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Abstract  
Background 
Insertions and deletions (indels) account for more nucleotide differences between two 
related DNA sequences than substitutions do, and thus it is imperative to develop a 
stochastic evolutionary model that enables us to reliably calculate the probability of 
the sequence evolution through indel processes. In a separate paper (Ezawa, Graur 
and Landan 2015a), we established a theoretical basis of our ab initio perturbative 
formulation of a genuine evolutionary model, more specifically, a continuous-time 
Markov model of the evolution of an entire sequence via insertions and deletions. 
And we showed that, under some conditions, the ab initio probability of an alignment 
can be factorized into the product of an overall factor and contributions from regions 
(or local alignments) separated by gapless columns.  

Results 
This paper describes how our ab initio perturbative formulation can be concretely 
used to approximately calculate the probabilities of all types of local pairwise 
alignments (PWAs) and some typical types of local multiple sequence alignments 
(MSAs). For each local alignment type, we calculated the fewest-indel contribution 
and the next-fewest-indel contribution to its probability, and we compared them under 
various conditions. We also derived a system of integral equations that can be 
numerically solved to give “exact solutions” for some common types of local PWAs.  
And we compared the obtained “exact solutions” with the fewest-indel contributions. 
The results indicated that even the fewest-indel terms alone can quite accurately 
approximate the probabilities of local alignments, as long as the segments and the 
branches in the tree are of modest lengths. Moreover, in the light of our formulation, 
we examined parameter regions where other indel models can safely approximate the 
correct evolutionary probabilities. The analyses also suggested some modifications 
necessary for these models to improve the accuracy of their probability estimations. 
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Conclusions 
At least under modest conditions, our ab initio perturbative formulation can quite 
accurately calculate alignment probabilities under biologically realistic indel models. 
It also provides a sound reference point that other indel models can be compared to. 
[This paper and three other papers (Ezawa, Graur and Landan 2015a,b,c) describe a 
series of our efforts to develop, apply, and extend the ab initio perturbative 
formulation of a general continuous-time Markov model of indels.] 
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Introduction  
The evolution of DNA, RNA, and protein sequences is driven by mutations such as 
base substitutions, insertions and deletions (indels), recombination, and other genomic 
rearrangements (e.g., Graur and Li 2000; Gascuel 2005; Lynch 2007). Thus far, 
analyses on substitutions have predominated in the field of molecular evolutionary 
study, in particular using the probabilistic (or likelihood) theory of substitutions that is 
now widely accepted (e.g., Felsenstein 1981, 2004; Yang 2006). However, some 
recent comparative genomic analyses have revealed that indels account for more base 
differences between the genomes of closely related species than substitutions (e.g., 
Britten 2002; Britten et al. 2003; Kent et al. 2003; The International Chimpanzee 
Chromosome 22 Consortium 2004; The Chimpanzee Sequencing and Analysis 
Consortium 2005). It is therefore imperative to develop a stochastic model that 
enables us to reliably calculate the probability of sequence evolution via mutations 
including insertions and deletions.  
 Since the groundbreaking works by Bishop and Thompson (1986) and by 
Thorne, Kishino and Felsenstein (1991), many studies have been done to develop and 
apply methods to calculate the probabilities of pairwise alignments (PWAs) and 
multiple sequence alignments (MSAs) under the probabilistic models aiming to 
incorporate the effects of indels, and such methods have greatly improved in terms of 
the computational efficiency and the scope of application. See excellent reviews for 
details on this topic (e.g., Rivas 2005; Bradley and Holmes 2007; Miklós et al. 2009). 
A majority of these studies are based on hidden Markov models (HMMs) or 
transducer theories. Both of them calculate the indel component of an alignment 
probability as a product of inter-column transition probabilities or of block-wise 
contributions. Unfortunately, they have two fundamental problems, one regarding the 
theoretical grounds and the other regarding the biological realism. Regarding the 
theoretical grounds, it is unclear whether or not a HMM or a transducer is related with 
any genuine evolutionary model, which describes the evolution of an entire sequence 
via indels along the time axis. Regarding the biological realism, the standard HMMs 
or transducers can at best handle geometric distributions of indel lengths, whereas 
many empirical studies showed that the real indel lengths are distributed according to 
the power-law (e.g., Gonnet et al. 1992; Benner et al. 1993; Gu and Li 1995; Kent et 
al. 2003; Zhang and Gerstein 2003; Chang and Benner 2004; The international 
Chimpanzee Chromosome 22 Consortium 2004; Yamane et al. 2006; Fan et al. 2007). 
Besides, it is very hard for the previous methods to incorporate the indel rate variation 
across regions, which were often observed empirically (e.g., Gu et al. 2008).  See the 
“background” section in part I (Ezawa, Graur and Landan 2015a) for more details on 
these problems. 
 In part I of this series of study (Ezawa, Graur and Landan 2015a), we 
established an ab initio formulation of a genuine stochastic evolutionary model, that is, 
a general continuous-time Markov model of sequence evolution via indels. Our 
evolutionary model allows any indel rate parameters including length distributions, 
but it does not impose any unnatural restrictions on indels. Thus, the model is 
naturally devoid of the aforementioned two problems. Aided by some techniques of 
the perturbation theory in physics (Dirac 1958; Messiah 1961a,b), we formally 
expanded the probability of an alignment into a series of terms with different numbers 
of indels. This expansion theoretically underpinned the stochastic evolutionary 
simulation method of Gillespie (1977). And we also showed that, if the indel model 
parameters satisfy a certain set of conditions, the ab initio probability of an alignment 
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is indeed factorable into the product of an overall factor and contributions from local 
alignments delimited by preserved ancestral sites (PASs). This result reconfirmed and 
generalized the conjecture that Miklós et al. (2004) made under their spatially and 
temporally homogeneous indel model. 
 In this paper, we turn our attention to more concrete problems. In other words, 
we focus on how to concretely calculate the contribution from each local alignment, 
assuming that the indel model satisfies the conditions for the factorability of 
alignment probabilities. 
 In Section 1 of Results & Discussion, we demonstrate how our ab initio 
perturbative formulation can be concretely used to approximately calculate the 
contributions to the alignment probabilities from regions separated by gapless 
columns (i.e., local alignments). We examine all types of local pairwise alignments 
(PWAs) and some typical types of local multiple sequence alignments (MSAs). For 
each local alignment type, we calculate the fewest-indel contribution and the next-
fewest-indel contribution to its probability. In this section, we also derive a system of 
integral equations that can be numerically solved to give “exact solutions” for some 
common types of local PWAs. Then, by comparing the fewest-indel contribution with 
the next-fewest-indel contribution, or with the “exact” solution, we examine the 
parameter region in which the fewest-indel contribution can approximate the 
alignment probability quite accurately. In Section 2 of Results & Discussion, we 
examine some representative models that were used in the past studies, including the 
HMM of Kim and Sinha (2007), in the light of our ab initio perturbative formulation. 
We attempt to delimit parameter regions where these models can safely approximate 
the ab initio probabilities under the genuine evolutionary model. The analyses will 
also suggest some modifications to these models that would enhance their reliability. 
And Appendix describes details on some perturbation calculations. 
 This paper is part II of a series of our papers that documents our efforts to 
develop, apply, and extend the ab initio perturbative formulation of the general 
continuous-time Markov model of sequence evolution via indels. Part I (Ezawa, Graur 
and Landan 2015a) gives the theoretical basis of this entire study.  Part II (this paper) 
describes concrete perturbation calculations and examines the applicable ranges of 
other probabilistic models of indels. Part III (Ezawa, Graur and Landan 2015b) 
describes our algorithm to calculate the first approximation of the probability of a 
given MSA and simulation analyses to validate the algorithm. Finally, part IV (Ezawa, 
Graur and Landan 2015c) discusses how our formulation can incorporate substitutions 
and other mutations, such as duplications and inversions. 

This paper basically uses the same conventions as used in part I (Ezawa, Graur 
and Landan 2015a). Briefly, a sequence state s (∈ S)  is represented as an array of 
sites, each of which is either blank or equipped with some specific attributes. And 
each indel event is represented as an operator acting on the bra-vector, s , 

representing a sequence state. More specifically, the operator M̂I (x, l)denotes the 
insertion of l  sites between the x  th and (x +1)  th sites, and the operator M̂D (xB, xE )  
denotes the deletion of a sub-array between (and including) the xB  th and the xE  th 
sites. See Section 2 of part I for more details.  

And, also as in part I, the following terminology is used. The term “an indel 
process” means a series of successive indel events with both the order and the specific 
timings specified, and the term “an indel history” means a series of successive indel 
events with only the order specified. And, throughout this paper, the union symbol, 
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such as in A∪ B  and Aii=1

I∪ , should be regarded as the union of mutually disjoint 
sets (i.e., those satisfying A∩ B =∅ and Ai ∩ Aj =∅  for i ≠ j (∈ {1,..., I}) , 
respectively, where ∅  is an empty set), unless otherwise stated. 
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Results & Discussion 
 
1. Perturbation approximations of probabilities 
1.1. Perturbation expansion of multiplication factor contributed from local indel 
histories 
In Section 4 of part I (Ezawa, Graur and Landan 2015a), we showed that the 
alignment probability can be factorized into the product of an overall factor and 
contributions from regions separated by gapless columns (as in Eqs.(4.1.8a,b) of part I 
for a PWA and Eqs.(4.2.9a,b,c) of part I for a MSA), if the following conditions are 
satisfied. 
Condition (i): The indel rate parameters are independent of the portion of the 
sequence state outside of the region in question. 
Condition (ii): The increment of the exit rate due to an indel event is independent of 
the portion of the sequence state outside of the region in question. 
Condition (iii) (necessary only for MSAs): The probability of the root sequence state 
is factorable into the product of an overall factor and regional contributions. (This 
condition is represented as Eq.(4.2.8) of part I.) 
 Each regional contribution of the probability was symbolically represented as 
μP Λ ID γκ ;α(s

A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦  (in Eq.(4.1.8b) of part I) for a PWA and 

ΜP ΛΨ
ID CΚ;α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦ T⎡

⎣
⎤
⎦  (in Eq.(4.2.9c) of part I) for a MSA. (See below 

for the definitions of the symbols for the arguments.) Thus, as long as we can 
concretely calculate these regional contributions, we can obtain the specific value of 
the probability of a given alignment. However, because each of these factors is in 
general a summation of contributions from an infinite number of local indel histories, 
we usually need to approximate it by a summation over a finite number of histories. In 
this section, we will do this, again based on the perturbation expansion as unfolded in 
Section 3 of part I. 
 For a PWA, α(sA, sD ) , we decompose Λ ID γκ ;α(s

A, sD )⎡⎣ ⎤⎦ , the set of local 
indel histories consistent with the local PWA confined in the region γκ , as: 
�Λ ID γκ ;α(s

A, sD )⎡⎣ ⎤⎦= Λ ID Nκ ; γκ ;α(s
A, sD )⎡⎣ ⎤⎦Nκ=Nmin γκ ;α (s

A , sD )⎡
⎣

⎤
⎦

∞∪ . Here 

Λ ID Nκ ; γκ ;α(s
A, sD )⎡⎣ ⎤⎦  is the subset of PWA-consistent histories in γκ , each of which 

consists of Nκ  indels, and Nmin γκ ;α(s
A, sD )⎡⎣ ⎤⎦  is the minimum number of indels 

required to give rise to the local PWA of α(sA, sD )  within γκ .  Then, the 
“perturbation expansion” of the multiplication factor, 
μP Λ ID γκ ;α(s

A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦ , for the local PWA probability produced 

during time interval [tI , tF ] , is given by: 

        

μP Λ ID γκ ;α(s
A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= μP Λ ID Nκ ; γκ ;α(s
A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

Nκ=Nmin γκ ;α (s
A , sD )⎡

⎣
⎤
⎦

∞

∑ .
 --- Eq.(1.1.1a) 

Here 
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μP Λ ID Nκ ; γκ ;α(s

A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦

≡ μP M̂[γκ ], [tI , tF ]( ) (sA, tI )⎡
⎣⎢

⎤
⎦⎥

M̂ [γκ ]∈Λ
ID Nκ ; γκ ;α (s

A , sD )⎡
⎣

⎤
⎦

∑
       --- Eq.(1.1.1b)    

is the multiplication factor contributed from all PWA-consistent Nκ -event local indel 
histories. 
 For a MSA, α[s1, s2,..., sNX ] , we decompose ΛΨ

ID CΚ;α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦ , the 
set of local indel histories along the tree (T ) consistent with the local MSA confined 
in the region CΚ , as: 
�ΛΨ
ID CΚ;α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦= ΛΨ

ID NΚ;CΚ;α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦NΚ=Nmin CΚ ;α[s1,s2 ,...,sNX ];T
⎡
⎣

⎤
⎦

∞∪ . 

Here, ΛΨ
ID NΚ;CΚ;α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦  is the subset consisting of all MSA-consistent 

NΚ -event local indel histories along the tree, and Nmin CΚ;α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦  is the 
minimum possible number of indels that can produce the sub-MSA within CΚ . Using 
this, the “perturbation expansion” of the multiplication factor, 
ΜP ΛΨ

ID CΚ;α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦ T⎡
⎣

⎤
⎦ , is given by: 

     

ΜP ΛΨ
ID CΚ;α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦ T⎡

⎣
⎤
⎦

= ΜP ΛΨ
ID NΚ;CΚ;α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦ T⎡

⎣
⎤
⎦

NΚ=Nmin CΚ ;α[s1,s2 ,...,sNX ];T
⎡
⎣

⎤
⎦

∞

∑ .
 ---Eq.(1.1.2a) 

Here 

  

ΜP ΛΨ
ID NΚ;CΚ;α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦ T⎡

⎣
⎤
⎦

≡

μP sRoot, s0
Root, nRoot;CΚ

⎡⎣ ⎤⎦

×ΜP M̂ (b)
⎡

⎣⎢
⎤

⎦⎥LHS

⎧
⎨
⎩

⎫
⎬
⎭T

CΚ[ ] sRoot, nRoot( )
⎡

⎣
⎢

⎤

⎦
⎥

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪sRoot , M̂ (b){ }

T

CΚ[ ]
⎛

⎝
⎜

⎞

⎠
⎟

∈ ΛΨ
ID NΚ ;CΚ ;α[s1,s2 ,...,sNX ];T
⎡
⎣

⎤
⎦

∑  ---Eq.(1.1.2b) 

is the multiplication factor contributed from all local histories in 
ΛΨ

ID NΚ;CΚ;α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦ . 
 Thus, the problems were reduced to those of how to enumerate the local indel 
histories in the subset, Λ ID Nκ ; γκ ;α(s

A, sD )⎡⎣ ⎤⎦  (for a PWA) or 

ΛΨ
ID NΚ;CΚ;α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦   (for a MSA), up to a particular number of events, Nκ  

or NΚ , that was chosen to achieve a desired level of accuracy. Once the relevant local 
histories are enumerated, then, we can calculate the contribution from each of them 
according to the general formula. (The general formulas are in Eq.(4.1.1b) of part I 
accompanied by Eq.(3.1.8b) of part I for a local PWA, and in Eq.(4.2.6b) of part I 
accompanied by Eq.(4.2.4b) of part I for a local MSA.) In Subsections 1.2 and 1.3, we 
explicitly calculate the portions of the multiplication factors, 
μP Λ ID Nκ ; γκ ;α(s

A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦  and 

ΜP ΛΨ
ID NΚ;CΚ;α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦ T⎡

⎣
⎤
⎦ , for some typical gap-configurations of the 
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local PWAs and MSAs, respectively, that are contributed from the parsimonious local 
indel histories. Then we compare them with the portions contributed from the next-
parsimonious local indel histories. Moreover, for a few simplest but commonest types 
of local PWAs, we also derive integral equation systems that give the “exact 
solutions” for the total multiplication factors, Eq.(1.1.1a). Then, we see how well the 
contributions from parsimonious indel histories alone can approximate the actual 
occurrence frequencies of the gap-configurations of local MSAs. 
 In this section, we assume that we are working with a model whose alignment 
probabilities are factorable, and that we are focusing on calculating the multiplication 
factor that comes from a single local alignment flanked by a pair of gapless columns 
(i.e., a pair of PASs). We will mainly work in the state space S = SII  (see Section 2 of 
part I for the definition of the space). This means that we will focus on calculating the 
probability of the homology structure of each local alignment (see, e.g., Lunter et al. 
2005). Let ΔL(s)  be the number of sites that a sequence s ∈ SII  has between the pair 
of PASs. We will re-assign the site numbers so that the left- and right-flanking PASs 
are numbered 1  and ΔL(s)+ 2 , respectively, and the sites in between them are 
numbered 2, ..., ΔL(s)+1 . This will make it easy to apply the theory formulated thus 
far to the current situation. We will re-assign the ancestries υ(1) = L  and 
υ(ΔL(s)+ 2) = R  to the left- and right-flanking PASs, respectively. And we will 
usually re-assign the ancestries υ(x) = x −1  to the sites, x = 2,..., ΔL(s)+1 , of the 
ancestral sequence s = sA (or the root sequence s = sRoot  for a MSA) in between the 
PASs (see Figure 1 as an illustration).  
 In the following subsections, we will omit the symbol “ [ ]LHS ” that denoted a 
local history set (LHS) in part I. Because we will consider a PWA or MSA region that 
accommodates only one local history, the resulting LHS equivalence classes are 
trivial classes, each of which consists only of a single history. We will also omit the 
appended “ CΚ[ ] ” to indicate the MSA region when it is obvious. 
 
1.2. Perturbation analyses on local PWA 
In a PWA, α(sA, sD ) , a gap-configuration flanked by a pair of PASs corresponds to 
the portion of α(sA, sD )  confined in γκ . If we are interested only in the homology 
relationships among sites (i.e., homology structures (Lunter et al. 2005)), there are 
four broad types of gap-configurations (see Figure 2; see also Subsection 3.3 of part I 
(Ezawa, Graur and Landan 2015a) for complexities concerning this issue). (i) Neither 
the ancestral nor the descendant sequence has even a single site in between the pair of 
PASs (panel A of Figure 2). (ii) The ancestor has one or more site(s) but the 
descendant has no site in between the PASs (panel B). (iii) The ancestor has no site 
but the descendant has one or more sites in between (panel C). And (iv) both the 
ancestor and the descendant have one or more site(s) in between, but no ancestral site 
is related to any of the descendant sites (panel D). We will consider these cases in turn. 
 In case (i), the sequence states could be represented as sA = sD = L, R[ ] . In this 

case, Nmin γκ ;α(s
A, sD )⎡⎣ ⎤⎦= 0 , and thus there is only one fewest-indel history, [] , 

where no indel event takes place. Therefore, in this case, the portion of the 
multiplication factor contributed by the fewest-indel history is: 
          μP Λ ID Nκ = 0; γκ ;α(s

A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦=1.   --- Eq.(1.2.1) 
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In this case, there is no history consisting only of one indel event. And each next-
fewest-indel history should be a two-event history of the form, M̂I (1, l), M̂D (2, l +1)⎡

⎣
⎤
⎦  

with l =1,...,LCO , where LCO ≡min{LI
CO, LD

CO} . Thus, the portion contributed by the 
next-fewest-indel histories is: 

                      
μP Λ ID Nκ = 2; γκ ;α(s

A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦

= μP M̂ I (1, l), M̂D (2, l +1)⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

l=1

LCO

∑ .
   --- Eq.(1.2.2a) 

Let s[l] ≡ sA M̂ I (1, l)  be the state resulting from the action of an insertion of l  sites 

on sA . Then, using Eq.(4.1.1b) and Eq.(3.1.8b) of part I, each summand is calculated 
as:  

μP M̂ I (1, l), M̂D (2, l +1)⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= dt d ′t
t

tF∫tI

tF∫
rI (1, l; s

A, t) rD (2, l +1; s[l], ′t )

× exp − dτ δRX
ID (sA, sA,τ )

tI

t

∫ − dτ δRX
ID (s[l], sA,τ )

t

′t

∫ − dτ δRX
ID (sD, sA,τ )

′t

tF∫{ }
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

= dt d ′t rI (1, l; s
A, t) rD (2, l +1; s[l], ′t ) exp − dτ δRX

ID (s[l], sA,τ )
t

′t

∫{ }t

tF∫tI

tF∫ .

 
--- Eq.(1.2.2b)    

Here, as in Subsection 4.1 of part I, δRX
ID (s, ′s , t) ≡ RX

ID (s, t)− RX
ID ( ′s , t)  is the increment 

of the exit rate, which in turn is given by Eq.(2.4.1b’) of part I. The second equation 
of Eq.(1.2.2b) follows from δRX

ID (sA, sA,τ ) = δRX
ID (sD, sA,τ ) = 0 . We could at least 

numerically calculate Eq.(1.2.2b) once the specific functional forms of the indel rates 
and the exit rates are given. For example, in a space-time-homogeneous model, like 
Dawg’s indel model (Cartwright 2005), Eqs.(2.4.4a,b) of part I, we have 
δRX

ID (s[l], sA,τ ) = (λI +λD )l , and Eq.(1.2.2b) is calculated as: 

μP M̂ I (1, l), M̂D (2, l +1)⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= λI fI (l) λD fD (l)
exp −(λI +λD )l(tF − tI )( )−1+ (λI +λD )l(tF − tI )

(λI +λD )l( )2
.
 --- Eq.(1.2.2b’) 

(Exactly the same expression can be obtained also from the “long indel” model, 
Eqs.(2.4.5a,b) of part I, if we notice the correspondence, Eqs.(2.4.7a,b,c,d) of part I.) 
Eq.(1.2.2b’) (or Eq.(1.2.2b) itself) indicates that 
μP M̂ I (1, l), M̂D (2, l +1)⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦<

1
2 λI fI (l) λD fD (l) (tF − tI )

2  for each 

l =1,...,LCO . Applying this inequality to Eq.(1.2.2a) and using another inequality, 

fI (l) fD (l)l=1

LCO

∑ ≤ fI (l)l=1

LI
CO

∑ fD (l)l=1

LD
CO

∑ =1 , we have: 

μP Λ ID Nκ = 2; γκ ;α(s
A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦<

1
2 λI λD (tF − tI )

2 .  --- Eq.(1.2.3) 

Empirically, the rate of indels (λI +λD ) is estimated to be at most on the order of 1/10 
of the substitution rate (Lunter 2007; Cartwright 2009). Eq.(1.2.3) indicates that, in 
case (i), even if the elapsed time ( tF − tI ) is such that the substitution process is nearly 
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saturated, e.g., λS (tF − tI ) ≈ 4 , where λS  is the total substitution rate per site, the total 
contribution from the next-fewest-indel histories, Eq.(1.2.2a), is at most on the order 
of 1/10 of the contribution by the fewest-indel history, Eq.(1.2.1). Thus, we expect 
that the fewest-indel contribution should approximate the entire multiplication factor 
(Eq.(4.1.8b) in part I) very well in case (i). 
 Incidentally, taking advantage of the result for case (i), we can calculate the 
multiplication factor for a gapless PWA segment consisting of LP (> 2) PASs. For 
clarity, let us consider an indel model as discussed in Subsection V-1. Then, in each 
of the LP −1  inter-PAS positions this segment contains, a null indel history could 
occur independently of those in other positions. Let υ1

P, υ2
P, ..., υ

LP
P  be the ancestries 

assigned to the LP  PASs in this segment (in spatial order). Focusing on the segment, 
we have sA = sD = υ1

P, υ2
P, ..., υ

LP
P⎡⎣ ⎤⎦ . Then, excluding the contributions from both ends, 

the total multiplication factor for this segment is expressed as: 

μP Λ ID γκi ;α(s
A = [υi

P,υi+1
P ], sD = [υi

P,υi+1
P ])⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA = [υi

P,υi+1
P ], tI )

⎡
⎣⎢

⎤
⎦⎥

i=1

LP−1

∏ .  

Here μP Λ ID γκi ;α(s
A = [υi

P,υi+1
P ], sD = [υi

P,υi+1
P ])⎡⎣ ⎤⎦, [tI , tF ]( ) (sA = [υi

P,υi+1
P ], tI )

⎡
⎣

⎤
⎦  is the 

total multiplication factor for case (i) with L =υi
P  and R =υi+1

P . Under a space-
homogeneous model, we can further simplify the above product as: 

μP Λ ID γκ ;α(s
A = [L,R], sD = [L,R])⎡⎣ ⎤⎦, [tI , tF ]( ) (sA = [L,R], tI )⎡

⎣
⎤
⎦( )

LP−1

. Here we used 

the uniform multiplication factor, 
μP Λ ID γκ ;α(s

A = [L,R], sD = [L,R])⎡⎣ ⎤⎦, [tI , tF ]( ) (sA = [L,R], tI )⎡
⎣

⎤
⎦ . 

 In case (ii), we assume that the ancestral state has ΔLA  sites in between the 
flanking PASs. Thus, the ancestral and descendant states could be represented as 
sA = L, 1,...,ΔLA, R⎡⎣ ⎤⎦  and sD = L, R[ ] , respectively. As long as ΔLA ≤ LD

CO , 

Nmin γκ ;α(s
A, sD )⎡⎣ ⎤⎦=1 , and there is only one fewest-indel history, M̂D (2, ΔL

A +1)⎡
⎣

⎤
⎦ , 

which consists of a single event that deletes the ancestral sites in between the PASs. 
Therefore, the contribution by the fewest-indel history is: 

     

μP Λ ID Nκ =1; γκ ;α(s
A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= dt rD (2,ΔL
A +1; sA, t) exp − dτ δRX

ID (sA, sA, t)
tI

t

∫ − dτ δRX
ID (sD, sA, t)

t

tF∫{ }tI

tF∫

= dt rD (2,ΔL
A +1; sA, t) exp − dτ δRX

ID (sD, sA, t)
t

tF∫{ }tI

tF∫ .

  

 --- Eq.(1.2.4)    
Each next-fewest indel history is composed of two indel events. There are two types. 
(a) Two successive deletions, M̂D (x, x + l −1), M̂D (2,ΔL

A − l +1)⎡
⎣

⎤
⎦  with 

l =1,..., ΔLA −1  and x = 2,..., ΔLA − l + 2 . And (b) an insertion followed by a deletion, 

M̂I (x, l), M̂D (2,ΔL
A + l +1)⎡

⎣
⎤
⎦  with l =1,..., min{LI

CO, LD
CO −ΔLA}  and x =1,..., ΔLA +1. 

Thus, in this case, the total contribution by the next-fewest indel histories is given by: 
μP Λ ID Nκ = 2; γκ ;α(s

A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦= μP[(a)]+ μP[(b)].  --- Eq.(1.2.5a) 
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Here, 

μP[(a)]≡ μP M̂D (x, x + l −1), M̂D (2,ΔL
A − l +1)⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

x=2

ΔLA−l+2

∑
l=1

ΔLA−1

∑  

--- Eq.(1.2.5b)   
is the sum of contributions from the histories of type (a). And 

μP[(b)]≡ μP M̂ I (x, l), M̂D (2,ΔL
A + l +1)⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

x=1

ΔLA+1

∑
l=1

min{LI
CO , LD

CO−ΔLA}

∑  

--- Eq.(1.2.5c)   
is the sum of contributions from the histories of type (b). Let 
sA ⋅[x,−l] ≡ sA M̂D (x, x + l −1)  be the intermediate state in each type (a) history. 

Then, the history’s contribution is calculated as: 
μP M̂D (x, x + l −1), M̂D (2,ΔL

A − l +1)⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= dt d ′t
t

tF∫tI

tF∫
rD (x, x + l −1; s

A, t) rD (2,ΔL
A − l +1; sA ⋅[x,−l], ′t )

× exp − dτ δRX
ID (sA ⋅[x,−l], sA,τ )

t

′t

∫ − dτ δRX
ID (sD, sA,τ )

′t

tF∫{ }
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
.
 

--- Eq.(1.2.5d)    
Similarly, let sA ⋅[x,+l] ≡ sA M̂ I (x, l)  be the intermediate state in each type (b) 
history. Then, the history’s contribution is calculated as: 
μP M̂ I (x, l), M̂D (2,ΔL

A + l +1)⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= dt d ′t
t

tF∫tI

tF∫
rI (x, l; s

A, t) rD (2,ΔL
A + l +1; sA ⋅[x,+l], ′t )

× exp − dτ δRX
ID (sA ⋅[x,+l], sA,τ )

t

′t

∫ − dτ δRX
ID (sD, sA,τ )

′t

tF∫{ }
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
.
 

--- Eq.(1.2.5e)    
Eq.(1.2.4) and Eqs.(1.2.5a-e) can indeed be calculated at least numerically once the 
specific functional forms of the indel rates and the exit rates are given. For example, 
under Dawg’s indel model (Eqs.(2.4.4a,b) in part I) or the “long indel” model as noted 
in case (i),  we have δRX

ID (sD, sA,τ ) = − (λI +λD )ΔL
A , and Eq.(1.2.4) becomes: 

          

μP Λ ID Nκ =1; γκ ;α(s
A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= λD fD (ΔL
A )
exp (λI +λD )ΔL

A (tF − tI )( )−1
(λI +λD )ΔL

A
.

  --- Eq.(1.2.4’) 

Similarly, using δRX
ID (sA ⋅[x,−l], sA,τ ) = − (λI +λD )l  and 

δRX
ID (sA ⋅[x,+l], sA,τ ) = + (λI +λD )l , Eqs.(1.2.5d,e) in Dawg’s model (and also in the 

“long indel” model) are calculated, respectively, as: 
μP M̂D (x, x + l −1), M̂D (2,ΔL

A − l +1)⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

=
λD fD (l) λD fD (ΔL

A − l)
(λI +λD )(ΔL

A − l)
e(λI+λD )ΔL

A (tF−tI ) −1
(λI +λD )ΔL

A
−
e(λI+λD )l (tF−tI ) −1
(λI +λD )l

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,
    --- Eq.(1.2.5d’) 
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μP M̂ I (x, l), M̂D (2,ΔL
A + l +1)⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

=
λI fI (l) λD fD (ΔL

A + l)
(λI +λD )(ΔL

A + l)
e(λI+λD )ΔL

A (tF−tI ) −1
(λI +λD )ΔL

A
−
1− e−(λI+λD )l (tF−tI )

(λI +λD )l

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.
   --- Eq.(1.2.5e’) 

Substituting Eqs.(1.2.5d’,e’) into Eqs.(1.2.5a,b,c), we can concretely calculate the 
total contribution of the next-fewest-indel histories. Figure 3 A shows the ratio of the 
total next-fewest-indel contribution, Eq.(1.2.5a), to the fewest-indel contribution, 
Eq.(1.2.4), as a function of the number of deleted ancestral sites (ΔLA ) and the 
expected number of indels per site ( (λI +λD )(tF − tI ) ). For the figure, we used the 
following parameters: fI (l) = fD (l)∝ l

−1.6 , LI
CO = LD

CO = 500 , and λI / λD =1 . The 
power-law behavior of the indel length distributions broadly conforms to the past 
empirical observations (e.g., Gonnet et al. 1992; Benner et al. 1993; Gu and Li 1995; 
Kent et al. 2003; Zhang and Gerstein 2003; Chang and Benner 2004; Yamane et al. 
2006; Fan et al. 2007). Here, the exact overall indel rate (λI +λD ) does not matter, 
because the probabilities are invariant under the simultaneous rescaling of the rate and 
the time interval ( tF − tI ) that keeps the expected number of indels per site (i.e., 
(λI +λD )(tF − tI ) ) unchanged. Moreover, we confirmed that the results remain almost 
the same even if we use LI

CO = LD
CO = 5000 . Now, as indicated by Figure 3A, each 

curve for a fixed (λI +λD )(tF − tI )  reaches an asymptotic value slightly above 1 when 
ΔLA  is sufficiently large. Thus, to define a threshold within which the fewest-indel 
histories alone are likely to give a decent approximation of the probability, using the 
point at which the ratio is 1 (unity) is risky. Here, we tentatively define the threshold 
as the value of ΔLA  at which the ratio is 0.5. With this definition, the tentative 
threshold, (ΔLA )0.5

(NP−ii) , is around 128, 31, 12, 6 and 3 when (λI +λD )(tF − tI )  is 0.01, 
0.04, 0.1, 0.2 and 0.4, respectively (Table 1). Hence, we have a rough inversely 
proportional relationship: (ΔLA )0.5

(NP−ii) ≈1.2 [(λI +λD )(tF − tI )] , under the parameter 
setting used here. 

In case (iii), we assume that the descendant state has ΔLD  sites in between the 
flanking PASs. Thus, the ancestral and descendant states could be represented as 
sA = L, R[ ]  and sD = L, υ1

D,...,υ
ΔLD
D , R⎡⎣ ⎤⎦ , respectively. The ancestries satisfy 

υi
D ∉ {L,R}  for every i =1,...,ΔLD , and υi

D ≠υ j
D  for every pair (i, j)  with i ≠ j , and 

their details depend on the responsible indel history. (Actually, such details don’t 
matter in the state space SII , as explained in Subsection 2.1 of part I.) As long as 
ΔLD ≤ LI

CO , Nmin γκ ;α(s
A, sD )⎡⎣ ⎤⎦=1 , and there is only one fewest-indel history, 

M̂I (1, ΔL
D )⎡

⎣
⎤
⎦ . The history consists of a single event that inserts the descendant sites in 

between the PASs. As in case (ii), each next-fewest indel history is composed of two 
indel events, and classified into two types. (c) Two successive insertions, 
M̂I (1,ΔL

D − l), M̂I (x, l)⎡
⎣

⎤
⎦  with l =1,..., ΔLD −1  and x =1,..., ΔLD − l +1 . And (d) an 

insertion followed by a deletion, M̂I (1,ΔL
D + l), M̂D (x, x + l −1)⎡

⎣
⎤
⎦  with 

l =1,..., min{LD
CO, LI

CO −ΔLD}  and x = 2,..., ΔLD + 2 . The sum of contributions by the 
fewest-indel histories and that by the next-fewest-indel histories can be calculated as 
in case (ii). And their calculations are detailed in Appendix A1.1. If calculated under 
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the same setting as used for Figure 3 A and with the same value of (λI +λD )(tF − tI ) , 
their ratio with ΔLD = L  is identical to that in case (ii) with ΔLA = L , because of the 
symmetry of the probabilities under the time reversal. Thus, the same conclusions can 
be drawn from Figure 3 A also on this case. 

 In case (iv), we assume that the ancestral and the descendant states 
have ΔLA  and ΔLD  sites, respectively, in between the flanking PASs. Thus, the 
ancestral and descendant states could be represented as sA = L, 1,...,ΔLA, R⎡⎣ ⎤⎦  and 

sD = L, υ1
D,...,υ

ΔLD
D , R⎡⎣ ⎤⎦ , respectively. Here, the descendant ancestries satisfy 

υi
D ∉ {L, 1,...,ΔLA, R}  for every i =1,...,ΔLD , and υi

D ≠υ j
D  for every pair (i, j)  with 

i ≠ j , and their details depend on the responsible indel history. (Again, the details 
don’t matter in the space SII .) As long as ΔLA ≤ LD

CO  and ΔLD ≤ LI
CO , 

Nmin γκ ;α(s
A, sD )⎡⎣ ⎤⎦= 2 . As indicated by Eqs.(A1.3c’,d’) in Appendix A1 of part I, 

there are three types of fewest-indel histories. (e) The deletion of the ancestral sites 
followed by an insertion of ΔLD  sites, M̂D (2, ΔL

A +1), M̂I (1, ΔL
D )⎡

⎣
⎤
⎦ . (f) An insertion 

immediately on the right of the ancestral sites to be deleted, followed by the deletion, 
M̂I (ΔL

A +1, ΔLD + l), M̂D (2, ΔL
A + l +1)⎡

⎣
⎤
⎦  with l = 0,...,min{LI

CO −ΔLD, LD
CO −ΔLA} . 

And (g) an insertion immediately on the left of the ancestral sites to be deleted, 
followed by the deletion, M̂I (1, ΔL

D + l), M̂D (ΔL
D + 2, ΔLA +ΔLD + l +1)⎡

⎣
⎤
⎦  also with 

l = 0,...,min{LI
CO −ΔLD, LD

CO −ΔLA} . In this case, each next-fewest-indel history is 
composed of three indel events, and classified into one of 6 broad types: (h) two 
successive deletions followed by an insertion; (i) a deletion, followed by an insertion, 
followed by a deletion; (j) an insertion followed by two successive deletions; (k) a 
deletion followed by two successive insertions; (l) an insertion, followed by a deletion, 
followed by an insertion; and (m) two successive insertions followed by a deletion. 
And these six broad types can be further sub-classified into 24 sub-types, as described 
in Appendix A1.2. The calculations of the sum of contributions from the fewest-indel 
local histories and that from the next-fewest-indel local histories are also detailed in 
Appendix A1.2. Table 2 shows their ratios calculated for some typical configurations 
under the same setting as for Figure 3 A. As the table indicates, the approximation by 
the fewest-indel histories alone is likely to be decent as long as the expected number 
of indels (i.e., (λI +λD )(tF − tI ) ) and the gap lengths (i.e., ΔLA  and ΔLD ) are at most 
moderate. 
 It is difficult to calculate the summed contributions from local histories 
involving more indels, especially in case (iv). We could calculate the contribution 
from a single local history involving any number of indels if we use the algorithm for 
a “trajectory likelihood” given by Miklós et al. (2004). As we exemplified in 
Appendix A1.2, however, it is already quite hard to enumerate all possible local indel 
histories even up to the next-to-minimum number of involved indels. Nevertheless, if 
we consider only cases (i), (ii), and (iii) under a (locally) spatially homogeneous 
model, we can work out systems of “exact” integral equations that could in principle 
provide the numerical solutions for the total sum of contributions to a multiplication 
factor up to a desired level of accuracy (at some time and memory expenses). In the 
following, we derive a system of integral equations to give multiplication factors for 
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cases (i) and (ii). Another system of integral equations, which gives multiplication 
factors for cases (i) and (iii), is derived in Appendix A1.3. 
 Here, we assume that the indel rates are locally homogeneous, which means 
that the rates do not depend on the exact positions that the indels hit, as long as they 
are confined in the region that accommodates the local history. Thus, we assume that 
the indel rate is locally homogeneous and the exit rate is locally an affine function of 
the (local) sequence length, but that they may be non-homogeneous globally. (In 
terms of equations, we locally assume Eqs.(5.1.1a,b) of part I for the indel rates and 
Eq.(5.2.4) of part I for the local exit rate, but we assume something like 
Eqs.(5.3.2a,b,c) of part I for the global exit rate.) We are now considering only cases 
(i) and (ii), in which (local) ancestral and descendant states should be 
sA = L, 1,...,ΔLA, R⎡⎣ ⎤⎦  and sD = L, R[ ] , respectively, with ΔLA = 0,1, 2,... .  Because of 

the local homogeneity, Eqs.(V-1.1a,b), the exit rate RX
ID (s, t) of a state s (∈ S)  in this 

context depends only on the (local) sequence length, L(s) = 2+ΔL(s) . Thus, ΔL(s)  
adequately represents the local sequence state s , and we let RX

ID (ΔL(s), t)  denote its 
(local) exit rate. The starting point of the equation system is the fundamental integral 
equation (Eq.(3.1.4) of part I) for the stochastic indel evolution operator P̂ID (tI , tF ) . 
We sandwich the fundamental integral equation with sA  and sD , and expand the 

instantaneous mutation operator Q̂M
ID (t)  using its definition (i.e., Eq.(3.1.1c) of part I 

supplemented by Eqs.(2.4.2b’,c’) of part I). Because we know that the flanking PASs, 
which are assigned the ancestries L  and R , have never been struck by any indels, we 
can ignore the effects of indels that hit the PASs. And, because we are now focusing 
on the local alignment, we will also ignore the indels completely outside of the region 
delimited by the PASs. Thus, we have: 
sA P̂ID (tI , tF ) s

D = sA sD exp − dt RX
ID ΔLA, t( )tI

tF∫{ }
+ dt exp − dτ RX

ID ΔLA, τ( )tI

t

∫{ }gI (l, t) sA M̂ I (x, l) P̂
ID (t, tF ) s

D⎡
⎣⎢

⎤
⎦⎥tI

tF∫
l=1

LI
CO

∑
x=1

ΔLA+1

∑

+ dt exp − dτ RX
ID ΔLA, τ( )tI

t

∫{ }gD (l, t) sA M̂D (x, x + l −1) P̂
ID (t, tF ) s

D⎡
⎣⎢

⎤
⎦⎥tI

tF∫
x=2

ΔLA−l+2

∑
l=1

min{ΔLA , LD
CO}

∑ .

 
--- Eq.(1.2.6)    

In the present setting, the number of sites between the PASs, ΔL(s) , uniquely 
determines the local sequence state s . Thus, we let the local states denoted as 
sA = ΔLA , sD = 0 , sA M̂ I (x, l) = ΔLA + l , and sA M̂D (x, x + l −1) = ΔLA − l . 

We also introduce the notation, PID ΔL Δ ′L ; [t, ′t ]( ) ≡ ΔL P̂ID (t, ′t ) Δ ′L , for the 
probability that the local state with ΔL  sites in between the PASs at time t  became a 
state with Δ ′L  sites in between at time ′t . Then, taking advantage of the 
independence of the indel rates, exit rates and PID ΔL Δ ′L ; [t, ′t ]( )  on the position 
of each indel ( x ), we have: 
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PID ΔLA 0; [tI , tF ]( ) = δ(ΔLA, 0) exp − dt RX
ID ΔLA = 0, t( )tI

tF∫{ }
+ (ΔLA +1) dt exp − dτ RX

ID ΔLA, τ( )tI

t

∫{ }gI (l, t) PID ΔLA + l 0; [t, tF ]( )⎡
⎣⎢

⎤
⎦⎥tI

tF∫
l=1

LI
CO

∑

+ (ΔLA − l +1) dt exp − dτ RX
ID ΔLA, τ( )tI

t

∫{ }gD (l, t) PID ΔLA − l 0; [t, tF ]( )⎡
⎣⎢

⎤
⎦⎥tI

tF∫
l=1

min{ΔLA , LD
CO}

∑ .

 
--- Eq.(1.2.7)    

Here δ(ΔL, Δ ′L )  is Kronecker’s delta, which equals 1 if ΔL = Δ ′L , and 0 if ΔL ≠ Δ ′L . 
Eq.(1.2.7) gives the desired system of integral equations for the “exact” probabilities, 
PID ΔLA 0; [tI , tF ]( ) , with non-negative integers ΔLA = 0,1, 2,... . This equation holds 

for every non-negative integer ΔLA  and even if we replace the initial time tI  with any 
time in the closed interval [tI , tF ] . Thus, the equations can be solved iteratively, 
starting with the “zero-event approximation” of the probability, 
P0
ID ΔLA 0; [t, tF ]( ) = δ(ΔLA, 0) exp − dτ RX

ID ΔLA = 0, τ( )t

tF∫{ } , and calculating the 

approximation at the nS  th step, PnS

ID ΔLA 0; [t, tF ]( ) , from the approximation at the 

previous step via the recursion relation: 
PnS

ID ΔLA 0; [t, tF ]( ) = δ(ΔLA, 0) exp − dτ RX
ID ΔLA = 0, τ( )t

tF∫{ }
+ (ΔLA +1) d ′t exp − dτ RX

ID ΔLA, τ( )t

′t

∫{ }gI (l, ′t ) PnS−1
ID ΔLA + l 0; [ ′t , tF ]( )⎡

⎣⎢
⎤
⎦⎥t

tF∫
l=1

LI
CO

∑

+ (ΔLA − l +1) d ′t exp − dτ RX
ID ΔLA, τ( )t

′t

∫{ }gD (l, ′t ) PnS−1
ID ΔLA − l 0; [ ′t , tF ]( )⎡

⎣⎢
⎤
⎦⎥t

tF∫
l=1

min{ΔLA , LD
CO}

∑ .

 
--- Eq.(1.2.7’)    

If NID  iteration steps are performed, the resulting probability, PNID

ID ΔLA 0; [tI , tF ]( ) , 

is the summation of the probabilities over all possibly responsible local histories 
consisting of up to (and including) NID  indel events. After the iteration is finished, 
the multiplication factor will be obtained by following its definition (i.e., Eq.(4.1.1b) 
in part I). We have: 

             

μP
NID Λ ID γκ ;α(s

A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦

≡ μP Λ ID Nκ ; γκ ;α(s
A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

Nκ=0

NID

∑

= PNID

ID ΔLA 0; [tI , tF ]( ) P [], [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦

= exp + dt RX
ID ΔLA, t( )tI

tF∫{ } PNID

ID ΔLA 0; [tI , tF ]( ) .

        --- Eq.(1.2.8) 

The accuracy of the numerical solutions will depend on how finely we partition the 
time interval [tI , tF ] . If the interval is partitioned into NP  equal-sized sub-intervals, 
we could in principle achieve an accuracy of O (NP )

−4( )  under Simpson’s rule (e.g., 
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Press et al. 1992). However, as the number of sub-intervals increases, it would take 
longer to complete the calculation. A naïve implementation of the aforementioned 
numerical iteration would have the time complexity of O NID (L

CO )2 (NP )
2( )  and the 

space complexity of O LCONP( ) , when we want to obtain the total probabilities of 

local histories composed of up to NID  indels each, with ΔLA = 0,1, 2,..., ΔLmax
A (≤ LCO ) . 

Here we set LI
CO = LD

CO ≡ LCO . This becomes impractically slow when either LCO  or 
NP  is large, e.g., around 1000 or greater. It is likely that NP  does not have to be this 
large, as it would be usually enough to set NP  around 100 or smaller. However, LCO  
will often be around 1000 or greater, indeed making the naïve algorithm too slow to 
be practical. Fortunately, we can avoid this problem by rewriting the recursion 
equation, Eq.(1.2.7’), as: 

PnS

ID ΔLA 0; [t, tF ]( ) = δ(ΔLA, 0) exp − dτ RX
ID ΔLA = 0, τ( )t

tF∫{ }
+ d ′t exp − dτ RX

ID ΔLA, τ( )t

′t

∫{ }Φ nS

ID ΔLA 0; [ ′t , tF ]( )⎡
⎣⎢

⎤
⎦⎥t

tF∫ .
 --- Eq.(1.2.9a) 

Here, the “auxiliary function,” Φ nS

ID ΔLA 0; [ ′t , tF ]( )  is given by: 

Φ nS

ID ΔLA 0; [t, tF ]( ) ≡ (ΔLA +1) gI (l, t) PnS−1
ID ΔLA + l 0; [t, tF ]( )⎡

⎣
⎤
⎦

l=1

LI
CO

∑

+ (ΔLA − l +1)gD (l, t) PnS−1
ID ΔLA − l 0; [t, tF ]( )⎡

⎣
⎤
⎦

l=1

min{ΔLA , LD
CO}

∑ .

  

--- Eq.(1.2.9b)    
Consider the following “two-sub-step” algorithm. In the first sub-step (in each 
iteration step), it calculates Φ nS

ID ΔLA 0; [t, tF ]( ) ’s via Eq.(1.2.9b) and stores them 

for all ΔLA = 0,1, 2,..., LCO  at all time points, t = tI + i
tF−tI
NP

 with i = 0,1,..., NP . And, in 

the second sub-step, it uses them to calculate the probabilities PnS

ID ΔLA 0; [t, tF ]( )  

via Eq.(1.2.9a) for the same values of ΔLA  and t . This algorithm can reduce the time-
complexity to O NID L

CO (LCO + NP )NP( )  while keeping the space complexity to be 

O LCONP( ) . This algorithm does finish in a practical amount of time (typically on the 

order of an hour or shorter when implemented in Perl). But it may still be too slow to 
perform each time we evaluate the probability of the gap configuration of a local 
MSA. Good news is that a single run of the iteration algorithm inevitably calculates 
the probabilities for all ΔLA = 0,1, 2,..., ΔLmax

A (≤ LCO )  at all temporal partitioning points, 
t = tI + i

tF−tI
NP

 ( i =1,..., NP −1), as well as at t = tI  and t = tF . Thus, once we calculate 
the probabilities with a fixed set of model parameters, we could use them to calculate 
the probabilities of various alignments (under various phylogenetic trees), as long as 
the model parameters remain unchanged. In any case, the time and space complexities 
might be further reduced without considerably compromising the accuracy by a clever 
beforehand discarding of terms that are unlikely to make significant contributions to 
the final probabilities. Panels B and C of Figure 3 show the ratios of the multiplication 
factors, Eq.(1.2.8) at NID =1, 2, 5, 10, 20  iteration steps, to that at  NID = 50  steps. 
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They were calculated with ΔLmax
A = 300  and (λI +λD )(tF − tI ) NP = 0.002 , and under 

the same setting as that used for Figure 3 A. (We confirmed that results remain almost 
the same even if LCO  is greater than 1000, instead of LCO = 500  used for the figure.) 
When NID ≥ 2 , we actually started from NID = 2 , at which the probabilities were 
calculated using Eqs.(1.2.2a,b’), Eq.(1.2.4’) and Eqs.(1.2.5a,b,c,d’,e’), in stead of 
from NID = 0  as mentioned above, in order to enhance the accuracy of the 
approximation. As indicated by the panels B and C, the accuracy of the probabilities 
improves in a step-wise manner as the number of iterations increases. Now that the 
“exact” probabilities are available in cases (i) and (ii), we can use them to define more 
precise threshold values of ΔLA  within which the approximate probabilities are 
expected to be quite accurate. For example, let (ΔLA )0.5

(1−ii)  be the value of ΔLA  at 
which the approximation by the 1-event local indel history alone accounts for 50% of 
the total probability of the local PWA. As shown in Table 1, (ΔLA )0.5

(1−ii)  is slightly 
larger than the aforementioned “tentative threshold,” (ΔLA )0.5

(NP−ii) . Indeed, we can 
observe a rough inversely proportional relationship, (ΔLA )0.5

(1−ii) ≈1.6 [(λI +λD )(tF − tI )] .  
Thus, we expect that the tentative threshold ( (ΔLA )0.5

(NP−ii) ) should work as a slightly 
conservative criterion for the decency of the approximation by the fewest-indel 
histories alone.  We could also define the threshold, (ΔLA )0.5

(NID−ii) , at which the 
probability calculated up to (and including) NID  iterations, i.e., 
PNID

ID ΔLA 0; [t, tF ]( ) , is 1/2 (=0.5) of the “exact solution.” As indicated by Table 1, 

(ΔLA )0.5
(NID−ii)  is over NID  times as large as (ΔLA )0.5

(1−ii) . This implies that, even when the 
fewest-indel histories alone give a poor approximation of the probability, taking 
account of the next-fewest-indel histories, or of the histories involving yet more indels, 
will considerably expand the range of ΔLA  where the approximate probability is quite 
accurate. 

Following the similar procedures, this time starting from the integral equation, 
Eq.(III-1.2), we can also derive a system of integral equations for the multiplication 
factors for cases (i) and (iii), as described in Appendix A1.3. Thanks to the symmetry 
of the probabilities under the time reversal, panels B and C of Figure 3 can also be 
interpreted as the results of numerical calculations of this equation system, under the 
same setting as above except that ΔLmax

A = 300  is replaced by ΔLmax
D = 300 . 

 
1.3. Perturbation analyses on local MSA 
Compared to contributions to local PWAs, those to local MSAs are much more 
complex. In this subsection, we consider some simple but common patterns, under a 
tree T  with three OTUs, corresponding to the external nodes, n1 , n2  and n3 . Here, 
we regard its single internal node as the root node nRoot  for simplicity (panel A of 
Figure 4). Let  bm  (m =1,2,3 ) be the branch that connects the nodes nRoot  and nm . Let 
sm ∈ S  (m =1,2,3 ) be the (local) sequence state at node nm . Then, we consider the 
gap-configurations of the MSAs of the three sequences, α[s1, s2, s3] , as well as the 
consistent sequence states sRoot ∈ S  at the root node nRoot . As in the previous 
subsections, we focus on the portion of MSAs delimited by a pair of PASs, whose 
ancestries are denoted as L  and R . Here we consider four typical situations (see 
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Figure 4; see also Subsection 3.4 of part I (Ezawa, Graur and Landan 2015a) for 
complexities concerning this issue). (I) None of s1, s2, s3{ }  have any site in between 
the PASs (Figure 4, panel B). (II) s1  and s2  share the identical set of sites in between 
the PASs, but s3  has no site in between (panel C). (III) s1  has a set of sites in between 
the PASs, but neither s2  nor s3  has even a single site in between (panel D). And (IV) 
s1  has a set of sites in between the PASs, but s3  has no site in between, and s2  lacks a 
run of some, but not all, of contiguous sites of s1  in between the PASs (panel E). 
These situations are not restricted to the 3-OTU trees but widely applicable to each 
portion surrounding a trivalent node of any tree topology, although they never exhaust 
all gap configurations. The time at nRoot  will be represented as tI , and the time at 
node nm  will be represented as tF:m . The indel parameters along branch bm  will be 
indicated by the subscript “ :m .” 
 Case (I) is represented by the external sequence states s1 = s2 = s3 = L, R[ ] .  In 
this case, we have Nmin CΚ;α[s1, s2, s3];T[ ] = 0 . And the set of fewest-indel local 

histories, ΛΨ
ID NΚ = 0;CΚ;α[s1, s2, s3];T[ ] , is composed only of a no-indel history: 

                      M̂ (b1) = M̂ (b2 ) = M̂ (b3) = [ ]{ } ,       --- Eq.(1.3.1) 

with sRoot = s0
Root = L, R[ ] . Thus, according to Eq.(1.1.2b), supplemented by 

Eqs.(4.2.4b,6b,8) of part I, the portion of the multiplication factor contributed by the 
fewest-indel local history is: 
                ΜP ΛΨ

ID NΚ = 0;CΚ;α[s1, s2, s3];T[ ] T⎡⎣ ⎤⎦=1.    --- Eq.(1.3.2) 

Here we used μP s0
Root, s0

Root, nRoot;CΚ
⎡⎣ ⎤⎦=1 . No single-event local history can result in 

the gap configuration in this case. Each next-fewest-indel history consists of two 
indels, and it can be represented as: 
M̂ (bm ) = M̂I (1, l), M̂D (2, l +1)⎡

⎣
⎤
⎦, M̂ (b ′m ) = [ ] for ∀ ′m ∈ {1,2,3} \ {m}{ } ,   

--- Eq.(1.3.3)    
with m ∈ {1,2,3} , l ∈ 1,2,...,L:m

CO (≡min{LI:m
CO , LD:m

CO }){ } , and with sRoot = s0
Root  again. 

Thus, the total contribution to the multiplication factor by the next-fewest-indel 
histories can be calculated similarly to Eqs.(1.2.2a,b). We have: 

  
ΜP ΛΨ

ID NΚ = 2;CΚ;α[s1, s2, s3];T[ ] T⎡⎣ ⎤⎦

= μP M̂ I (1, l), M̂D (2, l +1)⎡
⎣

⎤
⎦, [tI , tF:m ]( ) (s0Root, tI )⎡

⎣
⎤
⎦ bml=1

LCO

∑
m=1,2,3

∑ .
 --- Eq.(1.3.4a)   

Each summand can be calculated from Eq.(1.2.2b), by replacing sA with s0
Root and also 

replacing the time and rate parameters with those assigned to each branch. Especially, 
under Dawg’s model, each summand is calculated as: 

    

μP M̂ I (1, l), M̂D (2, l +1)⎡
⎣

⎤
⎦, [tI , tF:m ]( ) (s0Root, tI )⎡

⎣
⎤
⎦ bi

= λI:m fI:m (l) λD:m fD:m (l)
exp −(λI:m +λD:m )l(tF:m − tI )( )−1+ (λI:m +λD:m )l(tF:m − tI )

(λI:m +λD:m )l( )
2 .
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--- Eq.(1.3.4b)    
If the three branches share the same time interval and the indel rate parameters, the 
summed contribution from the next-fewest-indel histories, Eq.(1.3.4a), is exactly three 
times Eq.(1.2.2a) for a PWA. Indeed, this total contribution on a general tree can be 
calculated by summing Eq.(1.2.2a) (with appropriate parameters) over all branches of 
the tree. Following the same line of reasoning as around Eq.(1.2.3), this total 
contribution is roughly proportional to the summation of the squared branch lengths 
over all branches. This means that a richer sampling of the homologous sequences 
will not significantly increase, or might rather slightly decrease, this total contribution, 
as long as the maximum evolutionary distance remains at a similar level. Incidentally, 
any root sequence state of the type sRoot = L, 1,...,ΔLRoot, R⎡⎣ ⎤⎦  is also consistent with 
α[s1, s2, s3]  in this case. Such a state, however, would require at least three indels, in 
order to delete the extra sites, 1,...,ΔLRoot , independently along the three branches. 
Thus, the contributions from the local indel histories with such root states would be 
smaller in general. 
 Case (II) is represented by the external sequence states 
s1 = s2 = L, 1,...,ΔLD12, R⎡⎣ ⎤⎦  and s3 = L, R[ ] . In this case, the “phylogenetic correctness” 
condition (see, e.g., Chindelevitch et al. 2006; Section 3.4 of part I (Ezawa, Graur and 
Landan 2015a)) dictates that the root state sRoot  must have all the sites with ancestries 
1,...,ΔLD12 .  In this case, we have Nmin CΚ;α[s1, s2, s3];T[ ] =1 . And the set of fewest-

indel local histories, ΛΨ
ID NΚ =1;CΚ;α[s1, s2, s3];T[ ] , consists of a single element: 

        M̂ (b1) = M̂ (b2 ) = [ ], M̂ (b3) = M̂D (2, ΔL
D12 +1)⎡

⎣
⎤
⎦{ } ,    --- Eq.(1.3.5)  

with sRoot = s0
Root = L, 1,...,ΔLD12, R⎡⎣ ⎤⎦ . Again, according to Eq.(1.1.2b), supplemented 

by Eqs.(4.2.4b,6b,8) of part I, the contribution by the fewest-indel local history turns 
out to be exactly the same as Eq.(1.2.4) for case (ii) of PWAs, with the parameters 
replaced with those assigned to the branch b3 , and with ΔLA  replaced with ΔLD12 . 
Especially, under Dawg’s model, we have: 

           

ΜP ΛΨ
ID NΚ =1;CΚ;α[s1, s2, s3];T[ ] T⎡⎣ ⎤⎦

= λD:3 fD:3(ΔL
D12 )

exp (λI:3 +λD:3 )ΔL
D12 (tF:3 − tI )( )−1

(λI:3 +λD:3 )ΔL
D12

.
   --- Eq.(1.3.6) 

As in case (ii) of PWAs, each next-fewest-indel history is composed of two indel 
events, and there are two types of such histories. One is based on type (a) in case (ii): 
M̂ (b1) = M̂ (b2 ) = [ ], M̂ (b3) = M̂D (x, x + l −1), M̂D (2,ΔL

D12 − l +1)⎡
⎣

⎤
⎦{ } ,  --- Eq.(1.3.7a) 

with l =1,..., ΔLD12 −1 , x = 2,..., ΔLD12 − l + 2 , and also with sRoot = s0
Root . And the other 

is based on type (b) in case (ii):  

M̂ (b1) = M̂ (b2 ) = [ ], M̂ (b3) = M̂I (x, l), M̂D (2,ΔL
D12 + l +1)⎡

⎣
⎤
⎦{ } ,  --- Eq.(1.3.7b) 

with l =1,..., min{LI:3
CO, LD:3

CO −ΔLD12} , x =1,..., ΔLD12 +1 , and also with sRoot = s0
Root  

again. Thus the summed contributions over the next-fewest-indel histories is given by: 
ΜP ΛΨ

ID NΚ = 2;CΚ;α[s1, s2, s3];T[ ] T⎡⎣ ⎤⎦=ΜP[(a)]+ΜP[(b)].   --- Eq.(1.3.8) 
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Here ΜP[(a)]  and ΜP[(b)]  are given by exactly the same equations as Eqs.(1.2.5b,d) 
and Eqs.(1.2.5c,e), respectively, with the parameters replaced by those assigned to 
branch b3 , and with ΔLA  replaced by ΔLD12 . Especially, under Dawg’s model, the 
contributions by the individual next-fewest-indel histories are given by 
Eqs.(1.2.5d’,e’) with an appropriate replacement of the parameters and the ancestral 
state. Thus, panel A of Figure 3 can also be interpreted exactly as the comparison 
between the fewest-indel history’s contribution and the next-fewest-indel histories’ 
total contribution in the current case. Incidentally, root sequences with some 
additional ancestral sites in between the PASs of s0

Root ≡ L, 1,...,ΔLD12, R⎡⎣ ⎤⎦  are also 
consistent with α[s1, s2, s3]  in this case. However, such root sequence states require at 
least three indels each to give rise to α[s1, s2, s3] . This is because the additional 
ancestral sites need to be deleted independently along b1  and b2 , even if they are 
deleted simultaneously with the sites with the ancestries 1,...,ΔLD12  along b3 . Thus, in 
general, the indel histories consistent with such root states are expected to contribute 
much less to the multiplication factor. 
 Case (III) is represented by the external sequence states s1 = L, 1,...,ΔLD1, R⎡⎣ ⎤⎦  

and s2 = s3 = L, R[ ] . In this case, the phylogenetic correctness condition does not 
require the root state to have any site in between the PASs. Thus we have 
s0
Root = L, R[ ] . As in case (II), we have Nmin CΚ;α[s1, s2, s3];T[ ] =1 . And the set of 

fewest-indel local histories, ΛΨ
ID NΚ =1;CΚ;α[s1, s2, s3];T[ ] , consists of a single 

element: 

M̂ (b1) = M̂I (1, ΔL
D1)⎡

⎣
⎤
⎦, M̂ (b2 ) = M̂ (b3) = [ ]{ } ,  --- Eq.(1.3.9) 

with sRoot = s0
Root . Again, as in case (II), the contribution by this local history turns out 

to be exactly the same as Eq.(A1.1.1) (in Appendix A1.1) for case (iii) of PWAs, with 
the parameters replaced with those assigned to the branch b1 , and with ΔLD  replaced 
with ΔLD1 . Especially, under Dawg’s model, we have: 

               

ΜP ΛΨ
ID NΚ =1;CΚ;α[s1, s2, s3];T[ ] T⎡⎣ ⎤⎦

= λI:1 fI:1(ΔL
D1)
1− exp −(λI:1 +λD:1)ΔL

D1(tF:1 − tI )( )
(λI:1 +λD:1)ΔL

D1
.
  --- Eq.(1.3.10) 

As in case (iii) of PWAs, each next-fewest-indel history is composed of two indel 
events. Unlike case (iii) of PWAs, however, there are three types of such histories; 
two of them are similar to those in case (iii), but the other one is totally new. 
Specifically, the first one is based on type (c) in case (iii): 
      M̂ (b1) = M̂I (1,ΔL

D1 − l), M̂I (x, l)⎡
⎣

⎤
⎦, M̂ (b2 ) = M̂ (b3) = [ ]{ } ,    --- Eq.(1.3.11a) 

with l =1,..., ΔLD1 −1 , x =1,..., ΔLD1 − l +1, and also with sRoot = s0
Root . The second one 

is based on type (d) in case (iii): 

   M̂ (b1) = M̂I (1,ΔL
D1 + l), M̂D (x, x + l −1)⎡

⎣
⎤
⎦, M̂ (b2 ) = M̂ (b3) = [ ]{ } ,   --- Eq.(1.3.11b) 

with l =1,..., min{LD:1
CO , LI:1

CO −ΔLD1} , x = 2,..., ΔLD1 + 2 , and also with sRoot = s0
Root  again. 

The third one involves events along b2  and b3 , instead of along b1 : 
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     M̂ (b1) = [ ], M̂ (b2 ) = M̂ (b3) = M̂D (2,ΔL
D +1)⎡

⎣
⎤
⎦{ } .      --- Eq.(1.3.11c) 

It is consistent with the root state sRoot = s1 = L, 1,...,ΔLD1, R⎡⎣ ⎤⎦  instead of s0
Root = L, R[ ] . 

It should be noted that there is only one local history of the third type.  In this case, 
therefore, the summed contribution of the next-fewest-indel local histories is given 
by: 
ΜP ΛΨ

ID NΚ = 2;CΚ;α[s1, s2, s3];T[ ] T⎡⎣ ⎤⎦=ΜP[(c)]+ΜP[(d)]+ΜP[(3rd)].   
--- Eq.(1.3.12)    

Here, ΜP[(c)]  and ΜP[(d)]  are the summed contributions of the type (c)-based and 
type (d)-based histories, respectively. They are given by exactly the same equations as 
Eqs.(A1.1.2b,d) and Eqs.(A1.1.2c,e), respectively, with the parameters replaced by 
those assigned to branch b1  , and with ΔLD  replaced by ΔLD1 . Under Dawg’s model, 
these two terms are given by summations of Eqs.(A1.1.2d’,e’) with an appropriate 
replacement of the parameters and the descendant states. Thus, panel A of Figure 3 
can also be interpreted as the comparison between the total contribution of these two 
types of next-fewest-indel histories and the fewest-indel history’s contribution. 
Meanwhile, ΜP[(3rd)]  is the contribution from the unique next-fewest-indel history 
of the 3rd type, Eq.(1.3.11c). According to the definition, Eq.(1.1.2b) supplemented 
by Eqs.(1.2.4b,6b,8), it is expressed as: 

ΜP[(3rd)]= μP sRoot = s1, s0
Root, nRoot;CΚ

⎡⎣ ⎤⎦ exp − dt δRX:m
ID (sRoot = s1, s0

Root, t)
bmtI

tF:m∫
m=1,2,3

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

× dt rD:m (2,ΔL
D1 +1; sRoot = s1, t) exp − dτ δRX:m

ID (sm, s
Root = s1, t)t

tF:i∫{ } bm
⎡

⎣
⎢

⎤

⎦
⎥

tI

tF:m∫
m=2,3

∏ .

 
--- Eq.(1.3.13)    

Under Dawg’s model, we have δRX:m
ID (sRoot = s1, s0

Root, t) bm
= (λI:m +λD:m )ΔL

D1  for 

m =1,2,3 , and δRX
ID (sm, s

Root = s1, t) bm
= − (λI:m +λD:m )ΔL

D1  for m = 2,3 . Moreover, if 
we assume the uniform distribution of the root sequence length, we have 
μP sRoot = s1, s0

Root, nRoot;CΚ
⎡⎣ ⎤⎦=1 . Thus, Eq.(1.3.13) is reduced to: 

ΜP[(3rd)]= exp −(λI:1 +λD:1)ΔL
D1(tF:1 − tI )( )

× λD:m fD:m (ΔL
D1)
1− exp −(λI:m +λD:m )ΔL

D1(tF:m − tI )( )
(λI:m +λD:m )ΔL

D1

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪m=2,3

∏ .
  

--- Eq.(1.3.13’)    
Figure 5 shows the ratio of ΜP[(3rd)]  to the fewest-indel history’s contribution, 
Eq.(1.3.10), when all three branches have the same length and are assigned the same 
indel model as that used for Figure 3. Because the ratio compares the multiplication 
factors concerning the indel events along different branches, its value actually 
depends on several factors. It would be convenient to keep in mind that the ratio could 
be approximated by 
λD:2 fD:2 (ΔL

D1)(tF:2 − tI ) λD:3 fD:3(ΔL
D1)(tF:3 − tI ) λI:1 fI:1(ΔL

D1)(tF:1 − tI )  when 
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(λI:m +λD:m )ΔL
D1(tF:m − tI ) ’s are sufficiently smaller than 1 for all m =1,2,3 . In 

general, as ΔLD1  gets larger, the ratio is expected to decrease, because the relative 
frequencies of long indels ( fI:m (ΔLD1)  and fD:m (ΔL

D1) ) are small in general. The ratio 
is expected to be much smaller than 1 in general. However, it may become quite large 
when the relative frequency of deletions compared to insertions (i.e., the ratio 
λD:m λI:m ) is considerably larger than 1, or when the lengths of b2  and b3  are much 
larger than that of b1  (i.e., tF:2 − tI , tF:3 − tI >> tF:1 − tI ). Such situations are similar to 
those causing the “Felsenstein zone” regarding a substitution model, where a non-
parsimonious substitution history at a site is most likely to occur along a tree (see, e.g., 
Chapter 9 of Felsenstein 2004). Under the conditions used to draw Figure 5, an indel 
history of the 3rd type has a probability much smaller than that of the fewest-indel 
history. The former is less than 5% of the latter even when as much as 0.4 indels per 
site are expected to occur. This is probably because the history of the 3rd type 
requires an exquisite spatial coordination of deletions along different branches. And 
the result implies that the “Felsenstein zone” of indels should generally be quite 
narrow, consisting of the cases where a node is connected with branches with 
extremely unequal lengths. 
 Case (IV) is represented by the external sequence states, s1 = L, 1,...,ΔLD1, R⎡⎣ ⎤⎦ , 

s2 = L, 1,...,, i, j,...,ΔLD1, R⎡⎣ ⎤⎦ , and s3 = L, R[ ] , with 1≤ i+1< j ≤ ΔLD1 +1  but 

(i, j) ≠ (0, ΔLD1 +1) . (Here “1,..., 0 ” and “ΔLD1 +1,...,ΔLD1” should be considered to be 
empty.) In this case, the phylogenetic correctness condition requires the root state to 
have sites with ancestries 1,..., i  and j,...,ΔLD1 , on top of the PASs. Thus, we have 
s0
Root = s2 = L, 1,...,, i, j,...,ΔLD1, R⎡⎣ ⎤⎦ . Here, the minimum number of indels is 

Nmin CΚ;α[s1, s2, s3];T[ ] = 2 . And the set of fewest-indel local histories, 

ΛΨ
ID NΚ = 2;CΚ;α[s1, s2, s3];T[ ] , consists of two histories. One starts with the root 

state sRoot = s0
Root (= s2 ) , and is represented as: 

M̂ (b1) = M̂I (i+1, j − i−1)⎡
⎣

⎤
⎦, M̂ (b2 ) = [ ], M̂ (b3) = M̂D (2, ΔL

D1 − j + i+ 2)⎡
⎣

⎤
⎦{ } .  

--- Eq.(1.3.14a)    
The other starts with the root state sRoot = s1 = L, 1,...,ΔLD1, R⎡⎣ ⎤⎦ , which differs from 

s0
Root (= s2 ) . It is represented as: 

M̂ (b1) = [ ], M̂ (b2 ) = M̂D (i+ 2, j)⎡
⎣

⎤
⎦, M̂ (b3) = M̂D (2, ΔL

D1 +1)⎡
⎣

⎤
⎦{ } .    --- Eq.(1.3.14b)    

The portion of the multiplication factor contributed from these two fewest-indel local 
histories, and that contributed from the next-fewest-indel local histories, are 
calculated in Appendix A2. Table 3 shows the ratio of the total contribution of the 
next-fewest-indel local histories to that of the fewest-indel local histories for typical 
configurations in this case. The table indicates that the fewest-indel local histories 
give a decent approximation of the local MSA probability, as long as the number of 
descendant sites and the expected number of indels per site are at most moderate. 
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2. Goodness of approximation by past indel models 
In part I (Ezawa, Graur and Landan 2015a), as well as in Section 1 of this series of 
paper, we established a theoretical formulation that can calculate the probabilities of 
given alignments (PWAs or MSAs) under a general continuous-time Markov model, 
which is a genuine evolutionary model describing the stochastic sequence evolution 
along the time axis via insertions and deletions. The Markov model we dealt with can 
accommodate quite biologically realistic settings, such as overlapping indels, power-
law indel length distributions, and indel rate variation across regions. As shown in 
Subsection 3.1.1 of part I, the probabilities calculated via our theoretical formulation 
also fulfill, up to a desired order of the perturbation expansion, the Chapman-
Kolmogorov (CK) equation, which is a crucial consistency condition for a genuine 
evolutionary model. To the best of our knowledge, the CK equation has never been 
satisfied by any previous probabilistic theories allowing for indels of multiple 
residues. Moreover, the results in Section 5 of part I indicated that even the lowest-
order approximation based on the fewest-indel histories alone can approximate the 
probabilities of the local gap configurations of the alignments considerably well, as 
long as the indel lengths and the branch lengths are at most moderate. Given these 
ideal properties, the ab initio perturbation theory that we formulated in this series of 
study can be used as a sound “reference point.” More precisely, other probabilistic 
models can be compared to it in order to examine how well they can approximate the 
biologically realistic probabilities of the alignments, and the conditions under which 
they can. In this section we will examine the “goodness of approximation” by some 
representative models of indels in the light of our ab initio formulation. 
 
2.1.  Geometric indel length distributions 
As mentioned in Introduction, a majority of indel probabilistic models that have been 
used thus far are based on HMMs or transducer theories that calculates the indel 
component of the probability of an alignment as a product of column-to-column 
transition probabilities. Such models can only accommodate geometric indel length 
distributions, or at most linear combinations of two or more geometric distributions. 
However, empirical analyses revealed that the lengths of inserted/deleted sequences 
are distributed according to power-laws (e.g., Gonnet et al. 1992; Benner et al. 1993; 
Gu and Li 1995; Kent et al. 2003; Zhang and Gerstein 2003; Chang and Benner 2004; 
The international Chimpanzee Chromosome 22 Consortium 2004; Yamane et al. 
2006; Fan et al. 2007). Therefore, a question naturally arises as to up to what length a 
geometric distribution can decently approximate a biologically realistic power-law 
distribution. Here we address this question. As a reference distribution, we used a 
power-law distribution:  
                     f PL (l; a) = l−a l−a

l=1

+∞

∑ ,     --- Eq.(2.1.1) 

with an empirically typical exponent of a =1.6  (panel A of Figure 6). Then we fitted 
a scaled geometric distribution: 
               f SG (l; A, q) = A× ql−1 ql−1

l=1

+∞

∑ = A(1− q)ql−1 ,   --- Eq.(2.1.2) 

 to the reference, Eq.(2.1.1), via a least-square fitting across the lengths l =1, 2, ..., 100 . 
We found that the best-fitting parameters are A = ALS (1.6) ≡ 0.7125  and 
q = qLS (1.6) ≡ 0.3957 . (The distribution is drawn in the dashed line in panel A.) Then, 
we calculated the ratios: 
        RLS (l;1.6) ≡ f

SG (l; ALS (1.6), qLS (1.6)) f PL (l; a =1.6) ,    --- Eq.(2.1.3) 
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for l =1, 2, ..., 25  (panel B of Figure 6). As shown in the figure, RLS (l;1.6)  is less than 
1/3 at l = 5 , less than 1/10 at l = 7 , and less than 1/1000 at l =13 .  This indicates that 
the probabilistic model of indels based on the geometric distribution is somewhat 
reliable for indels that are at most 4 bases long, which account for 70.5% of all indels 
if we assume this power-law distribution for all indel lengths. In other words, the 
geometric distribution substantially underestimates the probabilities of 30% of indels 
that actually occurred. Although a larger value of q  could prevent a rapid damping of 
the estimated frequency, this then causes the mis-estimation of relative frequencies 
among commonly occurring indels with, e.g., l =1,2,3  (the dotted line in panel A of 
Figure 6). Hence, this simple analysis clearly demonstrates how important it is to 
incorporate biologically realistic indel length distributions into the evolutionary model. 
 
2.2. Models pursuing biological realism 
Some existing probabilistic models of indels, such as the “long indel” model (Miklós 
et al. 2004) and the model of Kim and Sinha (2007), aim to pursue more biological 
realism by accommodating indel length distributions that are biologically more 
realistic than geometric distributions. As noted in Subsection 5.1 of part I (and proved 
in Appendix A6 of part I), as far as each LHS equivalence class is concerned, the 
probability given by the recipe of Miklós et al. (2004) equals the probability 
calculated by our formulation under the space- and time-homogeneous model 
parameters (given in Eqs.(2.4.5a,b) of part I). Thus, regarding the probability of a 
PWA, the two methods should give the identical sum of contributions from the 
fewest-indel histories. And, provided that both methods can correctly enumerate all 
possible local histories of any given number of indels consistent with each local gap 
configuration, they will also give the identical sum of contributions from the histories 
with up to a desired number of indels. Fulfilling this last condition, however, will be 
an important task left for future studies. (At present, we cannot tell whether or not the 
algorithm of Miklós et al. (2004) can correctly enumerate indel histories, because 
their paper has no explicit description on this topic. So, we will not discuss their 
method further in this section.)  
 Here, we specifically examine the model of Kim and Sinha (2007) in the light 
of our theoretical formulation. Their model is a block-wise HMM, and calculates the 
probability of a PWA between the ancestral and descendant sequences along a branch 
as a product of block-wise probabilities. In their HMM, a block is either a column of a 
PAS, a run of gaps in the ancestor aligned with a run of residues in the descendant, or 
a run of gaps in the descendant aligned with a run of residues in the ancestor. Each 
PWA is actually a part of a MSA of given sequences at the external nodes and one of 
alternative sets of sequences at internal nodes. Ancestral gaps aligned with descendant 
gaps are removed before evaluating the probability of a PWA. Because their purpose 
is to find a most likely indel history and a resulting set of consistent ancestral 
sequence states at internal nodes, they are not interested in an indel event that begins 
and/or ends in the middle of a block. Thus, they only consider those events that 
insert/delete the entire blocks in single steps. 
 We now calculate the probabilities of the local PWAs that were considered in 
the cases (i)-(iv) in Subsection 1.2, via the model of Kim and Sinha (2007). And we 
compare the results to those via our theoretical formulation under Dawg’s parameters 
(Eqs.(2.4.4a,b) of part I). In the following, the probabilities via Kim and Sinha (2007) 
will be calculated according to Eq.(2) and Figure 1C of their paper, and the 
probabilities via our formulation will be calculated according to the prescriptions in 
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Subsection 1.2 (and in Appendix A1).  We set tF − tI = | b |  in the following 
calculations. (Here | b |  denotes the length of branch b ). Via the model of Kim and 
Sinha (2007), the PWA probability in case (i) is calculated as: 
                     PKS case (i)[ ] = (1− pI )2 (1− pD )2 ,           --- Eq.(2.2.1) 
where pI  and pD  are the “transition probabilities of the ‘Insertion’ and ‘Begin 
deletion’ states,” respectively. Via our formulation, the PWA probability is: 

          
Pref case (i)[ ] = exp −ΔDawg | b |−2(λI +λD ) | b |( )

× 1+μP
(2)[case (i)]+ μP

(n)[case (i)]
n=3

+∞

∑⎡
⎣⎢

⎤
⎦⎥.

   --- Eq.(2.2.2)    

Here, ΔDawg  is the abbreviation of the “universal” factor for the indel exit rate (i.e., 
ΔDawg[λI , λD, fD (.)] in Eq.(2.4.4c) of part I). And μP

(n)[case (i)]  is short for 

μP Λ ID Nκ = n; γκ ;α(s
A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦ , i.e., the summed contribution from 

the n -event local histories to the multiplication factor in case (i). Especially, 
μP
(2)[case (i)]  is concretely expressed in Eq.(1.2.2a). Now, assuming that (λI +λD ) | b |  

is sufficiently small, we expand the expression in the square brackets into the power 
series in λI | b |  and λD | b | , which will collectively be denoted as λ | b |  when 
considering the order of magnitude. From Eqs.(1.2.2a,b’), we get 

μP
(2)[case (i)]= λI fI (l)λD fD (l)| b |

2 2
l=1

LCO

∑ +O (λ | b |)3( ) . Moreover, the expansion of 

μP Λ ID Nκ = n; γκ ;α(s
A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦  generally starts with O (λ | b |)n( )  

terms. Thus, we have: 

      
Pref case (i)[ ] = exp −ΔDawg | b |−2(λI +λD ) | b |( )

× 1+ λIλD | b |
2 fI (l) fD (l)l=1

LCO

∑ 2
⎛
⎝
⎜

⎞
⎠
⎟+O (λ | b |)3( )⎡

⎣⎢
⎤

⎦⎥
.
   --- Eq.(2.2.2’) 

This and Eq.(2.2.1) will provide the baseline when examining the probabilities in Kim 
and Sinha’s model  in other cases. 
 In case (ii), the PWA probability under the HMM of Kim and Sinha (2007) is 
calculated as: 
      PKS case (ii)[ ] = (1− pI )3(1− pD )2 pD PrD (ΔLA ) .    --- Eq.(2.2.3) 
Here PrD (l)  is the “probability distribution on the deletion length ( l ),” which is 
assumed as shared among different branches. To facilitate the comparison, we 
consider the ratio of the probability in case (ii) to that in case (i), which yields: 
PKS case (ii)[ ] PKS case (i)[ ] = (1− pI ) pD PrD (ΔLA ) .      --- Eq.(2.2.4) 

Meanwhile, the probability via our formulation is: 
    Pref case (ii)[ ] = exp −ΔDawg | b |− (λI +λD )(2+ΔL

A ) | b |( )× μP
(n)[case (ii)]

n=1

+∞

∑⎡⎣⎢
⎤
⎦⎥.     

--- Eq.(2.2.5)    
Here, μP

(1)[case (ii)]  is given by Eq.(1.2.4’), and μP
(2)[case (ii)]  is given by Eq.(1.2.5a) 

supplemented with Eqs.(1.2.5b,c,d’e’). The ratio of Eq.(2.2.5) to Eq.(2.2.2) is: 

    
Pref case (ii)[ ] Pref case (i)[ ]

= e− (λI+λD )ΔL
A |b| μP

(n)[case (ii)]
n=1

+∞

∑⎡⎣⎢
⎤
⎦⎥ 1+ μP

(n)[case (i)]
n=2

+∞

∑⎡
⎣⎢

⎤
⎦⎥
−1

.
   --- Eq.(2.2.6)    
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Expanding this expression into the power series in λ | b | , we have: 

     
Pref case (ii)[ ] Pref case (i)[ ]

= λD | b | fD (ΔL
A )+ 1

2 λD (λI +λD ) | b |
2GD (ΔL

A )+O (λ | b |)3( ) .
   --- Eq.(2.2.6’a)     

Here GD (ΔL
A )  is defined as: 

GD (ΔL
A ) ≡ −ΔLA fD (ΔL

A )+
λD

λI +λD
(ΔLA − l +1) fD (l) fD (ΔL

A − l)
l=1

ΔLA−1

∑

+
λI

λI +λD
(ΔLA +1) fI (l) fD (ΔL

A + l)
l=1

min{LI
CO , LD

CO−ΔLA}

∑ .

  --- Eq.(2.2.6’b) 

Figure 7 shows the ratio GD (ΔL
A ) fD (ΔL

A )  as a function of ΔLA .  
 Similarly, according the HMM of Kim and Sinha (2007), the ratio of the PWA 
probability in case (iii) to that in case (i) is expressed as: 

           PKS case (iii)[ ] PKS case (i)[ ] = pI
1− pI

PrI (ΔL
D ) .    --- Eq.(2.2.7) 

Here PrI (l)  is the “probability distribution on the insertion length ( l ),” which also is 
assumed as shared among different branches. The ratio via our formulation is 
obtained by the power-series expansion in λ | b |  of Eq.(A1.1.1’) and Eq.(A1.1.2a) 
supplemented with Eqs.(A1.1.2b,c,d’,e’) (all in Appendix). The result is: 

Pref case (iii)[ ] Pref case (i)[ ] = μP
(n)[case (iii)]

n=1

+∞

∑⎡⎣⎢
⎤
⎦⎥ 1+ μP

(n)[case (i)]
n=2

+∞

∑⎡
⎣⎢

⎤
⎦⎥
−1

= λI | b | fI (ΔL
D )+ 1

2 λI (λI +λD ) | b |
2GI (ΔL

D )+O (λ | b |)3( ) .
 

--- Eq.(2.2.8a)    
Here GI (ΔL

D )  is defined as: 

GI (ΔL
D ) ≡ −ΔLD fI (ΔL

D )+
λI

λI +λD
(ΔLD − l +1) fI (ΔL

D − l) fI (l)
l=1

ΔLD−1

∑

+
λD

λI +λD
(ΔLD +1) fI (ΔL

D + l) fD (l)
l=1

min{LD
CO , LI

CO−ΔLD}

∑ .

  --- Eq.(2.2.8b) 

Thanks to the symmetry of the probabilities under the time reversal, Figure 7 also 
gives the ratio GI (ΔL

D ) fI (ΔL
D )  as a function of ΔLD , when calculated under the 

same setting. 
 Now we compare the results, Eq.(2.2.4) and Eq.(2.2.7), under Kim and 
Sinha’s model with the corresponding results, Eq.(2.2.6’a) and Eq.(2.2.8a), obtained 
via our formulation. In the method of Kim and Sinha (2007), the substitutions 
pI = cI | b |  and pD = cD | b |  are made first. Then cI  and cD  are estimated from the 
total frequencies of insertions and deletions, respectively, along the external branches 
observed from the input MSA. Similarly, PrI (ΔL

A )  and PrD (ΔL
A )  are estimated from 

the observed length histograms for insertions and deletions, respectively. Let {b}PE be 
the set of branches used for parameter estimations. Then, using the summations of the 
“reference” results, Eq.(2.2.6’a) and Eq.(2.2.8a), both over {b}PE , we expect to have: 

         
E cD[ ]
λD

=1+
λI +λD
2

| b |
|b|

GD (ΔL
A )

ΔLA=1

LD
CO

∑ +O (λ | b |)2( ) ,  --- Eq.(2.2.9a) 
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E cI[ ]
λI

=1+
λI +λD
2

| b |
|b|

GI (ΔL
D )

ΔLD=1

LI
CO

∑ +O (λ | b |)2( ) ,   --- Eq.(2.2.9b) 

E cD[ ]
λD

E PrD (ΔL
A )⎡⎣ ⎤⎦= fD (ΔL

A )+
λI +λD
2

| b |
|b|
GD (ΔL

A ) +O (λ | b |)2( ) ,  
--- Eq.(2.2.9c)     

E cI[ ]
λI

E PrI (ΔL
D )⎡⎣ ⎤⎦= fI (ΔL

D )+
λI +λD
2

| b |
|b|
GI (ΔL

D ) +O (λ | b |)2( ) .  
--- Eq.(2.2.9d)     

Here E X[ ]  denotes the expected value of the estimated parameter X , which is the 
average of estimated X  over all indel processes under the given set of conditions (the 
tree and model parameters). And we also used the notation, 
X(b)

|b|
≡ | b | X(b)

b∈{b}PE
∑⎡⎣⎢

⎤
⎦⎥ | b |

b∈{b}PE
∑ . [NOTE: The actual values of cI  and cD  

estimated by the method of Kim and Sinha (2007) may be slightly smaller than 
Eqs.(2.2.9b,c),  because the denominator in their method is the total number of MSA 
columns, instead of the average numbers of possible indel positions in ancestral 
sequences.] Usually, 12 (λI +λD ) | b | |b|  is quite small, at most O 10−1( )  and typically 

O 10−2( ) . Thus, as long as the actual parameters, λI , λD , fI (ΔL
D ) , and fD (ΔL

A ) , do 

not considerably vary across branches, and provided that the MSA is sufficiently long 
and accurate, the estimated values of cI  and cD , respectively, should approximate λI  
and λD  fairly well. Also, under the same situation, the estimated values of PrI (l)  and 
PrD (l) , respectively, should approximate fI (l)  and fD (l)  fairly well, as long as the 

ratios GI (l) fI (l)  and GD (l) fD (l)  are sufficiently less than 1
2 (λI +λD ) | b | |b|
⎡⎣ ⎤⎦

−1
. 

However, it does not actually matter so much whether or not the estimated Kim-Sinha 
parameters (cI , cD , PrI (l)  and PrD (l) ) approximate Dawg’s indel parameters (λI , 
λD , fI (l)  and fD (l) ) fairly well. What actually matters is how accurately Eq.(2.2.4) 
and Eq.(2.2.7) approximate Eq.(2.2.6’a) and Eq.(2.2.8a), respectively, using the 
estimated parameters.  In an extreme case where all branches have the same branch 
length, the approximation should be nearly perfect. This is because, in this case, 
| b | ≈ | b |

|b|
 for all branches, and thus because we can use Eqs.(2.2.9a-d) without any 

significant modifications to estimate the probabilities (not involving case (iv)). [It 
should be noted here that Eq.(2.2.4) and Eq.(2.2.7), respectively, contain extra 
multiplication factors, (1− pI )  and (1− pI )

−1 , compared to the corresponding 
Eq.(2.2.6’a) and Eq.(2.2.8a). However, these factors should remain close to 1, because 
pI = cI | b |  should normally be at most O 10−1( ) .] In contrast, the approximations by 

Eq.(2.2.4) and Eq.(2.2.7) could considerably deteriorate, e.g., when 
(λI +λD )(| b |− | b | |b| )  times the ratios, GD (ΔL

A ) fD (ΔL
A ) and GI (ΔL

D ) fI (ΔL
D ) , 

respectively, become comparable to or greater than 1 (unity). Because GD (ΔL
A )  and 

GI (ΔL
D )  are mostly contributed from next-fewest-indel local histories containing 

overlapping indels, we can interpret the result as follows. “Overlapping indels start to 
make Kim and Sinha’s method poorly approximate the alignment probabilities when 
the involved gap is long and the branch lengths show a large variation.” If there is a 
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good reason to believe that the Dawg indel parameters (λI , λD , fI (l)  and fD (l) ) are 
shared among all branches, one way to mitigate the aforementioned effects of 
overlapping indels may be to set: 

     cD (| b |)PrD (l, | b |) = λD fD (l)+ λD
λI +λD
2

| b |GD (l) ,     --- Eq.(2.2.10a) 

      cI (| b |)PrI (l, | b |) = λI fI (l)+ λI
λI +λD
2

| b |GI (l) ,     --- Eq.(2.2.10b) 

and to fit λI , λD , fI (l)  and fD (l)according to these equations supplemented with 
Eqs.(2.2.6’b,8b). Now, as indicated by Figure 7, under the power-law indel length 
distributions, the ratios GD (ΔL

A ) fD (ΔL
A )  and GI (ΔL

D ) fI (ΔL
D )  are less than 4 in 

absolute value when the gap is 300 residues long or shorter. Therefore, the 2nd-order 
terms will begin to substantially influence the results when 1

2 (λI +λD )(| b |− | b | |b| )  
is larger than, say, 0.1. Such a situation will be quite rare in practical sequence 
analyses. Even if we encounter such a rare case, then local histories with more than 2 
indels will begin to account for a substantial fraction of the probability. Considering 
this way, we expect that the method of Kim and Sinha (2007) will pretty well 
approximate the probabilities of local PWAs belonging to cases (ii) and (iii) at least 
within the threshold (ΔLA )0.5

(2−ii)  defined in Subsection 1.2. 
 Finally, we consider case (iv). Indel histories giving rise to the local sequence 
states in this category are shown, e.g., in Figure 5, panels F and G of Figure 3, and 
panel A of Figure 6 (all of them are in part I). In such a situation, an aligner will 
reconstruct a MSA that is like either panel B or C of Figure 5 of part I (if the 
reconstruction is correct), and Kim-Sinha’s method assigns a probability according to 
the reconstructed MSA. Whether it is like panel B or panel C, the assigned probability 
is the same, and its ratio to the probability of case (i) is: 
      PKS case (iv)[ ] PKS case (i)[ ] = pI PrI (ΔLD ) pD PrD (ΔLA ) .  --- Eq.(2.2.11) 
Via our formulation, how to calculate the probability in this case was briefly 
described in the middle of Subsection 1.2, and detailed in Appendix A1.2. In this case, 
each fewest-indel history consists of two indels, and each next-fewest-indel history 
consists of three indels. Because there are as many as 24 types of next-fewest-indel 
histories, here we only consider the fewest-indel histories. Then, the lowest-order 
contribution of the multiplication factor, μP

(2)[case (iv)] , is given by Eq.(A1.2.1a), 
supplemented with Eqs.(A1.2.1b,c,d,e’,f’,g’). Expanding each term into a power 
series in λ | b | , we get the following expression for the ratio: 

         

Pref case (iv)[ ] Pref case (i)[ ]

= e− (λI+λD )ΔL
A |b| μP

(n)[case (iv)]
n=2

+∞

∑⎡⎣⎢
⎤
⎦⎥ 1+ μP

(n)[case (i)]
n=2

+∞

∑⎡
⎣⎢

⎤
⎦⎥
−1

= λD λI | b |
2 1

2 fD (ΔL
A ) fI (ΔL

D )+ fI (ΔL
D + l) fD (ΔL

A + l)
l=0

min{LI
CO−ΔLD , LD

CO−ΔLA}

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+O (λ | b |)3( ) .

  

--- Eq.(2.2.12)          
In case (iv), as opposed to in cases (ii) and (iii), the PWA probabilities via the HMM 
of Kim and Sinha (2007) differ considerably from that via our formulation even when 
| b |

|b|
<<1  and | b |<<1 . Under these conditions, pI PrI (ΔL

D )  and pD PrD (ΔL
A )  quite 
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accurately approximate λI | b | fI (ΔL
D )  and λD | b | fD (ΔL

A ) , respectively (see 
Eqs.(1.2.9c,d)), and the O (λ | b |)3( )  terms in Eq.(2.2.12) can be neglected. Thus, we 

have: 
Pref case (iv)[ ] Pref case (i)[ ]
PKS case (iv)[ ] PKS case (i)[ ]

≈
3

2
+

fI (ΔL
D + l) fD (ΔL

A + l)
fD (ΔL

A ) fI (ΔL
D )l=1

min{LI
CO−ΔLD , LD

CO−ΔLA}

∑ .  

--- Eq.(2.2.13)     
Table 4 shows this ratio for typical cases. The second term on the right hand side of 
Eq.(2.2.13) is the effect of overlapping indels. When ΔLA = ΔLD =1 , this term is 
expected to be quite small; for example, it is about 0.167 if fI (l) = fD (l)∝ l

−1.6 . And it 
gets more and more influential when ΔLA  and/or ΔLD  gets larger, and it substantially 
exceeds 1 (unity) in some cases (Table 4). Actually, a similar effect was incorporated 
in the HMM of Knudsen and Miyamoto (2003). Their HMM could only 
accommodate geometric indel length distributions, and consequently the relevant term 
was independent of ΔLA  and ΔLD . Coming back to Eq.(2.2.13), the first term on the 
right hand side, 3/2, differs from 1 (unity) because the HMM of Kim and Sinha 
(2007) does not correctly take account of the non-overlapping indel histories, either. 
This error is actually shared by most of the standard, or nearly standard, HMMs and 
transducers used thus far as probabilistic models of indels (see Background of part I). 
Taking these results into consideration, another possible improvement on the model of 
Kim and Sinha (2007) would be to modify the HMM structure so that the probability 
of an insertion and an immediately adjacent deletion (or that of the opposite 
configuration) will be given by Eq.(2.2.12), or by its extension to include the terms of 
higher-orders in λ | b | . 
 
2.3. Violation of Chapman-Kolmogorov equation 
The Chapman-Kolmogorov (CK) equation (Eq.(3.1.1.1) in part I), 
       P̂ID (tI , tM ) P̂

ID (tM , tF ) = P̂ID (tI , tF ) (tI < tM < tF ) , 
is a crucial condition that must be satisfied by genuine evolutionary models based on 
any continuous-time Markov models. Thus far, the CK equation was violated by most 
HMMs and transducer theories, except those directly derived from evolutionary 
models, e.g., the TKF91 model (Thorne et al. 1991). As formally shown in Appendix 
A3 of part I (Ezawa, Graur and Landan 2015a), our theoretical formulation could 
satisfy the CK equation up to any desired order of the perturbation expansion. 
Therefore, our formulation enables us to analytically examine the effects of the 
violation of the CK equation. Here, we will only consider a simplest yet non-trivial 
example, i.e., case (ii) in Subsection 1.2. And we will examine the HMM of Kim and 
Sinha (2007) because of its generality; most HMMs could be obtained from their 
HMM by slightly modifying the parameters and by fixing the indel length 
distributions to geometric ones, possibly with time-dependent gap-extension 
probabilities. 
 Via the HMM of Kim and Sinha (2007), the PWA probability in case (ii) was 
given by Eq.(VII-2.3), with the substitutions pI = cI | b |  and pD = cD | b | : 
        PKS case (ii)[ ] = (1− cI | b |)3(1− cD | b |)2 cD | b | PrD (ΔLA ) .  --- Eq.(2.3.1) 
In contrast, the probability in the same case via our formulation was given by 
Eq.(2.2.5), which can be partially expanded into the power-series inλ | b |  as: 
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Pref case (ii)[ ] = exp −ΔDawg | b |−2(λI +λD ) | b |{ }
× λD | b | fD (ΔL

A )+ 1
2 λD (λI +λD ) | b |

2GD (ΔL
A )+O (λ | b |)3( )⎡

⎣
⎤
⎦.

 --- Eq.(2.3.2) 

Here GD (ΔL
A )  was given in Eq.(2.2.6’b). And exp −ΔDawg | b |{ }  is a “universal 

factor” that occur in the probability of any indel processes on the entire sequence 
(along branch b ). Eq.(2.3.2) satisfies the CK equation up to (and including) 
O (λ | b |)2( ) . Now, compare Eq.(2.3.1) with Eq.(2.3.2), aside from the universal factor. 

First, if we set cI = λI  and cD = λD , (1− cI | b |)
2 (1− cD | b |)

2  should approximate 
exp −2(λI +λD ) | b |{ }  quite well, because λI | b |  and λD | b |  should usually be at most 

O 10−1( ) . Thus, it is sufficient to compare (1− cI | b |)cD | b | PrD (ΔL
A )  with the 

expression in the square brackets on the right hand side of Eq.(2.3.2). If PrD (ΔL
A )  is 

considered as independent of | b | , it should be equal to fD (ΔL
A ) . Then, whether or 

not Eq.(2.3.1) approximately satisfies the CK equation depends on whether or not the 
absolute value of the difference, 
1
2 λD (λI +λD ) | b |

2GD (ΔL
A ){ }− −cI cD | b |

2 PrD (ΔL
A ){ } , is negligible compared to 

λD | b | fD (ΔL
A ) . As Figure 7 indicates, this condition will hold if ΔLA  is within a 

“critical value,” which decreases as (λI +λD ) | b |  increases. Once ΔLA  exceeds the 
critical value, the violation of the CK equation will considerably impact on the 
probability estimation, and therefore on the data analyses. Under the parameter setting 
used for Figure 7, the critical value is ΔLcr

A ≈ 300  when (λI +λD ) | b | ≈ 0.6 . This 
means that, as far as case (ii) local gap-configurations are concerned, Kim and 
Sinha’s HMM practically satisfies the CK equation at least up to O (λ | b |)2( ) . 

However, we expect that their HMM will severely violate the CK equation when it is 
applied to case (iii) local PWAs, in view of the results in Subsection 2.2. 
 Some past simulation analyses (e.g., Thorne et al. 1992; Knudsen and 
Miyamoto 2003; Metzler 2003) seem to have concluded that the violation of the CK 
equation, or its cause, i.e., the failure to accommodate overlapping indels, did not 
seriously impact on the results of data analyses. These results might be because they 
used geometric distributions of indel lengths. To see if this is indeed the case, let’s 
assume fI (l) = fD (l) = (1− q)q

l−1 . Substituting them into Eq.(2.2.6’b), we have: 

GD (ΔL
A ) ≈ fD (ΔL

A )× −ΔLA +
λD

λI +λD

(ΔLA −1)(ΔLA + 2)(1− q)
2q

+
λI

λI +λD

(ΔLA +1)q
1+ q

⎡

⎣
⎢

⎤

⎦
⎥.   

--- Eq.(2.3.3)     
Here we used q2min{LI

CO , LD
CO−ΔLA} <<1  to obtain the approximation. Now, with the 

approximations cI ≈ λI , cD ≈ λD  and PrD (ΔL
A ) ≈ fD (ΔL

A ) , we calculate the ratio: 
1
2 λD (λI +λD ) | b |

2GD (ΔL
A ){ }− −cI cD | b |

2 PrD (ΔL
A ){ }⎡

⎣
⎤
⎦ λD | b | fD (ΔL

A )⎡⎣ ⎤⎦

≈ − (λI +λD ) | b |
ΔLA

2
+ λD | b |

(ΔLA −1)(ΔLA + 2)(1− q)
4q

+λI | b |
(ΔLA +1)q
2(1+ q)

+1
⎛

⎝
⎜

⎞

⎠
⎟ .

 

--- Eq.(2.3.6)    
If ΔLA  is quite large, e.g., 10 or greater, the middle term on the right hand side will 
predominate, and the ratio could be roughly approximated as 
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λD | b | (ΔL
A )2 (1− q) (4q) . Thus, the “critical value” is roughly given by 

ΔLcr
A ≈ 4q (λD | b | (1− q)) .  If we set, e.g., λD = 0.1 and q = qLS (1.6) = 0.3957  as 

given above Eq.(2.1.3), the critical value would be: ΔLcr
A ≈ 8  for | b |= 0.4 , and 

ΔLcr
A ≈ 26  for | b |= 0.04 . At these critical values, geometric deletion length   

frequencies are already pretty small; we have fD (ΔL
A = 8) ≈ 9.2×10−4  and 

fD (ΔL
A = 26) ≈ 5.2×10−11  when q = qLS (1.6) = 0.3957 . Therefore, as long as the 

geometric indel length distributions are used for simulations, it would be very rare to 
encounter indels whose lengths exceed the critical value. Moreover, as shown in 
Subsection 2.1, when the indels are longer than these critical values, models with 
geometric indel length distributions severely underestimate their frequencies, to the 
extent that they are deemed almost useless. With these circumstances compounded 
together, it would come as no surprise that the past studies did not detect significant 
impacts of the violation of the CK equation on their results. [NOTE: Precisely 
speaking, (nearly) standard HMMs and transducers can take account of a part of 
contributions from multiple deletions. For example, the total contribution of two-
deletion histories that they can capture is (ΔLA −1)(λD | b |)

2 (1− q) fD (ΔL
A ) . Here 

(ΔLA −1) comes from the number of ways in which a run of gaps can be split into two 
segments. Thus, its ratio to the first-order term, λD | b | fD (ΔL

A ) , is 
(ΔLA −1)(λD | b |)(1− q) .  This is roughly 4q ΔLA  times as large as the dominant term 
in Eq.(2.3.6). This ratio is much smaller than 1 (unity) when ΔLA  is around or greater 
than the above critical values. Therefore, such histories with two contiguous deletions 
have only negligible effects on the present argument.] 

In contrast, if we incorporate biologically realistic indel length distributions 
into indel probabilistic models that are not genuine evolutionary models, such effects 
may become remarkable when dealing with long indels and/or long branches. The 
effects, however, might be somewhat alleviated by fitting indel rate parameters and 
length distributions that depend on the branch length as in Eqs.(2.2.10a,b). 
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Conclusions  
In a previous paper (Ezawa, Graur and Landan 2015a), we approached the 
fundamental problems on the probability of indels in an absolutely orthodox manner. 
More specifically, we established the theoretical basis of an ab initio perturbative 
formulation of a general continuous-time Markov model, which is a genuine 
stochastic model describing the evolution of an entire sequence via indels along the 
time axis. Using the formulation, we proved that, if the indel model parameters satisfy 
a certain set of conditions, the probability of an alignment is indeed factorable into the 
product of an overall factor and contributions from local alignments delimited by 
preserved ancestral sites (PASs).  
 In this paper, we concretely calculated the probability contributions from 
individual local alignments using perturbation analyses. The results indicated that 
even the fewest-indel terms alone can approximate the probabilities pretty well as 
long as the branch lengths and the indel lengths are at most moderate. And we also 
clarified the parameter regions where the alignment probabilities are safely 
approximated by the hidden Markov models (HMMs) of indels (and by association 
the transducer theories) that were often used in the past. We showed that the 
approximation by the geometric indel length distributions grossly deteriorates as soon 
as the indels become longer than 4 sites. We also showed that these HMMs violate the 
Chapman-Kolmogorov (CK) equation because they lack most of the non-fewest-indel 
terms in the perturbation expansion. This finding enables to predict the regions where 
the violation of the CK equation starts to compromise the reliability of these models. 
The analyses also suggested possible modifications to these models in order to 
improve their accuracy. 
 To summarize, by depending purely on the first principle, our ab initio 
perturbation formulation provides a sound reference point to which other indel models 
can be compared in order to see when and how well they can approximate the true 
alignment probabilities.  
 
 

Methods 
Implementation of the formulas 
Most of the formulas used for the perturbation analyses were implemented in Perl. 
They are available as a part of the package named LOLIPOG (log-likelihood for the 
pattern of gaps in MSA), which in turn is available at the FTP repository of the 
Bioinformatics Organization (Ezawa 2013). 
 
 

Authors' contributions 
KE conceived of and mathematically formulated the theoretical framework in this 
paper, implemented the key algorithms, participated in designing the study, performed 
all the mathematical analyses, and drafted the manuscript. DG and GL participated in 
designing the study, helped with the interpretation of the data, and helped with the 
drafting of the manuscript. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 4, 2015. ; https://doi.org/10.1101/023606doi: bioRxiv preprint 

https://doi.org/10.1101/023606
http://creativecommons.org/licenses/by/4.0/


 - 33 - 

 

Acknowledgements  
This study is dedicated to the late Dr. Keiji Kikkawa, who was a renowned theoretical 
physicist, one of the key pioneers of the string field theory of the elementary particle 
physics, and the best ever mentor of K.E. We are grateful to Dr. R. A. Cartwright at 
Arizona State University for his useful information and discussions that inspired this 
study. We appreciate the logistic support and the feedback of Dr. Tetsushi Yada at the 
Kyushu Institute of Technology. We would also like to thank the three anonymous 
referees of the predecessor manuscript entitled: “Framework that enables approximate 
lilelihood analysis of insertions/deletions on multiple sequence alignment.” Their 
comments helped drastically improve the study itself, not to mention the manuscript. 
This work was a part of the project, “Error Correction in Multiple Sequence 
Alignments,” which was funded by US National Library of Medicine [grant number 
LM010009-01 to Dan Graur and Giddy Landan at the University of Houston]. The 
later stage of this work was also supported by Grants-in-Aid No. 221S0002, which 
was awarded to Tetsushi Yada by the Ministry of Education, Culture, Sports, Science 
and Technology of Japan. 
 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 4, 2015. ; https://doi.org/10.1101/023606doi: bioRxiv preprint 

https://doi.org/10.1101/023606
http://creativecommons.org/licenses/by/4.0/


 - 34 - 

 
Appendix 
 
A1. Perturbation calculation of multiplication factors for PWAs between 
ancestral and descendant sequences 
A1.1. For case (iii) local PWAs 
Here we detail the calculation of the sum of contributions from the fewest-indel 
events as well as that from the next-fewest-indel events in case (iii) considered in 
Section 1.2 of Results, that is, the case where the ancestor has no site but the 
descendant has one or more sites in between a pair of preserved ancestral sites (PASs) 
(Figure 2 C). 

In case (iii), we assume that the descendant state has ΔLD  sites in between the 
flanking PASs. Thus, the ancestral and descendant states could be represented as 
sA = L, R[ ]  and sD = L, υ1

D,...,υ
ΔLD
D , R⎡⎣ ⎤⎦ , respectively. The ancestries satisfy υi

D ≠υ j
D  

for i ≠ j , and their details depend on the responsible indel history. As long as 
ΔLD ≤ LI

CO , Nmin γκ ;α(s
A, sD )⎡⎣ ⎤⎦=1 , and there is only one fewest-indel history, 

M̂I (1, ΔL
D )⎡

⎣
⎤
⎦ , which consists of a single event that inserts the descendant sites in 

between the PASs. Therefore, the sum of contributions from the fewest-indel history 
is: 
μP Λ ID Nκ =1; γκ ;α(s

A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦

= dt rI (1,ΔL
D; sA, t) exp − dτ δRX

ID (sA, sA, t)
tI

t

∫ − dτ δRX
ID (sD, sA, t)

t

tF∫{ }tI

tF∫

= dt rI (1,ΔL
D; sA, t) exp − dτ δRX

ID (sD, sA, t)
t

tF∫{ }tI

tF∫ .

 

--- Eq.(A1.1.1)     
As in case (ii), each next-fewest indel history is composed of two indel events, and 
classified into two types: (c) two successive insertions, M̂I (1,ΔL

D − l), M̂I (x, l)⎡
⎣

⎤
⎦  with 

l =1,..., ΔLD −1  and x =1,..., ΔLD − l +1 ; and (d) an insertion followed by a deletion, 

M̂I (1,ΔL
D + l), M̂D (x, x + l −1)⎡

⎣
⎤
⎦  with l =1,..., min{LD

CO, LI
CO −ΔLD}  and 

x = 2,..., ΔLD + 2 . Thus, in this case, the portion contributed by the next-fewest indel 
histories is given by: 
μP Λ ID Nκ = 2; γκ ;α(s

A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦= μP[(c)]+ μP[(d)].  --- Eq.(A1.1.2a)  

Here, 

μP[(c)]≡ μP M̂ I (1,ΔL
D − l), M̂I (x, l)⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

x=1

ΔLD−l+1

∑
l=1

ΔLD−1

∑  

--- Eq.(A1.1.2b)    
is the sum of contributions from the histories of type (c), and 

μP[(d)]≡ μP M̂ I (1,ΔL
D + l), M̂D (x, x + l −1)⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

x=2

ΔLD+2

∑
l=1

min{LD
CO , LI

CO−ΔLD}

∑  

--- Eq.(A1.1.2c)    
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is the sum of contributions from the histories of type (d). As in case (i), let 
s[ΔLD − l] ≡ sA M̂ I (1,ΔL

D − l)  be the intermediate state in each type (c) history. 
Then, the history’s contribution is calculated as: 
μP M̂ I (1,ΔL

D − l), M̂I (x, l)⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= dt d ′t
t

tF∫tI

tF∫
rI (1,ΔL

D − l; sA, t) rI (x, l; s ⋅[ΔL
D − l], ′t )

× exp − dτ δRX
ID (s[ΔLD − l], sA,τ )

t

′t

∫ − dτ δRX
ID (sD, sA,τ )

′t

tF∫{ }
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
.
 

--- Eq.(A1.1.2d)    
Similarly, each type (d) history’s contribution is calculated as: 
μP M̂ I (1,ΔL

D + l), M̂D (x, x + l −1)⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= dt d ′t
t

tF∫tI

tF∫
rI (1,ΔL

D + l; sA, t) rD (x, x + l −1; s ⋅[ΔL
D + l], ′t )

× exp − dτ δRX
ID (s[ΔLD + l], sA,τ )

t

′t

∫ − dτ δRX
ID (sD, sA,τ )

′t

tF∫{ }
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
.
 

--- Eq.(A1.1.2e)    
Let us now calculate Eqs.(A1.1.1,2a-e) under Dawg’s indel model or the “long indel” 
model, as in the previous cases in Section 1.2 of Results.  In this model, we have 
δRX

ID (sD, sA,τ ) = + (λI +λD )ΔL
D , and Eq.(A1.1.1) becomes: 

          

μP Λ ID Nκ =1; γκ ;α(s
A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= λI fI (ΔL
D )
1− exp −(λI +λD )ΔL

D (tF − tI )( )
(λI +λD )ΔL

D
.

    --- Eq.(A1.1.1’)  

Similarly, using δRX
ID (s[ΔLD − l], sA,τ ) = + (λI +λD )(ΔL

D − l)  and 
δRX

ID (s[ΔLD + l], sA,τ ) = + (λI +λD )(ΔL
D + l) , Eqs.(A1.1.2d,e) are calculated, 

respectively, as: 
μP M̂ I (1,ΔL

D − l), M̂I (x, l)⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

=
λI fI (ΔL

D − l)λI fI (l)
(λI +λD )l

1− e−(λI+λD )(ΔL
D−l )(tF−tI )

(λI +λD )(ΔL
D − l)

−
1− e−(λI+λD )ΔL

D (tF−tI )

(λI +λD )ΔL
D

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,

     

--- Eq.(A1.1.2d’)  

 

μP M̂ I (1,ΔL
D + l), M̂D (x, x + l −1)⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

=
λI fI (ΔL

D + l)λD fD (l)
(λI +λD )l

1− e−(λI+λD )ΔL
D (tF−tI )

(λI +λD )ΔL
D

−
1− e−(λI+λD )(ΔL

D+l )(tF−tI )

(λI +λD )(ΔL
D + l)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

   

--- Eq.(A1.1.2e’)  
Substituting Eqs.(A1.1.2d’,e’) into Eqs.(A1.1.2a,b,c), we can concretely calculate the 
total contribution from next-fewest-indels. 
 
A1.2. For case (iv) local PWAs 
Here we detail the calculation of the sum of contributions from the fewest-indel 
events as well as that from the next-fewest-indel events in case (iv) considered in 
Section 1.2 of Results, that is, the case where both the ancestor and the descendant 
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have one or more site(s) in between a pair of PASs, but no ancestral site is related to 
any of the descendant sites (Figure 2 D). 
 In case (iv), we assume that the ancestral and the descendant states have ΔLA  
and ΔLD  sites, respectively, in between the flanking PASs. Thus, the ancestral and 
descendant states could be represented as sA = L, 1,...,ΔLA, R⎡⎣ ⎤⎦  and 

sD = L, υ1
D,...,υ

ΔLD
D , R⎡⎣ ⎤⎦ , respectively. Here, the descendant ancestries satisfy 

υi
D ∉ {L, 1,...,ΔLA, R}  for all i =1,...,ΔLD  and υi

D ≠υ j
D  for all i ≠ j , and their details 

depend on the responsible indel history. As long as ΔLA ≤ LD
CO  and ΔLD ≤ LI

CO , 
Nmin γκ ;α(s

A, sD )⎡⎣ ⎤⎦= 2 . As indicated by Eqs.(A1.3c’,d’) in Appendix A1 of part I 
(Ezawa, Graur and Landan 2015a), there are three types of fewest-indel histories: (e) 
the deletion of the ancestral sites followed by an insertion of ΔLD  sites, 
M̂D (2, ΔL

A +1), M̂I (1, ΔL
D )⎡

⎣
⎤
⎦ ; (f) an insertion immediately on the right of the ancestral 

sites to be deleted, followed by the deletion, M̂I (ΔL
A +1, ΔLD + l), M̂D (2, ΔL

A + l +1)⎡
⎣

⎤
⎦  

with l = 0,...,min{LI
CO −ΔLD, LD

CO −ΔLA} ; and (g) an insertion immediately on the left 
of the ancestral sites to be deleted, followed by the deletion, 
M̂I (1, ΔL

D + l), M̂D (ΔL
D + 2, ΔLA +ΔLD + l +1)⎡

⎣
⎤
⎦  also with 

l = 0,...,min{LI
CO −ΔLD, LD

CO −ΔLA} . Thus, the sum of contributions by the fewest-
indel histories is expressed as: 
μP Λ ID Nκ = 2; γκ ;α(s

A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦= μP[(e)]+ μP[( f )]+ μP[(g)].  

 --- Eq.(A1.2.1a)     
Here, 
   μP[(e)]≡ μP M̂D (2,ΔL

A +1), M̂I (1,ΔL
D )⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦  --- Eq.(A1.2.1b) 

is the contribution from the single history of type (e), 
  

μP[( f )]≡ μP M̂ I (ΔL
A +1,ΔLD + l), M̂D (2,ΔL

A + l +1)⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

l=0

min{LI
CO−ΔLD , LD

CO−ΔLA}

∑
 

--- Eq.(A1.2.1c)    
is the sum of contributions from the type (f) histories, and 

μP[(g)]≡ μP M̂ I (1,ΔL
D + l), M̂D (ΔL

D + 2,ΔLA +ΔLD + l +1)⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

l=0

min{LI
CO−ΔLD , LD

CO−ΔLA}

∑
 

--- Eq.(A1.2.1d)    
is the sum of contributions from the type (g) histories. To calculate the contribution 
from each of these histories, let s0 ≡ [L, R] = sA M̂D (2,ΔL

A +1)  be the 
intermediate state of the type (e) history. And, as in case (ii), let 
sA ⋅[x,+l] ≡ sA M̂ I (x, l)  be the state type including the intermediate states of the 

histories of types (f) and (g). Then, the type (e) history’s contribution is: 
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μP M̂D (2,ΔL
A +1), M̂I (1,ΔL

D )⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= dt d ′t
t

tF∫tI

tF∫
rD (2,ΔL

A +1; sA, t) rI (1,ΔL
D; s0, ′t )

× exp − dτ δRX
ID (s0, s

A,τ )
t

′t

∫ − dτ δRX
ID (sD, sA,τ )

′t

tF∫{ }
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
,
 

 --- Eq.(A1.2.1e)   
the contribution from each history of type (f) is: 
μP M̂ I (ΔL

A +1,ΔLD + l), M̂D (2,ΔL
A + l +1)⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= dt d ′t
t

tF∫tI

tF∫
rI (ΔL

A +1,ΔLD + l; sA, t) rD (2,ΔL
A + l +1; sA ⋅[ΔLA +1, +ΔLD + l], ′t )

× exp − dτ δRX
ID (sA ⋅[ΔLA +1, +ΔLD + l], sA,τ )

t

′t

∫ − dτ δRX
ID (sD, sA,τ )

′t

tF∫{ }
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
,

 
--- Eq.(A1.2.1f)    

and each type (g) history’s contribution is: 
μP M̂ I (1,ΔL

D + l), M̂D (ΔL
D + 2,ΔLA +ΔLD + l +1)⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= dt d ′t
t

tF∫tI

tF∫
rI (1,ΔL

D + l; sA, t) rD (ΔL
D + 2,ΔLA +ΔLD + l +1; sA ⋅[1, +ΔLD + l], ′t )

× exp − dτ δRX
ID (sA ⋅[1, +ΔLD + l], sA,τ )

t

′t

∫ − dτ δRX
ID (sD, sA,τ )

′t

tF∫{ }
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
.
 

--- Eq.(A1.2.1g)    
Under Dawg’s indel model (or, similarly, under the “long indel” model), we have 
δRX

ID (sD, sA,τ ) = (λI +λD )(ΔL
D −ΔLA ) , δRX

ID (s0, s
A,τ ) = − (λI +λD )ΔL

A , and 
δRX

ID (sA ⋅[ΔLA +1, +ΔLD + l], sA,τ ) = δRX
ID (sA ⋅[1, +ΔLD + l], sA,τ ) = (λI +λD )(ΔL

D + l) . 
Using them, Eqs.(A1.2.1e,f,g) are calculated as: 
μP M̂D (2,ΔL

A +1), M̂I (1,ΔL
D )⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

=
λD fD (ΔL

A ) λI fI (ΔL
D )

(λI +λD )ΔL
D

e(λI+λD )ΔL
A (tF−tI ) −1

(λI +λD )ΔL
A

− Fe− (λI +λD )(ΔL
D −ΔLA ), tF − tI( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,
  

--- Eq.(A1.2.1e’)    
μP M̂ I (ΔL

A +1,ΔLD + l), M̂D (2,ΔL
A + l +1)⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= μP M̂ I (1,ΔL
D + l), M̂D (ΔL

D + 2,ΔLA +ΔLD + l +1)⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

=
λI fI (ΔL

D + l) λD fD (ΔL
A + l)

(λI +λD )(ΔL
A + l)

Fe− (λI +λD )(ΔL
D −ΔLA ), tF − tI( ) − 1− e

−(λI+λD )(ΔL
D+l )(tF−tI )

(λI +λD )(ΔL
D + l)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

 
--- Eqs.(A1.2.1f’,g’)    

Here, we defined the function Fe− x, t( )  as: 

           Fe− x, t( ) ≡
1− e−xt

x
if x ≠ 0 ,

t if x = 0 .

⎧

⎨
⎪

⎩⎪
   --- Eq.(A1.2.2) 

      Meanwhile, each next-fewest-indel history is composed of three indel events, and 
classified into one of 6 broad types: (h) two successive deletions followed by an 
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insertion; (i) a deletion, followed by an insertion, followed by a deletion; (j) an 
insertion followed by two successive deletions; (k) a deletion followed by two 
successive insertions; (l) an insertion, followed by a deletion, followed by an 
insertion; and (m) two successive insertions followed by a deletion. And these 6 broad 
types can be further sub-classified into 24 sub-types, as explained in the following. 
Type (h) does not need to be sub-classified, and each history belonging to this type 
can be expressed as: M̂D (x, x + l −1), M̂D (2, ΔL

A − l +1), M̂I (1, ΔL
D )⎡

⎣
⎤
⎦  with 

l =1,..., ΔLA −1  and x = 2,..., ΔLA − l + 2 . Type (i) is sub-classified into three sub-
types: (i-1) the case where the insertion is immediately on the right of the sites to be 
deleted, represented as 
M̂D (x, x + l −1), M̂I (ΔL

A − l +1, ΔLD + ′l ), M̂D (2, ΔL
A − l + ′l +1)⎡

⎣
⎤
⎦  with l =1,..., ΔLA −1 , 

x = 2,..., ΔLA − l + 2 , and ′l = 0,...,min{LI
CO −ΔLD, LD

CO −ΔLA + l} ; (i-2) the case where 
the insertion is immediately on the left of the sites to be deleted, represented as 
M̂D (x, x + l −1), M̂I (1, ΔL

D + ′l ), M̂D (ΔL
D + 2, ΔLA − l +ΔLD + ′l +1)⎡

⎣
⎤
⎦  also with 

l =1,..., ΔLA −1 , x = 2,..., ΔLA − l + 2 , and ′l = 0,...,min{LI
CO −ΔLD, LD

CO −ΔLA + l} ; and 
(i-3) the case where the first event deletes all unpreserved ancestral sites, represented 
as M̂D (2, ΔL

A +1), M̂I (1, ΔL
D + l), M̂D (x, x + l −1)⎡

⎣
⎤
⎦  with l =1,..., min{LD

CO, LI
CO −ΔLD}  

and x = 2,..., ΔLD + 2 . Type (j) is sub-classified into eight sub-types: (j-1) the case 
where the two deletions were on the right of the inserted sites that ended up in the 
descendant, represented as 
M̂I (ΔL

A +1, ΔLD + l), M̂D (x, x + ′l −1), M̂D (2, ΔL
A + l − ′l +1)⎡

⎣
⎤
⎦ with l = 0,..., LI

CO −ΔLD , 

′l =max{1,ΔLA + l − LD
CO}, ..., min{LD

CO, ΔLA + l −1} , and x = 2,..., ΔLA + l − ′l + 2 ; (j-2) 
the case where the two deletions were on the left of the inserted sites that ended up in 
the descendant, represented as 
M̂I (1, ΔL

D + l), M̂D (x, x + ′l −1), M̂D (ΔL
D + 2, ΔLA +ΔLD + l − ′l +1)⎡

⎣
⎤
⎦ with 

l = 0,..., LI
CO −ΔLD , ′l =max{1,ΔLA + l − LD

CO}, ..., min{LD
CO, ΔLA + l −1} , and 

x = ΔLD + 2,..., ΔLA +ΔLD + l − ′l + 2 ; (j-3) the case where the first and the second 
deletions were on the left and in the middle, respectively, of the inserted sites that 
ended up in the descendant, represented as 
M̂I (ΔL

A +1, ΔLD + l), M̂D (2, ΔL
A + ′l +1), M̂D (x, x + l − ′l −1)⎡

⎣
⎤
⎦ with l =1,..., LI

CO −ΔLD , 

′l =max{0, l − LD
CO}, ..., min{l −1,LD

CO −ΔLA} , and x = 3,...,ΔLD +1  (ΔLD ≥ 2  must 
always hold); (j-4) the case where the first and the second deletions were in the 
middle and on the left, respectively, of the inserted sites that ended up in the 
descendant, represented as 
M̂I (ΔL

A +1, ΔLD + l), M̂D (x, x + l − ′l −1), M̂D (2, ΔL
A + ′l +1)⎡

⎣
⎤
⎦ with l =1,..., LI

CO −ΔLD , 

′l =max{0, l − LD
CO}, ..., min{l −1,LD

CO −ΔLA} , and x = ΔLA + ′l +3,..., ΔLA +ΔLD + ′l +1 
(ΔLD ≥ 2  must always hold); (j-5) the case where the first and the second deletions 
were on the right and in the middle, respectively, of the inserted sites that ended up in 
the descendant, represented as 
M̂I (1, ΔL

D + l), M̂D (ΔL
D + l − ′l + 2, ΔLA +ΔLD + l +1), M̂D (x, x + l − ′l −1)⎡

⎣
⎤
⎦  with 
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l =1,..., LI
CO −ΔLD , ′l =max{0, l − LD

CO}, ..., min{l −1,LD
CO −ΔLA} , and x = 3,...,ΔLD +1  

(ΔLD ≥ 2  must always hold); (j-6) the case where the first and second deletions were 
in the middle and on the right, respectively, of the inserted sites that ended up in the 
descendant, represented as 
M̂I (1, ΔL

D + l), M̂D (x, x + l − ′l −1), M̂D (ΔL
D + 2, ΔLA +ΔLD + ′l +1)⎡

⎣
⎤
⎦ with 

l =1,..., LI
CO −ΔLD , ′l =max{0, l − LD

CO}, ..., min{l −1,LD
CO −ΔLA} , and x = 3,...,ΔLD +1  

(ΔLD ≥ 2  must always hold); (j-7) the case the first and the second deletions were on 
the right and on the left, respectively, of the inserted sites that ended up in the 
descendant, represented as 
M̂I (x +1, ΔL

D + l), M̂D (ΔL
D + l + ′′l + 2, ΔLA +ΔLD + l +1), M̂D (2, l + ′′l +1)⎡

⎣
⎤
⎦  with 

l = 0, ..., LI
CO −ΔLD , ′′l =max{1− l,ΔLA − LD

CO},..., min{ΔLA −1,LD
CO − l} , and 

x =max{0, ′′l },..., min{l + ′′l ,ΔLA} ; and (j-8) the case where the first and the second 
deletions were on the left and on the right, respectively, of the inserted sites that 
ended up in the descendant, represented as 
M̂I (x +1, ΔL

D + l), M̂D (2, l + ′′l +1), M̂D (ΔL
D + 2, ΔLA +ΔLD − ′′l +1)⎡

⎣
⎤
⎦  with 

l = 0, ..., LI
CO −ΔLD , ′′l =max{1− l,ΔLA − LD

CO},..., min{ΔLA −1,LD
CO − l} , and 

x =max{0, ′′l },..., min{l + ′′l ,ΔLA} . Type (k) does not need be sub-classified, and each 
history belonging to this type can be represented as: 
M̂D (2, ΔL

A +1), M̂I (1, l), M̂I (x, ΔL
D − l)⎡

⎣
⎤
⎦  with l =1,..., ΔLD −1  and x =1,..., l +1 . Type 

(l) is sub-classified into three sub-types: (l-1) the case where the first insertion was on 
the immediate right of the left-flanking PAS, and at least a site inserted by the event 
survived, represented as 
M̂I (1, ΔL

D + l − ′l ), M̂D (ΔL
D − ′l + 2, ΔLA +ΔLD + l − ′l +1), M̂I (x, ′l )⎡

⎣
⎤
⎦  with 

l = 0,..., LD
CO −ΔLA , ′l =max{1,ΔLD + l − LI

CO}, ..., min{ΔLD −1,LI
CO} , and 

x =1,...,ΔLD − ′l +1 ; (l-2) the case where the first insertion was on the immediate left 
of the right-flanking PAS, and at least a site inserted by the event survived, 
represented as M̂I (ΔL

A +1, ΔLD + l − ′l ), M̂D (2, ΔL
A + l +1), M̂I (x, ′l )⎡

⎣
⎤
⎦  with 

l = 0,..., LD
CO −ΔLA , ′l =max{1,ΔLD + l − LI

CO}, ..., min{ΔLD −1,LI
CO} , and 

x =1,...,ΔLD − ′l +1 ; and (l-3) the case where all sites inserted by the first event were 
deleted along with the unpreserved ancestral sites, represented as 
M̂I (x, l), M̂D (2, ΔL

A + l +1), M̂I (1, ΔL
D )⎡

⎣
⎤
⎦  with l =1,..., min{LI

CO,LD
CO −ΔLA}  and 

x =1,...,ΔLA +1 . Finally, type (m) is sub-classified into eight sub-types: (m-1) the case 
where the two insertions are on the left of the unpreserved ancestral sites, represented 
as: M̂I (1, ΔL

D + l − ′l ), M̂I (x, ′l ), M̂D (ΔL
D + 2, ΔLA +ΔLD + l +1)⎡

⎣
⎤
⎦  with 

l = 0,..., LD
CO −ΔLA , ′l =max{1,ΔLD + l − LI

CO}, ..., min{ΔLD + l −1,LI
CO} , and 

x =1,...,ΔLD + l − ′l +1; (m-2) the case where the two insertions are on the right of the 
unpreserved ancestral sites, represented as 
M̂I (ΔL

A +1, ΔLD + l − ′l ), M̂I (x, ′l ), M̂D (2, ΔL
A + l +1)⎡

⎣
⎤
⎦  with l = 0,..., LD

CO −ΔLA , 

′l =max{1,ΔLD + l − LI
CO}, ..., min{ΔLD + l −1,LI

CO} , and 
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x = ΔLA +1,...,ΔLA +ΔLD + l − ′l +1 ; (m-3) the case where the first and the second 
insertions are in the middle and on the left, respectively, of the unpreserved ancestral 
sites, represented as M̂I (x, l − ′l ), M̂I (1, ΔL

D + ′l ), M̂D (ΔL
D + 2, ΔLA +ΔLD + l +1)⎡

⎣
⎤
⎦  with 

x = 2,...,ΔLA , l =1,..., LD
CO −ΔLA , and ′l =max{0, l − LI

CO}, ..., min{l −1,LI
CO −ΔLD}  

(ΔLA ≥ 2  must always hold); (m-4) the case where the first and the second insertions 
are on the left and in the middle, respectively, of the unpreserved ancestral sites, 
represented as M̂I (1, ΔL

D + ′l ), M̂I (x, l − ′l ), M̂D (ΔL
D + 2, ΔLA +ΔLD + l +1)⎡

⎣
⎤
⎦  with 

l =1,..., LD
CO −ΔLA , ′l =max{0, l − LI

CO}, ..., min{l −1,LI
CO −ΔLD} , and 

x = ΔLD + ′l + 2,...,ΔLA +ΔLD + ′l  (ΔLA ≥ 2  must always hold); (m-5) the case where 
the first and the second insertions are in the middle and on the right, respectively, of 
the unpreserved ancestral sites, represented as 
M̂I (x, l − ′l ), M̂I (ΔL

A + l − ′l +1, ΔLD + ′l ), M̂D (2, ΔL
A + l +1)⎡

⎣
⎤
⎦  with x = 2,...,ΔLA , 

l =1,..., LD
CO −ΔLA , and ′l =max{0, l − LI

CO}, ..., min{l −1,LI
CO −ΔLD}  (ΔLA ≥ 2  must 

always hold); (m-6) the case where the first and the second insertions are on the right 
and in the middle, respectively, of the unpreserved ancestral sites, represented as 
M̂I (ΔL

A +1, ΔLD + ′l ), M̂I (x, l − ′l ), M̂D (2, ΔL
A + l +1)⎡

⎣
⎤
⎦  with x = 2,...,ΔLA , 

l =1,..., LD
CO −ΔLA , and ′l =max{0, l − LI

CO}, ..., min{l −1,LI
CO −ΔLD}  (ΔLA ≥ 2  must 

always hold); (m-7) the case where the first and the second insertions are on the left 
and on the right, respectively, of the unpreserved ancestral sites, represented as 
M̂I (1, l + ′′l ), M̂I (ΔL

A + l + ′′l +1, ΔLD − ′′l ), M̂D (x + 2, ΔL
A + l + x +1)⎡

⎣
⎤
⎦  with 

l = 0, ..., LD
CO −ΔLA , ′′l =max{1− l,ΔLD − LI

CO}, ..., min{ΔLD −1,LI
CO − l} , and 

x =max{0, ′′l }, ..., min{l + ′′l ,ΔLD} ;  and (m-8) the case where the first and the second 
insertions are on the right and on the left, respectively, of the unpreserved ancestral 
sites, represented as M̂I (ΔL

A +1, ΔLD − ′′l ), M̂I (1, l + ′′l ), M̂D (x + 2, ΔL
A + l + x +1)⎡

⎣
⎤
⎦  

with l = 0, ..., LD
CO −ΔLA , ′′l =max{1− l,ΔLD − LI

CO}, ..., min{ΔLD −1,LI
CO − l} , and 

x =max{0, ′′l }, ..., min{l + ′′l ,ΔLD} . 
        Using this classification of the next-fewest-indel histories in case (iv), the sum of 
their contributions can be expressed as: 
 

μP Λ ID Nκ = 3; γκ ;α(s
A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= μP[(h)]+ μP[(i−ν )]ν=1

3

∑ + μP[( j −ν )]ν=1

8

∑ + μP[(k)]+ μP[(l −ν )]ν=1

3

∑ + μP[(m−ν )]ν=1

8

∑ .  
--- Eq.(A1.2.3)    

Here, each of μP[(h)] ,…, μP[(m−ν )] (ν =1,...,8 ) is the sum of contributions from the 
histories belonging to one of the 24 sub-types explained above. Each of them can be 
calculated by calculating the contribution from each constituent history according to 
the definition, Eq.(4.1.1b) of part I supplemented by Eq.(3.1.8b) of part I, and by 
summing the contributions over possible values of the length variables l  and ′l  (or 
′′l ) and over possible positions x  when necessary, all specified above. Under a space- 

and time-homogeneous model, the indel rates become independent of the positions of 
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the indels and of the exact state before the event, and the exit rate depends only on the 
sequence length (and possibly on the functional form of the deletion length 
distribution). This simplifies the calculation considerably. Especially, because each 
term is independent of the exact position of indels, a summation over the positions x  
is reduced to a simple multiplication by the number of possible positions. In addition, 
considerations on spatial symmetry reveal that some different sub-types actually give 
identical contributions to each other (detailed below). Moreover, under Dawg’s indel 
model or the “long indel” model, the increment of the exit rate is proportional to the 
difference in the sequence lengths, which further simplifies the calculation. Here, we 
give the results of contributions by individual histories under Dawg’s indel model. 
But the results apply immediately to, e.g., the “long indel” model as well. We first 
give the general formula for the contribution of a three-event local history, and then 
we apply the formula to the histories of different sub-types. 
      First we consider a general three-event history, M̂1, M̂2, M̂3

⎡
⎣

⎤
⎦ , on the ancestral 

state sA = L, 1,...,ΔLA, R⎡⎣ ⎤⎦ , that resulted in the descendant state sD = L, υ1
D,...,υ

ΔLD
D , R⎡⎣ ⎤⎦ . 

Here M̂ν  (with ν =1,2,3 ) is either an insertion ( M̂I (x, l) ) or a deletion ( M̂D (xB, xE ) ). 

Let δlv  (with ν =1,2,3 ) be the sequence length change caused by the event M̂ν ; δlv  

is positive if M̂ν  is an insertion and negative if M̂ν  is a deletion. They satisfy: 
δl1 +δl2 +δl3 = ΔLD −ΔLA . And let r(δl)  be the space- and time-homogeneous rate of 
the indel event that changes the sequence length by δl . Under Dawg’s indel model, 
we have: 

                r(δl) =
λI fI (δl) if δl > 0 ,

λD fD (−δl) if δl < 0 .

⎧
⎨
⎩

  --- Eq.(A1.2.4) 

Then, according to Eq.(4.1.1b) of part I supplemented by Eq.(3.1.8b) of part I, the 
contribution from this three-event local history is expressed as: 

     
μP δl1,δl2,δl3; tF − tI( ) ≡ μP M̂1, M̂2, M̂3

⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦
Dawg

= r(δl1)r(δl2 )r(δl3) I3M̂ δl1,δl2,δl3; tF − tI ; λI +λD( ) .
 --- 

Eq.(A1.2.5a) 
Here, I

3M̂
δl1,δl2,δl3; tF − tI ; λI +λD( )  is a triple-time integral: 

I
3M̂

δl1,δl2,δl3; tF − tI ; λI +λD( )

≡ dt1 dt2 dt3 exp
−(λI +λD )δl1(t2 − t1)− (λI +λD )(δl1 +δl2 )(t3 − t2 )

− (λI +λD )(δl1 +δl2 +δl3)(tF − t3)

⎧
⎨
⎩

⎫
⎬
⎭t2

tF∫t1

tF∫tI

tF∫

= dt1 dt2 dt3 e
−(λI+λD )δl1(tF−t1 )e−(λI+λD )δl2 (tF−t2 )e−(λI+λD )δl3 (tF−t3 )

t2

tF∫t1

tF∫tI

tF∫ .

  

--- Eq.(A1.2.5b)    
When δl2 +δl3 ≠ 0 , it is calculated as: 
I
3M̂

δl1,δl2,δl3; tF − tI ; λI +λD( )

=
1

(λI +λD )
2

1

δl2 (δl2 +δl3)
1− e−(λI+λD )δl1(tF−tI )

(λI +λD )δl1
−

1

δl3δl2
Fe− (λI +λD )(δl1 +δl2 ), tF − tI( )

+
1

δl3(δl2 +δl3)
Fe− (λI +λD )(δl1 +δl2 +δl3), tF − tI( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

.
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--- Eq.(A1.2.5b’)    
Here the function Fe− x, t( )  was already defined in Eq.(SR-8B.2). When δl2 +δl3 = 0 , 
the triple-time integral is calculated as: 
I
3M̂

δl1,δl2,δl3; tF − tI ; λI +λD( )

=
1

(λI +λD )
2

1

δl3δl2

1− e−(λI+λD )δl1(tF−tI )

(λI +λD )δl1
− Fe− (λI +λD )(δl1 +δl2 ), tF − tI( )

⎧
⎨
⎩

⎫
⎬
⎭

−
1

δl3δl1

1− 1+ (λI +λD )δl1(tF − tI )( )e−(λI+λD )δl1(tF−tI )

(λI +λD )δl1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.
  

--- Eq.(A1.2.5b”)   
When M̂2  does not overlap M̂3 , there should be a corresponding pair of events, ˆ ′M2  

and ˆ ′M3 , that satisfy M̂2M̂3 ~ ˆ ′M3
ˆ ′M2  as one of the binary equivalence relations 

(Eqs.(2.3.3a-d) of part I). Under Dawg’s model, the effects of M̂2  and M̂3  are 
partially factorable if we consider the joint contribution from the two local histories, 
M̂1, M̂2, M̂3
⎡
⎣

⎤
⎦  and M̂1, ˆ ′M3, ˆ ′M2

⎡
⎣

⎤
⎦ . We will express this joint contribution as: 

μP
(S23) δl1,{δl2,δl3}; tF − tI( )

≡ μP M̂1, M̂2, M̂3
⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦
Dawg

+μP M̂1, ˆ ′M3, ˆ ′M2
⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦
Dawg

= r(δl1)r(δl2 )r(δl3) IM̂+2M̂
δl1,{δl2,δl3}; tF − tI ; λI +λD( ) .

 

--- Eq.(A1.2.6a)    
Here, I

M̂+2M̂
δl1,{δl2,δl3}; tF − tI ; λI +λD( )  is a triple-time integral: 

I
M̂+2M̂

δl1,{δl2,δl3}; tF − tI ; λI +λD( )
≡ I

3M̂
δl1,δl2,δl3; tF − tI ; λI +λD( ) + I3M̂ δl1,δl3,δl2; tF − tI ; λI +λD( )

= dt1 e
−(λI+λD )δl1(tF−t1 ) dt2 e

−(λI+λD )δl2 (tF−t2 )

t1

tF∫ dt3 e
−(λI+λD )δl3 (tF−t3 )

t1

tF∫⎡
⎣⎢

⎤
⎦⎥tI

tF∫ .

 --- Eq.(A1.2.6b) 

It is calculated as: 
I
M̂+2M̂

δl1,{δl2,δl3}; tF − tI ; λI +λD( )

=
1

(λI +λD )
2δl2δl3

1− e−(λI+λD )δl1(tF−tI )

(λI +λD )δl1
+ Fe− (λI +λD )(δl1 +δl2 +δl3), tF − tI( )

− Fe− (λI +λD )(δl1 +δl2 ), tF − tI( ) − Fe− (λI +λD )(δl1 +δl3), tF − tI( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.
 

--- Eq.(A1.2.6b’)    
Similarly, when M̂1  does not overlap M̂2 , there should be a corresponding pair of 
events, ˆ ′M1  and ˆ ′M2 , that satisfy the binary equivalence, M̂1M̂2 ~ ˆ ′M2

ˆ ′M1  (as one of 
Eqs.(2.3.3a-d) of part I). When considering the joint contribution from the two local 
histories, M̂1, M̂2, M̂3

⎡
⎣

⎤
⎦  and ˆ ′M2, ˆ ′M1, M̂3

⎡
⎣

⎤
⎦ , the effects of M̂1  and M̂2  are partially 

factorable under Dawg’s model. We will express the joint effect as: 
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μP
(S12) {δl1,δl2},δl3; tF − tI( )

≡ μP M̂1, M̂2, M̂3
⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦
Dawg

+μP
ˆ ′M2, ˆ ′M1, M̂3

⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦
Dawg

= r(δl1)r(δl2 )r(δl3) I2M̂+M̂
{δl1,δl2},δl3; tF − tI ; λI +λD( ) .

 

--- Eq.(A1.2.7a)    
Here, I

2M̂+M̂
{δl1,δl2},δl3; tF − tI ; λI +λD( )  is a triple-time integral: 

I
2M̂+M̂

{δl1,δl2},δl3; tF − tI ; λI +λD( )
≡ I

3M̂
δl1,δl2,δl3; tF − tI ; λI +λD( ) + I3M̂ δl2,δl1,δl3; tF − tI ; λI +λD( )

= dt3 e
−(λI+λD )δl3 (tF−t3 ) dt1 e

−(λI+λD )δl1(tF−t1 )

tI

t3∫ dt2 e
−(λI+λD )δl2 (tF−t2 )

tI

t3∫⎡
⎣⎢

⎤
⎦⎥tI

tF∫ .

 --- Eq.(A1.2.7b) 

It could be calculated by taking advantage of the following relationship: 

    
I
2M̂+M̂

{δl1,δl2},δl3; tF − tI ; λI +λD( )
= e−(λI+λD )(δl1+δl2+δl3 )(tF−tI ) I

M̂+2M̂
−δl3,{−δl2,−δl1}; tF − tI ; λI +λD( ) .

   --- Eq.(A1.2.7b’)    

 
       Now we can apply the general formulas, Eqs(A1.2.5a,b”), Eqs.(A1.2.6a,b’), and 
Eqs.(A1.2.7a,b’), to specific cases. First, the contribution from a type (h) history is: 
μP M̂D (x, x + l −1), M̂D (2, ΔL

A − l +1), M̂I (1, ΔL
D )⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= μP −l, − (ΔLA − l), +ΔLD; tF − tI( ) .
  --- 

Eq.(A1.2.8a)  
Second, by spatial symmetry, the contribution from a type (i-1) history is identical to 
that from the corresponding type (i-2) history. They are given by: 
μP M̂D (x, x + l −1), M̂I (ΔL

A − l +1, ΔLD + ′l ), M̂D (2, ΔL
A − l + ′l +1)⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= μP M̂D (x, x + l −1), M̂I (1, ΔL
D + ′l ), M̂D (ΔL

D + 2, ΔLA − l +ΔLD + ′l +1)⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= μP −l, + (ΔLD + ′l ), − (ΔLA − l + ′l ); tF − tI( ) .
 

--- Eqs.(A1.2.8b,c)    
Third, the contribution from a type (i-3) history is: 
μP M̂D (2, ΔL

A +1), M̂I (1, ΔL
D + l), M̂D (x, x + l −1)⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= μP −ΔLA, + (ΔLD + l), − l; tF − tI( ) .
  --- 

Eq.(A1.2.8d)  
Fourth, by spatial symmetry, the contribution from a type (j-1) history is identical to 
that from the corresponding type (j-2) history. They are given by: 
μP M̂ I (ΔL

A +1, ΔLD + l), M̂D (x, x + ′l −1), M̂D (2, ΔL
A + l − ′l +1)⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= μP M̂ I (1, ΔL
D + l), M̂D (x, x + ′l −1), M̂D (ΔL

D + 2, ΔLA +ΔLD + l − ′l +1)⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= μP +(ΔLD + l), − ′l , − (ΔLA + l − ′l ); tF − tI( ) .
 

--- Eqs.(A1.2.8e,f)    
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Fifth, we consider the joint contribution from a type (j-3) history and the 
corresponding type (j-4) history. By spatial symmetry, it is identical to the joint 
contribution from the corresponding type (j-5) and type (j-6) histories. They are given 
by: 
μP M̂ I (ΔL

A +1, ΔLD + l), M̂D (2, ΔL
A + ′l +1), M̂D (x, x + l − ′l −1)⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

+ μP M̂ I (ΔL
A +1, ΔLD + l), M̂D (x, x + l − ′l −1), M̂D (2, ΔL

A + ′l +1)⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= μP M̂ I (1, ΔL
D + l), M̂D (ΔL

D + l − ′l + 2, ΔLA +ΔLD + l +1), M̂D (x, x + l − ′l −1)⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

+ μP M̂ I (1, ΔL
D + l), M̂D (x, x + l − ′l −1), M̂D (ΔL

D + 2, ΔLA +ΔLD + ′l +1)⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= μP
(S23) +(ΔLD + l), {−(ΔLA + ′l ), − (l − ′l )}; tF − tI( ) .

 
--- Eqs.(A1.2.8g,h)    

Sixth, consider the joint contribution from a type (j-7) history and the corresponding 
type (j-8) history. It is given by: 
μP M̂ I (x +1, ΔL

D + l), M̂D (ΔL
D + l + ′′l + 2, ΔLA +ΔLD + l +1), M̂D (2, l + ′′l +1)⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

+ μP M̂ I (x +1, ΔL
D + l), M̂D (2, l + ′′l +1), M̂D (ΔL

D + 2, ΔLA +ΔLD − ′′l +1)⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= μP
(S23) +(ΔLD + l), {−(ΔLA − ′′l ), − (l + ′′l )}; tF − tI( ) .

 
--- Eq.(A1.2.8i)    

Seventh, the contribution from a type (k) history is: 
μP M̂D (2, ΔL

A +1), M̂I (1, l), M̂I (x, ΔL
D − l)⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= μP −ΔLA, + l, + (ΔLD − l); tF − tI( ) .
   --- Eq.(A1.2.8j)    

Eighth, by spatial symmetry, the contribution from a type (l-1) history is identical to 
that from the corresponding type (l-2) history. They are given by: 
μP M̂ I (1, ΔL

D + l − ′l ), M̂D (ΔL
D − ′l + 2, ΔLA +ΔLD + l − ′l +1), M̂I (x, ′l )⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= μP M̂ I (ΔL
A +1, ΔLD + l − ′l ), M̂D (2, ΔL

A + l +1), M̂I (x, ′l )⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= μP +(ΔLD + l − ′l ), − (ΔLA + l), + ′l ; tF − tI( ) .
 

--- Eqs.(A1.2.8k,l)    
Ninth, the contribution from a type (l-3) history is: 

   
μP M̂ I (x, l), M̂D (2, ΔL

A + l +1), M̂I (1, ΔL
D )⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= μP +l, − (ΔLA + l), +ΔLD; tF − tI( ) .
     

--- Eq.(A1.2.8m)   
Tenth, by spatial symmetry, the contribution from a type (m-1) history is identical to 
that from the corresponding type (m-2) history. They are given by: 
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μP M̂ I (1, ΔL
D + l − ′l ), M̂I (x, ′l ), M̂D (ΔL

D + 2, ΔLA +ΔLD + l +1)⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= μP M̂ I (ΔL
A +1, ΔLD + l − ′l ), M̂I (x, ′l ), M̂D (2, ΔL

A + l +1)⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= μP +(ΔLD + l − ′l ), + ′l , − (ΔLA + l); tF − tI( ) .
 

--- Eqs.(A1.2.8n,o)    
Eleventh, consider the joint contribution from a type (m-3) history and the 
corresponding type (m-4) history. By spatial symmetry, it is equal to the joint 
contribution from the corresponding type (m-5) and type (m-6) histories. They are 
given by: 
μP M̂ I (x, l − ′l ), M̂I (1, ΔL

D + ′l ), M̂D (ΔL
D + 2, ΔLA +ΔLD + l +1)⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

+ μP M̂ I (1, ΔL
D + ′l ), M̂I (x, l − ′l ), M̂D (ΔL

D + 2, ΔLA +ΔLD + l +1)⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= μP M̂ I (x, l − ′l ), M̂I (ΔL
A + l − ′l +1, ΔLD + ′l ), M̂D (2, ΔL

A + l +1)⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

+ μP M̂ I (ΔL
A +1, ΔLD + ′l ), M̂I (x, l − ′l ), M̂D (2, ΔL

A + l +1)⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= μP
(S12) {+(l − ′l ), + (ΔLD + ′l )}, − (ΔLA + l); tF − tI( ) .

 

--- Eqs.(A1.2.8p,q)    
And, finally, twelfth, consider the joint contribution from a type (m-7) history and the 
corresponding type (m-8) history. It is given by: 
μP M̂ I (1, l + ′′l ), M̂I (ΔL

A + l + ′′l +1, ΔLD − ′′l ), M̂D (x + 2, ΔL
A + l + x +1)⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

+ μP M̂ I (ΔL
A +1, ΔLD − ′′l ), M̂I (1, l + ′′l ), M̂D (x + 2, ΔL

A + l + x +1)⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

= μP
(S12) {+(l + ′′l ), + (ΔLD − ′′l )}, − (ΔLA + l); tF − tI( ) .

 
--- Eq.(A1.2.8r)    

These equations, Eqs.(A1.2.8a-r), supplemented with the general formulas, 
Eqs.(A1.2.5,6,7), provide the elementary contributions from the individual next-
fewest-indel local histories. By summing them up over the appropriate lengths and 
positions given above the general formulas, Eqs.(A1.2.5,6,7), we get the total 
contribution of the next-fewest-indel local histories. 
 
A1.3. System of integral equations providing “exact” multiplication factors for case-
(i) & (iii) local PWAs 
In Section 1.2 of Results, we derived Eq.(1.2.7), which, supplemented with Eq.(1.2.8), 
gives a system of integral equations that can in principle provide “exact” 
multiplication factors for cases (i) and (ii), where there are a non-negative integer 
(ΔLA ) of ancestral sites but zero descendant sites in between a pair of PASs. Here, 
following a similar line of procedures, we will derive a system of integral equations 
that can in principle provide “exact” multiplication factors for cases (i) and (iii), 
where there are zero ancestral sites but a non-negative integer (ΔLD ) of descendant 
sites in between a pair of PASs. For this purpose, we assume a setting very similar to 
that made above Eq.(1.2.6) for cases (i) and (ii). The only notable difference is that 
the ancestral and the descendant states here are sA = L, R[ ]  and 
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sD = L, υ1
D,...,υ

ΔLD
D , R⎡⎣ ⎤⎦ , respectively, which will be denoted as sA = 0  and 

sD = ΔLD  under the setting of (local) spatial homogeneity. 
       The starting point here is the fundamental integral equation, Eq.(3.1.2) of part I 
(Ezawa, Graur and Landan 2015a), for the stochastic evolution operator P̂ID (tI , tF ) , 
instead of Eq.(3.1.4) of part I for cases (i) and (ii). Similarly to above Eq.(1.2.6), we 
sandwich Eq.(3.1.2) of part I with sA  and sD , expand Q̂M

ID (t)  using its definition 
(i.e., Eq.(3.1.1c) of part I supplemented with Eqs.(2.4.2b’,c’) of part I), and ignore the 
effects of indels that are irrelevant to the cases under consideration. Then, we get: 
sA P̂ID (tI , tF ) s

D = sA sD exp − dt RX
ID ΔLA, t( )tI

tF∫{ }
+ dt sA P̂ID (tI , t)M̂I (x, l) s

D gI (l, t) exp − dτ RX
ID ΔLD, τ( )t

tF∫{ }⎡
⎣⎢

⎤
⎦⎥tI

tF∫
x=1

ΔLD−l+1

∑
l=1

min{ΔLD , LI
CO}

∑

+ dt sA P̂ID (tI , t)M̂D (x, x + l −1) s
D gD (l, t) exp − dτ RX

ID ΔLD, τ( )t

tF∫{ }⎡
⎣⎢

⎤
⎦⎥tI

tF∫
x=2

ΔLD+2

∑
l=1

LD
CO

∑ .

 
--- Eq.(A1.3.1)    

Here, when considering the domains of the summations, we used the fact that the ket-
vectors M̂I (x, l) s

D  and M̂D (x, x + l −1) s
D  correspond uniquely to the states 

ΔLD − l  and ΔLD + l , respectively. Next, we take advantage of this fact again, take 
account of the local homogeneity, and use the notation, 
PID ΔL Δ ′L ; [t, ′t ]( ) ≡ ΔL P̂ID (t, ′t ) Δ ′L , introduced above Eq.(1.2.7). Then, we can 
rewrite Eq.(A1.3.1) as: 
PID 0 ΔLD; [tI , tF ]( ) = δ(0, ΔLD ) exp − dt RX

ID ΔLD = 0, t( )tI

tF∫{ }
+ (ΔLD − l +1) dt PID 0 ΔLD − l; [tI , t]( )gI (l, t) exp − dτ RX

ID ΔLD, τ( )t

tF∫{ }⎡
⎣⎢

⎤
⎦⎥tI

tF∫
l=1

min{ΔLD , LI
CO}

∑

+ (ΔLD +1) dt PID 0 ΔLD + l; [tI , t]( )gD (l, t) exp − dτ RX
ID ΔLD, τ( )t

tF∫{ }⎡
⎣⎢

⎤
⎦⎥tI

tF∫
l=1

LD
CO

∑ .

 
--- Eq.(A1.3.2)    

This gives the system of integral equations for the “exact” probabilities, 
PID 0 ΔLD; [tI , tF ]( ) , with non-negative integers ΔLD = 0,1, 2,... . This system of 

equations can be solved iteratively, again starting with the “zero-event 

approximation,” P0
ID 0 ΔLD; [tI , tF ]( ) = δ(0, ΔLD ) exp − dt RX

ID ΔLD = 0, t( )tI

tF∫{ } . 

After a desired number (say, NID ) of iteration steps, the multiplication factor will be 
obtained similarly, and we have: 
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μP
NID Λ ID γκ ;α(s

A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦

≡ μP Λ ID Nκ ; γκ ;α(s
A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

Nκ=0

NID

∑

= PNID

ID 0 ΔLD; [tI , tF ]( ) P [], [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦

= exp + dt RX
ID ΔLA = 0, t( )tI

tF∫{ } PNID

ID 0 ΔLD; [tI , tF ]( ) .

  --- Eq.(A1.3.3) 

It should be noted that the exponent on the right-most hand side is the time integral of 
the exit rate of the ancestral state but not that of the descendant state. This is just due 
to the definition of the multiplication factor (Eq.(4.1.1b) of part I). The consideration 
of the time- and space-complexities of a naïve implementation of the iteration 
algorithm goes just as below Eq.(1.2.8) of Results. Just as Eq.(1.2.7), Eq.(A1.3.2) 
could also be numerically solved via a system of “two-sub-step” recursion relations: 

   
PnS

ID 0 ΔLD; [tI , t]( ) = δ(0, ΔLD ) exp − dτ RX
ID ΔLD = 0, τ( )tI

t

∫{ }
+ d ′t Φ nS

ID 0 ΔLD; [tI , ′t ]( ) exp − dτ RX
ID ΔLD, τ( )′t

t

∫{ }⎡
⎣⎢

⎤
⎦⎥tI

t

∫ ,
  

--- Eq.(A1.3.4a)    
and 

  
Φ nS

ID 0 ΔLD; [tI , t]( ) ≡ (ΔLD − l +1)PnS−1
ID 0 ΔLD − l; [tI , t]( )gI (l, t)⎡

⎣
⎤
⎦

l=1

min{ΔLD , LI
CO}

∑

+ (ΔLD +1) PnS−1
ID 0 ΔLD + l; [tI , t]( )gD (l, t)⎡

⎣
⎤
⎦

l=1

LD
CO

∑ .

 

--- Eq.(A1.3.4b)    
Similarly to Eqs.(1.2.9a,b), the algorithm to numerically solve this system of 
recursion relations also has the time-complexity of O NID L

CO (LCO + NP )NP( )  and the 

space-complexity of O LCONP( ) , and a single run of the algorithm (with NID  steps) 

outputs  PNID

ID 0 ΔLD; [tI , t]( )  for all ΔLD = 0,1, 2,..., ΔLmax
D (≤ LCO )  and at all time-

points, t = tI + i
tF−tI
NP

 with i = 0,1,..., NP . 
 
 
A2. Perturbation calculation of multiplication factors for MSAs: case (IV) in 
Section 1.3 
Here we detail the calculation of the portion of the multiplication factor contributed 
by the fewest-indel events as well as that contributed by the next-fewest-indel events 
in case (IV). This case was considered in Section 1.3 of Results, and its situation is 
illustrated in Figure 4 E. In this case, the external sequence states were represented as: 
s1 = L, 1,...,ΔLD1, R⎡⎣ ⎤⎦ , s2 = L, 1,...,, i, j,...,ΔLD1, R⎡⎣ ⎤⎦ , and s3 = L, R[ ] , with 

1≤ i+1< j ≤ ΔLD1 +1  but (i, j) ≠ (0, ΔLD1 +1) . Also in this case, 
Nmin CΚ;α[s1, s2, s3];T[ ] = 2 , and there were two fewest-indel local histories. One, 

which we call type (E) here, starts with the root state sRoot = s0
Root (= s2 ) . It is 

represented by Eq.(1.3.14a), i.e., 
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M̂ (b1) = M̂I (i+1, j − i−1)⎡
⎣

⎤
⎦, M̂ (b2 ) = [ ], M̂ (b3) = M̂D (2, ΔL

D1 − j + i+ 2)⎡
⎣

⎤
⎦{ } .   

--- Eq.(A2.1a)    
And the other, which we call type (F) here, starts with the root state 
sRoot = s1 = L, 1,...,ΔLD1, R⎡⎣ ⎤⎦ , instead of s0

Root (= s2 ) . It is represented by Eq.(1.3.14b), 
i.e., 
M̂ (b1) = [ ], M̂ (b2 ) = M̂D (i+ 2, j)⎡

⎣
⎤
⎦, M̂ (b3) = M̂D (2, ΔL

D1 +1)⎡
⎣

⎤
⎦{ } .    --- Eq.(A2.1b) 

Thus the portion of the multiplication factor due to the fewest-indel histories can be 
written as: 
ΜP ΛΨ

ID NΚ = 2;CΚ;α[s1, s2, s3];T[ ] T⎡⎣ ⎤⎦=ΜP[(E)]+ΜP[(F)].  --- Eq.(A2.2a)  

Here ΜP[(E)]  and ΜP[(F)]  are the contributions from the local histories of type (E) 
and type (F), respectively. These contributions can be calculated according to the 
definition, Eq.(1.1.2b) supplemented by Eqs.(4.2.4b,6b,8) of part I (Ezawa, Graur and 
Landan 2015a), similarly to the calculation of ΜP[(3rd)] in case (III). First, the 
contribution from the type (E) history is: 

ΜP[(E)]= μP sRoot = s2, s0
Root = s2, n

Root;CΚ
⎡⎣ ⎤⎦ exp − dt δRX:m

ID (sRoot = s2, s0
Root = s2, t) bmtI

tF:m∫
m=1,2,3

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 

× dt rI:1(i+1, j − i−1; s
Root = s2, t) exp − dτ δRX:1

ID (s1, s
Root = s2, t)t

tF:1∫
b1

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥tI

tF:1∫  

× dt rD:3(2,ΔL
D1 − j + i+ 2; sRoot = s2, t) exp − dτ δRX:3

ID (s3, s
Root = s2, t)t

tF:3∫
b3

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥tI

tF:3∫ .

 
--- Eq.(A2.2b)    

And the contribution from the type (F) history is: 

ΜP[(F)]= μP sRoot = s1, s0
Root = s2, n

Root;CΚ
⎡⎣ ⎤⎦ exp − dt δRX:m

ID (sRoot = s1, s0
Root = s2, t) bmtI

tF:m∫
m=1,2,3

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

× dt rD:2 (i+ 2, j; s
Root = s1, t) exp − dτ δRX:2

ID (s2, s
Root = s1, t)t

tF:2∫
b2

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥tI

tF:2∫

× dt rD:3(2,ΔL
D1 +1; sRoot = s2, t) exp − dτ δRX:3

ID (s3, s
Root = s1, t)t

tF:3∫
b3

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥tI

tF:3∫ .

 
--- Eq.(A2.2c)    

Assuming a uniform distribution of the ancestral sequence length, we have 
μP sRoot, s0

Root, nRoot;CΚ
⎡⎣ ⎤⎦=1  no matter what the root state ( sRoot ) is. Then, under 

Dawg’s model, Eqs.(SR-9.2b,c) can be calculated as: 
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ΜP[(E)]= λI:1 fI:1( j − i−1)
1− exp −(λI:1 +λD:1)( j − i−1)(tF:1 − tI )( )

(λI:1 +λD:1)( j − i−1)

× λD:3 fD:3(ΔL
D1 − j + i+1)

exp +(λI:3 +λD:3 )(ΔL
D1 − j + i+1)(tF:3 − tI )( ) −1

(λI:3 +λD:3 )(ΔL
D1 − j + i+1)

,

 

--- Eq.(A2.2b’)    
and  
ΜP[(F)]= exp −(λI:1 +λD:1)( j − i−1)(tF:1 − tI )( )

× λD:2 fD:2 ( j − i−1)
1− exp −(λI:2 +λD:2 )( j − i−1)(tF:2 − tI )( )

(λI:2 +λD:2 )( j − i−1)

× λD:3 fD:3(ΔL
D1)
exp +(λI:3 +λD:3 )(ΔL

D1 − j + i+1)(tF:3 − tI )( ) − exp −(λI:3 +λD:3 )( j − i−1)(tF:3 − tI )( )
(λI:3 +λD:3 )ΔL

D1
.

 
--- Eq.(A2.2c’)    

The next-fewest-indel local histories consist of three indels each, and can be broadly 
classified into four types according to the root sequence state: (G) the histories with 
sRoot = s0

Root (= s2 = L, 1,...,, i, j,...,ΔLD1, R⎡⎣ ⎤⎦) ; (H) those with 

sRoot = s1 = L, 1,...,ΔLD1, R⎡⎣ ⎤⎦ ; (I) the histories having the root states made from s1  by 
removing a single connected fraction out of the run of sites missing in s2 , i.e., 
sRoot = L, 1,..., ′i , ′j ,...,ΔLD1, R⎡⎣ ⎤⎦(with ′i ≥ i , ′i + 2 ≤ ′j ≤ j , but ( ′i , ′j ) ≠ (i, j) ); and (J) the 
histories having the root states made by adding some extra sites to s1 , i.e., 
sRoot = L, 1,...,k, ′υ1,..., ′υl, k +1,...,ΔL

D1, R⎡⎣ ⎤⎦  with k = i, ..., j −1 , 

l =1,..., min{LD:1
CO ,LD: 2

CO − ( j − i−1), LD: 3
CO −ΔLD1} , ′υa ∉ {L,1,...,ΔL

D1,R}  for ∀a ∈ {1,..., l} , 

and ′υa ≠ ′υb  for ∀a ≠ b (∈ {1,..., l}) . These four broad types are further sub-classified 
into 10 sub-types in total. 
    First, type (G) local histories are sub-classified into four sub-types: (G-1) the case 
where two successive insertions occur along b1 , represented as  

M̂ (b1) = M̂I (i+1, l), M̂I (x, j − i−1− l)⎡
⎣

⎤
⎦, M̂ (b2 ) = [ ], M̂ (b3) = M̂D (2, ΔL

D1 − j + i+ 2)⎡
⎣

⎤
⎦{ }

 
with l =1,..., j − i− 2  and x = i+1,..., i+ l +1  ( j − i ≥ 3  must hold); (G-2) the case where 
a  
“long” insertion and a subsequent deletion occur along b1 , represented as  

M̂ (b1) = M̂I (i+1, j − i−1+ l), M̂D (x, x + l −1)⎡
⎣

⎤
⎦, M̂ (b2 ) = [ ], M̂ (b3) = M̂D (2, ΔL

D1 − j + i+ 2)⎡
⎣

⎤
⎦{ }  

with l =1,...,min{LD:1
CO ,LI:1

CO − j + i+1}  and x = i+ 2,..., j +1 ; (G-3) the case where two 
successive deletions occur along b3 , represented as 

M̂ (b1) = M̂I (i+1, j − i−1)⎡
⎣

⎤
⎦, M̂ (b2 ) = [ ], M̂ (b3) = M̂D (x, x + l −1), M̂D (2, ΔL

D1 − j + i− l + 2)⎡
⎣

⎤
⎦{ }
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with l =1,...,ΔLD1 − j + i  and x = 2,...,ΔLD1 − j + i− l +3  (ΔLD1 − j + i ≥1  must hold); 
and (G-4) the case where an insertion and a subsequent “long” deletion occur along 
b3 , represented as 

M̂ (b1) = M̂I (i+1, j − i−1)⎡
⎣

⎤
⎦, M̂ (b2 ) = [ ], M̂ (b3) = M̂I (x, l), M̂D (2, ΔL

D1 − j + i+ l + 2)⎡
⎣

⎤
⎦{ }

 
with l =1,...,min{LI:3

CO,LD:3
CO − (ΔLD1 − j + i+1)}  and x =1,...,ΔLD1 − j + i+ 2 . 

    Second, type (H) local histories are also sub-classified into four sub-types: (H-1) 
the case where two successive deletions occur along b2 , represented as 

M̂ (b1) = [ ], M̂ (b2 ) = M̂D (x, x + l −1), M̂D (i+ 2, j − l)⎡
⎣

⎤
⎦, M̂ (b3) = M̂D (2, ΔL

D1 +1)⎡
⎣

⎤
⎦{ }  

with l =1,..., j − i− 2  and x = i+ 2,..., j − l +1  ( j − i ≥ 3  must hold); (H-2) the case 
where an insertion and a subsequent “long” deletion occur along b2 , represented as 

M̂ (b1) = [ ], M̂ (b2 ) = M̂I (x, l), M̂D (i+ 2, j + l)⎡
⎣

⎤
⎦, M̂ (b3) = M̂D (2, ΔL

D1 +1)⎡
⎣

⎤
⎦{ }  

with l =1,...,min{LI:2
CO,LD:2

CO − j + i+1}  and x = i+1,..., j ; (H-3) the case where two 
successive deletions occur along b3 , represented as 

M̂ (b1) = [ ], M̂ (b2 ) = M̂D (i+ 2, j)⎡
⎣

⎤
⎦, M̂ (b3) = M̂D (x, x + l −1), M̂D (2, ΔL

D1 − l +1)⎡
⎣

⎤
⎦{ }  

with l =1,...,ΔLD1 −1  and x = 2,...,ΔLD1 − l + 2 ; and (H-4) the case where an insertion 
and a subsequent “long” deletion occur along b3 , represented as 

M̂ (b1) = [ ], M̂ (b2 ) = M̂D (i+ 2, j)⎡
⎣

⎤
⎦, M̂ (b3) = M̂I (x, l), M̂D (2, ΔL

D1 + l +1)⎡
⎣

⎤
⎦{ }  

with l =1,...,min{LI:3
CO,LD:3

CO −ΔLD1}  and x =1,...,ΔLD1 +1. 
     Third, type (I) does not need be sub-classified, and each history of this type can be 
represented as: 
M̂ (b1) = M̂I ( ′i +1, ′j − ′i −1)⎡

⎣
⎤
⎦, M̂ (b2 ) = M̂D (i+ 2, ′i + j − ′j +1)⎡

⎣
⎤
⎦, M̂ (b3) = M̂D (2, ΔL

D1 − ′j + ′i + 2)⎡
⎣

⎤
⎦{ } ,

 
which is determined uniquely from the root state ( sRoot = L, 1,..., ′i , ′j ,...,ΔLD1, R⎡⎣ ⎤⎦  with 
′i ≥ i , ′i + 2 ≤ ′j ≤ j , but also with ( ′i , ′j ) ≠ (i, j) ). Fourth, type (J) does not need be 

sub-classified, either, and each history of this type can be represented as: 
M̂ (b1) = M̂D (k + 2, k + l +1)⎡

⎣
⎤
⎦, M̂ (b2 ) = M̂D (i+ 2, j + l)⎡

⎣
⎤
⎦, M̂ (b3) = M̂D (2, ΔL

D1 + l +1)⎡
⎣

⎤
⎦{ } ,

 
which, again, is determined uniquely from the root state 
( sRoot = L, 1,...,k, ′υ1,..., ′υl, k +1,...,ΔL

D1, R⎡⎣ ⎤⎦). 
    Thus, the summed contributions from the next-fewest-indel local histories in case 
(IV) can be expressed as: 

  
ΜP ΛΨ

ID NΚ = 2;CΚ;α[s1, s2, s3];T[ ] T⎡⎣ ⎤⎦

= ΜP[(G −ν )]ν=1,2,3,4
∑( ) + ΜP[(H −ν )]

ν=1,2,3,4
∑( ) +ΜP[(I )]+ΜP[(J )].

  

--- Eq.(A2.3)    
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Here ΜP[(X)]  (with X =G −1,..., J ) represents the summed contribution from the 
histories over one of the aforementioned 10 sub-types. Each such term can be 
calculated by summing the contributions from individual local histories belonging to 
each sub-type over the possible lengths and possible positions, if necessary. Under a 
space-homogeneous model, the summation over possible positions will be reduced to 
the multiplication by the number of possible positions (for each fixed set of lengths). 
And the contributions from individual local histories can be calculated according to 
the definition, Eq.(1.1.2b) supplemented by Eqs.(4.2.4b,6b,8) of part I, and taking 
advantage of, or by slightly modifying, Eqs.(1.2.4,5d,5e) and Eqs.(A1.1.1,2d,2e) for 
contributions from single-event and two-event local histories for PWAs. In the 
following, we will give the expressions for the contributions from individual local 
histories of respective sub-types under Dawg’s indel model.  
Type (G-1): 

ΜP

M̂ (b1) = M̂I (i+1, l), M̂I (x, j − i−1− l)⎡
⎣

⎤
⎦,

M̂ (b2 ) = [ ], M̂ (b3) = M̂D (2, ΔL
D1 − j + i+ 2)⎡

⎣
⎤
⎦

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

sRoot = s0
Root = s2

= L, 1,...,, i, j,...,ΔLD1, R⎡⎣ ⎤⎦, n
Root

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
λI:1 fI:1(l)λI:1 fI:1( j − i−1− l)

(λI:1 +λD:1)( j − i−1− l)
1− e−(λI:1+λD:1 )l (tF:1−tI )

(λI:1 +λD:1) l
−
1− e−(λI:1+λD:1 )( j−i−1)(tF:1−tI )

(λI:1 +λD:1)( j − i−1)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

× λD:3 fD:3(ΔL
D1 − j + i+1)

exp (λI:3 +λD:3 )(ΔL
D1 − j + i+1) (tF:3 − tI )( )−1

(λI:3 +λD:3 )(ΔL
D1 − j + i+1)

.

 
--- Eq.(A2.4a)    

Type (G-2): 

ΜP

M̂ (b1) = M̂I (i+1, j − i−1+ l), M̂D (x, x + l −1)⎡
⎣

⎤
⎦,

M̂ (b2 ) = [ ], M̂ (b3) = M̂D (2, ΔL
D1 − j + i+ 2)⎡

⎣
⎤
⎦

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

sRoot = s0
Root = s2

= L, 1,...,, i, j,...,ΔLD1, R⎡⎣ ⎤⎦, n
Root

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
λI:1 fI:1( j − i−1+ l)λD:1 fD:1(l)

(λI:1 +λD:1) l
1− e−(λI:1+λD:1 )( j−i−1)(tF:1−tI )

(λI:1 +λD:1)( j − i−1)
−
1− e−(λI:1+λD:1 )( j−i−1+l )(tF:1−tI )

(λI:1 +λD:1)( j − i−1+ l)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

× λD:3 fD:3(ΔL
D1 − j + i+1)

exp (λI:3 +λD:3 )(ΔL
D1 − j + i+1) (tF:3 − tI )( )−1

(λI:3 +λD:3 )(ΔL
D1 − j + i+1)

.

 
--- Eq.(A2.4b)    

Type (G-3): 
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ΜP

M̂ (b1) = M̂I (i+1, j − i−1)⎡
⎣

⎤
⎦, M̂ (b2 ) = [ ],

M̂ (b3) = M̂D (x, x + l −1), M̂D (2, ΔL
D1 − j + i− l + 2)⎡

⎣
⎤
⎦

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

sRoot = s0
Root = s2

= L, 1,...,, i, j,...,ΔLD1, R⎡⎣ ⎤⎦, n
Root

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= λI:1 fI:1( j − i−1)
1− exp −(λI:1 +λD:1)( j − i−1)(tF:1 − tI )( )

(λI:1 +λD:1)( j − i−1)

×
λD:3 fD:3(l) λD:3 fD:3(ΔL

D1 − j + i+1− l)

(λI:3 +λD:3 )(ΔL
D1 − j + i+1− l)

e
(λI:3+λD:3 )(ΔL

D1− j+i+1)(tF:3−tI ) −1
(λI:3 +λD:3 )(ΔL

D1 − j + i+1)
−
e
(λI:3+λD:3 )l (tF:3−tI ) −1
(λI:3 +λD:3 )l

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

 
--- Eq.(A2.4c)    

Type (G-4): 

ΜP

M̂ (b1) = M̂I (i+1, j − i−1)⎡
⎣

⎤
⎦, M̂ (b2 ) = [ ],

M̂ (b3) = M̂I (x, l), M̂D (2, ΔL
D1 − j + i+ l + 2)⎡

⎣
⎤
⎦

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

sRoot = s0
Root = s2

= L, 1,...,, i, j,...,ΔLD1, R⎡⎣ ⎤⎦, n
Root

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= λI:1 fI:1( j − i−1)
1− exp −(λI:1 +λD:1)( j − i−1)(tF:1 − tI )( )

(λI:1 +λD:1)( j − i−1)

×
λI:3 fI:3(l) λD:3 fD:3(ΔL

D1 − j + i+1+ l)

(λI:3 +λD:3 )(ΔL
D1 − j + i+1+ l)

e
(λI:3+λD:3 )(ΔL

D1− j+i+1)(tF:3−tI ) −1
(λI:3 +λD:3 )(ΔL

D1 − j + i+1)
−
1− e−(λI:3+λD:3 )l (tF:3−tI )

(λI:3 +λD:3 )l

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

 
--- Eq.(A2.4d)    

Type (H-1): 

ΜP

M̂ (b2 ) = M̂D (x, x + l −1), M̂D (i+ 2, j − l)⎡
⎣

⎤
⎦,

M̂ (b1) = [ ], M̂ (b3) = M̂D (2, ΔL
D1 +1)⎡

⎣
⎤
⎦

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

sRoot = s1

= L, 1,...,ΔLD1, R⎡⎣ ⎤⎦, n
Root

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= exp − (λI:m +λD:m )( j − i−1)(tF:m − tI )
m=1,2,3

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

×
λD:2 fD:2 (l) λD:2 fD:2 ( j − i−1− l)

(λI:2 +λD:2 )( j − i−1− l)
e
(λI:2+λD:2 )( j−i−1)(tF:2−tI ) −1
(λI:2 +λD:2 )( j − i−1)

−
e
(λI:2+λD:2 )l (tF:2−tI ) −1
(λI:2 +λD:2 )l

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

× λD:3 fD:3(ΔL
D1)
exp +(λI:3 +λD:3 )ΔL

D1(tF:3 − tI )( ) −1
(λI:3 +λD:3 )ΔL

D1
.

 

--- Eq.(A2.4e)    
Type (H-2): 
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ΜP

M̂ (b2 ) = M̂I (x, l), M̂D (i+ 2, j + l)⎡
⎣

⎤
⎦,

M̂ (b1) = [ ], M̂ (b3) = M̂D (2, ΔL
D1 +1)⎡

⎣
⎤
⎦

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

sRoot = s1

= L, 1,...,ΔLD1, R⎡⎣ ⎤⎦, n
Root

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= exp − (λI:m +λD:m )( j − i−1)(tF:m − tI )
m=1,2,3

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

×
λI:2 fI:2 (l) λD:2 fD:2 ( j − i−1+ l)

(λI:2 +λD:2 )( j − i−1+ l)
e
(λI:2+λD:2 )( j−i−1)(tF:2−tI ) −1
(λI:2 +λD:2 )( j − i−1)

−
1− e−(λI:2+λD:2 )l (tF:2−tI )

(λI:2 +λD:2 )l

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

× λD:3 fD:3(ΔL
D1)
exp +(λI:3 +λD:3 )ΔL

D1(tF:3 − tI )( ) −1
(λI:3 +λD:3 )ΔL

D1
.

 

--- Eq.(A2.4f)    
Type (H-3): 

ΜP

M̂ (b1) = [ ], M̂ (b2 ) = M̂D (i+ 2, j)⎡
⎣

⎤
⎦,

M̂ (b3) = M̂D (x, x + l −1), M̂D (2, ΔL
D1 − l +1)⎡

⎣
⎤
⎦

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

sRoot = s1

= L, 1,...,ΔLD1, R⎡⎣ ⎤⎦, n
Root

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= exp − (λI:m +λD:m )( j − i−1)(tF:m − tI )
m=1,2,3

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

× λD:2 fD:2 ( j − i−1)
exp +(λI:2 +λD:2 )( j − i−1)(tF:2 − tI )( ) −1

(λI:2 +λD:2 )( j − i−1)

×
λD:3 fD:3(l) λD:3 fD:3(ΔL

D1 − l)

(λI:3 +λD:3 )(ΔL
D1 − l)

e
(λI:3+λD:3 )ΔL

D1(tF:3−tI ) −1
(λI:3 +λD:3 )ΔL

D1
−
e
(λI:3+λD:3 )l (tF:3−tI ) −1
(λI:3 +λD:3 )l

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

 

--- Eq.(A2.4g)    
Type (H-4): 

ΜP

M̂ (b1) = [ ], M̂ (b2 ) = M̂D (i+ 2, j)⎡
⎣

⎤
⎦,

M̂ (b3) = M̂I (x, l), M̂D (2, ΔL
D1 + l +1)⎡

⎣
⎤
⎦

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

sRoot = s1

= L, 1,...,ΔLD1, R⎡⎣ ⎤⎦, n
Root

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= exp − (λI:m +λD:m )( j − i−1)(tF:m − tI )
m=1,2,3

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

× λD:2 fD:2 ( j − i−1)
exp +(λI:2 +λD:2 )( j − i−1)(tF:2 − tI )( ) −1

(λI:2 +λD:2 )( j − i−1)

×
λI:3 fI:3(l) λD:3 fD:3(ΔL

D1 + l)

(λI:3 +λD:3 )(ΔL
D1 + l)

e
(λI:3+λD:3 )ΔL

D1(tF:3−tI ) −1
(λI:3 +λD:3 )ΔL

D1
−
1− e−(λI:3+λD:3 )l (tF:3−tI )

(λI:3 +λD:3 )l

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

 

--- Eq.(A2.4h)    
Type (I): 
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ΜP

M̂ (b1) = M̂I ( ′i +1, ′j − ′i −1)⎡
⎣

⎤
⎦,

M̂ (b2 ) = M̂D (i+ 2, ′i + j − ′j +1)⎡
⎣

⎤
⎦,

M̂ (b3) = M̂D (2, ΔL
D1 − ′j + ′i + 2)⎡

⎣
⎤
⎦

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

sRoot

= L, 1,..., ′i , ′j ,...,ΔLD1, R⎡⎣ ⎤⎦, n
Root

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

= exp − (λI:m +λD:m )( ′i − i+ j − ′j )(tF:m − tI )
m=1,2,3

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

× λI:1 fI:1( ′j − ′i −1)
1− exp −(λI:1 +λD:1)( ′j − ′i −1)(tF:1 − tI )( )

(λI:1 +λD:1)( ′j − ′i −1)

× λD:2 fD:2 ( ′i − i+ j − ′j )
exp +(λI:2 +λD:2 )( ′i − i+ j − ′j )(tF:2 − tI )( ) −1

(λI:2 +λD:2 )( ′i − i+ j − ′j )

× λD:3 fD:3(ΔL
D1 − ′j + ′i +1)

exp +(λI:3 +λD:3 )(ΔL
D1 − ′j + ′i +1)(tF:3 − tI )( ) −1

(λI:3 +λD:3 )(ΔL
D1 − ′j + ′i +1)

.

 

--- Eq.(A2.4i)    
It should be noted that the right hand side of this equation depends on ′i  and ′j  only 
through ′l ≡ ′j − ′i −1 . Thus, it follows that there are j − i− ′l  histories with the same ′l  
(and therefore the same probability) but with different ′i ’s (namely, ′i = i,..., j −1− ′l ). 
 
Type (J): 

ΜP

M̂ (b1) = M̂D (k + 2, k + l +1)⎡
⎣

⎤
⎦,

M̂ (b2 ) = M̂D (i+ 2, j + l)⎡
⎣

⎤
⎦,

M̂ (b3) = M̂D (2, ΔL
D1 + l +1)⎡

⎣
⎤
⎦

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

sRoot

= L, 1,...,k, ′υ1,..., ′υl, k +1,...,ΔL
D1, R⎡⎣ ⎤⎦, n

Root

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

= exp − (λI:m +λD:m )( j − i−1+ l)(tF:m − tI )
m=1,2,3

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟× λD:1 fD:1(l)

exp +(λI:1 +λD:1)l (tF:1 − tI )( ) −1
(λI:1 +λD:1) l

× λD:2 fD:2 ( j − i−1+ l)
exp +(λI:2 +λD:2 )( j − i−1+ l)(tF:2 − tI )( ) −1

(λI:2 +λD:2 )( j − i−1+ l)

× λD:3 fD:3(ΔL
D1 + l)

exp +(λI:3 +λD:3 )(ΔL
D1 + l)(tF:3 − tI )( ) −1

(λI:3 +λD:3 )(ΔL
D1 + l)

.

 
--- Eq.(A2.4j)    

It should be noted that the right hand side of this equation does not depend on k  
whereas it does depend on l . Thus, it follows that there are j − i  histories with the 
same l  (and therefore the same probability) but with different k ’s (namely, 
k = i, ..., j −1 ). 
       Summing each of Eqs.(A2.4a-j) over the lengths and positions specified above 
Eq.(A2.3), we obtain ΜP[(X)]  with X =G −1,..., J , the summation of which 
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(according to Eq.(A2.3)) gives the total contribution from the next-fewest-indel local 
histories. 
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Tables 1-4 
 
Table 1. Various “threshold gap lengths” in case (ii) of local PWAs 

X = (λI +λD )(tF − tI )
a (ΔLA )0.5

(NP−ii)  b (ΔLA )0.5
(1−ii)  c (ΔLA )0.5

(2−ii)  c (ΔLA )0.5
(5−ii)  c 

0.01 indels/site 128 160 > 300 > 300 

0.04 indels/site 31 41 99 272 

0.1 indels/site 12 17 42 119 

0.2 indels/site 6 8 22 66 

Approximate relation d Y ≈1.2 X  Y ≈1.6 X  Y ~ 4 X  Y ~11 X (?) 

 
NOTE: The parameters used for this analysis are: λI = λD = 0.1 , LI

CO = LD
CO = 500 , and 

fI (l) = fD (l) = l
−1.6 k−1.6

k=1

500

∑( ) . For the iteration analysis, we used 

ΔLmax
A = ΔLmax

D = 300  and (λI +λD )(tF − tI ) NP = 0.002  as well. Because of the 
symmetry under the time reversal, the identical results apply also to the local PWAs 
in case (iii), if we replace (ΔLA )0.5

(xx−ii)  with (ΔLD )0.5
(xx−iii) . 

 
a The expected number of indels per site. 
b The number of ancestral sites in between the PASs, i.e., ΔLA , at which the total 
probability of the next-parsimonious local indel histories is 1/2 (=0.5) of that of the 
parsimonious local indel histories. 
c (ΔLA )0.5

(NID−ii)  is the value of ΔLA  at which the local histories involving up to (and 
including) NID  indels each account for 1/2 (=0.5) of the total probability of all local 
histories consistent with the configuration. We used the probability calculated up to 
(and including) NID = 50  indel steps as a proxy of the total probability. 
d A rough (inversely proportional) relationship between each threshold gap length (Y ) 
and the expected number of indels per site ( X ). 
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Table 2. Perturbation analysis on local PWA probabilities in case (iv) 

(ΔLA, ΔLD )  0.01 indels/site 0.04 indels/site 0.1 indels/site 0.2 indels/site 

(1, 1) 0.003 0.010 0.024 0.045 

(3, 1) 0.021 0.084 0.204 0.393 

(3, 3) 0.042 0.166 0.402 0.768 

(5, 5) 0.073 0.283 0.672 1.256 

(10, 1) 0.064 0.246 0.572 1.013 

(10, 10) 0.149 0.561 1.292 2.288 

(25, 1) 0.151 0.547 1.112 1.541 

(25, 4) 0.198 0.723 1.519 2.234 

(30, 10) 0.288 1.038 2.164 3.072 

(100, 1) 0.537 1.333 1.507 1.574 

(100, 3) 0.607 1.593 1.894 2.033 

(300, 1) 1.165 1.394 1.427 1.527 

NOTE: Each cell shows the ratio of the total probability of the next-fewest indel 
histories to that of the fewest indel histories, when there are ΔLA  ancestral sites and 
ΔLD  descendant sites in between the PASs. Each column is labeled with the expected 
number of indels per site (i.e., (λI +λD )(tF − tI ) ). The parameters used for this 

analysis are: λI = λD = 0.1 , LI
CO = LD

CO = 500 , and fI (l) = fD (l) = l
−1.6 k−1.6

k=1

500

∑( ) . 

Because of the symmetry of the probabilities under the time reversal, the ratio for 
(ΔLA, ΔLD ) = (L1, L2 )  is identical to that for (ΔLA, ΔLD ) = (L2, L1) . Thus we only 
showed the results for ΔLA ≥ ΔLD . The ratios that are less than 0.5 are shown in 
boldface. 
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Table 3. Perturbation analysis on local MSA probabilities in case (IV) 

(ΔLD1, ΔLD2 )  0.01 indels/site 0.04 indels/site 0.1 indels/site 0.2 indels/site 

(2, 1) 0.004 0.016 0.037 0.067 

(3, 1) 0.016 0.063 0.150 0.279 

(3, 2) 0.012 0.049 0.118 0.225 

(10, 1) 0.050 0.190 0.432 0.751 

(10, 2) 0.060 0.225 0.509 0.895 

(10, 8) 0.060 0.231 0.543 0.980 

(10, 9) 0.047 0.182 0.421 0.740 

(30, 1) 0.140 0.487 0.915 1.203 

(30, 5) 0.163 0.563 1.118 1.645 

(30, 25) 0.173 0.620 1.251 1.850 

(30, 29) 0.139 0.486 0.909 1.189 

(100, 1) 0.418 0.985 1.180 1.304 

(100, 99) 0.418 0.981 1.170 1.290 

 
NOTE: Each cell shows the ratio of the total probability of the next-fewest indel 
histories to that of the fewest indel histories when sequence 1 and sequence 2 have 
ΔLD1  sites and ΔLD2 ≡ ΔLD1 − ( j − i−1)  (< ΔLD1 ) sites, respectively, in between the 
PASs.  Each column is labeled with the expected number of indels per site (i.e., 
(λI:m +λD:m )(tF:m − tI ) , which is independent of m  (∈ {1, 2, 3} ) in this case). The 

parameters used for this analysis are: λI:m = λD:m = 0.1 , LI:m
CO = LD:m

CO = 500  and 

fI:m (l) = fD:m (l) = l
−1.6 k−1.6

k=1

500

∑( ) , for ∀m =1, 2, 3 . And we used the 3-OTU trees 

with tF:1 = tF: 2 = tF: 3 . The ratios that are less than 0.5 are shown in boldface. 
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Table 4. Comparison of Kim-Sinha’s probabilities of case (iv) local PWAs with 

reference probabilities 

(ΔLA, ΔLD )  Ratio (Eq.(VII-2.13)) Overlapping a 

(1, 1) 1.667 0.167 

(3, 1) 1.883 0.383 

(3, 3) 2.449 0.949 

(5, 5) 3.325 1.825 

(10, 1) 2.165 0.665 

(10, 10) 5.572 4.072 

(25, 1) 2.355 0.855 

(25, 4) 4.714 3.214 

(30, 10) 8.300 6.800 

(100, 1) 2.561 1.061 

(100, 3) 4.896 3.396 

(300, 1) 2.659 1.159 

 
NOTE: Each cell in the middle column gives the ratio, Eq.(2.2.13), of the reference 
probability in the fewest-indel approximation to the corresponding probability given 
by Kim and Sinha’s HMM (2007), for a local PWA with ΔLA  ancestral sites and ΔLD  
descendant sites in between a pair of PASs. The parameters used for this analysis are: 
λI = λD = 0.1 , LI

CO = LD
CO = 5000 , and fI (l) = fD (l) = l

−1.6 k−1.6
k=1

5000

∑( ) . The ratio for 

(ΔLA, ΔLD ) = (L1, L2 )  is identical to that for (ΔLA, ΔLD ) = (L2, L1) . Thus, we only 
showed the results for ΔLA ≥ ΔLD . 
 
a The effect of overlapping indels, which is the second term on the right hand side of 
Eq.(2.2.13).  
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Figures 1-7 (with legends) 
 
A. Original local MSA (in SII)

R … 3 4 5 - - 6 …

5 … 3 4 5 - E 6 …

6 … 3 4 5 - - 6 …

1 … 3 - - - E 6 …

2 … 3 4 5 F E 6 …

3 … 3 4 5 - - 6 …

4 … 3 - 5 - - 6 …

C4

B. Reassigning ancestries

R … L 1 2 - - R …

5 … L 1 2 - 3 R …

6 … L 1 2 - - R …

1 … L - - - 3 R …

2 … L 1 2 4 3 R …

3 … L 1 2 - - R …

4 … L - 2 - - R …

C4

C. Reassigned site-numbers and 

L 1 2 RsRoot = s6 = s3 :
1  2  3  4

ΔL(sRoot ) = ΔL(s6 ) = ΔL(s3) = 2

L 1 2 3 R

1  2  3  4  5

s5 : ΔL(s5 ) = 3

L 3 R

ΔL(s)

1  2  3

s1 : ΔL(s1) =1

L 1 2 4 3 Rs2 : ΔL(s2 ) = 4
1  2  3  4  5  6

L 2 R

1  2  3

s4 : ΔL(s4 ) =1
 

Figure 1. Typical situation and notation considered in Section 1 of Results. 
A. As an illustration, we use the local MSA confined in the region C4  of the MSA in 
the Figure 11 B of part I (Ezawa, Graur and Landan 2015a), and re-assign the 
ancestries as shown in panel B. The ancestries in between the PASs (with the re-
assigned ancestries L  and R ) are just an example and not always assigned in this 
way. C. Sequences extracted from the MSA. Shown above each site is the site number 
(i.e., spatial coordinate) assigned to it. And shown on the right of each sequence is the 
count of sites in between the PASs. 
In panels A and B, as in Figure 5 of part I, the boldface characters in the leftmost 
columns stand for the sequence IDs. (More precisely, the number ‘ i ’ stands for the 
sequence si , and the ‘R ’ stands for the root sequence ( sRoot ).) 
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A. Case (i)

A L 1 2 3 - - R

D L - - - υD
1 υD

2 R

A L R

D L R

B. Case (ii)

A L 1 2 3 R

D L - - - R

C. Case (iii)

A L - - R

D L υ1 υ2 R

D. Case (iv)

A L - - 1 2 3 R

D L υD
1 υD

2 - - - R
or

 
Figure 2. Examples of four types of local gap configurations in PWA between 
ancestral and descendant sequences. 
A. Case (i). B. Case (ii) with ΔLA = 3 . C. Case (iii) with ΔLD = 2 . D. Case (iv) with 
ΔLA = 3  and ΔLD = 2 . 
In each PWA, each site (a cell) is assigned an ancestry. In the leftmost column of each 
PWA, the boldface italic ‘A’ and ‘D’ stand for an ancestor ( sA ) and a descendant 
( sD ), respectively. The magenta boxes and the cyan boxes represent unpreserved 
ancestral sites and inserted descendant sites, respectively. In panel D, the PWA on the 
right (in parentheses) is equivalent to the PWA on the left, as far as the homology 
structure alone is concerned. 
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A.  Parsimonious vs. next-parsimonious 
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0.2 indels/site 0.4 indels/site 

 
B.  Iteration analysis (0.04 indels/site) 
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C.  Iteration analysis (0.2 indels/site) 
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Figure 3. Perturbation analyses on local PWA probabilities. 
The results shown in all panels of this figure apply to both case (ii) and case (iii) local 
PWAs. In all panels, the abscissa is ΔLA  in case (ii) and ΔLD  in case (iii). Panel A 
shows the ratio of the total probability of the next-fewest-indel histories to that of the 
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fewest-indel history. The blue, magenta, cyan, purple and green curves show the 
ratios when the expected numbers of indels per site, i.e., the values of 
(λI +λD )(tF − tI ) , are 0.01, 0.04, 0.1, 0.2 and 0.4, respectively. Panels B and C show 
the ratios of the multiplication factors calculated via the iteration formulas (either 
Eq.(1.2.8) or Eq.(A1.3.3) in Appendix A1), including histories with up to NID =  1 
(blue), 2 (magenta), 5 (green), 10 (purple), and 20 (cyan) indels, to the factor 
including histories with up to NID = 50  indels. Panel B is for (λI +λD )(tF − tI ) = 0.04  
indels per site, and panel C is for (λI +λD )(tF − tI ) = 0.2  indels per site. The following 
parameters were used for all panels: fI (l) = fD (l)∝ l

−1.6 , LI
CO = LD

CO = 500  and 
λI λD =1 . For panels B and C, we also set the following parameters: 
ΔLmax

A = ΔLmax
D = 300  and (λI +λD )(tF − tI ) NP = 0.002 . 
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A. Phylogenetic tree

nRoot
n1

n2

n3

b1
b2

b3

1 L 1 2 3 4 5 R

2 L 1 2 3 4 5 R

3 L - - - - - R

B. Case (I)

1 L R

2 L R

3 L R

C. Case (II)

1 L 1 2 3 4 5 R

2 L - - - - - R

3 L - - - - - R

D. Case (III)

1 L 1 2 3 4 5 R

2 L 1 2 - - 5 R

3 L - - - - - R

E. Case (IV)

 
Figure 4. Typical local gap configurations in MSAs considered for perturbation 
analyses in Subsection 1.3 of Results. 
A. The 3-OTU tree used in the perturbation analyses and the notation. A node (open 
circle) is labeled ni  (external) or nRoot  (root). A branch is labeled bi . B. Local gap 
configuration in case (I). C. Case (II) with ΔLD12 = 5 . D. Case (III) with ΔLD1 = 5 . E. 
Case (IV) with ΔLD1 = 5 , i = 2  and j = 5 . 
In this figure, none of the sites are colored, to take account of the possibilities of their 
preservations, insertions and deletions. 
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Figure 5. Perturbation analysis on local MSA probabilities in case (III). 
The graph shows the ratio of the probability of the history with two deletions giving 
rise to a case (III) local MSA (Eq.(1.3.13’)) to that of the single-insertion history 
(Eq.(1.3.10)). The ratio is shown as a function of the length of the gapped segment 
(ΔLD1 ) and the expected number of indels per site along each branch 
( (λI:m +λD:m )(tF:m − tI ) , identical for all m =1,2,3 ).  The blue, magenta, cyan, purple, 
and green curves show the ratios when the values of (λI:m +λD:m )(tF:m − tI )  are 0.01, 
0.04, 0.1, 0.2 and 0.4 indels/site, respectively. We used a 3-OTU tree whose three 
branches are equally long. For each branch, we used the same parameters as those 
used for Figure 3.  
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A. Distributions 

 
 
B. Ratio 

 
Figure 6. Power-law indel length distribution and its approximation by 
geometric distributions. 
A. Visual comparison of the distributions. The continuous line is the power-law 
distribution, Eq.(2.1.1) with a =1.6 . The dashed line is the scaled geometric 
distribution that fits the power-law the best according to the least-square criterion (i.e., 
Eq.(2.1.2) with A = ALS (1.6) ≡ 0.7125  and q = qLS (1.6) ≡ 0.3957 ). The dotted line is 
the scaled geometric distribution that well approximates the behavior of the power-
law around 100 residues (i.e., Eq.(2.1.2) with A = 0.09538  and q = 0.9822 ). Note the 
logarithmic scale for the ordinate. B. The ratio of the best-fit scaled geometric 
distribution (SG) to the power-law distribution (PL). 
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Figure 7. Coefficient of 2nd-order term of PWA probability in cases (ii) and (iii). 
The curve shows the ratio GD (ΔL

A ) fD (ΔL
A )  as a function of the number of sites in 

between the PASs (ΔLA ) in a local PWA belonging to case (ii).  Here GD (ΔL
A )  is the 

coefficient of the 2nd-order term in the expected number of indels (λ | b | ) given in 
Eq.(2.2.6’b) in Results. And fD (ΔL

A )  is the coefficient of the 1st-order term (see 
Eq.(2.2.6’a)). The ratio was calculated with the following parameters: λI = λD = 0.1 , 

LI
CO = LD

CO = 5000 , fI (l) = fD (l) = l
−1.6 k−1.6

k=1

5000

∑( ) . Under the same parameter setting, 

this graph also gives the ratio for a case (iii) local PWA as a function of ΔLD  

(GI (ΔL
D ) fI (ΔL

D ) . See Eqs.(2.2.8a,b)). The value, 1+GD (ΔL
A )

fD (ΔL
A )

−1

, gives a rough 

estimate of the “threshold” value of (λI +λD ) | b |  beyond which the violation of the 
Chapman-Kolmogorov equation (Eq.(3.1.1.1) in part I) may severely undermine the 
HMM of Kim and Sinha (2007). 
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