that 

implements a modified Simes test 14. PLINK also allows users to perform SNP-set 

analyses, e.g., all SNPs within genes of a biological pathway, allowing for gene-set 

analyses. Analysis of GWAS using gene-set analysis has been reviewed recently 

elsewhere, e.g., 5,6, and we provide a representative list of available tools and studies 

in Supplementary Table 1 and 2, respectively. 

Here we describe FORGE, a software suit to perform gene-wide and gene-set 

analyses of GWAS. It provides routines for the calculation of four gene-wide 

association methods and two gene-set analysis strategies. FORGE represents an 

extension and complements parallel independent efforts, such as VEGAS 13 or KGG 

14,18. In addition, several utility programs are distributed with FORGE allowing users 

to: i) map SNP to Genes using the Ensembl human genome annotation; ii) parse 

different gene-set files; and iii) calculate meta-analysis statistics for gene and gene-

sets analyses results when studies carried out on multiple data-sets. 

Methods 

Gene-wide statistics 

1. Sidak’s correction on minimum p-value 

Consider a set of m SNPs (M) and their association p-values (P) with a trait, for 

which the aim is to calculate a combined association test statistic for M. The simplest 

strategy is to consider the minimum p-value among P as M’s evidence for association 

using Sidak’s correction 19 with an estimate of the number of effective tests within the 
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gene, , where praw is the minimum p-value in P and k is the 

effective number of SNPs tested calculated with the method of 16.  

2. Modified Fisher’s method to combine correlated p-values 

In order to obtain a combined test (T) for M taking the correlation among the genetic 

markers into account, we use the method originally derived by Brown (1975) with the 

modifications proposed by Kost and McDermott 20 and Makambi 17, leading to the 

chi-square test , with υ degrees of freedom, where  is 

the weighted version of the Fisher’s method, pi is the p-value of ith marker and wi are 

weights greater than zero that sum to one. The degrees of freedom are  

with , where ρij is the correlation between the 

Pi and Pj.   

3. Fixed-effect z-score statistic 

We can also calculate (Huedo-Medina et al., 2006), where zi are the p-

values transformed to z-scores using the standard normal distribution inverse 

cumulative distribution function (c.d.f.) and Vfix is the variance of the test. Using the 

approximation of the multivariate-normal distribution . 

1. Random-effect z-score statistic 

A random-effects estimate is given by , with variance  

and weights equal to which are adjusted with the heterogeneity measure 

. In calculating τ2 one would normally use Cochran's 

heterogeneity statistics , which is an approximately distributed 

chi-square variable with m-1 degrees of freedom 21. To account for the correlation 

among the genetic markers τ2 is calculated using Q’, which is Q re-scaled into a chi-
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square variable with m-1 degrees of freedom. This is achieved by calculating Q’s tail 

probability using the modified Fisher’s method described above and then Q’ is the 

probability’s chi-square value from a chi-square distribution with m-1 degrees of 

freedom. 

Gene-set analysis 

1. SNP to gene-sets strategy 

In	
   this	
   case	
  we	
   treat	
   gene-­‐sets	
   as	
   a	
   large	
   gene,	
   i.e.	
  map	
   to	
   it	
   all	
   SNPs	
   of	
   its	
  

genes	
  and	
  applied	
  the	
  statistics	
  described	
  above.	
  

2. Gene-sets analysis with gene p-values 

We implemented the methods described by Luo et al. 22 as following. GSA is 

performed by transforming the gene p-values into z-scores (using the standard 

distribution inverse c.d.f.) and combining the z-scores with   where gi 

is the z-score of the ith gene in the gene-set, k the number of genes in the gene-set and 

VSNet is the variance-covariance matrix of the gene’s statistic, 

. SNet is formally a variable from a standard normal 

distribution and it significance can be estimated with normal distribution probability 

density function. 

Calculation of gene p-values 

The gene-wide statistics describe above lead to asymptotic estimates of significance. 

We implemented the method described by Li et al. 14 to approximate the correlation 

between the p-values by the correlation between the SNPs, i.e. allelic LD or Pearson’s 

correlation. In addition to these asymptotic strategy we implemented routines to 

calculate gene p-values using the simulation-based strategy of Liu et al. 13. Although 
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this strategy is slower than asymptotic methods, its p-values are well correlated with 

empirical estimates 13. We refer the reader to Liu et al. 13 for details of the strategy 

and to Supplementary Material for description of our implementation. 

Analysis of the WTCCC Crohn’s disease GWAS 

We	
   obtained	
   summary	
   statistics	
   of	
   the	
   Crohn’s	
   disease	
   GWAS	
   from	
   the	
   EGA	
  

website	
   with	
   formal	
   data	
   access	
   permission	
   of	
   the	
   WTCCC	
   Data	
   Access	
  

Committee.	
   Quality	
   control	
   (QC)	
   performed	
   QC	
   by	
   excluding	
   samples	
   as	
  

indicated	
  in	
  the	
  files	
  provided	
  by	
  the	
  WTCCC	
  and	
  SNPs	
  with	
  missingness	
  ≥	
  1%,	
  

minor	
  allele	
  frequency	
  (MAF)	
  ≤	
  1%	
  Hardy-­‐Weinberg	
  equilibrium	
  (HWE)	
  p-­‐value	
  

≤	
  1	
  x	
  10-­‐3	
  and	
  p-­‐value	
  ≤	
  1	
  x	
  10-­‐5	
  in	
  controls	
  and	
  cases,	
  respectively,	
  as	
  previously	
  

described	
  23.	
  We	
  also	
  obtained	
  genotype	
  data	
  of	
  the	
  bipolar	
  disorder	
  GWAS	
  and	
  

performed	
   QC	
   as	
   follow:	
   i)	
   poor	
   quality	
   samples	
   and	
   SNPs	
   were	
   removed	
   as	
  

indicated	
  in	
  the	
  files	
  distributed	
  by	
  the	
  WTCCC;	
  and	
  ii)	
  SNPs	
  were	
  removed	
  using	
  

the	
   same	
   criteria	
   used	
   for	
   the	
   Crohn’s	
   disease	
   summary	
   statistics.	
   SNP	
  

association	
  were	
  performed	
  with	
  a	
  logistic	
  regression	
  as	
  implemented	
  on	
  PLINK	
  

24.	
  Using	
  both	
  sets	
  of	
  summary	
  statistics	
  gene-­‐wide	
  statistics	
  were	
  calculated	
  for	
  

approximately	
   19,550	
   protein-­‐coding,	
   long	
   intergenic	
   non-­‐coding	
   RNA	
   and	
  

micro-­‐RNA	
  genes	
  annotated	
   in	
  Ensembl	
  version	
  59	
  and	
  whose	
  SNPs	
  passed	
  QC	
  

in	
  the	
  WTCCC	
  studies.	
  We	
  mapped	
  SNPs	
  to	
  genes	
  if	
  the	
  SNP	
  was	
  within	
  20	
  kb	
  of	
  

the	
  annotated	
  coordinates	
  aiming	
   to	
   include	
  95%	
  of	
  potential	
   eQTL	
   loci	
   25.	
  We	
  

approximated	
  the	
  correlation	
  between	
  test	
  statistics	
  as	
  the	
  correlation	
  between	
  

the	
  SNPs	
  as	
  measured	
  by	
  the	
  Person’s	
  correlation	
  between	
  the	
  allele	
  counts.	
  We	
  

used	
  a	
  False	
  Discovery	
  Rate	
  (FDR)	
  <	
  0.1	
  26	
  to	
  perform	
  multiple	
  testing	
  correction	
  

on	
  the	
  gene	
  p-­‐values.	
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We	
  performed	
  gene-­‐set	
  association	
  with	
  the	
  WTCCC	
  Crohn’s	
  disease	
  gene-­‐wide	
  

p-­‐values	
   results	
   using	
   5,384	
   gene-­‐sets	
   derived	
   from	
   the	
   Human	
   Protein	
  

Reference	
   Database	
   protein-­‐protein	
   interaction	
   network	
   (PPIN)27.	
   The	
   PPIN	
  

gene-­‐sets	
  were	
  constructed	
  with	
   the	
   following	
  algorithm:	
  subnetwork	
  searches	
  

started	
  from	
  each	
  node	
  (seed	
  node)	
  in	
  the	
  PPIN	
  and	
  a	
  subnetwork	
  was	
  defined	
  

by	
  adding	
  sequentially	
  the	
  direct	
  neighbours	
  of	
  the	
  subnetwork's	
  nodes	
  (initially	
  

only	
  the	
  seed	
  node).	
  We	
  allowed	
  searches	
  to	
  go	
  to	
  a	
  max	
  of	
  5	
  interactions	
  from	
  

the	
   seed	
   node	
   and	
   generate	
   subnetworks	
   of	
   2	
   to	
   200	
   nodes	
   in	
   size;	
   each	
  

subnetwork	
  was	
  used	
  as	
  a	
  gene-­‐set.	
  An	
  FDR	
  of	
  0.1	
  was	
  used	
  for	
  multiple	
  testing	
  

correction	
   28.	
   Significant	
   PPIN’s	
   genes	
   were	
   analysed	
   by	
   assessing	
   their	
   over-­‐

representation	
   among	
   biological	
   categories	
   reported	
   on	
   KEGG	
   29	
   and	
   GO	
  

databases	
  30.	
  Significance	
  of	
  the	
  overlap	
  was	
  calculated	
  with	
  binomial	
  statistics.	
  

Results and Discussion 

Figure	
  1	
  presents	
   the	
  GWAS	
  analyses	
   implemented	
   in	
  FORGE.	
  GWAS	
   summary	
  

statistics	
  are	
  used	
  to	
  calculate	
  gene-­‐set	
  p-­‐values	
  either	
  by	
  mapping	
  SNP	
  p-­‐values	
  

to	
   gene-­‐sets	
   directly	
   or	
   by	
   calculating	
   gene-­‐based	
   p-­‐values	
   as	
   an	
   intermediate	
  

step.	
   Calculation	
   of	
   gene	
   p-­‐values	
   provides	
   an	
   additional	
   layer	
   of	
   analysis	
   that	
  

can	
  facilitate	
  integration	
  of	
  GWAS	
  with	
  results	
  from	
  other	
  “omics”	
   technologies	
  

that	
  also	
  generate	
  a	
  single	
  statistic	
  per	
  gene,	
  e.g.,	
  gene-­‐expression	
  studies.	
  This	
  

integration	
  can	
  also	
  be	
  performed	
  at	
  the	
  level	
  of	
  gene-­‐sets.	
  

Liu et al. 13 introduced a simulation-based gene-wide association strategy that 

provides gene p-values with very good agreement with those obtained by phenotype 

permutations. For all gene-wide association methods we implemented this strategy as 

a way to estimate significance. This approach requires computation of correlations 
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between SNP genotypes. It is desirable to use genotypes from a reference population, 

e.g. HapMap project samples, because it enables the use of summary statistics in the 

absence of each study’s genotype data. Using the WTCCC bipolar disorder GWAS 

we calculated gene p-values using the WTCCC genotypes and the HapMap Phase 3 

CEU samples. The computing time decreased approximately linearly with the sample 

size, i.e., the computing time is reduced by ~50 times when using the 165 HapMap 

Phase 3 CEU samples compared with using the full WTCCC Crohn’s disease dataset 

(5000 samples) (not shown). Also there was high correlation (>0.99) between the 

gene p-values calculated with both sets of genotypes (not shown), as may have been 

expected due to the Caucasian origin of both samples. There was high correlation 

between all gene-wide p-values (minimum correlation > 0.7) and the correlations 

between multivariate methods were higher (minimum correlation > 0.95) (Figure 2). 

Importantly, the distribution of  gene p-values for the bipolar disorder GWAS did not 

present over-dispersion (Figure 3), in agreement with the idea that this particular 

GWAS was underpowered to detect the true genetic effects 31. Finally, we compared 

the results of the fixed and random-effects models and found small differences but 

only on relatively small genes, i.e., approximately < 45 SNPs (Figure 4). For larger 

genes the statistical heterogeneity measure I2 is rarely different from zero. This 

pattern is to be expected since only a small fraction of genetic variation is thought to 

be associated with a phenotype, so in larger genes most of the evidence will point to 

lack of association and statistics will be more homogeneous (low I2). Thus, our 

exploration of using a statistical heterogeneity measure to tackle genetic heterogeneity 

suggest it is hardly effective in moderate to large genes. Application of other 

statistical techniques may provide better results, for example 32,33. 

Comparison with other software 
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Table 1 presents a comparison of FORGE with other software available to perform 

gene and gene-set analyses on GWAS. Compared with most other software, FORGE 

allows to perform both gene and gene-set analyses functionalities within the same 

software. In addition, it implements more analysis methods including asymptotic and 

simulation-based calculations. FORGE also reads all three major genotype formats 

used in GWAS and provides utilities to build SNP-to-gene mapping with updated 

versions of the human genome annotation. Finally, it Perl implementation makes it 

platform independent. 

Case study: the WTCCC Crohn’s disease GWAS 

Wang et al. 6 recently reviewed gene-set analyses results of GWAS of CD and we use 

these as a reference for compare results. FORGE gene-based association was 

performed using summary statistics and genotypes of the HapMap phase 3 CEU 

samples genotypes. Table 2 lists genes with FDR < 0.1 on the Z FIX gene-based 

association method. Genes mapped to significant SNPs (p-values < 5x10-8) were also 

identified by the gene-based association. Interestingly, in line with results of Liu et al. 

13 and Li et al. 14, gene-based association results highlighted genes associated at a 

genome-wide significant level in other studies, in spite of having sub-threshold 

association on the GWAS analysed here. We used gene p-values calculated with the Z 

FIX method for gene set analyses (Table 3). Several significant associations were 

found among biological process with previous compelling evidence of involvement of 

Crohn’s disease pathology 6, for example: associations with gene-sets of the Jak-

STAT (hsa04630) and Cytokine-cytokine receptor interaction (hsa04060) signalling 

pathways. 
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Overall, FORGE produces gene p-values that complement single SNP associations. 

Its gene p-values can be calculated from summary statistics and used with gene-set 

analysis methods to provide a systems biology perspective of a GWAS. Together, 

gene and gene-set association represent a complement to single SNP analyses by 

helping to interpret and extract information from GWAS. 

Availability and Future Directions  

FORGE	
  has	
  been	
  deposited	
  in	
  the	
  public	
  repository	
  GitHub	
  (https://github.com).	
  

Software	
   code	
   is	
   updated	
   using	
   control	
   version	
  with	
   GIT	
   (http://git-­‐scm.com)	
  

and	
   users	
   can	
   access	
   the	
   latest	
   stable	
   or	
   development	
   versions	
   at	
  

https://github.com/inti/FORGE.	
   Current	
   development	
   is	
   focused	
   on	
   a	
   web-­‐

server	
  version	
  of	
  FORGE	
  to	
  run	
  on	
  the	
  264	
  CPU	
  computer	
  cluster	
  hosted	
  at	
  the	
  

NIHR	
   BRC	
   Centre	
   for	
   Mental	
   Health	
   (Institute	
   of	
   Psychiatry,	
   KCL,	
   UK).	
   This	
  

interface	
  will	
  allow	
  users	
  to	
  upload	
  GWAS	
  summary	
  statistics	
  and	
  perform	
  both	
  

gene	
  and	
  gene-­‐set	
  analysis	
  online.	
  

Design and Implementation 

We implemented these methods in a software suite called FORGE written in Perl 

(www.perl.com) using the PDL, PDL::Stats and PDL::LinearAlgebra libraries, all 

freely available at the Comprehensive Perl Archive Network (www.cpan.org). These 

libraries allow performing calculation on double mathematical precision with the 

General Scientific Library (GSL) and the LAPACK library. All major functions have 

been implemented as separate libraries, for example: i) GWAS_STATS.pm with 

statistical analysis routines; ii) GWAS_IO.pm to deal with file formats commonly 

used in GWAS studies; and iii) CovMatrix.pm implements method to calculate 

correlations and covariance matrices. This design allows new features to be developed 
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in a modular fashion and the use of specific functions (e.g., reading binary genotype 

files) from software by the wider scientific community.  

Three major programs were developed: i) forge.pl to perform gene and gene-set 

analyses; ii) gsa.pl implements additional routines to perform a gene-set analyses; and 

iii) meta_analysis.pl implements to combined results from independent studies.  

Main features 

1. Input files: the program reads input and output files and genotype file formats of 

commonly used GWAS analysis software, e.g., genotype files in Pedigree, 

Pedigree Binary Format and SNP association files produced by PLINK 24. Gene-

set definitions are accepted in GMT format, described elsewhere  

(www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Main_Page).  

2. SNP-SNP correlations: three measures of SNP-SNP correlations are implemented: 

i) shrinkage correlation estimate described by Schafer and Strimmer 34; ii) LD; 

and iii) correlation among the test statistics as explained by Li et al. 14.  

3. SNP-to-Gene annotations: pre-computed files with genetic variants mapped to 

genes up to 500 kb from gene coordinates are available at the FORGE website. A 

Perl script to update the annotation using the Ensembl API 35 is distributed as a 

utility of FORGE. 

4. Additional features: i) user provided SNP weights, e.g. functional scores, can be 

used and will be re-scaled to sum to 1 within each gene; ii) genomic-control 

correction 36 can be automatically performed within the program; iii) analyses can 

be restricted to chromosomes, gene lists or gene types (e.g. protein coding or 

miRNA genes); iv) Affymetrix SNP identifiers are accepted and mapped to rsids 

internally; and vi) gene-sets for major databases like KEGG 29 or GO 30 are 
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provided as well as those derived from the protein-protein interaction network 

(see Methods). 

5. Documentation: Example files and tutorials are available on the software’s 

website.  
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Figure Legends 

Figure	
   1.	
   GWAS	
   analyses	
   implemented	
   on	
   FORGE.	
   A	
   FORGE	
   analysis	
   starts	
  

with	
   GWAS	
   summary	
   statistics.	
   It	
   is	
   possible	
   to	
   calculate	
   gene-­‐set	
   statistics	
  

directly	
   from	
   SNP	
   association	
   p-­‐values	
   or	
   by	
   calculating	
   gene	
   p-­‐values	
   as	
   an	
  

intermediate	
  step.	
  In	
  all	
  steps	
  FORGE	
  introduces	
  corrections	
  for	
  the	
  LD	
  to	
  avoid	
  

inflation	
  of	
   the	
  statistics.	
  Yellow	
  boxes	
  present	
   the	
  advantages	
  and	
  potential	
  of	
  

each	
  GWAS	
  result	
  level.	
  

Figure	
   2.	
   Correlation	
   between	
   gene-­‐based	
   p-­‐values.	
   Black	
   diagonal	
   line	
  

represents	
   the	
   1-­‐to-­‐1	
   correlation.	
   Blue	
   line	
   is	
   a	
   trend	
   calculated	
  with	
   a	
   linear	
  

model.	
  Correlation	
  estimates	
  between	
  the	
  methods	
  are	
  indicated	
  on	
  the	
  table.	
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Figure	
  3.	
  Quantile-­‐quantile	
  plots	
  of	
  simulation-­‐based	
  gene	
  p-­‐values.	
  Plotted	
  

is	
  the	
  expected	
  (x-­‐axis)	
  against	
  the	
  observed	
  (y-­‐axis)	
  –log10	
  of	
  the	
  gene	
  p-­‐values.	
  

Dotted	
  line	
  marks	
  the	
  95	
  %	
  confidence	
  interval.	
  

Figure	
  4.	
   Comparison	
  of	
   fix	
   and	
   random-­‐effects	
   estimates.	
  Plotted	
  for	
  each	
  

genes	
   (N	
   ~20000)	
   is	
   the	
   log10	
   of	
   the	
   ratio	
   of	
   fix	
   and	
   random-­‐effects	
   gene	
   p-­‐

values.	
  Insert	
  (top	
  right	
  corner)	
  presents	
  data	
  for	
  the	
  complete	
  range	
  of	
  number	
  

of	
  effective	
   tests.	
  Points	
  are	
  coloured	
   (see	
   figure	
   legend)	
  as	
   the	
  gene	
  statistical	
  

heterogeneity	
  measure	
  I2,	
  which	
  has	
  range	
  from	
  0	
  (no	
  evidence	
  of	
  heterogeneity)	
  

to	
  100%	
  (maximum	
  evidence	
  of	
  heterogeneity).	
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Tables 

Software VEGAS PLINK ALIGATOR dmGWAS GenGen GATES* FORGE 

Analysis type 

Gene-based association X X       x x 

Gene-sets   X X X X x x 

Statistics used  

Best SNP X       X x x 

Fix-effects X X X X X x x 

Random-effects           	
   	
  
Correction for LD X   X     x x 

P-value calculation 

Asymptotic method   X       x x 

Simulation-based significance X   X     	
   x 

Use of SNP weights 	
   	
   	
   	
   	
   x x 

Phenotype Permutations   X   X X 	
   	
  
Gene shuffling (only for gene-sets)         X 	
   x 

Input formats  

Pedigree     a a a 	
   x 

Binary pedigree X X a a a x x 

Genotype probabilities   X a a a 	
   x 

SNP to gene mapping files  

Available X X X X X x x 

Update/custom build           x x 

Summary statistics X   X X X x x 
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Table 1. Comparison of FORGE with other software to perform gene and gene-set analyses of GWAS.a = method 

used by software does not need genotype files. * reported features correspond to the KGG software 

(http://bioinfo1.hku.hk:13080/kggweb/) where  GATES has been made available.  
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Gene Symbol Position 
Uncorrected	
  

Minimum	
  p-­‐value	
   Z FIX FDR 
CYLD a 17q12 4 x10-14 < 1 x10-6 1x10-3 

ATG16L1 a 5q31.1 4 x10-13 < 1 x10-6 1x10-3 
NKX2-3 a 16q12.1 1 x10-8 < 1 x10-6 1x10-3 
IL23R a 2q37.1 3 x10-12 < 1 x10-6 1x10-3 
NOD2 a 3p21.31 3 x10-14 < 1 x10-6 1x10-3 

C5orf56 a 2p13.1 1 x10-6 < 1 x10-6 1x10-3 
IRGM a 2p13.1 1 x10-7 < 1 x10-6 1x10-3 

ZNF300 a 1q32.1 1 x10-7 2 x10-6 0.02 
PTPN2 a 10q24.2 1 x10-7 2 x10-6 0.02 
MST1 a 5q31.1 1 x10-6 3 x10-6 0.02 

ENSG00000249738 5q33.3 5x10-5 1 x10-5 0.09 
ENSG00000221733 a 2p13.1 2 x10-11 2 x10-5 0.09 

APEH a 5q33.1 1 x10-6 4 x10-6 0.09 
HLA-DQA2 2p13.1 5 x10-5 3 x10-5 0.09 

KIF21B a 19q13.31 7 x10-5 3 x10-5 0.09 
CCL18 1p31.3 1 x10-4 5 x10-5 0.09 
TAP2 3p21.31 5 x10-5 5 x10-5 0.09 

HLA-DOB 3p21.31 5 x10-5 5 x10-5 0.09 
ENSG00000250264 16q12.1 5 x10-5 5 x10-5 0.09 

RNF123 a 17q21.2 4 x10-5 5 x10-5 0.09 
ZNF283 8p23.1 1 x10-4 6 x10-5 0.09 
LOXL3 3p21.31 2 x10-4 6 x10-5 0.09 
DAG1 3p21.31 3 x10-5 7 x10-5 0.09 
IRF1 3p21.31 4 x10-6 7 x10-5 0.09 

P4HA2 18p11.21 4 x10-4 8 x10-5 0.09 
STAT3 a 5q31.1 2 x10-5 8 x10-5 0.09 

USP4 6p21.32 6 x10-5 8 x10-5 0.09 
ENSG00000245942 6p21.32 3x10-4 8 x10-5 0.09 

GMPPB 1p31.3 1 x10-4 9 x10-5 0.09 
C2orf65 6p21.32 2 x10-4 9 x10-5 0.09 
TNKS 5q33.1 1 x10-4 9 x10-5 0.09 

HTRA2 6p21.32 2 x10-4 1 x10-4 0.09 
Table 2. Genes with FDR < 0.1 from WTCCC CD GWAS. Z FIX p-value was 
calculated with the simulation-based strategy using up to 106 simulations. FDR = 
false discovery rate. a Genes within 20 kb of genome-wide significant SNPs from the 
CD GWAS meta-analysis reported by Franke et al. 37. 
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   Enrichment 
p-value FDR Biological Categories 

PPIN-4224 8 x10-11 0.01 hsa04630: Jak-STAT signaling pathway; hsa04060: 
Cytokine-cytokine receptor interaction 

PPIN-3507 2 x10-6 0.07 hsa04012: ErbB signaling pathway; hsa04910: 
Insulin signaling pathway 

PPIN-2218 4 x10-5 0.07 GO0008236: serine-type peptidase activity 
PPIN-6093 4x10-5 0.07 hsa04010: MAPK signaling pathway 

PPIN-1129 4 x10-5 0.07 hsa04664: Fc epsilon RI signaling pathway; 
hsa04012: ErbB signaling pathway 

PPIN-6841 6 x10-5 0.07 hsa04020: Calcium signaling pathway 

PPIN-4434 6x10-5 0.07 GO0006888: ER to Golgi vesicle-mediated 
transport; GO0045576: mast cell activation 

Table 3. Protein-protein interaction networks with FDR < 0.1 on CD GWAS. 
Reported biological categories were over-represented among the subnetwork genes. 
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