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Abstract  
Background 
Insertions and deletions (indels) account for more nucleotide differences between two 
related DNA sequences than substitutions do, and thus it is imperative to develop a 
stochastic evolutionary model that enables us to reliably calculate the probability of 
the sequence evolution through indel processes. Recently, such probabilistic models 
are mostly based on either hidden Markov models (HMMs) or transducer theories, 
both of which give the indel component of the probability of a given sequence 
alignment as a product of either probabilities of column-to-column transitions or 
block-wise contributions along the alignment. These models, however, have two 
fundamental problems: (1) it is unclear how they are related with any genuine 
evolutionary model, which describes the stochastic evolution of an entire sequence 
along the time-axis; and (2) they cannot fully accommodate biologically realistic 
features, such as overlapping indels, power-law indel-length distributions, and indel 
rate variation across regions.  

Results 
Here, we theoretically tackle the ab initio calculation of the probability of a given 
sequence alignment under a genuine evolutionary model, more specifically, a general 
continuous-time Markov model of the evolution of an entire sequence via insertions 
and deletions. Our model allows general indel rate parameters including length 
distributions but does not impose any unrealistic restrictions on indels. Using 
techniques of the perturbation theory in physics, we expand the probability into a 
series over different numbers of indels. This perturbation expansion provides a 
concise version of Feller’s theorem (1940), which underpins the authenticity of the 
widely used stochastic evolutionary simulation method by Gillespie (1977). We find a 
sufficient and nearly necessary set of conditions under which the probability can be 
expressed as the product of an overall factor and the contributions from regions 
separated by gapless columns of the alignment. The indel models satisfying these 
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conditions include those with some kind of rate variation across regions, as well as 
space-homogeneous models.  We also prove that, though with a caveat, pairwise 
probabilities calculated by the method of Miklós et al. (2004) are equivalent to those 
calculated by our ab initio formulation, at least under a space-homogenous model. 

Conclusions 
Our ab initio perturbative formulation provides a firm theoretical ground that other 
indel models can rest on. 
[This paper and three other papers (Ezawa, Graur and Landan 2015a,b,c) describe a 
series of our efforts to develop, apply, and extend the ab initio perturbative 
formulation of a general continuous-time Markov model of indels.] 
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Introduction  
Background  
The evolution of biomolecules, namely DNA, RNA, and protein sequences, is driven 
by mutations such as base substitutions, insertions and deletions (indels), 
recombination, and other genomic rearrangements (e.g., Graur and Li 2000; Gascuel 
2005; Lynch 2007). Among them, substitutions and indels have been considered 
particularly important because they are modeled, either implicitly or explicitly, in the 
algorithms for the sequence alignments, which have played central roles in the 
sequence analysis in bioinformatics (e.g., Gusfield 1997; Notredame 2007). Probably 
due to the relative ease in handling them, analyses on substitutions have predominated 
in the field of molecular evolutionary study thus far, in particular using the 
probabilistic (or likelihood) theory of substitutions that is now widely accepted (e.g., 
Felsenstein 1981, 2004; Yang 2006). It should not be forgotten, however, that some 
recent comparative genomic analyses have revealed that indels account for more base 
differences between the genomes of closely related species than substitutions (e.g., 
Britten 2002; Britten et al. 2003; Kent et al. 2003; The International Chimpanzee 
Chromosome 22 Consortium 2004; The Chimpanzee Sequencing and Analysis 
Consortium 2005). It is therefore imperative to develop a stochastic model that 
enables us to reliably calculate the probability of sequence evolution via mutations 
including insertions and deletions.  
 As far as we know, the development of probabilistic theories of indels dates 
back to the groundbreaking work of Bishop and Thompson (1986), where they 
obtained the most likely (ML) pairwise alignment (PWA) under a simple stochastic 
model of single-base indels and substitutions. Then, in their pioneering work, Thorne, 
Kishino and Felsenstein (1991) presented a simple yet more refined stochastic model 
of sequence evolution, often called the TKF91 model, which evolves a DNA sequence 
via substitutions, insertions and deletions, all of single bases. Using this TKF91 model, 
they worked out the ML alignment, as well as the summation of probabilities over all 
possible alignments, between two homologous sequences. And they used the latter to 
reliably estimate the model parameters. An obvious drawback of this model is that 
they incorporate only single-base indels, whereas indels of multiple contiguous bases 
have been known to occur frequently by experiments. This drawback is somewhat 
mitigated by their subsequent model, the TKF92 model (Thorne et al. 1992), which 
allowed for a geometric indel length distribution, but which imposed an unrealistic 
restriction that indels can occur only in the unit of unbreakable fragments. Such 
efforts to “inch toward reality” were taken over by some researchers, resulting in a 
few biologically more realistic models and algorithms (e.g., Miklós and Toroczkai 
2001; Knudsen and Miyamoto 2003; Miklós et al. 2004; Kim and Sinha 2007). (See 
below for more details on the biological realism.)  The use of probabilistic models of 
indels seems to have expanded as the 21st century began, since the TKF91 model was 
recast into a hidden Markov model (HMM) (Hein 2001; Holmes and Bruno 2001) and 
a transducer theory (Holmes 2003), because these models facilitates the constructions 
of the dynamic programming (DP) to search for the ML alignment and of the DP to 
sum probabilities over possible alignments. For example, the statistical alignment 
algorithms were immediately extended from a sequence pair to multiple sequences 
(Hein 2001; Holmes and Bruno 2001; Holmes 2003), and their time complexities 
were substantially reduced (e.g., Lunter et al. 2003). Regarding the Markov chain 
Monte Carlo (MCMC) methods to simultaneously sample multiple sequence 
alignments, phylogenetic trees, and model parameters (Holmes and Bruno 2001), 
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considerable efforts were made to speed up the algorithm and to accelerate the 
convergence of the MCMC trajectories (Lunter et al. 2005; Redelings and Suchard 
2005, 2007; Suchard and Redelings 2006; Novák et al. 2008). Then, the HMMs and 
transducer theories to describe indels were extended to accommodate a general 
geometric distribution of indel lengths, either based on the TKF92 model (Thorne et 
al. 1992; Metzler 2003), by taking account of some evolutionary effects on indels 
(Knudsen and Miyamoto 2003; Miklós et al. 2004; Rivas 2005), or by simply 
applying standard HMMs/transducers or their modifications (e.g., Löytynoja and 
Goldman 2005; Redelings and Suchard 2007; Lunter et al. 2008; Paten et al. 2008). 
Such models with a geometric indel length distribution were then applied to the 
algorithms to reconstruct the multiple sequence alignment (MSA), which either search 
for a single optimum MSA (Do et al. 2005; Löytynoja and Goldman 2005, 2008; 
Löytynoja et al. 2012) or sample a number of fairly likely MSAs (Paten et al. 2008; 
Westesson et al. 2012). These indel probabilistic models were also used in some 
algorithms to reconstruct ancestral sequences from an input MSA, either by using the 
input MSA as it is (Diallo et al. 2007, 2010), while locally improving the alignment 
via a ML criterion (Kim and Sinha 2007), or while taking account of alignment 
uncertainties (Paten et al. 2008; Westesson et al. 2012). The models were also used 
for the secondary structure prediction of protein sequences (Miklós et al. 2008).  
Meanwhile, in order to speed up the alignment estimation and/or the phylogenetic 
analysis, further simplifications of the TKF91 model were also made, either via an 
extension of base substitution models to include a gap as a “fifth character” (McGuire 
et al. 2001; Rivas 2005; Rivas and Eddy 2008), or via an approximation by a model of 
Poisson indel processes (Bouchard-Côté and Jordan 2013). See excellent reviews (e.g., 
Rivas 2005; Bradley and Holmes 2007; Miklós et al. 2009) for more details on the 
recent developments and applications of these indel probabilistic models. 
 Thus, concerning the algorithmic efficiency and the scope of applications, the 
probabilistic models of indels have advanced in many great steps. The current models, 
however, have two fundamental problems, one regarding the theoretical grounds and 
the other regarding the biological realism. From the theoretical viewpoint, there 
should be no argument about the idea that a genuine stochastic model of sequence 
evolution via indels must be the one that describes the evolution of the entire 
sequence in question along the time axis (or down a lineage or a branch). The 
probability calculation under such a genuine evolutionary model must naturally 
proceed via the accumulation of vertical transitions, each from the state of the entire 
sequence at a time to its state at the next time (separated either infinitesimally or by a 
finite but small interval). In contrast, standard HMMs and transducer theories 
calculates the indel component of the probability of an alignment as the product of the 
probabilities of horizontal transitions, each from the state of a column to that of the 
next column. Although more general forms of HMMs and transducers also exist, they 
still calculate the probability horizontally as the product of block-wise contributions 
(e.g., Miklós et al. 2004; Kim and Sinha 2007). Therefore, it is a priori not clear 
whether or not the HMMs or transducer theories are related to any genuine 
evolutionary models, and, if they are, how. It should be worth a mention that some 
HMMs and transducer theories were actually derived from the exact solutions of 
“genuine” evolutionary models, such as the TKF91 and TKF92 models and the model 
proposed by Miklós and Toroczkai (2001). It must be noted, however, that these 
models were devised so that their exact solutions will give a probability that can be 
explicitly factorized. In consequence, these models inevitably impose some 
biologically unrealistic restrictions on the indel events, such as single-base indels 
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(TKF91), indels occurring in the unit of unbreakable fragments (TKF92), and single-
base deletions while permitting breakable multiple-base insertions (Miklós and 
Toroczkai 2001). To the best of our knowledge, no studies thus far explicitly showed 
that the indel probability calculated under a genuine and biologically realistic 
evolutionary model can be expressed as the product of either column-wise or block-
wise contributions. Nevertheless, it should also be worth a mention that a few 
attempts were made to relate genuine evolutionary models with HMMs/transducers. 
Knudsen and Miyamoto (2003) started with the assumption that the probability is 
given by the product of column-to-column transition probabilities. Then they 
determined the explicit forms of the transition probabilities by taking account of an 
evolutionary indel model. Unfortunately, the resulting model was similar to a standard 
HMM, in the sense that it could not incorporate the effects of general overlapping 
indels. In their what could be called a milestone study, Miklós et al. (2004) proposed a 
“long indel” model, which can take account of overlapping indels up to the level 
desired by users (at least in principle). In this study, they conjectured that the 
probability of a given pairwise alignment can be calculated as a product of 
contributions from “chop zone”s each of which is delimited by neighboring gapless 
columns. Then the contribution from each chop zone was calculated up to a user-
specified number of overlapping indel events according to a continuous-time Markov 
model. Unfortunately, although they conceptually started with a genuine evolutionary 
model, i.e., a continuous-time Markov model of an entire sequence evolution, they 
did not explicitly show through equations that their conjectured probability can indeed 
be derived from the genuine model. Although their verbal justification may sound 
plausible, it is unclear whether their conjecture is indeed true or, if so, to what extent 
conditions on the indel rate parameters can be relaxed while keeping the the 
probability factorable. For a further, sound advance of the study of molecular 
evolution via indels, it is essential to resolve these outstanding issues. At the same 
time, it would also be important to examine the parameter regions where the 
HMMs/transducers can well approximate the probability that was calculated by a 
genuine and biologically realistic evolutionary model. Such analyses would reveal up 
to how far we can trust the models that we use or develop. One of the most frequently 
cited problems of most HMMs/transducers, except those by Miklós and Toroczkai 
(2001) and by Miklós et al. (2004), is that these models cannot accommodate 
overlapping indels, which makes the models to violate the multiplicativity condition, 
aka the Chapman-Kolmogorov equation (e.g., Westesson et al. 2012). Some 
simulation analyses seemed to show that this problem does not usually impact the 
results of the analyses significantly (e.g., Thorne et al. 1992; Knudsen and Miyamoto 
2003; Metzler 2003). Exactly delimiting the parameter regions where the effects of 
overlapping indels are indeed negligible, however, would require either analytical 
expressions of the probabilities under a genuine evolutionary model or a more 
systematic simulation study. 
 Regarding the biological realism, it should be mentioned first that real, 
biological indel lengths were frequently shown to follow the power-law distributions 
(e.g., Gonnet et al. 1992; Benner et al. 1993; Gu and Li 1995; Kent et al. 2003; Zhang 
and Gerstein 2003; Chang and Benner 2004; Yamane et al. 2006; Fan et al. 2007), at 
least up to several kilobases (The international Chimpanzee Chromosome 22 
Consortium 2004). Moreover, it is widely believed that the indel rates should vary 
among regions, due to selection and the mutational predispositions of the regions 
themselves (caused, e.g., by their sequence or epigenomic contexts) (e.g., Gu et al. 
2008). On the contrary, normal HMMs and transducer theories can at best handle 
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geometric distributions of indel lengths, which behave very differently from the 
power-law. For example, under a normal geometric distribution, long indels get much 
rarer than empirically observed. Although the problem could be somewhat mitigated 
by extending HMMs or transducers to allow for mixed geometric distributions (e.g., 
Miklós et al. 2004; Lunter et al. 2008), it is still difficult to reproduce the observed 
frequency of indels that are, e.g., as long as hundreds of bases. From the viewpoint of 
the biological realism, works by Miklós et al. (2004) and Kim and Sinha (2007) are 
notable. The “long indel” model of Miklós et al. (2004) can in principle handle any 
indel length distributions that are uniform across the sequence (except for indels 
reaching either end), as long as the insertion length distribution and the deletion 
length distribution depend on each other via the time reversibility condition (aka the 
detailed balance condition). As Miklós et al. themselves noted, they imposed the time 
reversibility just for the technical convenience of simplifying the calculation of the 
probabilities of pairwise alignments. As they rightly argued, however, there is no 
biological reason to expect that realistic indel models must satisfy the time 
reversibility (see also Rivas and Eddy 2008). Another problem of the “long indel” 
model would be that it does not accept indel rate parameter variation across regions. 
The model of Kim and Sinha (2007) is even more flexible. Their model is a kind of 
HMM that calculates the probability of a given multiple sequence alignment (MSA) 
as a product of contributions from gapless and gapped blocks. Thus, it can 
accommodate any functional forms of insertion and deletion length distributions in 
principle. And, because their model does not impose the time reversibility, the two 
length distributions can be independent of each other. Their model, however, has two 
major problems, as other HMMs and transducer theories do. One is that their model 
lacks theoretical grounds.  And the other is that their model cannot accommodate 
overlapping indels along a single branch, though it can handle overlapping indels that 
occurred along different branches.  
 Meanwhile, some researchers developed genuine molecular evolution 
simulators, such as Dawg (Cartwright 2005), INDELible (Fletcher and Yang 2009), 
and indel-Seq-Gen version 2.0 (Strope et al. 2009). They can simulate the evolution of 
an entire sequence along the time axis or down a phylogenetic tree, under a fairly 
biologically realistic model of indels that allow for both overlapping indels and a 
flexible setting of rate parameters and length distributions, including the power-law 
distributions. Thus, if we want, we could examine problems concerning, e.g., the 
principles of evolutionary models by performing systematic, computer-intensive 
analyses via one of these genuine molecular evolution simulators. Nevertheless, it 
should be definitely more desirable if we have a theoretical formulation that can 
somehow, analytically or numerically, calculate the probabilities of indel processes 
under a genuine and biologically realistic evolutionary model. 
 Thus far, theoretical studies on molecular evolution seem to have been 
obsessed with exact solutions, whether analytical or numerical. This is partly because 
exact solutions were successfully obtained for the continuous-time Markov models of 
substitutions of nucleotides and amino acids (see, e.g., Yang 2006). However, exact 
solutions are not necessarily a must-have for a scientific field to develop successfully. 
As a case in point, let us briefly review the elementary particle physics, one of the 
most successful disciplines of natural science in the 20th century. Its standard model 
consists of two major components: the electroweak theory describing the 
electromagnetic and weak interactions (Glashow 1961; Weinberg 1967; Salam 1968), 
and the quantum chromodynamics (QCD) describing the strong interactions (e.g., 
Gross and Wilczek 1973; Politzer 1974). To the best of our knowledge, these models 
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have never been solved exactly. Instead, the success of the particle physics rested 
heavily on approximations, and among the most important approximation methods is 
the perturbation theory (e.g., Dirac 1958; Messiah 1961b), in which elementary 
particles behave as free particles in most of the time and occasionally undergo 
perturbations due to interactions. The key to its success was the fact that the 
interaction coefficients were small enough for the interactions to be treated as 
occasional perturbations. (Although the coefficients of the strong interactions are 
normally large, they approach zero in the high-energy limit (Gross and Wilczek 1973; 
Politzer 1974), which enabled the perturbation theory to work.) Getting back to the 
molecular evolution, recent genome-wide analyses showed that the rate of indels is at 
most on the order of 1/10 of the substitution rate (Lunter 2007; Cartwright 2009). 
Thus, as long as we are dealing with sequences that are detectably homologous to 
each other, the expected number of indels per site along a branch will be well below 1. 
This gives us a hope that we can calculate the probabilities of indel processes by 
applying techniques of the perturbation theory in physics (e.g., Dirac 1958; Messiah 
1961b).  
 

About this paper  
This paper reports our somewhat successful and absolutely orthodox theoretical 
attempt to calculate, from the first principle, the probability of a given sequence 
alignment under a genuine evolutionary model, more specifically, a continuous-time 
Markov model on an infinite set of states that describes the evolution of an entire 
sequence along the time axis via insertions and deletions. We calculate the alignment 
probability under a fixed tree topology and branch lengths, and we handle both 
pairwise alignments (PWAs) and multiple sequence alignments (MSAs). Our 
continuous-time Markov model allows for general indel rate parameters including 
indel length distributions, and it does not impose any unrealistic restrictions on the 
permitted indels. This generalization includes (but is not limited to) allowing the 
model to be non-time-reversible, as the models of Eddy and Rivas (2008) and Kim 
and Sinha (2008) did.  For clarity, we will focus only on the indel processes in the 
bulk of the paper, by not explicitly considering substitutions (while implicitly taking 
account of residue states of the sites of the sequence). However, as will be argued in 
Part IV (Ezawa, Graur and Landan 2015c), incorporating substitutions would be 
rather straightforward, as long as the substitution model involved is of a commonly 
used type. We start in Section 1 of Results by introducing some convenient concepts 
from theoretical physics (Dirac 1958; Messiah 1961a). In Section 2 of Results, we 
formulate the genuine indel evolutionary model in terms of the concepts introduced in 
Section 1. A key innovation is the representation of each indel event as an operator 
that acts on the state of an entire sequence (, which is represented with a bra vector). 
This enables us to define a new concept, that is, the “local-history-set” (LHS) 
equivalence class of indel histories, which will play an essential role when proving 
the factorization of an alignment probability. In Section 3 of Results, using techniques 
of the perturbation theory in physics, we formally expand the probability of an 
alignment into a series of terms with different numbers of indels, where the fewest-
indel terms are contributed by parsimonious indel histories and other terms come from 
non-parsimonious histories. This perturbation expansion, which turns out to be a 
concise and intuitively clearer version of a theorem by Feller (1940), formally proves 
that the widely used stochastic method of Gillespie (1977) indeed provides the basis 
of genuine evolutionary simulators. In Section 4 of Results, we find a sufficient and 
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nearly necessary set of conditions on the indel rate parameters and the ancestral 
sequence state probability under which the alignment probability can be expressed as 
the product of an overall factor and the contributions from regions separated by 
gapless columns of the alignment. Here the qualifier, “nearly necessary,” means that 
there may be some isolated cases where the probability can be factorized even if some 
of the conditions are violated. Nevertheless, even if there are, such cases are likely to 
require intricate and miraculous cancellations among terms, and thus are unlikely to 
be important in practical analyses.  In Section 5 of Results, we give some example 
indel models as particular solutions of the conditions derived in Section 4. They 
include: models with space-homogeneous indel rates including the “long indel” model 
(Miklós et al. 2004), models with indel rates confined in separate regions, and models 
with the linear combinations of the above indel rates. In that section, we also show 
that, when its application is extended to each LHS equivalence class of indel histories 
during a time interval, the method of Miklós et al. (2004) gives the same probability 
as our ab initio formulation does, at least under a space- and time-homogeneous indel 
model.  In Discussion, we will briefly discuss some possible applications of our 
theory. The topics also include the risks associated with the naïve application of our 
algorithm to reconstructed alignments. Appendix is devoted to detailed explanations 
on the proofs and derivations of some key results. 
 This paper is part I of a series of our papers that documents our efforts to 
develop, apply, and extend the ab initio perturbative formulation of the general 
continuous-time Markov model of sequence evolution via indels. Part I (this paper) 
gives the theoretical basis of this entire study.  Part II (Ezawa, Graur and Landan 
2015a) describes concrete perturbation calculations and examines the applicable 
ranges of other probabilistic models of indels. Part III (Ezawa, Graur and Landan 
2015b) describes our algorithm to calculate the first approximation of the probability 
of a given MSA and simulation analyses to validate the algorithm. Finally, part IV 
(Ezawa, Graur and Landan 2015c) discusses how our formulation can incorporate 
substitutions and other mutations, such as duplications and inversions. 

Before going on to the bulk of the manuscript, we explain important 
terminology and notation. In this paper, the term “an indel process” means a series of 
successive indel events with both the order and the specific timings specified, and the 
term “an indel history” means a series of successive indel events with only the order 
specified. This usage should conform to the common practice in this field. And, 
throughout this paper, the union symbol, such as in A∪ B  and Aii=1

I∪ , should be 
regarded as the union of mutually disjoint sets (i.e., those satisfying A∩ B =∅and 
Ai ∩ Aj =∅  for i ≠ j (∈ {1,..., I}) , respectively, where ∅  is an empty set), unless 
otherwise stated. 
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Results 
1. Preparation: Introduction of bra-ket notation and operators 
In this study we examine a continuous-time Markov model defined on a discrete 
infinite space of states. Although we could still in principle formally construct the 
theoretical framework in a traditional manner of using the row vectors, matrices, and 
column vectors, this could get somewhat cumbersome. Thus, instead, we will 
formulate the theory by using the concepts commonly used in quantum mechanics of 
physics (e.g., Dirac 1958; Messiah 1961a), namely, the bra-ket notation of the state 
vectors and the operators. In this section, we introduce these concepts first in a 
general form and then using an example that most readers may be familiar with, i.e., 
the continuous-time Markov model of base substitutions. Actually, their usage here is 
somewhat different from that in quantum mechanics, as will be discussed at the 
bottom of this section. 
 
1.1. General case 
Let us first recall the conventional formulation of a general continuous-time Markov 
model on a finite space consisting of N  states, i =1, 2,…, N .  One way of 
formulating the model is to specify a rate matrix, Q = (qij ) . Let qij  denote the (i, j) -
element of Q , i.e., its element at the intersection of the i  th row and the j  th column. 
Then, the non-diagonal element qij  ( i ≠ j ) of a rate matrix Q  is the rate (per a certain 
unit time) at which the system moves to the j  th state, given it was in the i  th state 
immediately before the time in question. The diagonal element, qii , is usually given 
by the equation: 

 qii = − qijj=1
( j≠i)

N

∑ ,                   --- Eq.(1.1.1) 

to guarantee that the summation of the probabilities over the states remain 1 all the 
time. Now, let the probability vector, p(t) = pi (t)( ) , be a row vector whose i  th 
element, pi (t) , is the probability that the system is in the i  th state at time t . Then, 
under the above Markov model, p(t)  satisfies the 1st order time differential equation: 

 d

dt
p(t) = p(t)Q     (or  d

dt
pi (t) = pj (t)j=1

N

∑ qji  ) . --- Eq.(1.1.2) 

The general solution of this equation at a finite time t (> 0) is given by: 

p(t) = p(0) P(t)   (or  pi (t) = pj (0)j=1

N

∑ pji (t) ) .    --- Eq.(1.1.3a) 

Here the “finite-time stochastic evolution matrix,”P(t) = pij (t)( ) = exp tQ( ) , is an 
N ×N  matrix whose (i, j) -element pij (t)  is the probability that the system is in the 
j th state at time t , conditioned on that it was in the i  th state initially (i.e., at time 
t = 0 ): 
 pij (t) = exp(tQ)[ ]ij = P ( j, t) (i, 0)⎡⎣ ⎤⎦  .                 --- Eq.(1.1.3b) 

If Eq.(1.1.1) holds, the matrix elements satisfy pij (t)j=1

N

∑ =1  for all i =1, 2,…, N . 

Meanwhile, p(0) = pi (0)( )  is the initial probability vector, whose i  th component, 
pi (0) , is the probability that the system was in the i  th state at time t = 0 . They 
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satisfy pj (0)j=1

N

∑ =1 . This could be made more explicit by using the basic row 

vectors, ei{ }i=1,2,...,N . Here ei ≡ (0,...,1,..., 0) is the row vector with all zeros except the i  
th component, which is 1, and it represents the situation where the system is in the i  
th state. Using these basic vectors, the initial probability vector is expressed as: 
 p(0) = p i (0)i=0

N

∑ ei  ,                                 --- Eq.(1.1.4) 

which is interpreted as the initial condition that the system is in the i  th state with 
probability  pi (0)  ( i =1, 2,…, N ). Similarly, the probability vector at any time could 
be expressed as: 

p(t) = p i (t)i=0

N

∑ ei  ,                                     --- Eq.(1.1.5) 

and interpreted as the situation where the system is in the i  th state with probability  
pi (t)  ( i =1, 2,…, N ) given by Eq.(1.1.3a). Using the basic vectors, the conditional 
probabilities can be formally extracted from the stochastic evolution matrix, 
P(t) = exp tQ( ) , by a matrix multiplication: 

 P ( j, t) (i, 0)⎡⎣ ⎤⎦= pij (t) = ei P(t)(ej )
T .              --- Eq.(1.1.6) 

Here  (ei )
T  is the column vector obtained from the row vector, ei , by a matrix 

transposition operation (i.e., by interchanging the rows with the columns). 
 Now we can introduce the bra-ket notation and operators. First, we replace 
each basic row vector, ei , with the corresponding basic bra-vector, i , and replace 

each basic column vector, (ej )
T , with the corresponding basic ket-vector, j . Then, 

the bra-vector corresponding to the probability vector p(t) = pi (t)( )  in Eq.(1.1.5) is 
given by the following linear combination of the basic bra-vectors: 
 p(t) = p i (t)i=0

N

∑ i  .                             --- Eq.(1.1.5’) 

In the present formulation, the exclusive role of a ket-vector is that it serves as an 
“acceptor” of bra-vectors. More specifically, we will make the ket-vector, j , accepts 
only the corresponding bra-vector, j , by defining the scalar product: 
  i j =1 if i = j, = 0 if i ≠ j .                       --- Eq.(1.1.7) 
Using these scalar products, we get, e.g., the equation, p(t) i = pi (t) , from 
Eq.(1.1.5’).  Next, we introduce (linear) operators that transform each bra-vector into 
a specified linear combination of bra-vectors. The operators are analogs of matrices in 
the traditional formulation. For example, we could define an operator, m̂(i→ j) , that 
transforms (or “mutates”) the i  th state to the j  th state, but does nothing else: 

  
i m̂(i→ j) = j ,

k m̂(i→ j) = 0 for k ≠ i .
              --- Eq.(1.1.8) 

This operator corresponds to the matrix whose elements are all zero except the (i, j)–
element, which is 1. Now, we define the (instantaneous) rate operator, Q̂ , as follows: 

  i Q̂ ≡ qij j
j=1

N

∑  .                    --- Eq.(1.1.9) 

Then, we get the following equation: 

 p(t) Q̂ = pj (t)j=1

N

∑ j Q̂ = pj (t) qji ii=1

N

∑{ }j=1

N

∑ = pj (t)qjij=1

N

∑{ } ii=1

N

∑  . 
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Then, substituting Eq.(1.1.2) for the expression in braces on the leftmost hand side, 
we have: 

 p(t) Q̂ =
d

dt
pi (t) ii=1

N

∑ =
d

dt
pi (t) ii=1

N

∑{ }  . 

This means that we can recast the defining equation, Eq.(1.1.2), of the Markov model 
into the equation satisfied by the probability bra-vector p(t) : 

 d

dt
p(t) = p(t) Q̂   .                                       --- Eq.(1.1.2’) 

This equation can be integrated as: 
 p(t) = p(0) P̂(t)  ,                                   --- Eq.(1.1.3a’) 

with the finite-time stochastic evolution operator, P̂(t) ≡ exp(tQ̂) . And the counterpart 
of Eq.(1.1.3b) is: 
 i P̂(t) j = i exp(tQ̂) j = P ( j, t) (i, 0)⎡⎣ ⎤⎦  .          --- Eq.(1.1.3b’) 
Solving Eq.(1.1.2’) for every possible initial probability bra-vector, 
p(0) = p i (0)i=0

N

∑ i , is equivalent to solving the following equation for the operator 

P̂(t) : 

 d

dt
P̂(t) = P̂(t) Q̂  ,                                     --- Eq.(1.1.10a) 

with the initial condition, 
 P̂(0) = Î ,                                               --- Eq.(1.1.10b) 

where Î  is the identify operator:  i Î = i   for every state i . Thus, if desired, 
Eqs.(1.1.10a,b) could be considered as the defining equation of the Markov model. 
 Thus far, we tacitly assumed that the Markov model is time-homogeneous, 
where the rate matrix Q , or the rate operator Q̂ , is independent of time t .  In reality, 
the transition rate, qij , could depend on time due to, e.g., the temporal change of the 
environment the system is in. Here, we extend the formulation developed above to the 
system with a time-dependent rate matrix, Q(t) = qij (t)( ) , whose operator counterpart 

is denoted as Q̂(t) .  Because the model is no longer homogeneous in time, when we 
consider a finite-time evolution of probabilities, we need to specify the initial time tI , 
in addition to the final time tF (> tI ) .  Let P̂(tI , tF )  be the operator describing the 
finite-time stochastic evolution during the closed time interval, [tI , tF ] , that is: 
 i P̂(tI , tF ) j = P ( j, tF ) (i, tI )⎡⎣ ⎤⎦ for ∀i, j ∈ {1,2,...,N}, tF > tI , 
under a continuous-time time-inhomogeneous Markov model with the rate operator 
Q̂(t) . Then, the defining equations, Eqs.(1.1.10a,b), are extended to fit this model as: 

 d

dt
P̂(tI , t) = P̂(tI , t) Q̂(t)  ,                                 --- Eq.(1.1.10a’) 

 P̂(t, t) = Î for ∀t  .                                       --- Eq.(1.1.10b’) 
The general solution of the above equations is symbolically given by: 

 P̂(tI , t) = T exp d ′t Q̂( ′t )
tI

t

∫( ){ }  .                      --- Eq.(1.1.11) 
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Here T ...{ }  denotes (the summation of) the time-ordered product(s), which arrange(s) 
multiplied operators in the temporal order so that the earliest operator will come 
leftmost. For example, 

 T Â(t1) B̂(t2 ){ }≡
Â(t1) B̂(t2 ) for t 1< t2 ,

B̂(t2 ) Â(t1) for t 2< t1 .

⎧
⎨
⎪

⎩⎪
 

We could regard the time-ordered exponential in Eq.(1.1.11) as defined by a limit: 

 T exp d ′t Q̂( ′t )
tI

t

∫( ){ } ≡ lim
L→∞

Î + t−tI
L Q̂(t1

(L ) )( ) Î + t−tI
L Q̂(t2

(L ) )( ) Î + t−tI
L Q̂(tL

(L ) )( )  , 

where tk
(L ) ≡ tI + (i− 1

2 )
t−tI
L , or as defined by a series: 

 

T exp d ′t Q̂( ′t )
tI

t

∫( ){ } ≡ Î + dt1 dtn∫∫ Q̂(t1) Q̂(tn )
tI<t1<...<tn<tn=1

∞

∑

= Î + dt1tI

t

∫ Q̂(t1)+ dt1 dt2t1

t

∫ Q̂(t1)Q̂(t2 )tI

t

∫ + dt1 dt2t1

t

∫ dt3 Q̂(t1)Q̂(t2 )Q̂(t3)t2

t

∫ +
tI

t

∫ ...

 

Moreover, the stochastic evolution operator given by Eq.(1.1.11) also satisfies the 
“backward equation”: 

 d

dt
P̂(t, tF ) = − Q̂(t) P̂(t, tF )  ,                      --- Eq.(1.1.12) 

as well as the Chapman-Kolmogorov equation (aka the multiplicativity condition): 
 P̂(tI , tF ) = P̂(tI, tM ) P̂(tM , tF ) (tI < tM < tF )  . ,   --- Eq.(1.1.13) 
The latter could be rewritten in terms of conditional probabilities: 

 P ( j, tF ) (i, tI )⎡⎣ ⎤⎦= P (k, tM ) (i, tI )⎡⎣ ⎤⎦P ( j, tF ) (k, tM )⎡⎣ ⎤⎦
k=1

N

∑ . --- Eq.(1.1.13’) 

The last equation can be obtained by sandwiching the both sides of Eq.(1.1.13) with 
i  and j , and by inserting the decomposition of the identity operator, 

Î = k
k=1

N

∑ k , between the two stochastic evolution operators on its right-hand side. 

 As described above, we have reformulated a continuous-time Markov model 
on a finite set of states in terms of bra-vectors, ket-vectors and operators. Once we 
formulated it this way, we could extend the formulation to continuous-time Markov 
models on any discrete set of states, irrespective of whether it is finite, countably 
infinite, or uncountable, as long as the state space and the elementary transitions 
within it are well-defined. In the following sections, we will apply this formulation to 
describe the evolution of an entire sequence via insertions/deletions. 
 
1.2. Example: application to a model of base substitutions 
Traditionally, the studies of molecular evolution via base substitutions have unfolded 
by using the continuous-time Markov models on the state space consisting of the four 
bases, S = {T, C, A,G} , regarding the substitutions at each site as independent of 
other sites (e.g., Yang 2006). The model could be constructed by following the 
footsteps described in the subsection 1.1, and by letting the state index i  take the 
values T, C, A,G .  As an illustration, we here consider a simple but nontrivial 
example, i.e., the model proposed by Felsenstein in 1981.  This model is defined with 
the rate matrix, Q = qij( ) , with the elements: 
 qij = uπ j − uδij  .                      --- Eq.(1.2.1) 
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Here u  gives the scale of the substitution rate, and π j  is the equilibrium frequency of 

state j , satisfying π jj=T ,C,A,G
∑ =1 . The symbol δij  denotes Kronecker’s delta, which 

equals 1 for i = j , and 0 for i ≠ j . In this model, the rate operator Q̂  is defined with 
the equations: 

 

T Q̂ = uπC C + uπ A A + uπG G − u(πC +π A +πG ) T ,

C Q̂ = uπT T + uπ A A + uπG G − u(πT +π A +πG ) C ,

A Q̂ = uπT T + uπC C + uπG G − u(πT +πC +πG ) A ,

G Q̂ = uπT T + uπC C +uπ A A − u(πT +πC +π A ) G .

 

--- Eq.(1.2.1’) 
On the right-hand side of each equation, the first three terms represents the 
substitutions into different bases, and the last term gives the probability decrement 
resulting from the substitutions of the base on the left-hand side. Substituting 
Eq.(1.2.1’) into the identity, Q̂ = Î Q̂ = i i Q̂

i=T ,C,A,G
∑ , we find that the rate operator 

can be re-expressed as: Q̂ = u i
i=T ,C,A,G

∑( ) π j j
j=T ,C,A,G

∑( ) − Î⎡
⎣⎢

⎤
⎦⎥

. Using this, the 

stochastic evolution operator, P̂(t) = exp tQ̂( ) , can be calculated as: 

 P̂(t) = e−ut Î + (1− e−ut ) i
i=T ,C,A,G

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ π j j

j=T ,C,A,G

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  .              --- Eq.(1.2.2) 

In terms of conditional probabilities, this is rewritten as: 
 P ( j, t) (i, 0)⎡⎣ ⎤⎦= i P̂(t) j = e−utδij + (1− e

−ut )π j  .                       --- Eq.(1.2.2’) 
 It would be worth a mention that, although we only considered the simplest 
non-symmetric model here, the bra-ket notation is also applicable to more general 
substitution models, as we will see in part IV (Ezawa, Graur and Landan 2015c). 
 
1.3. Differences from the quantum mechanics 
Although we borrowed the bra-ket notation and the concept of operators from the 
quantum mechanics (e.g., Dirac 1958; Messiah 1961a), there are some differences 
between quantum mechanics and the Markov model. For example, in the Markov 
model, we made the bra-probability vector ( p(t) ) evolve, as in Eq.(1.1.2’), in order 
to clarify its correspondence with the traditional matrix equation for the conditional 
probabilities, Eq.(1.1.2). In contrast, in quantum mechanics, it is the ket-vector, ψ(t) , 
that is usually made evolve. This is simply by convention and, if desired, we could 
reformulate the quantum mechanics so that the bra-vector will evolve. Another 
difference, which is conceptually more important, is that, in quantum mechanics, it is 
the squared absolute values of the scalar products, i ψ (t)

2
 ( i =1, 2,..., N ), that are 

interpreted as the probabilities (and thus satisfy i ψ (t)
2

i=1

N

∑ =1 ). In the Markov 

model, in contrast, it is the scalar products themselves, p(t) i  ( i =1, 2,..., N ), that 

give the probabilities (and thus satisfy p(t) i =1
i=1

N

∑ ). This should be related to 

another big difference that the time evolution in the quantum mechanics is in the pure-
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imaginary direction ( i ∂
∂t
ψ(t) = Ĥ ψ(t) , where  is the Planck constant and Ĥ is 

the instantaneous time-evolution operator called the Hamiltonian), whereas the time 
evolution in the Markov model is in the real direction (see Eq.(1.1.2’)). 
 

2. Definition and formulation of the model of insertions/deletions 
As briefly mentioned in Introduction, this study uses a continuous-time Markov 
model defined on a discrete, infinite state space, in order to describe the stochastic 
evolution of an entire sequence along the time axis via insertions and delentions 
(indels), without any unnatural restrictions on the possible indel events, and allowing 
for general indel rate parameters. In this section, we will concretely define and 
formulate our model step by step. 
 
2.1. State space 
Because a Markov process is a timed trajectory in a state space, we first need to set 
the state space S  on which our Markov model is defined. We want to describe the 
indel events on a sequence, thus each element in S  should represent some state of the 
sequence. In the bulk of this study, we forget about substitutions in order to focus on 
indels. Thus we will not consider a state as a string of residues that belongs to the 
space, Ω* ≡ ΩL

L=0

∞∪ , where Ω  is the set of residues, that is, the set of four bases (for 
DNA sequences) or 20 amino-acids (for proteins), as usually done in the past (e.g., 
Miklós et al. 2004). Instead, we will consider a state as an array of a number of sites, 
each of which always contains a residue, and we will represent an insertion/a deletion 
as an addition/a removal of contiguous sites into/from a position of the array (Figure 
1). Depending on how detailed the states have to be represented, different state spaces 
may be used. We will propose three candidate spaces, SI , SII , and SIII , as follows. 
Whichever of these spaces we choose, we will assign a positive integer, e.g., x , to 
each site, in order to represent its coordinate, i.e., its position along the sequence.  The 
leftmost sequence has x =1, and x  increases by 1 when moving to the right-adjacent 
site, and the rightmost site has x = L(s) , which is the length of the sequence s ∈ S . 
 
(i) SI  (the state space of level 1) is the simplest conceivable space that satisfies the 
above requirement. In this space, a sequence of length L  is represented by an array of 
L  blank sites (Figure 1B). Because there is no way of distinguishing two sequences 
of the same length in this space, SI  has a one-to-one correspondence with the set of 
non-negative integers, Ν0 ≡ {0, 1, 2, ...} , where 0  represents an empty sequence. This 
space is also equivalent to the aforementioned Ω*  with Ω  collapsed into a single-
element set. Thus, a state s ∈ SI  can be uniquely specified with its length, L(s) . A 
merit of SI  is its simplicity. A drawback is that the record of a trajectory in this space 
alone cannot completely reproduce an indel process, or the alignment of the initial 
state and the final state. This is because an insertion of the same size changes a state 
in the same way no matter where in the sequence it occurs, and the same applies to a 
deletion. (This should be mostly solved if the residue identities are taken into account 
and if the trajectory of such sequence states is recorded in detail, except in the cases 
where indels involved repeated subsequences.) We will cover this drawback by 
keeping the insertion/deletion operators accumulated on the initial state, as a kind of 
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memento. Another drawback of SI  is that it is difficult to introduce positional 
variations (e.g., in indel rates) aside from the dependence on the (implicit) residue 
identities of the relevant and neighboring sites, because this space treats all sites 
equally. 
 
(ii) SII  (the state space of level 2) equips each site of the array with an ancestry, 
which distinguishes the site with those with different ancestries (Figure 1C). The sites 
with the same ancestry are considered homologous, i.e., descended from the same 
ancestral site. The set of ancestries, ϒ , could be anything, as long as it is rich enough 
to distinguish all possible sets of homologous residues from each other. Although we 
tentatively let an integer denote an ancestry, what matters is whether the integers are 
the same or different, but not the relative order among them or their magnitudes. A 
state s ∈ SII  of length L  can be specified with an L –tuple, [υ1, υ2, ..., υL ]∈ ϒ L . Thus, 

conceptually, SII ⊂ ϒ* ≡ ϒ L

L=0

∞∪  holds, where the first relation is an inclusion and 
not an equation, because we here consider that different sites in the ancestor, as well 
as newly inserted sites, have distinct ancestries. (However, an equation could hold if 
we also take account of duplications and consider that duplicated sites have an 
identical ancestry. See also part IV (Ezawa, Graur and Landan 2015c) for a related 
topic.) In the space SII , we can correctly align two or more sequences by comparing 
the ancestries of their sites (Figure 1E). Moreover, a trajectory in SII  can uniquely 
reproduce the history of indels, aside from some ambiguities on deletions involving 
either end of the sequence (explained in the next subsection). Another merit of this 
space is that we could introduce positional variations due to factors different from the 
residue identities of the relevant and neighboring sites. For example, the factors could 
be the relative positions of the sites in the context of the 3D structure of the protein or 
RNA products of the gene, or they could be epigenetic contexts, such as 
predispositions to methylation, chromatin structures, etc. (e.g., Chen et al. 2010; Pink 
and Hurst 2010). These factors could influence the mutation rate itself and/or the 
selection pressure on the mutations. In addition, even the same sequence motif could 
undergo different selection pressures depending on the gene it belongs to or its 
relative position within the gene. The ancestries, or the ancestral positions, of the sites 
may model these contextual factors much better than their spatial coordinates along 
the extant sequences, because the latter could be confounded by indels that hit the 
sequences during their evolution. This reasoning for the assignment of ancestries to 
sites seems somewhat similar to the philosophy behind profile HMMs, which are 
designed to model functional domains or motifs from the MSAs of sequence families 
(e.g., Durbin et al. 1998; Rivas and Eddy 2013). Indeed, our idea of the “ancestries” 
of sites was partially inspired by the idea of a “position-specific evolutionary model” 
(Rivas and Eddy 2013). 
 
(iii) SIII  (the state space of level 3)  gives richer information than SII , by elaborating on 
the ancestry of each site using two attributes, (σ , ξ ) , namely, the source of the site (σ ) 
and its relative position within the source (ξ ) (Figure 1D). The “source” of the site 
means firstly that whether the site already existed in the initial sequence or not. If so, we 
assign σ = 0 . If not, the “source” further means which of the inserted sequences the site 
belongs to; for example, we could assign σ = k  to the sites inserted by the k  th insertion 
in the time order. (However, as the ancestries in the space SII , we could also consider 
that the magnitudes of the source identifiers or their relative orders don’t matter.) The 
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“relative positions” of the sites (ξ ’s) are integers representing how far two sites in the 
same source were from each other, either in the initial sequence state or immediately 
before they were inserted; the numbers must be consecutive if the sites were adjacent to 
each other. The “relative position” usually begins with 1, which represents the leftmost 
site among those inserted, but it could begin at a larger integer if the inserted sequence 
was a subsequence of a known sequence. Hence, a state s ∈ SIII  of length L is uniquely 
specified by an L -tuple of integer pairs, (σ1, ξ1), (σ 2, ξ2 ), ..., (σ L, ξL )[ ]∈ Ν0 ×Ν1{ }

L , 
where Ν0 ≡ 0, 1, 2, ...{ }  is the set of non-negative integers and Ν1 ≡ 1, 2, ...{ }  is the set of 

positive integers. Thus, conceptually, SIII ⊂ Ν0 ×Ν1{ }
*
≡ Ν0 ×Ν1{ }

L

L=0

∞

∏  holds. In 

SIII , the final state gives more than necessary for its alignment with the initial state. The 
state also gives more detailed (but still possibly incomplete) information on the indels 
that gave rise to this final state. It may also help annotate the final sequence in more 
details. And, with some modifications, this state space facilitates the incorporation of 
other rearrangements, such as duplications and inversions, into our model (see Ezawa, 
Graur and Landan 2015c). 
 As we have seen, a higher-level state space contains more information than a 
lower-level space. Thus, by suppressing some information, a higher-level space can be 
reduced to a lower-level space, but the former can never be recovered from the latter. 
For example, although a timed trajectory in the state space of either level 2 or 3 can 
fully recover the indel process, a timed trajectory in the level 1 state space cannot. 
Another important note is that, even in the state space of level 3, the alignment of the 
initial state with the final state cannot fully recover the indel history in general. To 
recover the full indel history, it is necessary to record the full trajectory of the sequence 
evolution in either SII  or SIII . We will do this concisely and in a focused manner by 
bookkeeping the successive actions of insertion and deletion operators, which will be 
introduced in the next subsection, on the sequence. Once we introduce this bookkeeping 
method, we could actually recover the full indel history even if we work with SI . 
Hereafter, the symbol S  denotes the state space when we do not need to specify its level 
of details. 
 
2.2. Insertion and deletion operators 
Here we will introduce the key components of our model formulation, namely, 
insertion operators and deletion operators. As in the long indel model of Miklós et al. 
(2004) and the indel model of Dawg (Cartwright 2005), we consider that the sequence 
in question, s ∈ S , whose length will be denoted as L(s) , is embedded in a sequence 
of a practically infinite length. 
 Let M̂I (x, l)  be the “insertion operator” that inserts a contiguous array of l  
sites between the x  th and the (x +1)  th sites of the sequence s , when 0 < x < L(s) . 
For example, the action of M̂I (x, l)  (0 < x < LI ) on an initial sequence, 
sI = (0, 1), ..., (0, LI )[ ]∈ SIII , could be expressed as: 

  (0, 1), ..., (0, LI )[ ] M̂I (x, l) = (0, 1), ..., (0, x), (1,1), ..., (1, l), (0, x +1),..., (0, LI )[ ]  . 
--- Eq.(2.2.1)   

We also allow the 1st argument x  to be 0  or L(s) ; we define M̂I (0, l)  as an operator 
to prepend an array of l  sites to the left-end of s , and define M̂I L(s), l( )  as an 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 4, 2015. ; https://doi.org/10.1101/023598doi: bioRxiv preprint 

https://doi.org/10.1101/023598
http://creativecommons.org/licenses/by/4.0/


 - 18 - 

operator to append the array to the right-end of s . However, we will not consider the 
action of M̂I (x, l)  with x < 0  or x > L(s)  on s . 
 Let  M̂D (xB, xE )  (with xB ≤ xE ) be the “deletion operator” that removes the 
sub-array between (and including) the xB  th site and the xE  th site from the sequence 
s , if 1≤ xB ≤ xE ≤ L(s) . For example, the action of M̂D (xB, xE )  (with 1≤ xB ≤ xE ≤ LI ) 
on sI  as defined above could be expressed as: 
(0, 1), ..., (0, LI )[ ] M̂D (xB, xE ) = (0, 1), ..., (0, xB −1), (0, xE +1),..., (0, LI )[ ]  . 

--- Eq.(2.2.2)    
Because we consider the sequence s  as embedded in a practically infinitely long 
sequence, we also allow deletions to stick out of an end or both ends of the sequence. 
We define the action of M̂D ( ′xB, xE )  with ′xB <1≤ xE < L(s)  to be identical to that of 
M̂D (1, xE ) , i.e., the removal of the sub-array of s between (and including) the left-end 

and the xE  th site. Likewise, we define the action of M̂D (xB, ′xE )  with 
1< xB ≤ L(s)< ′xE  to be identical to that of M̂D (xB, L(s)) , i.e., the removal of the sub-
array of s  between (and including) the xB  th site and the right-end. The action of 
M̂D ( ′xB, ′xE )  with ′xB ≤1≤ L(s) ≤ ′xE  is defined as identical to that of M̂D (1, L(s)) , i.e., 
the deletion of the whole sequence s , which results in an empty array, [] . These 
identifications of the end-involving deletions were already known (Miklós et al. 2004; 
Cartwright 2005), but we are the first to formulate the identifications in terms of the 
equivalence relations between operators (see Eqs.(2.3.1a,b,c) in the next subsection). 
 With these definitions, a particular insertion or deletion operator acting on a 
particular state in the space S  unambiguously results in another particular state in S . 
Thus, successive actions of some insertion and deletion operators on an initial state 
uniquely determine an indel history, or an untimed trajectory of the states in S . Figure 
1A shows an example of such successive actions of operators, and panels B, C, and D 
in Figure 1 are its representations in the state spaces SI , SII , and SIII , respectively. 
The indel history shown in Figure 1 can be recapitulated as the following 
“bookkeeping” representation of the accumulated actions of the indel operators: 
 sF = sI M̂D (3,3) M̂I (5, 2) M̂D (2,3) M̂I (5,1) ,              --- Eq.(2.2.3) 
from which the (untimed) trajectory in the state space and the MSA are also 
recoverable. Alternatively, we could also represent the indel history as the initial state 
( sI ) and an ordered set of the indel operators, M̂D (3,3), M̂I (5, 2), M̂D (2,3), M̂I (5,1)⎡

⎣
⎤
⎦ . 

As shown in Figure 1E, the MSA of the initial, intermediate, and final sequences can 
be easily constructed by unfolding the bookkept actions of the indel operators, that is, 
by inserting gaps aligned with inserted sites into sequence states before the insertion, 
and by inserting gaps aligned with deleted sites into sequence states after the deletion. 
Then, by removing the intermediate sequences from the MSA, and possibly by 
removing the resulting “null” columns that contain only gaps, the PWA between the 
initial and final sequences can also be obtained (Figure 1F). 
 
2.3. Equivalence classes of indel histories during time interval (I) 
In many applications, we are mainly interested in the pairwise alignment (PWA) 
between the initial and final sequences in the evolution during a time interval, [tI , tF ] , 
which often corresponds to a branch in a phylogenetic tree. In general, a PWA could 
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result from many different indel histories. Therefore, it is useful to identify some 
typical groups of indel histories that yield the same PWA. 
 First of all, using the definitions of the sticking-out deletion operators given in 
Subsection 2.2, we can set the following unary equivalence relations: 
 M̂D ( ′xB, xE ) ~ M̂D (1, xE ) for ′xB <1≤ xE < L(s)  ,       --- Eq.(2.3.1a) 

 M̂D (xB, ′xE ) ~ M̂D (xB, L(s)) for 1< xB ≤ L(s)< ′xE ,  --- Eq.(2.3.1b) 
 M̂D ( ′xB, ′xE ) ~ M̂D (1, L(s)) for ′xB ≤1≤ L(s) ≤ ′xE  .    --- Eq.(2.3.1c) 
Here L(s) is the length of the sequence s  that the operators act on. Using these unary 
equivalence relations, we first rewrite the sticking-out deletion operators with the 
equivalent operators that do not stick out of the sequence ends. Then, we consider 
more complex equivalence relations below. 
 Let us second consider the simplest “complex” histories, each of which consists of 
two indel events separated by at least a site that was preserved throughout the time 
interval (called a “preserved ancestral site” (PAS) hereafter). Figure 2, panels A-C gives 
an example, where two indel histories (panels A and B) result in the same PWA (panel 
C). The indel history in Figure 2A can be recapitulated as sF = sI M̂D (2, 4) M̂I (3, 2) , 
whereas the indel history in Figure 2B can be recapitulated as 
sF = sI M̂ I (6, 2)M̂D (2, 4) .  Even in the state space SIII , however, both result in the 

identical state (bottom of panels A and B of Figure 2): 
sF = (0,1), (0, 5), (0, 6), (1,1), (1, 2), (0, 7)[ ] . Here we assumed that 

sI = (0,1), (0, 2), (0,3), (0, 4), (0, 5), (0, 6), (0, 7)[ ] .  Thus, as far as states in SIII  are 
concerned, we get the following binary equivalence relation: 
 M̂D (2, 4) M̂I (3, 2) ~ M̂I (6, 2)M̂D (2, 4)  .              --- Eq.(2.3.1) 
Of course, the two histories give the same PWA (Figure 2C). Another example is 
given in Figure 2, panels D-F, where two insertions are involved.  The history in 
Figure 2D can be recapitulated as sF1 = sI M̂ I (1, 2) M̂I (4,1) , whereas the history in 

Figure 2E can be recapitulated as sF2 = sI M̂ I (2,1) M̂I (1, 2) . In this case, the 

resulting states in SIII  are slightly different, as indicated by the different state names: 
sF1 = (0,1), (1,1), (1, 2), (0, 2), (2,1), (0,3)[ ] , and 

sF2 = (0,1), (2,1), (2, 2), (0, 2), (1,1), (0,3)[ ] . 

Here we assumed that sI = (0,1), (0, 2), (0,3)[ ] .  Therefore, the two operator 

products do not appear equivalent in SIII  in its strict sense.  However, if we remember 
that what matters regarding the origin identifier (the first number in each pair of 
parentheses) is only whether the identifiers are the same or different, sF1  and sF1  
are indistinguishable. Moreover, the two histories give the same PWA (Figure 2F). 
Thus, in SIII  in this broad sense (and of course in SII ), we get the following binary 
equivalence relation: 
 M̂I (1, 2) M̂I (4,1) ~ M̂I (2,1) M̂I (1, 2) .                    --- Eq.(2.3.2) 
These equivalence relations, Eq.(2.3.1) and Eq.(2.3.2), can be generalized to provide 
the following four sets of binary equivalence relations in terms of PWA: 
M̂I (x1, l1) M̂I (x2, l2 ) ~ M̂I (x2, l2 ) M̂I (x1 + l2, l1) for x1 > x2  ,         ---Eq.(2.3.3a) 
M̂D (xB, xE ) M̂I (x, l) ~ M̂I (x, l) M̂D (xB + l, xE + l) for xB > x +1 ,  ---Eq.(2.3.3b) 
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M̂I (x, l) M̂D (xB, xE ) ~ M̂D (xB, xE )M̂I (x − ′l , l) for x > xE ,           ---Eq.(2.3.3c)  
M̂D (xB1, xE1) M̂D (xB2, xE2 ) ~ M̂D (xB2, xE2 ) M̂D (xB1 − ′l2, xE1 − ′l2 ) for xB1 > xE2 +1 . 

--- Eq.(2.3.3d) 
Here, ′l ≡ xE − xB +1  in Eq.(2.3.3c), and ′l2 ≡ xE2 − xB2 +1  in Eq.(2.3.3d). These 
equivalence relations could be re-expressed in the following words. “The operator 
representing the event on the left along the sequence will not change whether it comes 
first or second. The operator representing the event on the right will shift its 
operational position to the left/right by the number of sites deleted/inserted before its 
operation, when it comes second.” 
 Now, we can extend the binary equivalence relations, Eqs.(2.3.3a-d), to the 
equivalence relations among more general complex indel histories, each consisting of 
more than two indel events. Let us consider a history of N  indel events, which begins 
with an initial state sI  and is recapitulated as:  

sI M̂1 M̂2 M̂N  .                         --- Eq.(2.3.4a) 

Here M̂i  is the operator representing the i  th event ( i =1,2,...,N ) in the temporal 

order, which is M̂D (.,.)  (for a deletion) or M̂I (.,.)   (for an insertion) with appropriate 

arguments. This indel history is also represented as M̂1, M̂2, ..., M̂N
⎡
⎣

⎤
⎦  on sI . Given an 

indel history, we can identify ancestral sites that have been kept undeleted during the 
history. Suppose that such preserved ancestral sites (PASs) separate the indel events 
M̂i{ }

i=1,2,...,N
 in the global history M̂1, M̂2, ..., M̂N

⎡
⎣

⎤
⎦  into K  local subsets of indels, 

each of which is confined either between a pair of PASs or between a PAS and an end 
of the resulting PWA. Number the K  local subsets as k =1, 2, ..., K  from left to right, 
and let Nk  be the number of indel events in the k  th local subset. Here the numbers 

satisfy Nkk=1

K

∑ = N .  And let ˆ ′M [k, ik ]  be the element of M̂i{ }
i=1,2,...,N

 representing the 

ik  th event (in the temporal order) in the k  th local subset ( ik =1, 2,..., Nk ; 
k =1, 2, ..., K ).  Then, repeatedly applying the binary equivalence relations, 
Eqs.(2.3.3a-d), between the operators representing events belonging to different local 
subsets, we can move the operators around in the product in Eq.(2.3.4a) and find the 
following expression that is equivalent to Eq.(2.3.4a): 
 sI M̂[K,1] M̂[K,NK ]⎡

⎣
⎤
⎦ M̂[1,1] M̂[K,N1]⎡

⎣
⎤
⎦  . --- Eq.(2.3.4b) 

Here M̂[k, ik ]  is an operator that was obtained from ˆ ′M [k, ik ]  through the series of 
equivalence relations Eqs.(2.3.3a-d) that brought Eq.(2.3.4a) into Eq.(2.3.4b). As the 
operators in Eq.(2.3.4a), the operators in each pair of large square parentheses are 
arranged in temporal order, so that the earliest event in each local subset will come 
leftmost. But it should be noted that the order among the pairs of large square 
parentheses is the opposite of the actual spatial order among the local subsets, so that 
the rightmost local subset along the sequence (the K  th one) will come leftmost in the 
product of operators. In this way, the operators in each local subset, e.g., 
M̂[k,1], ..., M̂[k,Nk ]{ } , are exactly the same as those when the events in the subset 

alone struck the initial state sI .  Thus the series of operators, M̂[k,1], ..., M̂[k,Nk ]⎡
⎣

⎤
⎦ , 
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for the k  th local subset defines the k  th local indel history that was isolated from the 
global indel history M̂1, M̂2, ..., M̂N

⎡
⎣

⎤
⎦  on sI ∈ S . 

 For example, the history of N = 4  indels in Figure 1, recapitulated as Eq.(2.2.3), is 
equivalent to the following product of local indel histories: 
 sF = sI M̂ I (6, 2) M̂I (8,1)⎡

⎣
⎤
⎦ M̂D (3,3) M̂D (2,3)⎡
⎣

⎤
⎦ . 

In this case, K = 2  and N1 = N2 = 2 . The operators representing local indel histories 
are: M̂[1,1]= M̂D (3,3) , M̂[1, 2]= M̂D (2,3) , M̂[2,1]= M̂I (6, 2) , and M̂[2, 2]= M̂I (8,1) . 

Now, let us consider a history of N indel events other than that represented as 
Eq.(2.3.4a). If the history is shown to be equivalent to Eq.(2.3.4b) through a series of 
equivalence relations, Eqs.(2.3.3a-d), then it should also be connected to Eq.(2.3.4a) 
though another series of Eqs.(2.3.3a-d). Therefore, it should be equivalent to Eq.(2.3.4a) 
in this sense. Hence, we can define a particular equivalence class to be the set of all 
global indel histories that can be “decomposed” into the identical set of local indel 
histories, such as Eq.(2.3.4b), only through a series of equivalence relations, 
Eqs.(2.3.3a-d), between operators representing indel events separated by at least one 
PAS. This equivalence class will become essential to the proof of the factorability of a 
PWA probability. Thus, we will call it the “local-history-set (LHS) equivalence 
class.” In the equivalence class defined by a local history set (LHS), 
M̂[k,1], ..., M̂[k,Nk ]⎡
⎣

⎤
⎦{ }

k=1,...,K
 (with Nkk=1

K

∑ = N ), on an initial sequence state sI ∈ S , 

there are N!

Nkk=1

K

∏
 LHS-equivalent global indel histories beginning with sI . Each of the 

global histories corresponds to a way of reordering N indel events while retaining the 
relative temporal order among Nk  events within the k  th local indel history (for every 
k =1,...,K ). 
 We can also identify equivalence relations involving the product of two 
operators representing overlapping indels or indels not separated by a PAS. Some of 
such relations are given in Appendix A1 (and illustrated in Figure 3). They are useful 
when discussing further equivalence relations between local indel histories giving rise 
to the identical local PWA. Most, if not all, of the equivalence relations between indel 
histories should be identified by the repeated applications of these relations, in 
addition to Eqs.(2.3.3a-d), and possibly Eqs.(2.3.1a-c). 
 
2.4. Evolutionary rate operator 
Here we finalize the definition of our continuous-time Markov model by giving the 
evolutionary rate operator in terms of the insertion and deletion operators. First 
consider its action on the bra-vector, s , of a sequence state s ∈ S  of length L(s) = L . 

In this case, the insertion operators that can act on s  are M̂I (x, l)  with 

x = 0, 1,..., L and l ≥1 , and the deletion operators that can act on s  are M̂D (xB, xE )  
with xB ≤ xE , xB ≤ L , and xE ≥1 .  We begin with a very general situation where the 
rate parameters, rI (x, l; s,ω(t)[L(s)], X(t))  for the insertion M̂I (x, l)  and 
rD (xB, xE; s,ω( t)[L(s)], X(t))  for the deletion M̂D (xB, xE ) , could depend on the 
sequence indel state ( s ∈ S ) including its genomic and epigenomic contexts (as far as 
the state space S  can accommodate), the residue identities filling the sites of the 
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sequence (ω(t)[L(s)]≡ ω1(t), ...,ωL(s) (t)⎡⎣ ⎤⎦∈ΩL(s) ), and other external factors ( X(t) ) 
including the cellular and subcellular locations of the gene product, population 
dynamics, ecological environment, climates, etc. The latter two arguments are 
considered as time-dependent parameters. It should be noted that, because we do not 
explicitly consider the sequence evolution via substitutions in the bulk of the paper, 
we regard ω(t)[L(s)]  as an average behavior of the sequence residue states. Thus, 
sharp changes in the residue states, such as the creation or annihilation of the 
sequence motifs that drastically enhance or suppress the indel rates, will not be 
considered here. Such cases will be briefly considered in part IV (Ezawa, Graur and 
Landan 2015c). In the following, to simplify the notation, we will not explicitly 
express the dependence of the rate parameters on ω(t)[L(s)] , and X(t) . Instead, we 
will collectively represent it by the dependence on time t , like rI (x, l; s, t)  and 
rD (xB, xE; s, t) . Given a set of indel rate parameters as above, the rate operator 
restricted to a subspace of states, S (L ) ≡ s ∈ S L(s) = L{ } , is defined by the following 

action on the state bra-vector s  for ∀s ∈ S (L ) : 

            

s Q̂ID(L ) (t) = rI (x, l; s, t) s M̂I (x, l)l=1

∞

∑
x=0

L

∑
+ rD (xB, xE; s, t) s M̂D (xB, xE )xE=max xB , 1{ }

∞

∑
xB=−∞

L

∑
− RX

ID(L ) (s, t) s .

       --- Eq.(2.4.1a) 

Here the first and the second double-summations give the state changes via an 
insertion and a deletion, respectively. The third term with the exit rate: 
  RX

ID(L ) (s, t) = rI (x, l; s, t)l=1

∞

∑
x=0

L

∑ + rD (xB, xE; s, t)xE=max xB , 1{ }

∞

∑
xB=−∞

L

∑    --- Eq.(2.4.1b) 

is necessary for keeping the total probability to be 1.  From Eqs.(2.4.1a,b), we can 
define the indel rate operator, Q̂ID (t) , in the whole state space S , by using the 
decomposition of the identity operator, Î = s

s∈S
∑ s , as: 

    Q̂ID (t) ≡ s s Q̂ID(L(s)) (t)
s∈S

∑ = Q̂M
I (t)+ Q̂M

D (t)+ Q̂X
ID (t)  .             --- Eq.(2.4.2a) 

Here 
    Q̂M

I (t) ≡ s rI (x, l; s, t) s M̂I (x, l)l=1

∞

∑
x=0

L(s)

∑⎡⎣⎢
⎤
⎦⎥

s∈S

∑  ,              --- Eq.(2.4.2b) 

   Q̂M
D (t) ≡ s rD (xB, xE; s, t) s M̂D (xB, xE )xE=max xB , 1{ }

∞

∑
xB=−∞

L(s)

∑⎡⎣⎢
⎤
⎦⎥

s∈S

∑ ,  --- Eq.(2.4.2c) 

   Q̂X
ID (t) ≡ − s RX

ID(L(s)) (s, t) s
s∈S

∑  .                                                 --- Eq.(2.4.2d) 

In practice, the probabilities of insertions/deletions of extremely long (sub-)sequences 
are practically zero, due to physical restrictions (e.g., the chromosome length) or for 
biological reasons (e.g., purifying selection). Thus, we could safely limit the lengths 
of insertions and deletions to less than or equal to some “cut-off” values. Let them be 
denoted here as LI

CO  and LD
CO , respectively. Then, Eqs.(2.4.2b,c) could be rewritten 

as: 

   Q̂M
I (t) ≡ s rI (x, l; s, t) s M̂I (x, l)l=1

LI
CO

∑
x=0

L(s)

∑⎡⎣⎢
⎤
⎦⎥

s∈S

∑  ,              --- Eq.(2.4.2b’) 
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Q̂M
D (t) ≡ s rD (xB, xE; s, t) s M̂D (xB, xE )xE=max xB , 1{ }

xB+LD
CO−1

∑
xB=−LD

CO+2

L(s)

∑⎡⎣⎢
⎤
⎦⎥

s∈S

∑ .--- Eq.(2.4.2c’) 

 
And, Eq.(2.4.1b) could also be rewritten as: 

RX
ID(L ) (s, t) = rI (x, l; s, t)l=1

LI
CO

∑
x=0

L

∑ + rD (xB, xE; s, t)xE=max xB , 1{ }

xB+LD
CO−1

∑
xB=−LD

CO+2

L

∑  ,  

--- Eq.(2.4.1b’)   
which in turn gets Eq.(2.4.2d) re-expressed as well. 
 Using the unary equivalence relations, Eqs.(2.3.1a,b,c), we can further 
decompose Q̂M

D , defined in Eq.(2.4.2c’),  into contributions from the deletions in the 
middle of the sequence, on the left-end, on the right-end, and from the whole-
sequence deletions, as given in Eqs.(A2.1a-e) in Appendix A2. This re-expression of 
Eqs.(2.4.2c’) could sometimes simplify theoretical thinking. It could also save 
computational costs by doing away with deletions that stick out of the boundaries of 
the sequence under consideration. It will be used only rarely in this paper.  
 If the state space SI  is used, the continuous time Markov model defined by the 
Eqs.(2.4.2a-d) or their equivalents, Eqs.(2.4.2b’,c’) or Eqs.(2.4.3a-d), with time-
independent parameters, is practically equivalent to the indel component of the 
substitution/insertion/deletion model equipped with a general rate grammar, as proposed 
by Miklós et al. (2004). A major difference between their and our formulations is that, 
whereas state trajectories played a central role in their model, we focused on indel 
histories, which enabled us to prove the factorability of the alignment probability 
calculated from the first principle. Although Miklós et al.’s general rate grammar 
(which they merely proposed) can accommodate the dependence of indel rate 
parameters on the sequence context through the residue identities of the sites in the 
sequence, it cannot accommodate their dependence on the ancestries of the sites, which 
could be a proxy of, e.g., the 3D structural, genomic and epigenomic contexts of the 
sequence. Our general Markov model, in contrast, could accommodate the site ancestry 
dependence of indel rates, if we use the state space SII  or SIII . 
 Here, we give a couple of special cases of our general model, with the state space 
SI .  First, the indel model for Dawg (Cartwright 2005) is equivalent to the model with the 
rate operator given by Eqs.(2.4.2a,b’,c’,d) and Eq.(2.4.1’) with the homogeneous, time-
independent indel rate parameters: 

 
rI (x, l; s, t) = λI fI (l) ,

rD (xB, xE; s, t) = λD fD (xE − xB +1) .
                         --- Eqs.(2.4.4a,b) 

Here  λI  and λD  are the per-location rates of insertion and deletion, respectively, and 
fI (l)  and fD (l)  are the distributions of insertion lengths and deletion lengths, 

respectively. Because Dawg’s model does not impose the time-reversibility condition, 
we can take λI , λD , fI (l) , and fD (l)  freely, as long as they are all non-negative and 

satisfy fI (l) =l=1

LI
CO

∑ fD (l) =l=1

LD
CO

∑ 1  for some cut-off values LI
CO  and LD

CO . The exit rate, 

Eq.(II-4.1b’), can be calculated as: 

RX
ID(L ) (s, t) = λI fI (l)l=1

LI
CO

∑
x=0

L

∑ + λD fD (xE − xB +1)xE=max xB , 1{ }

xB+LD
CO−1

∑
xB=−LD

CO+2

L

∑
= λI (L +1)+ λD L + lD −1( ) = (λI +λD )L +Δ

Dawg λI , λD, fD (.)[ ] .
 

---Eq.(2.4.4c)    
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Here lD ≡ l fD (l)l=1

LD
CO

∑  is the average deletion length, and 

ΔDawg λI , λD, fD (.)[ ] ≡ λI +λD (lD −1)  is a constant that depends on the indel rate 
parameters. 
 The long-indel model of Miklós et al. (2004) is very similar to the model of Dawg, 
but it also shows some differences. It could be defined by Eqs.(2.4.2a,b’,c’,d) and 
Eq.(2.4.1’) with the homogeneous, time-independent indel rate parameters: 

    
rI (x, l; s, t) =

λl for 1≤ x ≤ L(s)−1,

λl
(end ) for x = 0, L(s) with L(s)> 0 ,

λl
(whole) for x = 0 with L(s) = 0 ,

⎧

⎨
⎪⎪

⎩
⎪
⎪

rD (xB, xE; x, t) = μxE−xB+1
.

          ---Eqs.(2.4.5a,b) 

It should be noted that each insertion rate parameter in the original paper of Miklós et 
al. (2004) includes a multiplication factor, representing the probability of residue 
states that filled the inserted sites. The factor is omitted in the bulk of this paper, 
because we consider it to be treated in conjunction with the substitution model (as 
briefly discussed in Discussion). This long-indel model was required to satisfy the 
detailed-balance conditions and thus to be time-reversible. The appropriate state space 
for the indel component of this model is SI , thus a state s ∈ SI  is uniquely 
determined by specifying its length, L(s)∈ Ν0 . Letting p*(L(s))  be the equilibrium 
distribution of the sequence length, the detailed-balance conditions are: 
p*(L)λl = p

*(L + l)μl  for the bulk, p*(L)λl
(end ) = p*(L + l)μl

(end )  for the sequence ends 

with L > 0 , and p*(0)λl
(whole) = p*(l)μl

(whole)  for L = 0 , all for l =1, 2, ..., LD
CO (= LI

CO ) . 

Here, μl
(end ) ≡rD;L (l; s, t) = rD;R (L(s)− l +1; s, t) = μ ′l′l =l

LD
CO

∑ , with L(s)> l , is the “effective 

rate” of the deletion of length l  from either end of the sequence. And 

μl
(whole) ≡rD;W (s, t) L(s)=l = ( ′l − l +1)μ ′l′l =l

LD
CO

∑  is the “effective rate” of the whole-sequence 

deletion of length l . These equations for μl
(end )  and μl

(whole)  were obtained by 
substituting Eq.(2.4.5b) into the definitions of rD;L (l; ′s , t)  , rD;R (L +1; ′′s , t) , and  
rD;W (s, t)  given by Eqs.(A2.1c,d,e), respectively. Solving the detailed balance 
conditions yields, as described in Miklós et al. (2004): 
 p*(L) = (1−λ1 /μ1)(λ1 /μ1)

L ,                     ---Eq.(2.4.6a) 
 λl = (λ1 /μ1)

l μl ,                                      ---Eq.(2.4.6b) 

 λl
(end ) = (λ1 /μ1)

l μl
(end ) = (λ1 /μ1)

l μ ′l′l =l

LD
CO

∑ ,  --- Eq.(2.4.6c) 

 λl
(whole) = (λ1 /μ1)

l μl
(whole) = (λ1 /μ1)

l ( ′l −1+1)μ ′l′l =l

LD
CO

∑ .  --- Eq.(2.4.6d) 

Thus, the sequence length must follow a geometric distribution with a fixed 
elongation probability (λ1 /μ1 ), and the insertion length distribution and the deletion 
length distribution must depend on each other through Eqs.(2.4.6b,c,d). Aside from 
these differences due to the time-reversibility, the long indel model is very similar to 
Dawg’s indel model. We can easily see the correspondence by setting: 

     λl = λI fI (l), λI = λll=1

LI
CO

∑ , μl = λD fD (l), λD = μll=1

LI
CO

∑ . --- Eqs.(2.4.7a,b,c,d) 
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Using this correspondence, the exit rate in the long-indel model is given in a very 
similar form as in Dawg’s model: 
              RX

ID(L ) (s, t) = (λI +λD )L +Δ
Long λI , {λl

(end )}, λD, fD (.)⎡
⎣

⎤
⎦ ,       ---Eq.(2.4.7e) 

where ΔLong λI , {λl
(end )}, λD, fD (.)⎡

⎣
⎤
⎦≡ −λI + 2 λl

(end )

l=1

LI
CO

∑⎛⎝⎜
⎞
⎠
⎟+λD (lD −1)  is a constant that 

depends on the indel rate parameters. One of the major differences between the two 
models is in the length distribution of insertions on a sequence end. The long indel 
model forces it to balance the length distribution of deletions on a sequence end, 
whereas Dawg’s model merely sets it equal to the (homogeneous) insertion length 
distribution at an inter-site position. We suppose that this particular difference does 
not matter so much in their applications to practical sequence analyses, where 
sequence ends are likely to be determined by artificial factors, such as sequence 
annotation, homology detection, etc. 
 Back to the general model, once the rate operator Q̂ID (t) is given by 
Eqs.(2.4.2a,b’,c’,d) with Eq.(2.4.1’), we could at least formally solve the extension of 
Eqs.(1.1.10a’,b’) to the space state S (= SI , SII , or SIII ) : 

 d

dt
P̂ID (tI , t) = P̂

ID (tI , t) Q̂
ID (t) ,                                       --- Eq.(2.4.8a) 

P̂ID (t, t) = Î for t ∈ [tI , tF ].                                      --- Eq.(2.4.8b) 
This yields the formal general solution for the stochastic indel evolution operator for 
the time interval [tI , t] : 

 P̂ID (tI , t) = T exp d ′t Q̂ID ( ′t )
tI

t

∫( ){ }  .                      --- Eq.(2.4.9) 

By definition, the evolution operator naturally satisfies the Chapman-Kolmogorov 
equation: 
 P̂ID (tI , ′t ) P̂

ID ( ′t , t) = P̂ID (tI , t) (tI < ′t < t)  .       ---Eq.(2.4.10) 
In practice, however, because S  is an infinite state space, a naïve numerical 
computation of Eq.(2.4.9) is impossible.  Analytic solutions to Eqs.(2.4.8a,b) cannot 
be obtained, either, except in special simple cases where the indel process of each site 
and each inter-site position can be handled separately, such as in the TKF91 model 
(Thorne et al. 1991). Good news is that Q̂ID (t)  is quite sparse, that is, it connects each 
state s ∈ S  with only a finite number of states. Therefore, if we are only interested in 
the finite-time evolution of a sequence starting with a given state sI ∈ S , only a small 
subset of S  will need to be explored. This is because we are essentially dealing with 
diffusion processes, like random walks, from a point ( sI ∈ S ).  Taking account of this 
idea, we could approximately perform a numerical computation of Eq.(2.4.9) by, e.g., 
using the definition of the time-ordered exponential: 

T exp d ′t Q̂ID ( ′t )
tI

t

∫( ){ } ≡ lim
NP→∞

Î + t−tI
NP
Q̂ID (t1

(NP ) )( ) Î + t−tI
NP
Q̂ID (t2

(NP ) )( ) Î + t−tI
NP
Q̂ID (tNP

(NP ) )( )
 
with  tk

(NP ) ≡ tI + (i− 1
2 )

t−tI
NP

.  In the next section, however, we will rewrite Eq.(2.4.9) 
into a more convenient and insightful form, by using techniques of the perturbation 
theory in physics (e.g., Dirac 1958; Messiah 1961a). 
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3. Perturbation expansion of alignment probability 
3.1. Perturbation expansion of probability of PWA between descendant and ancestral 
sequences  
In the perturbation theory of quantum mechanics (e.g., Dirac 1958; Messiah 1961b), the 
instantaneous time evolution operator Ĥ (t)  is considered as a sum of two operators, 
Ĥ (t) = Ĥ0 (t)+ V̂ (t) , and the time evolution of the system is described as if the system 

mostly evolves according to the well-solvable time-evolution operator ( Ĥ0 (t) ) and is 

occasionally perturbed by the “interaction” operator (V̂ (t) ).  
Here we apply the technique of such perturbation theory to our general 

continuous-time Markov model. We first re-express our rate operator as: 
 Q̂ID (t) = Q̂0

ID (t)+ Q̂M
ID (t) .                                --- Eq.(3.1.1a) 

Here Q̂0
ID (t)  is the operator describing the mutation-free evolution, and Q̂M

ID (t)  is the 
operator describing the state transition due to a mutation (indel): 
            Q̂0

ID (t) ≡ Q̂X
ID (t) = − s RX

ID(L(s)) (s, t) s
s∈S

∑ ,              --- Eq.(3.1.1b) 

           Q̂M
ID (t) ≡ Q̂M

I (t)+ Q̂M
D (t)  ,                                        ---Eq.(3.1.1c) 

with Q̂M
I (t)  and Q̂M

D (t)  defined in Eqs.(2.4.2b,c). Using Eq.(3.1.1a), the time-differential 
equation of the stochastic evolution operator, Eq.(2.4.8a), can be rewritten as: 
d

dt
P̂ID (tI , t) = P̂

ID (tI , t) Q̂0
ID (t)+ P̂ID (tI , t) Q̂M

ID (t) ,  which is further rewritten as: 

                d
dt
P̂ID (tI , t) − P̂

ID (tI , t) Q̂0
ID (t) = P̂ID (tI , t) Q̂M

ID (t) . 

Multiplying each side of the above equation by P̂0
ID (t, tF ) ≡ T exp d ′t Q̂0

ID ( ′t )
t

tF∫( ){ }  from 

the right, and using the “backward equation” Eq.(1.1.12) with Q̂0
ID (t)  substituted for 

Q̂(t) , we have: 

      d
dt

P̂ID (tI , t) P̂0
ID (t, tF ){ } = P̂ID (tI , t) Q̂M

ID (t) P̂0
ID (t, tF )  . 

Performing the time integration from tI  to tF of both sides, and using 
P̂ID (tI , tI ) = P̂0

ID (tF, tF )= Î , we get an important integral equation: 

       P̂ID (tI , tF ) = P̂0
ID (tI , tF )+ dt P̂ID (tI , t) Q̂M

ID (t) P̂0
ID (t, tF )tI

tF∫  .       --- Eq.(3.1.2) 

Now, we formally expand P̂ID (tI , tF )  as P̂ID (tI , tF ) = P̂(N )
ID (tI , tF )N=0

∞

∑ , where 

P̂(N )
ID (tI , tF )  is the collection of terms containing N  indel operators each. Substituting 

this expansion into Eq.(3.1.2) and comparing the terms with the same number of indel 
operators on both sides, we find: 
      P̂(0)

ID (tI , tF ) = P̂0
ID (tI , tF ) , P̂(N )

ID (tI , tF ) = dt P̂(N−1)
ID (tI , t) Q̂M

ID (t) P̂0
ID (t, tF )tI

tF∫ (N ≥1) .  

The second equation can be recursively solved to give: 
        P̂(N )

ID (tI , tF ) =
tI<t1< <tN<tN+1≡tF

∫∫ dt1 dtN P̂0
ID (tI , t1)T Q̂M

ID (t
i
)P̂0

ID (ti, ti+1)i=1

N

∏{ }   

for N ≥1 . Substituting this expression into the above expansion, we finally obtain the 
formal perturbation expansion of the stochastic evolution operator: 
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P̂ID (tI , tF ) = P̂0
ID (tI , tF )+

tI<t1< <tN<tN+1=tF

∫∫ dt1 dtN P̂0
ID (tI , t1)T Q̂M

ID (t
i
)P̂0

ID (ti, ti+1)i=1

N

∏{ }
N=1

∞

∑

= P̂0
ID (tI , tF )+ dt P̂0

ID (tI , t) Q̂M
ID (t) P̂0

ID (t, tF )tI

tF∫
+ dt1 dt2 P̂0

ID (tI , t1) Q̂M
ID (t1) P̂0

ID (t1, t2 )Q̂M
ID (t2 ) P̂0

ID (t2, tF )
tI<t1<t2<tF

∫∫

+ dt1 dt2 dt3 P̂0
ID (tI , t1) Q̂M

ID (t1) P̂0
ID (t1, t2 )Q̂M

ID (t2 ) P̂0
ID (t2, t3)Q̂M

ID (t3) P̂0
ID (t3, tF )

tI<t1<t2<t3<tF

∫∫∫ + .

 
--- Eq.(3.1.3) 

From this expansion, we can see that P̂ID (tI , tF )  also satisfies another important 
integral equation: 
           P̂ID (tI , tF ) = P̂0

ID (tI , tF )+ dt P̂0
ID (tI , t) Q̂M

ID (t) P̂ID (t, tF )tI

tF∫    ,   --- Eq.(3.1.4) 

which could also be derived from the backward equation, Eq.(1.1.12), with 
Eq.(3.1.1a) substituted for Q̂(t) . Actually, Eqs.(3.1.2,3,4) hold for general 
continuous-time Markov models, not limited to the indel evolutionary model, if we 
replace Q̂0

ID (t)  with any “perturbation-free” rate operator and replace Q̂M
ID (t)  with the 

remainder, which will be treated as a “perturbation” operator. (See, e.g., part IV 
(Ezawa, Graur and Landan 2015c).) [NOTE: Historically, it was Feller’s theorem 
(1940) that first proved that Eq.(3.1.3) gives the general solution to Eqs.(2.4.8a,b). 
Feller’s proof, however, was in the opposite order than ours, in the sense that he first 
proved the recursion relation by P̂(N )

ID (tI , tF ) ’s and then proved that their summation 
gives the solution. In contrast, our proof here first derived the integral equation 
Eq.(3.1.2) satisfied by the entire stochastic evolution operator ( P̂ID (tI , tF ) ) and then 
derived the recursion relations satisfied by P̂(N )

ID (tI , tF ) ’s. Eq.(3.1.2) will play an 
important role in part II (Ezawa, Graur and Landan 2015a). Moreover, our operator 
representation provides a more concise and intuitively clearer derivation than Feller’s, 
which appeared more complex as it was represented in terms of probability 
components.] 
 In the present case, we could obtain a more concrete expression. First of all, 
from Eq.(3.1.1b), we have: 

     P̂0
ID (t1, t2 ) ≡ T exp dt Q̂0

ID (t)
t1

t2∫( ){ }= s exp − dt RX
ID (s, t)

t1

t2∫{ } s
s∈S

∑  .  --- Eq.(3.1.5) 

Here we omitted the explicit reminder of the sequence length dependence (i.e., the 
superscript “ (L(s)) ” in RX

ID (s, t) ≡ RX
ID(L(s)) (s, t) ), as it is obvious from the first 

argument, s . Because Q̂0
ID (t)  is diagonal here, the time order doesn’t matter, and the 

right-hand side of Eq.(3.1.5) is given by the exponentials of ordinary time-integrations. 
Substituting Eq.(3.1.5) into the expansion, Eq.(3.1.3), we have: 
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P̂ID (tI , tF ) = s0 exp − dt RX
ID (s

0
, t)

tI

tF∫{ } s0
s0∈S

∑

+
(s0 , s1,..., sN )∈S

N+1

∑∑ tI=t0<t1< <tN<tN+1=tF

∫∫ dt1 dtN s0 exp − dt RX
ID (s0, t)t0

t1∫{ }
× si−1 Q̂M

ID (t
i
) si exp − dt RX

ID (si, t)ti

ti+1∫{ }⎡
⎣⎢

⎤
⎦⎥
sNi=1

N

∏

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

N=1

∞

∑ .

 
--- Eq.(3.1.3’) 

To further simplify Eq.(3.1.3’), we symbolically rewrite the definition of Q̂M
ID (t) , 

Eq.(3.1.1c) with Eqs.(2.4.2b,c), as: 

Q̂M
ID (t) = s r(M̂; s, t) s M̂

M̂∈ΜID [L(s)]

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥s∈S

∑  . ,                   ---Eq.(3.1.6) 

Here ΜID[L]≡ M̂I (x, l){ }0≤x≤L,
1≤l

∪ M̂D (xB, xE ){ }xB≤xE ,
xB≤L, 1≤xE

 denotes the set of insertion and 

deletion operators that can act on the sequence of length L , and r(M̂; s, t)  denotes the 
(generally time- and state-dependent) rate parameter of the indel operator M̂ . 
Because the action of an indel operator on a state uniquely results in another single 
state, we have the following identity for any function F(s)  of state s ∈ S : 

s Q̂ID (t) ′s F( ′s )
′s ∈S

∑ = r(M̂; s, t) s M̂ ′s F( ′s )
M̂∈ΜID [L(s)]

∑
′s ∈S

∑

= r(M̂; s, t) F( ′s )
′s = s M̂

M̂∈ΜID [L(s)]

∑

= r(M̂; s, t) F( ′s )
′s = s M̂

∑
M̂∈ΜID [L(s)]

∑ .

         ---Eq.(3.1.7) 

On the rightmost hand side, the single-element summation, 
′s = s M̂

∑ , fixes the state 

′s  to be s M̂ .  Substituting the identity, Eq.(3.1.7), into Eq.(3.1.3’), we get: 

P̂ID (tI , tF ) = s0 exp − dt RX
ID (s

0
, t)

tI

tF∫{ } s0
s0∈S

∑

+ s0
s1 = s0 M̂1

∑
sN = sN−1 M̂N

∑
M̂N∈Μ

ID [L(sN−1 )]

∑
M̂1∈Μ

ID [L(s0 )]

∑

×
tI=t0<t1< <tN<tN+1=tF

∫∫ dt1 dtN r(M̂i; si−1, ti )i=1

N

∏( ) exp − dt RX
ID (si, t)ti

ti+1∫
i=0

N

∑
⎧
⎨
⎩

⎫
⎬
⎭
sN

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥s0∈S

∑
N=1

∞

∑ .

 
--- Eq.(3.1.3”)    

On the right hand side, the 2N –fold summation in the big square brackets represents 
the following set of recursive procedures: first sum over all possible indel operators, 
M̂1 ∈ΜID[L(s0 )]{ } , that can act on s0 ; then move on to the next state s1 = s0 M̂1  

for each indel operator M̂1 ; … ; then sum over all possible indel operators, 

M̂i ∈ΜID[L(si−1)]{ } , that can act on si−1 ; then move on to the next state 

si = si−1 M̂i  for each operator M̂i  ( i = 2,...,N −1 ); …; and finally reach 
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sN = sN−1 M̂N  for each M̂N ∈ΜID[L(sN−1)] . This is indeed equivalent to summing 

over all possible histories, [M̂1, M̂2, , M̂N ] , of N  indels that begins with the state 
s0 ∈ S , and letting the intermediate and final states uniquely determined by each 
history. Let  Η ID (N; s0 )  denote the space of all possible histories of N  indels 
beginning with s0 .  Then, Eq.(3.1.3”) can be rewritten into the final expression of the 
perturbation expansion of the stochastic evolution operator: 
P̂ID (tI , tF ) = s0 exp − dt RX

ID (s
0
, t)

tI

tF∫{ } s0
s0∈S

∑

+ s0 P [M̂1, M̂2, ..., M̂N ], [tI , tF ]( ) (s0, tI )⎡
⎣

⎤
⎦

[M̂1, M̂2 , , M̂N ]∈ ΗID (N ; s0 )

∑
s0∈S

∑ s0 M̂1

N=1

∞

∑ M̂2 M̂N .

 

--- Eq.(3.1.8a) 
Here,  
P [M̂1, M̂2, , M̂N ], [tI , tF ]( ) (s0, tI )⎡
⎣

⎤
⎦

=
tI=t0<t1< <tN<tN+1=tF

∫∫ dt1 dtN r(M̂i; si−1, ti )i=1

N

∏( ) exp − dt RX
ID (si, t)ti

ti+1∫
i=0

N

∑
⎧
⎨
⎩

⎫
⎬
⎭ si = si−1 M̂i i=1,...,N{ }

 

--- Eq.(3.1.8b) 
is the probability that an indel history [M̂1, M̂2, , M̂N ]  occurred during the time 
interval [tI , tF ] , given an initial sequence state s0  at time tI . 

In fact, we can say that this perturbation expansion, Eqs.(3.1.8a,b), underlies 
the genuine molecular evolution simulators (Cartwright 2005; Fletcher and Yang 
2009; Strope et al. 2009), which are based on the stochastic simulation algorithm 
proposed by Gillespie (1977). The first summation on the right-hand side of Eq.(III-
1.8a) gives probabilities of the indel histories where the sequence underwent no indel 
events and the initial state s0 ∈ S  remained unchanged during the time interval [tI , tF ] . 

Each probability, exp − dt RX
ID (s

0
, t)

tI

tF∫{ } , decays exactly at the exit rate, RX
ID (s

0
, t) , at 

which the state s0  undergoes an indel at time t . The second summation gives the 
probabilities of the histories where the sequence underwent at least one indel event. 
Let us consider, e.g., an N –event history, [M̂1, M̂2, , M̂N ]∈ Η ID (N; s0 ) . The 
probability of this history is given by the multiple-time integration of the probability 
distribution of the indel processes where the N indels occurred at various timings, 
(t1, ..., tN )  satisfying tI = t0 < t1 < < tN < tN+1 = tF . And the probability distribution of 
an indel process belonging to the above history is the product of the following factors 
(listed in temporal order): the probability, exp − dt RX

ID (s
0
, t)

tI

t1∫{ } , that the state s0  

lasted from tI = t0  till t1 ; the rate, r(M̂1; s0, t1) , at which the event M̂1  changes the 

state s0  into s1 = s0 M̂1  at time t1 ; the probability, exp − dt RX
ID (s

1
, t)

t1

t2∫{ } , that the 

state s1  lasted from t1  till t2 ; … ; the rate, r(M̂N ; sN−1, tN ) , at which the event M̂N  

changes the state sN−1  into sN = sN−1 M̂N  at time tN ; and the probability, 

exp − dt RX
ID (s

N
, t)

tN

tF∫{ } , that the state sN  lasted from tN  till tN+1 = tF .  To the best of 
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our knowledge, this study is the first to derive the explicit expression of the stochastic 
evolutionary operator, Eq.(3.1.8), underlying the genuine molecular evolution 
simulators, purely from the first principle (i.e., the defining equation, Eqs.(2.4.8a,b), 
of the continuous-time Markov model of indel processes).  
 By sandwiching Eq.(3.1.8) with an ancestral state bra-vector sA and a 

descendant state ket-vector sD  gives  the conditional probability of the state sD ∈ S  

at time tF  given the state sA ∈ S  at time tI (< tF ) : 

        P (sD, tF ) (s
A, tI )⎡

⎣
⎤
⎦ = sA P̂ID (tI , tF ) s

D .  

In this case, only the contributions from indel histories consistent with the initial state 
sA  and the final state sD  will survive. Thus, letting Η ID (N; sA, sD )  denote the set of 
such histories consisting of N  indel events, we have: 

P (sD, tF ) (s
A, tI )⎡

⎣
⎤
⎦= exp − dt RX

ID (s
A
, t)

tI

tF∫{ }δ (S ) (sA, sD )
+ P [M̂1, M̂2, , M̂N ], [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

[M̂1, M̂2 , , M̂N ]∈ ΗID (N ; sA , sD )

∑
N=1

∞

∑ .
 

--- Eq.(3.1.9)   
Here δ (S ) (sA, sD )  is Kronecker’s delta defined on the state space S : δ (S ) (sA, sD ) =1  if 
sA = sD , = 0  otherwise.  When S = SI , Η ID (N; sA, sD )  is the set of all N -event indel 
histories that change the sequence length from L(sA )  to L(sD ) . Thus, Eq.(3.1.9) is the 
summation of all possible alignments between the sequences of lengths L(sA )  and 
L(sD ) . When S = SII , Η ID (N; sA, sD )  could be considered as the set of all N -event 
indel histories consistent with a given PWA between the sequences of lengths L(sA )  
and L(sD ) , with some caveats discussed in the next subsection. When S = SIII , in 
contrast, Η ID (N; sA, sD )  is only a subset of all N -event indel histories consistent with 
the given PWA, because sD ∈ SIII  has a richer structure than necessary for merely 
giving the alignment with sA ∈ SIII .  Thus, it would be convenient to introduce a 
separate symbol, Η ID N;α(sA, sD )⎡⎣ ⎤⎦, which denotes the set of all N -event indel 

histories consistent with a given PWA, α(sA, sD ) , between an ancestral state 
sA ∈ SI (or SII )  and a descendant state sD ∈ SI (or SII ) . And let Nmin α(s

A, sD )⎡⎣ ⎤⎦  be 

the minimum number of indel events required to give a PWA, α(sA, sD ) . Then, we 
can provide the following expression for the conditional probability that α(sA, sD )  
resulted during the time interval [tI , tF ] , given sA ∈ S  at time tI (< tF ) : 

P α(sA, sD ), [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦= exp − dt RX

ID (sA, t)tI

tF∫{ }δ Nmin α(s
A, sD )⎡⎣ ⎤⎦, 0( )

+ P [M̂1, M̂2, , M̂N ], [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦

[M̂1, M̂2 , , M̂N ]
∈ ΗID N ;α (sA ,sD )⎡

⎣
⎤
⎦

∑
N=

max{1, Nmin α (s
A ,sD )⎡

⎣
⎤
⎦}

∞

∑ .
 

--- Eq.(3.1.10) 
Kronecker’s delta is present in the first term because this term contributes only when 
α(sA, sD )  is consistent with the zero-event indel history. The conditional probability, 
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Eq.(3.1.10), will be the building block of the probability of a given MSA, as we will 
see in Subsection 3.2. Finally, let 
�Η ID α(sA, sD )⎡⎣ ⎤⎦≡ Η ID N;α(sA, sD )⎡⎣ ⎤⎦N=Nmin [α (s

A , sD )]

∞∪        ---Eq.(3.1.11) 

be the set of all global indel histories consistent with α(sA, sD ) , and also let 

P [], [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦= exp − dt RX

ID (s
A
, t)

tI

tF∫{ }  ---Eq.(3.1.12) 

be the probability of a zero-event indel history given the ancestral state. Then, 
Eq.(3.1.10) can be simplified as: 
P α(sA, sD ), [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦= P [M̂1, M̂2, , M̂N ], [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

[M̂1, M̂2 , , M̂N ]
∈ ΗID α (sA ,sD )⎡

⎣
⎤
⎦

∑ .

 
--- Eq.(3.1.13)    

This form may be more convenient when discussing the factorization. 
 
3.1.1. Multiplicativity of perturbation expansion 
An important aspect of our general continuous-time Markov model of indel processes 
is that, unlike any other indel probabilistic models proposed thus far (except those 
imposing overly simplistic restrictions on indels), it is multiplicative, that is, it 
satisfies the Chapman-Kolmogorov equation, Eq.(2.4.10): 
                     P̂ID (tI , tM ) P̂

ID (tM , tF ) = P̂ID (tI , tF ) (tI < tM < tF )  .     ---Eq.(3.1.1.1) 
We can prove by induction that this equation is satisfied by the perturbation 
expansion, Eq.(3.1.3), order by order, as described in Appendix A3. This fact 
guarantees that our stochastic evolution operator, Eq.(3.1.3), and its more specific 
representation, Eq.(3.1.8), do indeed satisfy the Chapman-Kolmogorov equation, up 
to any desired degree of accuracy. 
 
3.2. Perturbation expansion of probability of given MSA 
In Subsection 3.1, we obtained Eq.(3.1.13), which gives the probability, 
P α(sA, sD ), [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦ , that the PWA, α(sA, sD ) , between an ancestral 

sequence sA  and a descendant state sD  resulted during the time interval [tI , tF ] ,  
given sA  at time tI . The right hand side of the equation is a summation of 
probabilities over the set, Η ID α(sA, sD )⎡⎣ ⎤⎦ , of all indel histories consistent with 

α(sA, sD ) . Once the probabilities of given PWAs were obtained this way, we could 
calculate the probability of a given MSA along the same line of thoughts as described 
in the introductions of Holmes and Bruno (2001) and Holmes (2003) (see also 
Redelings and Suchard (2005) for a superficially different but equivalent method), 
and we will basically follow their procedures here. We emphasize here, however, that 
our calculation is based purely on the continuous-time Markov model, which is a 
genuine evolutionary model of indels, as opposed to HMMs or transducer theories 
that past studies on indels were based on. 
 In this study, we formally calculate the probability of a MSA given a rooted 
phylogenetic tree, T = {n}T , {b}T( ) , where {n}T  is the set of all nodes of the tree, and 
{b}T  is the set of all branches of the tree. We decompose the set of all nodes as: 
{n}T =Ν

IN (T )+ΝX (T ) , where Ν IN (T )  is the set of all internal nodes and 
ΝX (T ) = n1, ..., nNX{ }  is the set of all external nodes. Here we let N X ≡ ΝX (T )  be the 
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number of external nodes. The root node plays an important role and will be denoted 
as nRoot (T ) , or simply nRoot . Because the tree is rooted, each branch b  is directed. 
Thus, let nA (b)  denote the “ancestral node” on the upstream end of b , and let nD (b)  
denote the “descendant node” on the downstream end of b . Let s(n)∈ S  be a 
sequence state at the node n ∈ {n}T , and, especially, let sA (b) ≡ s nA (b)( )∈ S  denote 

a sequence state at nA (b)  and let sD (b) ≡ s nD (b)( )∈ S  denote a sequence state at 

nD (b) . Last but not least, we suppose that the branch lengths, | b | b∈ {b}T{ } , and 

the indel model parameters, ΘID (b){ }T ≡ ΘID (b) b∈ {b}T{ } , are all given. It should 
be noted here that the model parameters ΘID (b)  could vary depending on the branch, 
at least theoretically.  
 As supposed, e.g., by Holmes and Bruno (2001), Holmes (2003), and 
Redelings and Suchard (2005), an indel history along a tree consists of indel histories 
along all branches of the tree that are interdependent, in the sense that the indel 
process of a branch b  determines a sequence state sD (b)  at its descendant node nD (b) , 
on which the indel processes along its downstream branches depend.  Thus, an indel 
history on a given root sequence state sRoot = s(nRoot )∈ S  automatically determines the 
sequence states at all nodes, s(n)∈ S for ∀n ∈ {n}T{ } .  Let Η ID N(b){ }T ; s

Root;T⎡⎣ ⎤⎦  be 
the set of indel histories along the tree T . Each of its elements starts with a sequence 
state sRoot ∈ S  at the root and is composed of an N(b) -event indel history along each 

branch b∈ {b}T . Then, a history M̂ (b){ }
T
∈ Η ID N(b){ }T ; s

Root;T⎡⎣ ⎤⎦ can be specified 

as follows: 
M̂ (b) = M̂ 1(b), ..., M̂ N (b) (b)⎡

⎣
⎤
⎦∈ Η ID N(b); sA (b)( ) and

sD (b) = sA (b) M̂ 1(b) M̂ N (b) (b) for ∀b∈ {b}T

⎧

⎨
⎪

⎩⎪

s nRoot (T )( ) = sRoot⎫
⎬
⎪

⎭⎪
.  

--- Eq.(3.2.1)    
Here, as defined above Eq.(III-1.8a), Η ID (N; s0 )  denotes the set of all N -event indel 
histories starting with the sequence state s0 ∈ S . We also introduced the symbol, 

M̂i (b) , to represent the i  th event in the indel history along the branch b∈ {b}T . The 
probability of the indel history, Eq.(3.2.1), can be easily calculated. First, we already 
gave the probability of an indel history during the time interval [tI , tF ] , by Eq.(3.1.8b). 
Because we can correspond each branch b∈ {b}T  to a time interval 
t(nA (b)), t(nD (b))⎡⎣ ⎤⎦  (with t(nD (b))− t(nA (b)) = b ), the probability of an indel history, 

M̂ (b) = M̂ 1(b), ..., M̂ N (b) (b)⎡
⎣

⎤
⎦∈ Η ID N(b); sA (b)( ) , along a branch b∈ {b}T  is given 

by: 

P M̂ (b), b( ) (sA (b), nA (b))⎡
⎣⎢

⎤
⎦⎥

≡ P M̂1(b), , M̂N (b) (b)⎡
⎣

⎤
⎦, t(n

A (b)), t(nD (b))⎡⎣ ⎤⎦( ) sA (b), t(nA (b))( )⎡
⎣

⎤
⎦ ΘID (b)

.
 

--- Eq.(3.2.2)    
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Here we explicitly showed the branch-dependence of the model parameters. Using 
Eq.(3.2.2) as a building block, the probability of an indel history along the tree T , 

M̂ (b){ }
T
∈ Η ID N(b){ }T ; s

Root;T⎡⎣ ⎤⎦, specified by Eq.(3.2.1), is given as: 

P M̂ (b){ }
T

sRoot, nRoot( )⎡
⎣⎢

⎤
⎦⎥
= P M̂ (b), b( ) (sA (b), nA (b))⎡

⎣⎢
⎤
⎦⎥

b∈{b}T
∏

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ s(nRoot )=sRoot ,

sD (b) = sA (b) M̂1(b) M̂N (b ) (b)

for ∀b∈{b}T

.

 
--- Eq.(3.2.3)    

In this way, we can calculate the probability of any indel history M̂ (b){ }
T

along the 

tree T  starting with a given root state sRoot ∈ S . The set of all such indel histories 
could be expressed as: 
Η ID sRoot;T⎡⎣ ⎤⎦≡ Η ID N(b){ }T ; s

Root;T⎡⎣ ⎤⎦
N (b){ }T∈ Ν0( ){b}T
∪

=
ˆ
�
M (b) = M̂ 1(b), ..., M̂ N (b) (b)⎡

⎣
⎤
⎦ ∈
�Η ID sA (b)( ),

sD (b) = sA (b) M̂ 1(b) M̂ N (b) (b)

⎧

⎨
⎪

⎩⎪

⎫

⎬
⎪

⎭⎪b∈{b}T

⎧

⎨
⎪

⎩
⎪

s nRoot (T )( ) = sRoot⎫
⎬
⎪

⎭⎪
.

 

--- Eq.(3.2.4)    
Here �Η ID sA( ) ≡ Η ID N; sA( )

N∈Ν0

∪  is the set of all indel histories along a branch starting 

with the sequence state sA ∈ S . 
 Now, an important fact is that an indel history, along a tree starting with a root 
sequence state, uniquely (up to some discretional representational degrees of freedom 
discussed in Subsection 3.4) gives rise to a MSA, α[s1, s2,..., sNX ] , among the 

sequences at the external nodes, si = s(ni )∈ S  (ni ∈ ΝX (T ) ). However, the converse 
is not true. That is, a given MSA, α[s1, s2,..., sNX ] , could result from a large number of 
indel histories along a tree, even when starting with a given sequence state at the root. 
(This statement will be elaborated on in Subsection 3.4.) Thus, let 
Η ID N;α[s1, s2,..., sNX ]; s

Root;T⎡⎣ ⎤⎦  be the set of all N –event indel histories along the 
tree T  that are consistent with the MSA α[s1, s2,..., sNX ]  and that start with the root 

sequence state sRoot ∈ S . And let Nmin α[s1, s2,..., sNX ]; s
Root;T⎡⎣ ⎤⎦  be the minimum 

number of events necessary for such histories. Then, under a given set of model 
parameters, the probability of the MSA given the phylogenetic tree and the root 
sequence state is formally expressed as: 

          

P α[s1, s2,..., sNX ] sRoot, nRoot (T )( ), T⎡
⎣

⎤
⎦

= P M̂ (b){ }
T

sRoot, nRoot (T )( )⎡
⎣⎢

⎤
⎦⎥

M̂ (b){ }
T

∈ΗID N ;α[s1,s2 ,...,sNX ]; s
Root ;T⎡

⎣
⎤
⎦

∑
N=Nmin α[s1,s2 ,...,sNX ]; s

Root ;T⎡
⎣

⎤
⎦

∞

∑ .  

--- Eq.(3.2.5)    
This provides a formal “perturbation expansion” of the probability of a given MSA, 
conditioned on a given root sequence state. To give the unconditioned probability of 
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the MSA, α[s1, s2,..., sNX ] , we multiply Eq.(3.2.5) with the probability of sRoot , and 

sum over the set, S α[s1, s2,..., sNX ]; n
Root (T );T⎡⎣ ⎤⎦ , of all possible root sequence states 

consistent with the MSA: 
P α[s1, s2,..., sNX ] T⎡⎣ ⎤⎦

= P sRoot, nRoot (T )( )⎡
⎣

⎤
⎦P α[s1, s2,..., sNX ] sRoot, nRoot (T )( ), T⎡

⎣
⎤
⎦

sRoot∈S α[s1,s2 ,...,sNX ]; n
Root (T );T⎡

⎣
⎤
⎦

∑ .   

---Eq.(3.2.6)    
Here P sRoot, nRoot (T )( )⎡

⎣
⎤
⎦  denotes the probability of the sequence state sRoot  at the node 

nRoot (T ) . Because we allow for non-equilibrium evolution in general, we regard the 
probability of a sequence state as a function of the point on the tree (under the given 
phylogenetic tree and model parameters).  It would probably be more convenient to 
rewrite the combination of Eq.(3.2.6) and Eq.(3.2.5) so that the summation over the 
number of events will be outermost. For this purpose, we introduce the space of pairs, 
each of a root sequence state and an N -event indel history starting with the root state, 
that are consistent with the MSA: 
Ψ ID N;α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦

≡ sRoot, M̂ (b){ }
T

⎛
⎝
⎜

⎞
⎠
⎟

sRoot ∈ S α[s1, s2,..., sNX ]; n
Root (T );T⎡⎣ ⎤⎦,

M̂ (b){ }
T
∈ Η ID N;α[s1, s2,..., sNX ]; s

Root;T⎡⎣ ⎤⎦

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
.
--- Eq.(3.2.7) 

And we also introduce the unconditioned minimum number of indel events necessary 
to produce the MSA: 
Nmin α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦≡ min

sRoot∈S α[s1,s2 ,...,sNX ]; n
Root (T );T⎡

⎣
⎤
⎦

Nmin α[s1, s2,..., sNX ]; s
Root;T⎡⎣ ⎤⎦{ } .  
--- Eq.(3.2.8)    

Then, the combination of Eq.(3.2.6) and Eq.(3.2.5) can be rewritten as: 
P α[s1, s2,..., sNX ] T⎡⎣ ⎤⎦

= P sRoot, nRoot( )⎡
⎣

⎤
⎦P M̂ (b){ }

T
sRoot, nRoot( )⎡

⎣⎢
⎤
⎦⎥

sRoot , M̂ (b){ }
T

⎛
⎝
⎜

⎞
⎠
⎟

∈Ψ ID N ;α[s1,s2 ,...,sNX ];T
⎡
⎣

⎤
⎦

∑
N=Nmin α[s1,s2 ,...,sNX ]; T

⎡
⎣

⎤
⎦

∞

∑ .  

--- Eq.(3.2.9)    
This is the formal “perturbation expansion” of the unconditioned probability of a 
given MSA. We consider this more convenient because we usually search for the 
indel histories and the root sequence states simultaneously. Or rather, the latter are 
usually given as a consequence of the search for the former. It would be very rare, if 
at all, in a practical analysis to give the root sequence state first and then give the 
indel histories on it. By introducing the set of all pairs consistent with the MSA: 

 �Ψ ID α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦≡ Ψ ID N;α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦
N=Nmin α[s1,s2 ,...,sNX ];T

⎡
⎣

⎤
⎦

∞

∪ ,   

---Eq.(3.2.10)    
Eq.(3.2.9) could be rewritten in a more compact form: 
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P α[s1, s2,..., sNX ] T⎡⎣ ⎤⎦= P sRoot, nRoot( )⎡
⎣

⎤
⎦P M̂ (b){ }

T
sRoot, nRoot( )⎡

⎣⎢
⎤
⎦⎥

sRoot , M̂ (b){ }
T

⎛
⎝
⎜

⎞
⎠
⎟

∈Ψ ID α[s1,s2 ,...,sNX ];T
⎡
⎣

⎤
⎦

∑ .  

 ---Eq.(3.2.11)    
This facilitates the “decomposition” of the unconditioned probability, 
P α[s1, s2,..., sNX ] T⎡⎣ ⎤⎦ , in different ways than in Eq.(3.2.9). For example, let 

Σ α[s1, s2,..., sNX ]; n ∈ Ν IN (T ){ };T⎡
⎣

⎤
⎦  be the set of all sets, each of which consists of 

sequence states at all internal nodes, i.e., s(n){ }ΝIN ≡ s(n)∈ S n ∈ Ν IN (T ){ } , that 

collectively are consistent with α[s1, s2,..., sNX ] .  And let 

Ψ ID α[s1, s2,..., sNX ]; s(n){ }ΝIN ;T⎡⎣ ⎤⎦  be the set of all indel histories that are consistent 

with both α[s1, s2,..., sNX ]  and s(n){ }ΝIN ∈ Σ α[s1, s2,..., sNX ]; n ∈ Ν IN (T ){ };T⎡
⎣

⎤
⎦ . Then, 

Ψ ID α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦  can be decomposed differently from Eq.(3.2.10) as: 
�Ψ ID α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦= Ψ ID α[s1, s2,..., sNX ]; s(n){ }ΝIN ;T⎡⎣ ⎤⎦

s(n){ }ΝIN
∈ Σ α[s1,s2 ,...,sNX ]; n∈Ν

IN (T ){ };T⎡
⎣

⎤
⎦

∪ .  

--- Eq.(3.2.12) 
Thus, we get: 
P α[s1, s2,..., sNX ] T⎡⎣ ⎤⎦= P α[s1, s2,..., sNX ]; s(n){ }

Ν
IN T⎡⎣ ⎤⎦

s(n){ }ΝIN
∈ Σ α[s1,s2 ,...,sNX ]; n∈Ν

IN (T ){ };T⎡
⎣

⎤
⎦

∑ .  

--- Eq.(3.2.13a)    
Here 
P α[s1, s2,..., sNX ]; s(n){ }ΝIN T⎡⎣ ⎤⎦

≡ P sRoot, nRoot( )⎡
⎣

⎤
⎦P M̂ (b){ }

T
sRoot, nRoot( )⎡

⎣⎢
⎤
⎦⎥

sRoot , M̂ (b){ }
T

⎛
⎝
⎜

⎞
⎠
⎟

∈Ψ ID α[s1,s2 ,...,sNX ]; s(n){ }ΝIN ;T⎡
⎣

⎤
⎦

∑  

--- Eq.(3.2.13b) 
is the probability of simultaneously getting a MSA,α[s1, s2,..., sNX ] , and a consistent 
set of states at internal nodes, s(n){ }ΝIN .  Eq.(3.2.13b) is a summation of the 
contributions from indel histories consistent with a specified s(n){ }ΝIN . If we work in 

the state space SII , a particular set, s(n){ }ΝIN , uniquely determines a pairwise 
alignment between sequence states at both ends of each branch (again up to the 
discretional representational degrees of freedom discussed in Subsection 3.3). Thus, 
taking account of Eqs.(3.2.1,3), Eq.(3.2.13b) could be further re-expressed as a 
product of P sRoot, nRoot( )⎡

⎣
⎤
⎦  and the probabilities of such pairwise alignments: 

P α[s1, s2,..., sNX ]; s(n){ }ΝIN T⎡⎣ ⎤⎦

= P sRoot, nRoot( )⎡
⎣

⎤
⎦ P (α(sA (b), sD (b)), b) (sA (b), nA (b))⎡

⎣
⎤
⎦

b∈{b}T

∏  

--- Eq.(3.2.13b’)    
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Each  

                      
P (α(sA (b), sD (b)), b) (sA (b), nA (b))⎡
⎣

⎤
⎦

≡ P α(sA (b), sD (b)), t nD (b)( )( ) sA (b), t nA (b)( )( )⎡
⎣⎢

⎤
⎦⎥ ΘID (b)

 

in the right-hand side of Eq.(3.2.13b’) can be calculated by using, e.g., Eq.(3.1.13). 
This expression, Eq.(3.2.13a) accompanied by Eq.(3.2.13b’), is most in line with 
those proposed in the introductions of Holmes and Bruno (2001) and Holmes (2003). 
Another way to “decompose” P α[s1, s2,..., sNX ] T⎡⎣ ⎤⎦  in Eq.(3.2.11) will be given in 
Subsection 4.2. 

Let us now consider the set, Σ α[s1, s2,..., sNX ]; n ∈ Ν IN (T ){ };T⎡
⎣

⎤
⎦ , of sets of 

sequence states at all internal nodes consistent with a MSA, α[s1, s2,..., sNX ] . The 
union of these sets over states at internal nodes other than the root gives 
S α[s1, s2,..., sNX ]; n

Root (T );T⎡⎣ ⎤⎦ , the set of root sequence states consistent with the 

MSA. So, we will only consider what Σ α[s1, s2,..., sNX ]; n ∈ Ν IN (T ){ };T⎡
⎣

⎤
⎦  is like. An 

important clue comes from the fact that each column of a MSA accommodates only 
those sites descended from the same ancestral site, or gaps for sequences lacking such 
sites. It leads to the “phylogenetic correctness” condition that the MSA-consistent 
internal sequence states must satisfy (Chindelevitch et al. 2006; Diallo et al. 2007). 
The condition could be rephrased to fit the current context as: 
“if a site corresponding to a MSA column is present in the sequence states at two 
nodes of the tree, then, the site must also be present in all sequence states along the  
path connecting the two nodes.” (See panels A and B of Figure 4.) 
This condition not only restricts the sequence state at an internal node given the states 
at all external nodes (i.e., a MSA column), but also restricts possible interrelationships 
between the states at different internal nodes. More precisely, the nodes, both external 
and internal, with sequence states containing a particular site (more precisely, a site of 
a particular ancestry) must always form a single, connected “web” in the tree, which 
contains no external nodes without the site (Figure 4, panels A, B). This substantially 
limits the possible state configurations at each MSA column (panels C, D, E, F), and 
it helps explore possible indel histories in a reasonable amount of time in most 
practical cases (as argued, e.g., by Kim and Sinha (2007)). 
 
3.3. Equivalence classes of indel histories during time interval (II) 
In Subsection 2.3, we introduced the local-history-set (LHS) equivalence between 
global indel histories as a set of histories that can be derived from the same set of 
local indel histories, through the unary equivalence relations, Eqs.(2.3.1a,b,c), and the 
binary equivalence relations, Eqs.(2.3.3a-d). A PWA cannot tell the relative time 
order between indel events in separate local histories. Therefore, if a global indel 
history can give rise to a given PWA, so can any other global histories that are LHS 
equivalent to it. Thus, the set, Η ID N;α(sA, sD )⎡⎣ ⎤⎦, of all global histories of 

N (≥ Nmin[α(s
A, sD )])  indel events consistent with a PWA, α(sA, sD ) , must be a union 

of (mutually disjoint) LHS equivalence classes of N –event histories consistent with 
α(sA, sD ) . As discussed in Subsection 2.3, each LHS equivalence class can be 
represented by a set of local indel histories (local history set (LHS)), e.g., 
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M̂[k,1], ..., M̂[k,Nk ]⎡
⎣

⎤
⎦{ }

k=1,...,K
. Here, let M̂  be a shorthand notation of such a LHS. 

Let M̂
⎡

⎣⎢
⎤

⎦⎥LHS
 be the LHS equivalence class represented by M̂ . And let 

Λ ID N;α(sA, sD )⎡⎣ ⎤⎦  be the set of all local indel history sets that are consistent with 

α(sA, sD )  and each of which is made up of N  events in total (i.e., satisfying 

Nkk=1

K

∑ = N  in the above example). Then, we have: 

            Η ID N;α(sA, sD )⎡⎣ ⎤⎦ = ˆ
��
M
⎡

⎣⎢
⎤

⎦⎥LHSˆ
��
M∈Λ ID N ;α (sA , sD )⎡

⎣
⎤
⎦

∪   .            ---Eq.(3.3.1) 

Next, let �Λ ID α(sA, sD )⎡⎣ ⎤⎦ ≡ Λ ID N;α(sA, sD )⎡⎣ ⎤⎦N=Nmin [α (s
A , sD )]

∞∪  denote the set of all 

local indel history sets consistent with α(sA, sD ) . Then, from Eq.(3.3.1), we have, for 
the set of all global indel histories consistent with the PWA: 

                     �Η ID α(sA, sD )⎡⎣ ⎤⎦ = ˆ
��
M
⎡

⎣⎢
⎤

⎦⎥LHSˆ
��
M∈ �Λ ID α (sA , sD )⎡

⎣
⎤
⎦

∪    .               ---Eq.(3.3.2) 

 Thus the set of all global indel histories consistent with the PWA, α(sA, sD ) , 
can be decomposed into the union of LHS equivalence classes. Next we compare 
different LHS equivalence classes that are components of Η ID α(sA, sD )⎡⎣ ⎤⎦ . Because 
each equivalence class is represented by a set of local indel histories, we can focus on 
the differences between local indel histories that acted on the same region of the 
ancestral sequence, delimited either by a pair of preserved ancestral sites (PASs) or by 
a PAS and a sequence end. By definition, all components of Η ID α(sA, sD )⎡⎣ ⎤⎦  must 

give the same alignment, α(sA, sD ) . Thus, the local indel histories under comparison 
must also give the same local alignment, which must be a sub-region of 
α(sA, sD ) delimited in the same way as the local indel histories. Hence, in this sense, 
the local histories in question are equivalent. We already conjectured in Subsection 
2.3 that such local histories must be connected with each other through a series of 
equivalence relations involving overlapping indel operators (non-exhaustively given 
in Appendix A1), and maybe additionally of some binary relations, Eq.(3.3.3a-d). 
Among them, we think that two cases require particular attentions: local histories that 
leaves no traces in the PWA, and histories that highlights the difference between the 
set of homology structures (see, e.g., Lunter et al. 2005) and the alignment of 
sequences as linear arrays of sites. 

First, a series of events could have occurred between two adjacent PASs in a 
PWA, if it left no traces in either the ancestral or the descendant sequence. Such a 
local indel history needs to have started with an insertion between the PASs and 
ended with a deletion of everything that had been created in between (and excluding) 
them (see, e.g., Figure 3H). Thus, in order to estimate the probability of a PWA very 
accurately, such “null local histories” need also be taken into account in between each 
pair of PASs. Once the alignment probability is proven to be factorable, we can 
calculate the contributions of such null histories independently for each inter-site 
position, and thus the computation will be simplified considerably. To the best of our 
knowledge, no references thus far have explicitly discussed the effects of such null 
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histories on the probability of a pairwise alignment. But it is almost certain that, 
although implicitly, the exact solutions of simple models (e.g., Thorne et al. 1991, 
1992; Miklós and Toroczkai 2001) and the approximate likelihood of the “long indel” 
model (Miklós et al. 2004) incorporated this factor. 

Second, consider the local PWA resulting, e.g., from a local history, 
M̂D (xB, xE ), M̂I (xB −1, lI )⎡
⎣

⎤
⎦ . In this history (Figure 5A), a sub-sequence between (and 

including) the xB  th and xE  th sites is first deleted, and a sub-sequence of length lI  is 
inserted exactly between the sites that flanked the deletion. This history could be 
represented by two alternative PWAs (panels B and C of Figure 5), because there is 
no a priori way to specify the relative spatial positioning of the deleted and inserted 
subsequences in this case. However, these two PWAs could also result from other 
local histories, different from the aforementioned one and also from each other; for 
example, Figure 5B could result also from M̂I (xB −1, lI ), M̂D (xB + lI , xE + lI )⎡

⎣
⎤
⎦  (Figure 

5D), and Figure 5C could result also from M̂I (xE, lI ), M̂D (xB, xE )⎡
⎣

⎤
⎦  (Figure 5E). 

These two local histories result in different intermediate states. Each of them have 
both inserted and deleted subsequences. However, the states in panels D and E have 
the inserted subsequence on the left and on the right, respectively, of the deleted 
subsequence. (For similar equivalence relations involving overlapping indels, see 
panels C, F, and G of Figure 3.) This difference might become important when 
discussing, e.g., possible functions of the intermediate sequences. Although these 
examples were on parsimonious indel histories, similar problems arise, likely more 
frequently, when we deal with non-parsimonious indel histories. Consider, e.g., a 
three-event indel history, 
M̂I (x, lI + ′l + ′′l ), M̂D (x + lI + ′l +1, xE1 + lI + ′l + ′′l ), M̂D (xB2, x + ′l )⎡
⎣

⎤
⎦ (with xE1 ≥ x +1, 

xB2 ≤ x  and ′l , ′′l ≥ 0 ). This history results in an inserted subsequence of length lI  
flanked from the left by a deletion between (and including) the xB2  th and x  th 
ancestral sites and flanked from the right by a deletion between (and including) the 
x +1  th and xE1  th ancestral sites (panel A of Figure 6). Such positional relationships 
among indels would be revealed by the output of a simulator that faithfully records 
the actions of indels and their effects on the sequence states (Figure 6, panel B). 
However, even if we work in the space SIII , just comparing the ancestral and 
descendant sequence states will never reveal such a linear structure among the 
responsible indels. Instead, it indicates that (xE1 − xB2 +1)  sites and lI  sites are only in 
the ancestral state and the descendant state, respectively, in between a pair of 
neighboring (but not contiguous) PASs. In this situation, it is currently common to 
“parsimoniously” interpret it as, e.g., a run of lI  sites only in the ancestor followed by 
a run of (xE1 − xB2 +1)  sites only in the descendant (panel C of Figure 6), which can 
be interpreted with histories with fewer indels (panels D, E, F), ignoring the possible 
histories as described above (panel A) (and accompanying intermediate sequence 
states including functions). Thus, depending on the situations (including parameter 
values), ignoring these issues could cause the probabilities of local PWAs to be 
misestimated. Thus far, it seems to have been a common practice to arrange or 
rearrange a set of inserted sites and a set of deleted sites into two blocks according to 
a pre-fixed order when inferring an optimum PWA or calculating the probabilities of 
possible PWAs from an input pair of sequences. We suppose that such a common 
practice is inevitable, considering that such arranged PWAs (e.g., panel C of Figure 6) 
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are in general more likely than, e.g., PWAs with an alternating run of multiple 
inserted and deleted segments uninterrupted by PASs (e.g., panel B). And such 
“parsimonious” interpretations should considerably save computational time and 
memory in general. Nevertheless, at least when interpreting the results of the analyses, 
it would be better to take account of the possibilities exemplified above, in order to 
avoid possibly serious errors. Similar issues arise also for indel histories giving rise to 
a MSA, as we will see in the next subsection. 
 
3.4. Equivalence classes of indel histories along phylogenetic tree 
Here we will consider indel histories along a phylogenetic tree (including the initial 

sequence state at the root), sRoot, M̂ (b){ }
T

⎛
⎝
⎜

⎞
⎠
⎟ ’s, that are equivalent in the sense that 

they give the same MSA, α[s1, s2,..., sNX ] . The largest such equivalence class would 

be Ψ ID α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦ , the set of all histories consistent with the MSA (in 
Eq.(3.2.10)). Here we consider some of its typical subsets that will help our 
theoretical calculations in the following sections. First, the concept of the local-
history-set (LHS) equivalence could be extended to indel histories along a tree.  As 
discussed in Subsection 3.2, an indel history along a tree is, after all, a set of histories 
along all branches, interdependent from the root down to the leaves (see Eq.(3.2.1)). 
Given a sequence state at the ancestral node, all histories belonging to a LHS 
equivalence class along each branch gives the same sequence structure at the 
descendant node, including the features that cannot be captured by PWAs output by 
commonly used aligners. Therefore, if we give particular LHS equivalence classes 
along all branches of the tree, as well as a particular root sequence state, they will 
result in a unique set of sequence state structures at the leaves of the tree, including a 
MSA of the sequences at the leaves. Thus, we define a LHS equivalence class along a 

tree, M̂ (b)
⎡

⎣⎢
⎤

⎦⎥LHS

⎧
⎨
⎩

⎫
⎬
⎭T

, on a given root state sRoot ∈ S  as follows: 

M̂ (b)
⎡

⎣⎢
⎤

⎦⎥LHS

⎧
⎨
⎩

⎫
⎬
⎭T
≡ M̂ (b){ }

T
∈ Η ID sRoot;T⎡⎣ ⎤⎦{ M̂ (b)∈ M̂ (b)

⎡

⎣⎢
⎤

⎦⎥LHS
for ∀b∈ {b}T

⎫
⎬
⎭
.    

---Eq.(3.4.1)    
Here Η ID sRoot;T⎡⎣ ⎤⎦  is the set of all indel histories along the tree T  starting with the 

root state sRoot ∈ S  (see Eq.(3.2.4)). Using such equivalence classes, we can 
decompose Ψ ID α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦ . For this purpose, let ΛΨ

ID α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦  be 

the set of all pairs, each of which is composed of a root state sRoot ∈ S  and a set, 

M̂ (b){ }
T

, of local history sets along all branches, that are consistent with 

α[s1, s2,..., sNX ] .  Then, similarly to Eq.(3.3.2), we have: 

Ψ ID α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦

= sRoot, M̂ (b){ }
T

⎛
⎝
⎜

⎞
⎠
⎟ M̂ (b){ }

T
∈ M̂ (b)

⎡

⎣⎢
⎤

⎦⎥LHS

⎧
⎨
⎩

⎫
⎬
⎭T

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪sRoot , M̂ (b){ }
T

⎛

⎝
⎜

⎞

⎠
⎟∈ΛΨ

ID α[s1,s2 ,...,sNX ];T
⎡
⎣

⎤
⎦

∪ .
  

---Eq.(3.4.2)     
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 The equivalence through relations involving overlapping indels (e.g., those in 
Appendix A1) also naturally defines the equivalence among histories along a tree, if 
we apply the relations to indel events along the same branch.  More nontrivial 
relations are equivalence relations involving events along different branches. A clue 
comes from Eq.(3.2.12), which decomposes  Ψ ID α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦  into a union of 

disjoint subsets over Σ α[s1, s2,..., sNX ]; n ∈ Ν IN (T ){ };T⎡
⎣

⎤
⎦ , composed of sets of states 

at internal nodes consistent with α[s1, s2,..., sNX ] . Broadly speaking, equivalence 

relations within each subset of Ψ ID α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦  consistent with an element in 

Σ α[s1, s2,..., sNX ]; n ∈ Ν IN (T ){ };T⎡
⎣

⎤
⎦  are covered by the LHS equivalence and other 

equivalences involving only indels along the same branch. Thus, all we have to 
explore here are indel histories giving rise to different sets of states at internal nodes 
consistent with α[s1, s2,..., sNX ] . In Subsection 3.2, we also explained that, for 
sequence states at internal nodes to be consistent with α[s1, s2,..., sNX ] , each site must 
be present in a set of nodes that form a single connected  “web” in the tree (see, e.g., 
Figure 4), in order to satisfy the “phylogenetic correctness” condition (Chindelevitch 
et al. 2006; Diallo et al. 2007). Thus, by changing the states at internal nodes while 
keeping the web to be single and connected (i.e., while keeping it from splitting into 
two pieces) for each site, and by giving indel histories consistent with such states, we 
can move between histories via this new category of equivalence relations (e.g., 
Figure 7). Another important kind of move is to add or remove a “null local indel 
history” along the tree, which is consistent with a single, connected web consisting of 
at least one internal node but no external nodes (Figure 8). As far as we know, Rivas 
and Eddy (2008) were the first to explicitly consider these null local indel histories 
along the tree when calculating the probability of a MSA given a tree, albeit under a 
single-residue indel model. In our general continuous-time Markov model of indels, a 
(run of) column(s) corresponding to such a web with no external nodes could be 
joined with a run of gapped columns or flanking runs of gapped columns. This could 
enrich the repertoire of non-parsimonious local indel histories possibly responsible for 
the local MSA (Figure 9). 
 In a MSA, a gapless column corresponds to a preserved ancestral site (PAS) in 
a PWA, because the existence of a gapless column means that the site was preserved 
in all compared sequences. Thus, by the “phylogenetic correctness” condition, a 
gapless column indicates that no indel events struck or penetrated the site throughout 
the evolutionary history along the phylogenetic tree. Hence, indel events that occurred 
in regions separated by more than one gapless column will never physically interfere 
with each other. This constraint enables us to deal with these events separately when 
considering the indel histories along the tree. However, this does not necessarily mean 
that we can always deal with them separately when calculating the probability of the 
indel histories. In Subsection 4.2, we will see under what conditions we can separate 
the contributions of such events. 
 

4. Factorization of alignment probability 
In the last section, we expressed the probability of a PWA and that of a MSA in 
perturbation expansions. These formulas, e.g., Eq.(3.1.10) for a PWA and Eq.3.2.11) 
for a MSA, could be immediately used to calculate the probability when the total 
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number of indels along a branch (or, equivalently, during a time-interval) is at most, 
e.g., ten. As they are, however, these formulas will be practically useless when there 
are more non-overlapping indels along a branch, in which case the probabilities must 
be summed over at least, e.g.,10!≈ 3.6×106  indel histories in the same LHS 
equivalence class.  It would thus be convenient if the alignment probability can be 
factorized into a product of contributions from blocks (or segments) separated by 
preserved ancestral sites (PASs), even if it cannot be factorized into a product of 
column-wise contributions as in most HMMs or transducers. Such factorization has an 
additional benefit of potentially preventing a combinatorial explosion due to 
contributions from non-LHS equivalent indel histories. Miklós et al. (2004) 
conjectured a similar factorization when they calculate the probability of a given 
PWA under their “long-indel” model, but they did not explicitly prove it. Here, 
starting from Eq.(3.1.13) for a PWA probability under the general continuous-time 
Markov model describing the evolution of an entire sequence via insertions and 
deletions, we will examine whether and how the probability can indeed be factorized. 
We will also examine the conditions on the indel rate parameters under which the 
probability is factorable. 
 
4.1. Factorization of probability of PWA between descendant and ancestral sequences 
Let us re-examine Eq.(3.1.13) for the probability of a given PWA, α(sA, sD ) , 
conditioned on an ancestral state, sA .  Because we are interested only in whether it is 
factorable or not, the indel histories giving rise to α(sA, sD )  are assumed to contain at 
least two indel events separated by at least a PAS. It is immediately obvious that each 
component probability, P [M̂1, M̂2, , M̂N ], [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦ , given by Eq.(3.1.8b), 

will not be factorable. This is because the multiple-time integral is over the region, 
tI < t1 < t2 < < tN < tF , which cannot be expressed as a direct product of two or more 
regions. As mentioned in Subsection 3.3, however, each indel history, 

[M̂1, M̂2, , M̂N ] , belongs to a LHS equivalence class, M̂
⎡

⎣⎢
⎤

⎦⎥LHS
, represented by a set 

of local indel histories, e.g., M̂ = M̂[k,1], ..., M̂[k,Nk ]⎡
⎣

⎤
⎦{ }

k=1,...,K
, that satisfies the 

equivalence, 
[M̂1M̂2 M̂N ] ~ M̂[K,1] M̂[K,NK ]⎡

⎣
⎤
⎦ M̂[1,1] M̂[1,N1]⎡

⎣
⎤
⎦ , 

only through the binary equivalences Eqs.(3.3.3a-d) (and possibly the unary 
equivalences Eqs.(3.3.1a-c)). And the entire set Η ID α(sA, sD )⎡⎣ ⎤⎦ , over which the 
summation in Eq.(3.1.13) is performed, was decomposed into the union of LHS 
equivalence classes in Eq.(3.3.2). Thus, we should prove the factorability of the PWA 
probability, Eq.(3.1.13), broadly in the following two steps. (i) Prove, under a certain 
set of conditions, the equation: 

P M̂
⎡

⎣⎢
⎤

⎦⎥LHS
, [tI , tF ]

⎛

⎝
⎜

⎞

⎠
⎟ (s

A, tI )
⎡

⎣
⎢

⎤

⎦
⎥≡ P [M̂1, M̂2, , M̂N ], [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

[M̂1, M̂2 , , M̂N ]∈ M̂
⎡
⎣⎢

⎤
⎦⎥LHS

∑

= P [], [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦ μP M̂[k,1], ..., M̂[k,Nk ]⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

k=1

K

∏

 

--- Eq.(4.1.1a)    
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for each equivalence class M̂
⎡

⎣⎢
⎤

⎦⎥LHS
 (with M̂ ∈ Λ ID α(sA, sD )⎡⎣ ⎤⎦ ). Here we used the 

definition: 
μP M̂[k,1], ..., M̂[k,Nk ]⎡

⎣
⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

≡ P M̂[k,1], ..., M̂[k,Nk ]⎡
⎣

⎤
⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦ P [], [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦ .

 

--- Eq.(4.1.1b)    
And (ii) put together Eq.(4.1.1a) over the set Λ ID α(sA, sD )⎡⎣ ⎤⎦  of LHS-equivalence 
classes, and lump together contributions from each of different regions separated by 
PASs in the PWA. Once step (i) is achieved, step (ii) is almost trivial. Thus, we will 
concentrate our efforts on finding out a set of conditions that enables the factorization, 
Eq.(4.1.1a). Actually, this two-step form of factorization, with the associated proof of 
Eq.(4.1.1a) given below, may be too restrictive compared to a possibly more general 
factorization of P (α(sA, sD ), tF ) (s

A, tI )⎡
⎣

⎤
⎦ . In general, Eq.(4.1.1a), or its derivative 

equations to be proved below, will not necessarily hold and yet the probability may be 
factorized via an intricate and miraculous cancellation among the contributions from 
indel histories in  the same LHS-equivalence class, or even among contributions from 
different LHS-equivalence classes.  In this sense, the conditions that we will find are 
regarded as “sufficient and nearly necessary” for the factorization. However, we 
believe that such “more general” factorizations, if at all, will be isolated exceptions, 
and that our proof will be general enough in practice. 
 Now we start proving Eq.(4.1.1a). First, substituting Eq.(3.1.8b) with some 
modifications into the rightmost side of Eq.(4.1.1a) divided by P [], [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦ , 

we have: 

tI=t (k,0)<t (k,1)< <t (k,Nk )<t (k,Nk+1)=tF

∫∫ dt(k,1) dt(k,Nk ) r M̂[k, ik ]; sik−1, t(k, ik )( )ik=1

Nk∏( )

× exp − dt δRX
ID (sik , s

A, t)
t (k, ik )

t (k, ik+1)∫
ik=0

Nk

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
s0 = sA ,

sik = sik−1 M̂ [k, ik ] ik=1,...,Nk{ }

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

k=1

K

∏ .

 
--- Eq.(4.1.2a)    

Here, t(k, ik )  denotes the time at which the event M̂[k, ik ]  virtually occurred in the 
isolated k  th local history, and we used a shorthand notation, 
δRX

ID (s, ′s , t) ≡ RX
ID (s, t)− RX

ID ( ′s , t) . Second, we note that each LHS equivalence class, 

M̂
⎡

⎣⎢
⎤

⎦⎥LHS
, consists of N!

Nk !k=1

K

∏
 global indel histories. Each history corresponds to a 

map from each event in each local indel history (specified by k ) to a temporal order 
within the global history: 
                   π : (k, ik ) (k =1, ..., K; ik =1, ..., Nk ) ν (=1, ..., N ) .  
The map keeps the relative temporal order among indels in each local indel history.  
Then, [M̂1, M̂2, , M̂N ]  in the middle of Eq.(IV-1.1a) corresponding to the above π  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 4, 2015. ; https://doi.org/10.1101/023598doi: bioRxiv preprint 

https://doi.org/10.1101/023598
http://creativecommons.org/licenses/by/4.0/


 - 43 - 

can be more precisely written as: ˆ ′M [π −1(1)], ˆ ′M [π −1(2)], , M̂[π −1(N )]⎡
⎣

⎤
⎦ . Here 

ˆ ′M [π −1(ν )]  is an equivalent of M̂[π −1(ν )]  (= M̂[k, ik ]  for ∃(k, ik ) ) through a series of 

Eqs.(2.3.3a-d) to rearrange the events in M̂  this way.  Now, let Π M̂
⎡

⎣⎢
⎤

⎦⎥LHS

⎛

⎝
⎜

⎞

⎠
⎟  be the set 

of such N!

Nk !k=1

K

∏
 maps. Then, the expression in the middle of Eq.(4.1.1a) divided by 

P [], [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦  becomes: 

P [ ˆ ′M [π −1(1)], ˆ ′M [π −1(2)], , ˆ ′M [π −1(N )]], [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦ P [], [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦

π ∈Π M̂
⎡
⎣⎢

⎤
⎦⎥LHS

⎛

⎝
⎜

⎞

⎠
⎟

∑

=

tI=t (π
−1(0))<t (π −1(1))< <t (π −1(N ))<t (π −1(N+1))=tF

∫∫ dt(k,1) dt(k,Nk )( )
k=1

K

∏

× r ˆ ′M [k, ik ]; s(π (k, ik )−1), t(k, ik )( )
ik=1

Nk

∏
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

k=1

K

∏

× exp − dt δRX
ID (s(ν ), sA, t)

t (π −1(ν ))

t (π −1(ν+1))

∫
ν=0

N

∑
⎧
⎨
⎩

⎫
⎬
⎭ s(0) = sA ,

s(ν ) = s(ν−1) ˆ ′M [π −1(ν )] ν=1,...,N{ }

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

π ∈Π M̂
⎡
⎣⎢

⎤
⎦⎥LHS

⎛

⎝
⎜

⎞

⎠
⎟

∑ .

 
--- Eq.(4.1.2b)    

Comparing Eq.(4.1.2a) and Eq.(4.1.2b), we can see that Eq.(4.1.1) should hold if and 
nearly only if the following two equations  are satisfied. (a) One is an equation 
between the integrands, i.e., 

r ˆ ′M [k, ik ]; s(π (k, ik )−1), t(k, ik )( )
ik=1

Nk

∏
k=1

K

∏
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ s(0) = sA ,

s(ν ) = s(ν−1) ˆ ′M [π −1(ν )] ν=1,...,N{ }

× exp − dt δRX
ID (s(ν ), sA, t)

t (π −1(ν ))

t (π −1(ν+1))

∫
ν=0

N

∑
⎧
⎨
⎩

⎫
⎬
⎭ s(0) = sA ,

s(ν ) = s(ν−1) ˆ ′M [π −1(ν )] ν=1,...,N{ }

= r M̂[k, ik ]; sik−1, t(k, ik )( )
ik

Nk

∏
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ s0 = sA ,

sik = sik−1 M̂ [k, ik ] ik=1,...,Nk{ }k=1

K

∏
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

× exp − dt δRX
ID (sik , s

A, t)
t (k, ik )

t (k, ik+1)∫
ik=0

Nk

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ s0 = sA ,

sik = sik−1 M̂ [k, ik ] ik=1,...,Nk{ }k=1

K

∑
⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

 

--- Eq.(4.1.3)    
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for each map π ∈Π M̂
⎡

⎣⎢
⎤

⎦⎥LHS

⎛

⎝
⎜

⎞

⎠
⎟  and its associated temporal order of events. And (b) the 

other is an equation between the multiple-time integration operations, i.e., 

tI<t (π
−1(1))< <t (π −1(N ))<tF

∫∫ dt(k,1) dt(k,Nk )
k=1

K

∏
⎛

⎝
⎜

⎞

⎠
⎟

π ∈Π M̂
⎡
⎣⎢

⎤
⎦⎥LHS

⎛

⎝
⎜

⎞

⎠
⎟

∑ Fk t(k,1),..., t(k,Nk )( )
k=1

K

∏

=
tI<t (k,1)< <t (k,Nk )<tF

∫∫ dt(k,1) dt(k,Nk ) Fk t(k,1),..., t(k,Nk )( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

k=1

K

∏

 

--- Eq.(4.1.4)    
for any set of  non-singular functions, Fk t(k,1),..., t(k,Nk )( ) k =1, ..., K{ } .  The first 
core equation, Eq.(4.1.3), holds only under an appropriate set of conditions on the 
indel rate parameters. The second core equation, Eq.(4.1.4), is an identity, which is 
intuitively plausible but whose rigorous proof is not so straightforward. Its rigorous 
proof is given in Appendix A4.  
 The both sides of Eq.(4.1.3) exhibit very similar forms. Each of them is a 
product of the rates of indels that actually occurred or their equivalents, multiplied by 
an exponential. And the exponent is the summation of time-integrated increments, of 
the exit rates of the states that the sequence actually (or virtually) went through, 
compared to the exit rate of the ancestral state. Thus, aside from miraculous, 
exceptional cases, it would be natural to expect the equations to be satisfied for each 
of the factors. This reasoning gives two types of equations. One is a set of equations 
for the factors in the product, 
r ˆ ′M [k, ik ]; s(π (k, ik )−1), t(k, ik )( ) = r M̂[k, ik ]; sik−1, t(k, ik )( )  

--- Eq.(4.1.3’a)     

for  ∀k =1, ..., K , ∀ik =1, ..., Nk , and ∀π ∈Π M̂
⎡

⎣⎢
⎤

⎦⎥LHS

⎛

⎝
⎜

⎞

⎠
⎟ . And the other is an equation 

for the exponent, 

             

dt δRX
ID (s(ν ), sA, t)

t (π −1(ν ))

t (π −1(ν+1))

∫
ν=0

N

∑
⎧
⎨
⎩

⎫
⎬
⎭ s(0) = sA ,

s(ν ) = s(ν−1) ˆ ′M [π −1(ν )] ν=1,...,N{ }

= dt δRX
ID (sik , s

A, t)
t (k, ik )

t (k, ik+1)∫
ik=0

Nk

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ s0 = sA ,

sik = sik−1 M̂ [k, ik ] ik=1,...,Nk{ }k=1

K

∑

  --- Eq.(4.1.3’b) 

for ∀π ∈Π M̂
⎡

⎣⎢
⎤

⎦⎥LHS

⎛

⎝
⎜

⎞

⎠
⎟ . Here, we set t(π −1(0)) ≡ tI  and t(π −1(N +1)) ≡ tF . In 

Eq.(4.1.3’a), s(π (k, ik )−1)  is the sequence state immediately before ˆ ′M [k, ik ]  in the 

global indel history, and sik−1   is the state immediately before M̂[k, ik ]  in the isolated 
k  th local indel history. The only difference between both sides of Eq.(4.1.3’a) is in 
the states. In general, s(π (k, ik )−1)  on the left-hand side resulted from some of the 

events in the other local indel histories, on top of M̂[k, j]  with j < ik . In contrast, sik−1  
on the right hand side will never be impacted by the other local histories.  Thus, 
Eq.(4.1.3’a) simply states, for the PWA probability to be factorized, “the rate 
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parameter for each indel operator in each local indel history must never be influenced 
by the actions of any indels that occurred before t(k, ik ) and that belong to any other 
local histories .” Meanwhile, Eq.(4.1.3’b) appear more formidable than Eq.(4.1.3’a). 
Nevertheless, we can prove the following proposition. 
[Proposition 4.1.1] 
“Let s ⋅[k, ik ] ≡ s ˆ ′M [k, ik ]  and s ⋅[ ′k , i ′k ] ≡ s ˆ ′′M [ ′k , i ′k ]  (with k, ′k (≠ k)∈ {1,...,K} ) 

be the states resulting from the actions of the equivalents of events M̂[k, ik ]  and 

M̂[ ′k , i ′k ] , respectively, on s ∈ S . And let 

s ⋅[k, ik ][ ′k , i ′k ] ≡ s ˆ ′M [k, ik ] ˆ ′M [ ′k , i ′k ]= s ˆ ′′M [ ′k , i ′k ] ˆ ′′M [k, ik ]  be the state resulting 

from the consecutive actions of the equivalents of M̂[k, ik ]  and M̂[ ′k , i ′k ]  on s . The 
equation for the exponents, Eq.(4.1.3’b), holds for every global history 

π ∈Π M̂
⎡

⎣⎢
⎤

⎦⎥LHS

⎛

⎝
⎜

⎞

⎠
⎟  and for each of its sub-histories that could occur in any sub-interval, 

[tI , t]  with t ∈ [tI , tF ] , if and only if the equation, 
 RX

ID (s, t)+ RX
ID (s ⋅[k, ik ][ ′k , i ′k ], t) = RX

ID (s ⋅[k, ik ], t)+ RX
ID (s ⋅[ ′k , i ′k ], t) ,  --- Eq.(4.1.5)    

holds for every pair, M̂[k, ik ]  and M̂[ ′k , i ′k ]  (with k ≠ ′k ), in the LHS M̂ , for every 

possible state s ∈ S  before both equivalents of M̂[k, ik ]  and of M̂[ ′k , i ′k ]  in the global 

histories in Π M̂
⎡

⎣⎢
⎤

⎦⎥LHS

⎛

⎝
⎜

⎞

⎠
⎟ , and at any time t ∈ [tI , tF ] .” 

The detailed proof of this proposition is given in Appendix A5. In the proposition, the 
applicable scope of Eq.(4.1.3’b) was extended to all sub-histories of global histories 

belonging to Π M̂
⎡

⎣⎢
⎤

⎦⎥LHS

⎛

⎝
⎜

⎞

⎠
⎟  and to any sub-interval, [tI , t] , of [tI , tF ] .  This extension 

would be acceptable in practical analyses, where what we actually want is to factorize 
all alignment probabilities during any time interval. We can clarify the meaning of 
Eq.(IV-1.5) by rewriting it as follows: 
              δRX

ID (s ⋅[k, ik ][ ′k , i ′k ], s ⋅[ ′k , i ′k ], t) = δRX
ID (s ⋅[k, ik ], s, t) ,  --- Eq.(4.1.5’) 

           δRX
ID (s ⋅[k, ik ][ ′k , i ′k ], s ⋅[k, ik ], t) = δRX

ID (s ⋅[ ′k , i ′k ], s, t) .  --- Eq.(4.1.5”) 
These equations mean that the increment of the exit rate due to an event in a local 
indel history must be independent of the effect of any event in any other local indel 
history. 
 To summarize, we derived a sufficient and nearly necessary set of conditions, 
Eq.(4.1.3’a) and Eq.(4.1.5), under which the integrand of the probability of an indel 
history can be factorized, as in Eq.(4.1.3). To clarify what these conditions mean, we 
here rephrase them in words. Eq.(4.1.3’a) can be rephrased as follows. 
Condition (i): “The rate parameter, r ˆ ′M [k, ik ]; ′s , t(k, ik )( ) , for each actually occurred 

indel event ( ˆ ′M [k, ik ]) will not be influenced by the action of any indel events outside 
of the k  th local history before t(k, ik ) .”  
Second, we can rephrase Eq.(4.1.5) as follows. 
Condition (ii): “Let s(ν ) = sA ˆ ′M [π −1(1)] ˆ ′M [π −1(ν )]  be the state resulting from 
the actions of events up to (and including) the ν  th event in a global history 
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corresponding to a map π ∈Π M̂
⎡

⎣⎢
⎤

⎦⎥LHS

⎛

⎝
⎜

⎞

⎠
⎟ , and let ˆ ′M [π −1(ν )]= ˆ ′M [k(ν ), ik (ν ) (ν )]  be 

the ν  th event in the global history. Then, the increment of the exit rate, 
δRX

ID (s(ν ), s(ν −1), t) , due to the event ˆ ′M [π −1(ν )]= ˆ ′M [k(ν ), ik (ν ) (ν )] , will not be 
influenced by the actions of any indel events outside of the k(ν )  th local history 
before ˆ ′M [π −1(ν )] .”   
If this set of conditions is satisfied for all global indel histories in a LHS equivalence 

class M̂
⎡

⎣⎢
⎤

⎦⎥LHS
, then, Eq.(4.1.3) holds for all integrands. This, combined with the 

identity on the domains of integration, Eq.(4.1.4), make the total probability of 

M̂
⎡

⎣⎢
⎤

⎦⎥LHS
 factorable, as in Eqs.(4.1.1a,b).  (Someone might guess that the condition (ii) 

should follow from the condition (i) almost trivially. We will see that this guess is 
wrong in Section 5.) 

Now, in terms of the probabilities of the LHS equivalence classes of global 
indel histories, we re-express Eq.(4.1.13) for the probability of a PWA as: 

P α(sA, sD ), [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦= P M̂

⎡

⎣⎢
⎤

⎦⎥LHS
, [tI , tF ]

⎛

⎝
⎜

⎞

⎠
⎟ (sA, tI )

⎡

⎣
⎢

⎤

⎦
⎥

M̂∈Λ ID α (sA , sD )⎡
⎣

⎤
⎦

∑ .

   
--- Eq.(4.1.6)    

And we suppose that each term in the summation on the right was factorized as in 
Eqs.(4.1.1a,b). It should be noted that the number of local indel histories, K , could 

vary depending on the, M̂ . Here, we introduce the notation K M̂
⎛

⎝
⎜

⎞

⎠
⎟ , to remind this 

dependence of the number of local histories on the LHS. A local indel history could 
occur either between two or between a PAS and a sequence end. Thus, in principle, 
the largest possible set of regions that could potentially accommodate local indel 
histories consists of the region between the left-end of the PWA and the leftmost PAS, 
the regions, each of which is between a PAS and the next PAS, and the region 
between the rightmost PAS and the right-end of the PWA. However, some of these 
regions may not be able to accommodate any local history because they do not have 
adequate nonzero indel rates. Or, local indel histories in some adjacent (but 
disconnected) regions may not be factorable from each other because either of the 
conditions (i) and (ii) is violated between them. In this case, the regions will be put 
together to form a single region to define local indel histories.  Let 
κmax α(s

A, sD );ΘID
⎡⎣ ⎤⎦ , or κmax  for short, be the number of regions in α(sA, sD )  that can 

possibly accommodate local indel histories, given an indel model including the rate 
parameters, ΘID .  And let γ1, γ2, ..., γκmax  be such potentially local-history-

accommodating regions in α(sA, sD ) , positioned from left to right along the PWA. 

First, we obviously have κmax α(s
A, sD );ΘID

⎡⎣ ⎤⎦≥ K M̂
⎛

⎝
⎜

⎞

⎠
⎟  for ∀M̂ ∈ Λ ID α(sA, sD )⎡⎣ ⎤⎦ , 

because each LHS defined under this PWA partitioning fills each region γκ  

(κ =1, 2,..., κmax ) with at most one local history. Second, let M̂[γκ ] denote such a 
local history to fill γκ . Then, we can represent any 
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M̂ = M̂[k,1], ..., M̂[k,Nk ]⎡
⎣

⎤
⎦{ }

k=1,...,K (M̂ )
∈ Λ ID α(sA, sD )⎡⎣ ⎤⎦  as a vector with κmax  

components: M̂ = M̂[γ1], M̂[γ2 ], ..., M̂[γκmax ]( ) . Here M̂[γκ ]= M̂[k,1], ..., M̂[k,Nk ]⎡
⎣

⎤
⎦  if 

the k  th local history is confined in γκ , or M̂[γκ ]= [ ]  (empty) if no events in the 
LHS occurred in γκ  (Figure 10). Using these notations, the factorization, Eq.(4.1.1a), 

of the probability of an LHS equivalence class  M̂
⎡

⎣⎢
⎤

⎦⎥LHS
 is re-expressed as: 

P M̂
⎡

⎣⎢
⎤

⎦⎥LHS
, [tI , tF ]

⎛

⎝
⎜

⎞

⎠
⎟ (sA, tI )

⎡

⎣
⎢

⎤

⎦
⎥= P [], [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦ μP M̂[γκ ], [tI , tF ]( ) (sA, tI )⎡

⎣⎢
⎤
⎦⎥

κ=1

κmax

∏ .  

--- Eq.(4.1.7)    
Here μP [ ], [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦=1 should be kept in mind. Now, consider the space 

Λ ID α(sA, sD )⎡⎣ ⎤⎦  itself. Any two different LHSs in this space differ at least by a local 

history in some γκ . Conversely, any given set of M̂[γκ ]’s in all γκ ’s, each of which is 
consistent with the PWA restricted in the region, defines a LHS in Λ ID α(sA, sD )⎡⎣ ⎤⎦ . 

Thus, the set Λ ID α(sA, sD )⎡⎣ ⎤⎦  should be represented as a “direct product”: 

Λ ID α(sA, sD )⎡⎣ ⎤⎦=
κ=1

κmax

× Λ ID γκ ;α(s
A, sD )⎡⎣ ⎤⎦ , where Λ ID γκ ;α(s

A, sD )⎡⎣ ⎤⎦  denotes the set of 

local indel histories in γκ  that are consistent with the sub-PWA of α(sA, sD )  confined 
in γκ .  Using this structure of Λ ID α(sA, sD )⎡⎣ ⎤⎦  and substituting Eq. (IV-1.7) for each 

M̂ ∈ Λ ID α(sA, sD )⎡⎣ ⎤⎦  into Eq.(4.1.6), we finally get the desired factorization of the 
PWA probability: 

   

P α(sA, sD ), [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦

= P [], [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦ μP Λ ID γκ ;α(s

A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦

κ=1

κmax

∏ .
   --- Eq.(4.1.8a)    

Here the multiplication factor, 

μP Λ ID γκ ;α(s
A, sD )⎡⎣ ⎤⎦, [tI , tF ]( ) (sA, tI )⎡

⎣
⎤
⎦≡ μP M̂[γκ ], [tI , tF ]( ) (sA, tI )⎡

⎣⎢
⎤
⎦⎥

M̂ [γκ ]∈Λ
ID γκ ;α (s

A , sD )⎡
⎣

⎤
⎦

∑ ,

 
--- Eq.(4.1.8b)    

represents the total contribution to the PWA probability by all consistent local indel 
histories that can take place in γκ . 
 
4.2. Factorization of probability of given MSA 
We can use the results for the PWA probability in the last subsection to factorize 
P α[s1, s2,..., sNX ] T⎡⎣ ⎤⎦ , the probability of a given MSA (α[s1, s2,..., sNX ] ) under a 
given phylogenetic tree (T ). We could do this in two different ways, one directly 
starting from Eq.(3.2.11) accompanied by Eq.(3.2.3) and the other starting from 
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Eqs.(3.2.13a,b’). It should be noted first that P M̂ (b){ }
T

sRoot, nRoot( )⎡
⎣⎢

⎤
⎦⎥
, the 

probability of a given indel history along a tree ( M̂ (b){ }
T

) given by Eq.(3.2.3), is not 

factorable by itself, for a reason similar to that in the pairwise case. Thus, as in the 
pairwise case, let us consider the total probability of a LHS equivalence class along T , 

M̂ (b)
⎡

⎣⎢
⎤

⎦⎥LHS

⎧
⎨
⎩

⎫
⎬
⎭T

, defined in Eq.(3.4.1): 

     P M̂ (b)
⎡

⎣⎢
⎤

⎦⎥LHS

⎧
⎨
⎩

⎫
⎬
⎭T

sRoot, nRoot( )
⎡

⎣
⎢

⎤

⎦
⎥≡ P M̂ (b){ }

T
sRoot, nRoot( )⎡

⎣⎢
⎤
⎦⎥

M̂ (b){ }
T
∈ M̂ (b)
⎡
⎣⎢

⎤
⎦⎥LHS

⎧
⎨
⎩

⎫
⎬
⎭T

∑ .  

--- Eq.(4.2.1)       

Using Eq.(3.2.3) that defines P M̂ (b){ }
T

sRoot, nRoot( )⎡
⎣⎢

⎤
⎦⎥
 and Eq.(3.4.1) that defines 

M̂ (b)
⎡

⎣⎢
⎤

⎦⎥LHS

⎧
⎨
⎩

⎫
⎬
⎭T

, we have: 

P M̂ (b)
⎡

⎣⎢
⎤

⎦⎥LHS

⎧
⎨
⎩

⎫
⎬
⎭T

sRoot, nRoot( )
⎡

⎣
⎢

⎤

⎦
⎥= P M̂ (b)

⎡

⎣⎢
⎤

⎦⎥LHS
, b

⎛

⎝
⎜

⎞

⎠
⎟ (sA (b), nA (b))

⎡

⎣
⎢

⎤

⎦
⎥

b∈{b}T
∏

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ s(nRoot )=sRoot ,

sD (b) = sA (b) M̂1(b) M̂N (b ) (b)

for ∀b∈{b}T

.

 
--- Eq.(4.2.2a)     

Here, 

P M̂ (b)
⎡

⎣⎢
⎤

⎦⎥LHS
, b

⎛

⎝
⎜

⎞

⎠
⎟ (sA (b), nA (b))

⎡

⎣
⎢

⎤

⎦
⎥≡ P M̂ (b), b( ) (sA (b), nA (b))⎡

⎣⎢
⎤
⎦⎥

M̂ (b)∈ M̂ (b)
⎡
⎣⎢

⎤
⎦⎥LHS

∑  

--- Eq.(4.2.2b)        
is an equivalent of Eq.(4.1.1a)  along the branch b . Thus, under the same set of 
conditions, (i) and (ii), on the rate parameters and the exit rates, Eq.(4.2.2b) for each 
branch is factorable as in Eq.(4.1.7), giving: 
           

P M̂ (b)
⎡

⎣⎢
⎤

⎦⎥LHS

⎧
⎨
⎩

⎫
⎬
⎭T

sRoot, nRoot( )
⎡

⎣
⎢

⎤

⎦
⎥= P [ ], b( ) (sA (b), nA (b))⎡

⎣
⎤
⎦

b∈{b}T
∏

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

× μP M̂[γκb (b)], b( ) sA (b), nA (b)( )
⎡

⎣
⎢

⎤

⎦
⎥

κb=1

κmax (b)

∏
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪b∈{b}T
∏

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ s(nRoot )=sRoot ,

sD (b) = sA (b) M̂1(b) M̂N (b ) (b)

for ∀b∈{b}T

.

 

--- Eq.(4.2.3a)    
Here γκb (b)  (κb =1,..., κmax (b) ) is a region that potentially accommodates a local indel 
history along branch b , and we made the replacements of the arguments for μP[ ]  
similar to those in Eq.(3.2.2). The first term on the right-hand side is actually an 
exponential: 
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P [ ], b( ) (sA (b), nA (b))⎡
⎣

⎤
⎦

b∈{b}T
∏

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= exp − dt RX

ID (sA (b), t)
t nA (b)( )
t nD (b)( )∫

b∈{b}T
∑

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.  

--- Eq.(4.2.3b)   
To go further, we partition the MSA α[s1, s2,..., sNX ]  into regions between a gapless 
column and the next gapless column and regions on the left and right, respectively, of 
the left- and right-most gapless columns. But we lump together the regions into a 
single region if they fail to mutually satisfy either condition (i) or (ii) in Subsection 
4.1. Let Κmax α[s1, s2,..., sNX ]; ΘID (b){ }T⎡⎣ ⎤⎦ , or Κmax  for short, be the number of all 
such potential host regions in α[s1, s2,..., sNX ]  under a given set of rate parameters, 

ΘID (b){ }T . We always have Κmax ≤κmax (b)  for ∀b∈ {b}T . And let C1, C2, ..., CΚmax
 

denote such regions. Each region, CΚ  (Κ =1,2,...,Κmax ), can potentially 

accommodate a local indel history along T , denoted as M̂ (b){ }
T
CΚ[ ] , which is 

actually composed of local indel histories along all branches and confined in CΚ  
(Figure 11). Thus, Eqs.(4.2.3a,b) can be rearranged as: 

P M̂ (b)
⎡

⎣⎢
⎤

⎦⎥LHS

⎧
⎨
⎩

⎫
⎬
⎭T

sRoot, nRoot( )
⎡

⎣
⎢

⎤

⎦
⎥

= exp − dt RX
ID (sA (b), t)

t nA (b)( )
t nD (b)( )∫

b∈{b}T
∑

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
ΜP M̂ (b)

⎡

⎣⎢
⎤

⎦⎥LHS

⎧
⎨
⎩

⎫
⎬
⎭T

CΚ[ ] sRoot, nRoot( )
⎡

⎣
⎢

⎤

⎦
⎥

Κ=1

Κmax

∏ .

 

--- Eq.(4.2.4a)     
Here the multiplication factor, 

ΜP M̂ (b)
⎡

⎣⎢
⎤

⎦⎥LHS

⎧
⎨
⎩

⎫
⎬
⎭T

CΚ[ ] sRoot, nRoot( )
⎡

⎣
⎢

⎤

⎦
⎥

≡ μP M̂[γκb (b)], b( ) sA (b), nA (b)( )
⎡

⎣
⎢

⎤

⎦
⎥

γκb (b)⊆CΚ

∏
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪b∈{b}T
∏

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ s(nRoot )=sRoot ,

sD (b) = sA (b) M̂1(b) M̂N (b ) (b)

for ∀b∈{b}T

,

 

--- Eq.(4.2.4b)    

represents the total contribution from a LHS equivalence class, M̂ (b)
⎡

⎣⎢
⎤

⎦⎥LHS

⎧
⎨
⎩

⎫
⎬
⎭T

CΚ[ ] , of 

local indel histories along T  that are confined in CΚ . When factorizing the 
probability of a MSA, α[s1, s2,..., sNX ] , Eq.(4.2.4a) is not the final form of the 

factorization of P M̂ (b)
⎡

⎣⎢
⎤

⎦⎥LHS

⎧
⎨
⎩

⎫
⎬
⎭T

sRoot, nRoot( )
⎡

⎣
⎢

⎤

⎦
⎥ , because the exit ratesRX

ID (sA (b), t)  

could vary depending on  the LHS equivalence class M̂ (b)
⎡

⎣⎢
⎤

⎦⎥LHS

⎧
⎨
⎩

⎫
⎬
⎭T

. To finalize its 

factorization, we introduce a “reference” root sequence state, 
s0
Root ∈ S α[s1, s2,..., sNX ]; n

Root (T );T⎡⎣ ⎤⎦ . One good candidate for s0
Root  would be a root 

state obtained by applying the Dollo parsimony principle (Farris 1977) to each 
column of the MSA, because it is arguably the most readily available state that 
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satisfies the phylogenetic correctness condition along the entire MSA. Given a 
reference, s0

Root , each ancestral state sA (b)  should differ from s0
Root  only within some 

CΚ ’s. Moreover, the condition (ii) suggests that the impacts of their differences 
within separate CΚ ’s on the exit rate should be independent of each other. Thus, we 
have: 
RX
ID (sA (b), t) = RX

ID (s0
Root, t)+ δRX

ID (sA (b), s0
Root, t)[CΚ ]Κ=1

Κmax∑ ,  ---Eq.(4.2.5) 

where δRX
ID (sA (b), s0

Root, t)[CΚ ]  is the increment of the exit rate due to the difference 
between sA (b)  and s0

Root  within the region CΚ . Especially, we have 
δRX

ID (sA (b), s0
Root, t)[CΚ ]= 0  unless the states differ within CΚ . Substituting 

Eq.(4.2.5) into Eq.(4.2.4a) , we get the desired factorization: 

P M̂ (b)
⎡

⎣⎢
⎤

⎦⎥LHS

⎧
⎨
⎩

⎫
⎬
⎭T

sRoot, nRoot( )
⎡

⎣
⎢

⎤

⎦
⎥

= exp − dt RX
ID (s0

Root, t)
t nA (b)( )
t nD (b)( )∫

b∈{b}T
∑

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
ΜP M̂ (b)

⎡

⎣⎢
⎤

⎦⎥LHS

⎧
⎨
⎩

⎫
⎬
⎭T

CΚ[ ] sRoot, nRoot( )
⎡

⎣
⎢

⎤

⎦
⎥

Κ=1

Κmax

∏ .

 

--- Eq.(4.2.6a)    
Here, we defined an augmented multiplication factor, 

ΜP M̂ (b)
⎡

⎣⎢
⎤

⎦⎥LHS

⎧
⎨
⎩

⎫
⎬
⎭T

CΚ[ ] sRoot, nRoot( )
⎡

⎣
⎢

⎤

⎦
⎥ ≡ ΜP M̂ (b)

⎡

⎣⎢
⎤

⎦⎥LHS

⎧
⎨
⎩

⎫
⎬
⎭T

CΚ[ ] sRoot, nRoot( )
⎡

⎣
⎢

⎤

⎦
⎥

× exp − dt δRX
ID (sA (b), s0

Root, t)[CΚ ]t nA (b)( )
t nD (b)( )∫

b∈{b}T
∑

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
s(nRoot )=sRoot ,
sD (b) = sA (b) M̂1(b) M̂N (b ) (b)

for ∀b∈{b}T

.

 

--- Eq.(4.2.6b)    
Now, using the decomposition, Eq.(3.4.2), of Ψ ID α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦ , i.e., the set of 
all pairs, each of an indel history and a root state, consistent with the MSA, 
Eq.(3.2.11) can be rewritten as: 
P α[s1, s2,..., sNX ] T⎡⎣ ⎤⎦

= P sRoot, nRoot( )⎡
⎣

⎤
⎦P M̂ (b)

⎡

⎣⎢
⎤

⎦⎥LHS

⎧
⎨
⎩

⎫
⎬
⎭T

sRoot, nRoot( )
⎡

⎣
⎢

⎤

⎦
⎥

sRoot , M̂ (b){ }
T

⎛

⎝
⎜

⎞

⎠
⎟

∈ΛΨ
ID α[s1,s2 ,...,sNX ];T
⎡
⎣

⎤
⎦

∑ .  

--- Eq.(4.2.7)    
To go further, we here first assume that the following equation holds for the 
probability of the root state: 

P sRoot, nRoot( )⎡
⎣

⎤
⎦= P s0

Root, nRoot( )⎡
⎣

⎤
⎦ μP sRoot, s0

Root, nRoot;CΚ
⎡⎣ ⎤⎦

Κ=1

Κmax

∏ .  

---Eq.(4.2.8)    
Here the multiplication factor μP sRoot, s0

Root, nRoot;CΚ
⎡⎣ ⎤⎦  represents the change in the 

state probability at the root due to the difference between sRoot  and s0
Root   within  CΚ . 

Eq.(4.2.8) holds, e.g., when P sRoot, nRoot( )⎡
⎣

⎤
⎦  is a geometric distribution or a uniform 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 4, 2015. ; https://doi.org/10.1101/023598doi: bioRxiv preprint 

https://doi.org/10.1101/023598
http://creativecommons.org/licenses/by/4.0/


 - 51 - 

distribution of the root sequence length, L(sRoot ) . Geometric distributions of sequence 
lengths were commonly used by HMMs and by transducers. The uniform distribution 
may be a good approximation if we can assume that the ancestral sequence was 
sampled randomly from a chromosome of length LC . In this case, the distribution of 
the sequence length L(s) (<< LC )  would be proportional to 1− (L(s)−1) / LC( ) ≈1 . 

Second, similarly to Λ ID α(sA, sD )⎡⎣ ⎤⎦  discussed above Eq.(IV-1.8a),  we also express 

ΛΨ
ID α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦  as a “direct product”: 

ΛΨ
ID α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦=

Κ=1

Κmax

× ΛΨ
ID CΚ;α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦ , where 

ΛΨ
ID CΚ;α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦  is the set of all local indel histories along T  (each 

accompanying a root state) and within CΚ  that are consistent with the sub-MSA of  
α[s1, s2,..., sNX ]  restricted to CΚ . Then, substituting Eq.(4.2.6a) and Eq.(4.2.8) into 
Eq.(4.2.7), and using the direct-product structure, we can finally factorize the 
probability of α[s1, s2,..., sNX ] : 

P α[s1, s2,..., sNX ] T⎡⎣ ⎤⎦= P0 s0
Root T⎡⎣ ⎤⎦ ΜP ΛΨ

ID CΚ;α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦ T⎡
⎣

⎤
⎦

Κ=1

Κmax

∏ .  

--- Eq.(4.2.9a)    
Here, 

P0 s0
Root T⎡⎣ ⎤⎦≡ P s0

Root, nRoot( )⎡
⎣

⎤
⎦× exp − dt RX

ID (s0
Root, t)

t nA (b)( )
t nD (b)( )∫

b∈{b}T
∑

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

--- Eq.(4.2.9b)    
is the probability that the reference root state s0

Root  was present at the root and 
underwent no indel events throughout the evolutionary history along the tree. The 
augmented multiplication factor, 
ΜP ΛΨ

ID CΚ;α[s1, s2,..., sNX ];T⎡⎣ ⎤⎦ T⎡
⎣

⎤
⎦

≡

μP sRoot, s0
Root, nRoot;CΚ

⎡⎣ ⎤⎦

×ΜP M̂ (b)
⎡

⎣⎢
⎤

⎦⎥LHS

⎧
⎨
⎩

⎫
⎬
⎭T

CΚ[ ] sRoot, nRoot( )
⎡

⎣
⎢

⎤

⎦
⎥

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪sRoot , M̂ (b){ }

T

CΚ[ ]
⎛

⎝
⎜

⎞

⎠
⎟

∈ ΛΨ
ID CΚ ;α[s1,s2 ,...,sNX ];T
⎡
⎣

⎤
⎦

∑ ,
   --- Eq.(4.2.9c)    

provides the total probability change due to the MSA-consistent local histories along 
the tree and confined in CΚ . 
 Now, we briefly explain how we can achieve the MSA probability 
factorization along the other route starting from Eqs.(3.2.13a,b’). Each term in 
Eq.(3.2.13a) is the probability of MSA-consistent indel histories with a fixed set, 
s(n){ }ΝIN , of sequence states at internal nodes, and Eq.(3.2.13b’) expresses the term as 

a product of the probabilities of PWAs, each between the fixed ancestral and 
descendant states along a branch.  Such probabilities of PWAs can be factorized using 
Eq.(4.1.8a), and we could lump together the multiplication factors within the same 
region, e.g., CΚ , but along different branches, into a single factor representing the 
total probability change contributed from CΚ . The product of 
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P [], [tI , tF ]( ) (sA, tI )⎡
⎣

⎤
⎦ ’s can be re-expressed as an exponential just as in Eq.(4.2.3b) , 

and then processed just like from Eq.(4.2.4a) to Eq.(4.2.6a), using Eq.(4.2.5). Then, 
we use Eq.(4.2.8) to factorize the root state probability in Eq.(3.2.13b’). Then, we 
introduce the direct product structure of the set of MSA-consistent internal node 
states: 

       
ΔΣ s0

Root;α[s1, s2,..., sNX ]; n ∈ Ν IN (T ){ };T⎡
⎣

⎤
⎦

=
Κ=1

Κmax

×ΔΣ CΚ; s0
Root;α[s1, s2,..., sNX ]; n ∈ Ν IN (T ){ };T⎡

⎣
⎤
⎦ .

 

Here ΔΣ s0
Root;α[s1, s2,..., sNX ]; n ∈ Ν IN (T ){ };T⎡

⎣
⎤
⎦  is the space of deviations of MSA-

consistent internal sequence states from the reference state s0
Root , and  

ΔΣ CΚ; s0
Root;α[s1, s2,..., sNX ]; n ∈ Ν IN (T ){ };T⎡

⎣
⎤
⎦  is the space of such deviations within 

the region CΚ . Using this direct product structure, the MAS probability can be 
factorized similarly to Eqs.(4.2.9a,b,c) but with the multiplication factor  from CΚ  
organized differently from that in Eq.(4.2.9c). The difference arises because the first 
route treats the (local) indel histories as fundamental building blocks, whereas the 
second route focuses on the (local) sequence states at the internal nodes.   
 

5. Indel models with factorable alignment probabilities 
In the previous section, we derived a sufficient and nearly necessary set of conditions 
for the factorability of PWA probabilities. The conditions are briefly stated as follows. 
Condition (i): “The rate parameter, r M̂ν ; s, t( ) , for each indel event ( M̂ν ) in every 

PWA-consistent global history will not be influenced by the actions of any indel 
events that occurred before M̂ν  and outside of the local history to which M̂ν  
belongs.” 
Condition (ii): “The increment of the exit rate, δRX

ID (s(ν ), s(ν −1), t) , due to the event 

M̂ν  (with s(ν ) = sA M̂1 M̂ν   (ν =1,...,N ) for a global history M̂1, ..., M̂N
⎡
⎣

⎤
⎦), will 

not be influenced by the action of any indel events that occurred before M̂ν  and 

outside of the local history to which M̂ν  belongs.” 
In this section, we will actually see some example indel models that indeed satisfy, or 
do not satisfy, these conditions. Before going into specific examples, we here note 
that models satisfying the above conditions are distinct from an indel model described 
by the context-independent rate grammar proposed by Miklós et al. (2004), although 
they are somewhat similar to each other. First, as already explained in Subsection 2.1, 
our state space could be more general than that for (the indel component of) the rate 
grammar. Second, the condition (i) could be more liberal than the context-
independence condition, in the sense that the former could allow the rates to depend 
on the state of a close vicinity of the insertion position or the deleted subsequence. 
And third, as we will see in Subsection 5.2, the condition (ii) may not necessarily be 
satisfied even if the context-independence is satisfied by the rates of all indel events in 
the alignment-consistent histories.  
 
5.1. Space-homogeneous models 
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The simplest conceivable indel models would impose that the indel rate parameters be 
space-homogeneous, i.e., independent of the positions where the indels occur: 
          rI (x, l1;s, t) = gI (l1, t), rD (xB, xB + l2 −1;s, t) = gD (l2, t) .   ---Eqs.(5.1.1a,b) 
In fully space-homogeneous models, these equations hold for 1≤ x ≤ L(s)−1, 
1≤ l1 ≤ LI

CO , 1≤ l2 ≤ LD
CO , and 2− l2 ≤ xB ≤ L(s) . (Depending on the model, 

rI (0, l;s, t) = gI ;L (l, t)  and rI (L(s), l;s, t) = gI ;R (l, t)  could differ from gI (l, t)  in 
Eq.(5.1.1a).) In fact, these conditions were imposed by nearly all continuous-time 
Markov models of indels that were studied in the past (except, e.g., the TKF92 model 
(Thorne et al. 1992)). Note that the rate parameters in Eqs.(5.1.1a,b) could depend on 
time, although most models used thus far imposed that the rates be time-independent 
as well. Eq.(5.1.1a,b) automatically guarantees the condition (i). Thus, all we have to 
do is to check whether or not the condition (ii) is also satisfied. Indeed, we can show 
it is. The exit rate from Eq.(5.1.1a,b) is calculated exactly in the same way how we 
derived Eq.(2.4.7e), and we find that it is an affine function of the sequence length 
( L ): 
                   RX

ID (s, t) = A(t)L(s)+B(t),   --- Eq.(5.1.2a) 

with A(t) = gI (l, t)l=1

LI
CO

∑ + gD (l, t)l=1

LD
CO

∑  and  

B(t) = (l −1)gD (l, t)l=1

LD
CO

∑ − gI (l, t)l=1

LI
CO

∑ + gI ;L (l, t)+ gI ;R (l, t)( )
l=1

∞

∑ . If the exit rate is 

affine, we have: 

       
δRX

ID (s(ν ), s(ν −1), t) ≡ RX
ID (s(ν ), t)− RX

ID (s(ν −1), t)

= A(t) L(s(ν ))− L(s(ν −1))[ ] = A(t)δL(M̂ν ) .
--- Eq.(5.1.2b)    

Here δL(M̂ν )  is the length change caused by the event M̂ν . The rightmost hand side 

of this equation depends only on M̂ν  and the time it occurred, but not on the other 
events in the indel history. Thus, the condition (ii) is always satisfied under fully 
space-homogenous models, which means that alignment probabilities calculated ab 
initio (as in Section 3) under such models are factorable, as shown in Section 4. 
 An important special case of the space-homogeneous model, Eqs.(5.1.1a,b), is 
the indel model used by Dawg (Cartwright 2005), whose indel rate parameters were 
already given in Eqs.(2.4.4a,b). This is a special case of Eqs.(5.1.1a,b) with time-
independent indel rates, and thus provides factorable alignment probabilities. This 
model is probably among the most flexible ones used thus far. The model 
accommodates any distributions of indel lengths, and allows independent length 
distributions, and independent total rates, for insertions and deletions. In parts II and 
III (Ezawa, Graur and Landan 2015a,b), we will base our calculations mostly on this 
model. 

Another important special case is the “long indel” model (Miklós et al. 2004), 
whose rate parameters are given by Eqs.(2.4.5a-e), which are also time-independent. 
This model is less flexible than Dawg’s model, because its indel rates are subject to 
the detailed-balance conditions, Eq.(2.4.6a-d). Like Dawg’s model, this model is a 
special case of the model defined by Eqs.(5.1.1a,b). Thus, the alignment probabilities 
calculated under it are indeed factorable, as Miklós et al. (2004) conjectured. Indeed, 
we can show that, as far as each LHS equivalence class is concerned, the indel 
component of its probability calculated according to the recipe of Miklós et al. (2004) 
equals Eq.(4.1.7), i.e., the probability of the LHS equivalence class via our ab initio 
formulation, calculated with the indel rate parameters Eq.(2.4.5a-e). The proof is 
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given in Appendix A6. This equivalence is likely because the contribution from each 
local indel history, e.g., the expression in square brackets in Eq.(4.1.2a), is calculated 
essentially from the increments of the exit rate for the entire sequence, as well as from 
the rates of indels in the local history. In the special case with space-homogeneous 
indel rates, the exit-rate increment for an entire sequence coincides with the exit-rate 
increment calculated for the “chop-zone” according to Miklós et al.’s recipe. Thus, 
under the long-indel model, Eqs.(2.4.5a-e), (or actually under any space-
homogeneous model,) the indel component of the probability of a PWA calculated 
according to the prescription of Miklós et al. (2004) should also be equivalent to that 
calculated via our ab initio formulation given in Subsection 4.1, as long as the 
contributing local indel histories are correctly enumerated. Actually, it is not so 
straightforward to enumerate all (local) indel histories consistent with a (local) PWA, 
as we will see in Subsection 1.2 in part II (Ezawa, Graur and Landan 2015a), due to 
the complexities on the equivalent local histories explained in Subsection 3.3. 

Regarding the insertion rates, we could relax the condition of space-
homogeneity without compromising the factorability of alignment probabilities. For 
example, we could consider the rates of insertions between the x  th and x +1  th sites 
along the sequence s  as a function of the ancestries of these sites, υ(s, x)  and 
υ(s, x +1) : 
           rI (x, l;s, t) = gI (υ(s, x), υ(s, x +1), l, t) .       --- Eq.(5.1.3) 
Of course, these rates satisfy the condition (i). And Eq.(5.1.3) and the space-
homogeneous deletion rates, Eq.(5.1.1b), still gives an exit rate whose increment due 
to an indel event depends only on the inserted/deleted sub-sequence (and flanking 
sites) but not on the regions separated from it by at least a PAS. This means that the 
model also satisfies the condition (ii). Thus, the alignment probabilities should be 
factorable also under this model with somewhat generalized insertion rates. Relaxing 
the space-homogeneity of deletion rates, however, is somewhat difficult, particularly 
because of the condition (ii). In the following subsections, we will attempt to do it. 
 
5.2. Indel models containing biologically essential regions 
The space-homogeneous models discussed above, including Dawg’s model and the 
long-indel model, may decently approximate the neutral evolution of a sequence 
region under no selective pressure. A real genome, however, is scattered with regions 
and sites under strong or weak purifying selection.  

First, we consider a simplest model that implement such a situation, where a 
neutrally evolving region is left-flanked by a region (or a site) that is biologically 
essential.  This situation could be implemented with the rate parameters given by 
Eq.(5.1.1) for the same domains as in the fully space-homogeneous models, except 
that the domain for xB  changed to 1≤ xB ≤ L(s) . In other words, we have 
 rD (xB, xB + l2 −1;s, t) = 0 for xB ≤ 0 or l2 > LD

CO.  --- Eq.(5.2.1) 
In this case, the exit rate is given by an affine form, Eq.(5.1.2a),with A(t)  exactly the 
same as for the fully space-homogeneous case, and with 

B(t) = − gI (l, t)l=1

LI
CO

∑ + gI ;L (l, t)+ gI ;R (l, t)( )
l=1

∞

∑ . Because the exit rate is affine, this 

model satisfies the condition (ii). The condition (i) is also satisfied, because the rate 
parameter of an event will remain unaffected by the events outside of the local history 
it belongs to. Thus, the alignment probabilities under this model should also be 
factorable. By symmetry, we expect that alignment probabilities should also be 
factorable under a model where a neutrally evolving region is right-flanked by a 
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region (or a site) that is biologically essential. This situation can be implemented by 
the insertion rates, Eq.(5.1.1a) for exactly the same domain as before,  and the 
deletion rates: 

  rD (xE − l2 +1, xE;s, t) =
gD (l2, t) for 1≤ xE ≤ L(s) and 1≤ l2 ≤ LD

CO ,

0 for xE > L(s) or l2 > LD
CO.

⎧
⎨
⎪

⎩⎪
 --- Eq.(5.2.2) 

The exit rate is exactly the same as in the left-flanking case, and thus the alignment 
probabilities are indeed factorable under this model as well. 
 Second, we consider a model where a neutrally evolving region is flanked by 
biologically essential regions (or sites) from both sides. The insertion rates of this 
model are given by Eq.(5.1.1a) with the same domain, and the deletion rates are: 

rD (xB, xE;s, t) =
gD (xE − xB +1, t) for 1≤ xB ≤ xE ≤ L(s) and 1≤ xE − xB +1≤ LD

CO ,

0 for xB ≤ 0, xE > L(s) or xE − xB +1> LD
CO .

⎧
⎨
⎪

⎩⎪
 

--- Eq.(5.2.3)    
The exit rate for this model is calculated as: 

RX
ID (s, t) = L(s)−1( ) gI (l, t)

l=1

LI
CO

∑ + gI ;L (l, t)+ gI ;F (l, t)( )
l=1

∞

∑ + (L(s)− l +1)gD (l, t)
l=1

min{L(s), LD
CO}

∑ .  

--- Eq.(5.2.4)    
For L(s) ≥ LD

CO , this is affine, and given by Eq.(5.1.2a), with exactly the same  A(t)  as 

before and B(t) = − (l −1)gD (l, t)l=1

LD
CO

∑ − gI (l, t)l=1

LI
CO

∑ + gI ;L (l, t)+ gI ;R (l, t)( )
l=1

∞

∑ . 

Therefore, if the sequence length remains greater than or equal to LD
CO  throughout all 

indel histories that could give rise to the alignment in question, the alignment 
probability is still factorable even under this model. For L(s)< LD

CO , in contrast, it 
exhibits a non-affine form: 

RX
ID (s, t) = L(s)−1( ) gI (l, t)

l=1

LI
CO

∑ + gI ;L (l, t)+ gI ;R (l, t)( )
l=1

∞

∑ + (L(s)− l +1)gD (l, t)
l=1

L(s)

∑ .  

--- Eq.(5.2.5)    
Thus, in this case, the condition (ii) will not be satisfied in general. As an example, let 
us consider a sequence state s ∈ S  with L(s) = L , and the action of two separated 
deletions, M̂D1 ≡ M̂D (x1, x1 + l1 −1)  and M̂D2 ≡ M̂D (x2, x2 + l2 −1)  with x1 ≥1  and 
x 1+l1 < x2 ≤ L − l2 +1 .  And we use the notations, s1 ≡ s M̂D1 , s2 ≡ s M̂D2 , and 

s21 ≡ s M̂D2M̂D1 .  Then, substituting L(s1) = L − l1 , L(s2 ) = L − l2 , and 
L(s21) = L − l1 − l2  into Eq.(5.2.5), we have: 

δRX
ID (s1, s, t) − δRX

ID (s21, s2, t) = −l1 gD (l, t)
l=L−l1−l2+1

L−l1

∑ + (L − l +1) gD (l − l2, t)− gD (l, t)[ ]
l=L−l1+1

L

∑ .

 
--- Eq.(5.2.6)    

(The derivation is in Appendix A7.) Although the terms on the right-hand side of 
Eq.(5.2.6) might exactly cancel out for a special form of gD (l, t)  (and for special 
values of L , l1 , and l2 ), they will not in general. Thus, although the indel events in 
other local histories do not impact the rate of the indel in question, they do impact the 
increment of the exit rate the event causes. Therefore, in this case, the alignment 
probabilities are not factorable. Because the cut-off lengths, LI

CO  and LD
CO , were 
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originally introduced as a proxy of the collective effect of physical and biological 
constraints on the indel size, it would accord with the common sense to assume them 
to be longer than a neutrally evolving region, i.e., L(s)< LD

CO . Then, the above 
argument implies that the alignment probabilities are unlikely to be exactly factorable. 
Nevertheless, they may be approximately factorable, if the “difference between 
differences” as in Eq.(5.2.6) is much less than 1. This could happen, e.g., when 
l1, l2 << L(s)  so that l1l2 dt gD (L(s), t)tI

tF∫ <<1  for all pairs of indels belonging to 

different local histories. 
Third, we consider a model where a sequence contains one or more conserved 

regions. In this case, we need to work with the state space SII  or SIII , because it is 
essential to keep track of ancestral residues, which the simple structure of SI  cannot 
do. It should be understood that the argument unfolded below is implicitly mediated 
by the ancestries naturally assigned to the sites by the state space SII  or SIII , although 
we will introduce a more convenient notation to keep track of ancestral sites and to 
figure out the positioning of inserted sites relative to them. Let x(s, xRoot )  be the site 
number (i.e., the coordinate), in a sequence s , of the site whose site number was xRoot  
in the ancestral sequence sRoot . And assume that the sequence has Y (≥1) conserved 
region(s) defined by the closed interval(s), [xCB;y

Root, xCE;y
Root ]{ }

y=1,...,Y
, in sRoot .  (Assume 

xCB;y
Root ≤ xCE;y

Root < xCB;y+1
Root −1  for y =1,...,Y , with xCB;Y+1

Root =∞ .) In this situation, the indel 
rates are constrained as: 
rI (x, l; s, t) = 0 if ∃y ∈ {1,...,Y} s.t. x(s, xCB;y

Root ) ≤ x < x(s, xCE;y
Root ) ,

rD (xB, xE; s, t) = 0 if ∃y ∈ {1,...,Y} s.t. xB ≤ x(s, xCE;y
Root ) and xE ≥ x(s, xCB;y

Root ) .
 

--- Eqs.(5.2.10a,b)    
In other words, the indel rate could be nonzero only if the insertion position or the 
deleted subsequence does not overlap any conserved region The exit rate is then 
decomposed as: 

             RX
ID (s, t) = RX;y

ID (s, t)
y=1

Y+1

∑ .               --- Eq.(5.2.11a) 

Here 

 RX;1
ID (s, t) = rI (x, l; s, t)l=1

LI
CO

∑
x=0

x(s, xCB;1
Root )−1

∑ + rD (xB, xE; s, t)xB=xE−LD
CO+1

xE∑
xE=1

x(s, xCB;1
Root )−1

∑  

--- Eq.(5.2.11b)    
is the exit rate for the region on the left of the leftmost conserved region. 

RX;y
ID (s, t) = rI (x, l; s, t)l=1

LI
CO

∑
x=x(s, xCE ;y−1

Root )

x(s, xCB;y
Root )−1

∑ + rD (xB, xE; s, t)xE=xB

min{xB+LD
CO , x(s, xCB;y

Root )}−1

∑
xB=x(s, xCE ;y−1

Root )+1

x(s, xCB;y
Root )−1

∑
 

--- Eq.(5.2.11c)      
is the exit rate for the region between the y−1  th and y  th conserved regions 
( y = 2,...,Y ). And 

RX;Y+1
ID (s, t) = rI (x, l; s, t)l=1

LI
CO

∑
x=x(s, xCE ;Y

Root )

L(s)

∑ + rD (xB, xE; s, t)xE=xB

xB+LD
CO−1

∑
xB=x(s, xCE ;Y

Root )+1

L(s)

∑  

--- Eq.(5.2.11d)   
is the exit rate for the region on the right of the rightmost conserved region. Thus, if 
the indel rates in each evolvable region do not depend on the portion of the sequence 
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states in any other evolvable region, the different evolvable regions are completely 
decoupled regarding evolution via indels. Thus, in this case, an alignment probability 
can be factorized into the product of contributions from these evolvable regions. 
(Actually, we could factorize the stochastic evolution operator itself into a tensor 
product form, if desired.) The contributions from the both ends of the sequence will 
be further factorable if we assume homogeneous indel rates in these regions, as in the 
first case (Eq.(5.2.1) or Eq.(5.2.2)), where a neutral sequence is flanked from only one 
side by a conserved region. The region between two neighboring conserved regions, 
however, is essentially the same as the second case (Eq.(5.2.3)), whose alignment 
probabilities are not exactly factorable in general even if the indel rates are space-
homogeneous. Thus, in this situation, it may not be so meaningful to further restrict 
the functional forms of indel rates in each evolvable region. This means that, if 
desired, we could freely fit the rate parameters to approximate the real position-
dependent indel rates in the region. 
 
5.3. More general model 
The models considered thus far contained only sites of somewhat extreme biological 
importance: either essential (i.e., completely conserved) or unimportant (i.e., neutrally 
evolving). However, the sites of a real sequence should have a wide variety of 
biological importance, and evolve under different levels of selective pressures. 
Besides, different regions may also have different mutation rates, depending on the 
sequence or epigenetic contexts. Thus, it would be preferable if we can allow indel 
rates to vary more flexibly across regions while keeping alignment probabilities 
somewhat factorable. A first clue comes from the fact that, if two different sets of 
indel rates satisfy the conditions (i) and (ii) for a given LHS, a linear combination of 
the two sets also satisfies the conditions. Another important clue is that the set of indel 
rates in the last example in Subsection 5.2 could be considered as composed of 
different sets of indel rates. Each of them is confined in an evolvable region, 
[xCE;y

Root +1, xCB;y+1
Root −1]   ( y = 0,1,...,Y ), and depends only on the portion of the sequence 

state within the region. (Here we considered xCE;0
Root = −∞  and xCB;Y+1

Root =∞ .) Inspired by 
these two clues, we first define a set of non-overlapping regions, 
Ε y (s

Root ) ≡ [xB;y
Root, xE;y

Root ] , that existed in (or beyond the boundaries of) the root 

sequence sRoot ∈ SII or SIII . We define the “descendant,” Ε y (s) , of Ε y (s
Root )  in a 

descendant state ( s ) by the closed interval, Ε y (s) ≡ [xB;y (s), xE;y (s)] , where xB;y (s)  
and xE;y (s)  are the leftmost and the rightmost sites, respectively, among those 

descended from the sites in Ε y (s
Root ) . Then, based on them, we define an indel model 

whose rate parameters are given by: 

    
rI (x, l; s, t) = rI ;Base(x, l; s, t)+ ΔrI[Ε y ](x, l; s, t)y=1

Y

∑ ,

rD (xB, xE; s, t) = rD;Base(xB, xE; s, t)+ ΔrD[Ε y ](xB, xE; s, t)y=1

Y

∑ .
   --- Eqs.(5.3.1a,b) 

Here, the “baseline” indel rates, rI ;Base(x, l; s, t){ }
x, l

 and rD;Base(xB, xE; s, t){ }
xB , xE

, are 

given by the flanking-site-dependent insertion rates Eq.(5.1.3) and the space-
homogeneous deletion rates Eq.(5.1.1b), as in the bottom of Subsection 5.1. The 
region-specific increments of the indel rates, ΔrI[Ε y ](x, l; s, t){ }

x, l
 and 
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ΔrD[Ε y ](xB, xE; s, t){ }
xB , xE

, can be non-zero only within the region, 

Ε y (s) ≡ [xB;y (s), xE;y (s)] , defined above (panel A of Figure 12). Moreover, the 
increments can depend only on the portion of the sequence state within Ε y (s) . The 
increments can be negative, as long as the entire rates, Eqs.(5.3.1a,b), are non-
negative. From Eqs.(5.3.1a,b), the exit rates can be decomposed as: 

              RX
ID (s, t) = RX;Base

ID (s, t)+ ΔRX
ID[Ε y ](s, t)

y=1

Y

∑ .    --- Eq.(5.3.2a) 

Here, 

  RX;Base
ID (s, t) = rI ;Base(x, l; s, t)l=1

LI
CO

∑
x=0

L(s)

∑ + rD;Base(xB, xE; s, t)xE=max xB , 1{ }

xB+LD
CO−1

∑
xB=−LD

CO+2

L(s)

∑  

--- Eq.(5.3.2b)    
is the baseline exit rate. And  

  ΔRX
ID[Ε y ](s, t) ≡ ΔrI[Ε y ](x, l; s, t)l=1

LI
CO

∑
x=xB;y (s)

xE ;y (s)−1∑ + ΔrD[Ε y ](xB, xE; s, t)xE=xB

xE ;y (s)∑
xB=xB;y (s)

xE ;y (s)∑  

--- Eq.(5.3.2c)    
is the increment of the exit rate confined in, and dependent only on, the region Ε y (s)   

( y =1,...,Y ). As explained at the bottom of Subsection 5.1, RX;Base
ID (s, t)  alone gives 

factorable alignment probabilities. And the increments, ΔRX
ID[Ε y ](s, t){ }

y=1,...,Y
, behave 

independently of each other, as well as of the portions of sequence states in the 
remaining regions. Thus, similarly to the final model in Subsection 5.2 (called the 
“multi-conservation model” here), if each indel event is completely confined in any of 
the Ε y (s) ’s or in any spacer regions between neighboring Ε y (s) ’s (Figure 12, panel 
A), the alignment probability can be expressed as the product of the overall factor and 
the contributions from all the Ε y (s) ’s and all the local indel histories within spacer 
regions. And, also similarly to the multi-conservation model, even if some events 
within a region Ε y (s)  are separated from the others by at least a PAS, they must be 
put together into a single local indel history (panel A). One major difference from the 
multi-conservation model is that the current model allows deletions to stick out of a 
region (Ε y (s) ) or even bridge between two or more regions (panels B and C). The 
rates of such deletions and indels that are completely outside of the regions are given 
by the baseline rates. When a deletion sticks out of a region, the region will be 
extended to encompass the deletion, and all events within the extended region are 
lumped into a single local indel history (panel B). When a deletion bridges between 
two or more regions, a “meta-region” encompassing all bridged regions is defined, 
and all events within the meta-region will form a single local indel history (panel C). 
In contrast, the indels completely outside of the regions should be independent of each 
other as long as they are separated by at least a PAS. Hence, under this model, the 
PWA probabilities are “factorable” in this somewhat non-trivial sense. 
 In Appendix A6, we proved that, under a space-homogeneous continuous-time 
Markov model of indels, the total probability of each LHS equivalence class of indel 
histories (during a time interval) calculated via the method of Miklós et al. (2004) is 
identical to that calculated via our ab initio formulation. Although we will not 
explicitly prove here, we believe that the proof can be extended to the indel model 
given in this subsection as well, if we re-define a “chop-zone” as a region that can 
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potentially accommodate a local indel history (as defined here) plus its right-flanking 
PAS. 
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Discussion 
Here we will discuss some issues we did not elaborate on in Results or Appendix. 
 In this study, we only considered simple boundary conditions. Each sequence 
end was either freely mutable or flanked by a biologically essential region that allows 
no indels. These boundary conditions may remain good approximations if the subject 
sequences were extracted from well-characterized genomic regions.  In real sequence 
analyses, however, the situations are unlikely to be so simple. This is because the ends 
of the aligned sequences are often determined by artificial factors, such as the 
methods to sequence the genome, to detect sequence homology, and to annotate the 
sequences. Moreover, the constant cutoff lengths ( LI

CO  and LD
CO ) were introduced just 

for the sake of simplicity, to broadly take account of the effects of various factors that 
suppress very long indels (such as selection, chromosome size, genome stability, etc.).  
In reality, it is much more likely that the cutoff lengths would vary across regions. 
Then, the alignment probabilities would be only approximately factorable, as in the 
second example model discussed in Subsection 5.2 of Results. In order to pursue 
further biological realism and to enable further accurate sequence analyses, it would 
be inevitable to address these issues seriously. 
 We developed our ab initio perturbative formulation aiming to calculate the 
probabilities of given alignments, especially MSAs, quite accurately, with the 
ultimate goal of applying it to the reconstruction of a fairly accurate probability 
distribution of candidate MSAs from an input set of homologous sequences. And, as 
you will see in parts II and III (Ezawa, Graur and Landan 2015a,b), we actually 
developed some analytical and computational methods to calculate alignment 
probabilities via our formulation. 
 At the same time, however, we strongly caution the readers that, at this point, 
a naïve application of these methods to a reconstructed MSA is fraught with high 
risks of incorrect predictions of indel histories, etc. This is because reconstructed 
MSAs, even if they were reconstructed via state-of-the-art aligners (reviewed, e.g., in 
Notredame 2007), are known to be considerably erroneous  (e.g., Löytynoja and 
Goldman 2008; Landan and Graur 2009). Thus, it would be preferable to first develop 
a method or a program that accurately assesses and rectifies alignment errors, before 
using our formulation to make some evolutionary or biological predictions. These 
topics will be discussed in more details in part III (Ezawa, Graur and Landan 2015b). 
 When reconstructing the probability distribution of candidate MSAs, quite fast 
MSA samplers will be necessary. In Appendix A6, we demonstrated that, as far as 
each LHS equivalence class is concerned, the probability calculated via the method of 
Miklós et al. (2004) is equal to that calculated via our formulation, at least under their 
space- and time-homogeneous indel model. Thus, our formulation could use at least 
the dynamic programming (DP) of Miklós et al. (2004), possibly with some 
modifications, both to identify the optimum PWA and to sum the probabilities over 
candidate PWAs. A problem would be that the full version of their DP is quite slow, 
with the time complexity of O(L4 ) , where L  represents the sequence length.  
Although the rough version of their DP is O(L2 ) , we are currently not sure whether it 
is compatible with biologically realistic situations. Therefore, it would be preferable if 
we can devise a sampling method that is smarter and more suitable for our 
formulation. Part III (Ezawa, Graur and Landan 2015b) will also discuss this topic 
and some other possible applications in more details.  
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Conclusions  
To the best of our knowledge, this is the first absolutely orthodox study to 
theoretically dissect the calculation of the probabilities of the alignments (whether 
they are PWAs or MSAs) purely from the first principle, under a genuine evolutionary 
model, which describes the evolution of an entire sequence via insertions and 
deletions (indels) along the time axis. It should be noted that we did not impose any 
unnatural restrictions such as the prohibition of overlapping indels. Nor did we make 
the pre-proof assumption that the probability is factorable into the product of column-
wise or block-wise contributions. The only tricks that we took advantage of are the 
techniques that were essential for the advances of the theoretical physics in the 20th 
century, namely, the bra-ket notation of state vectors, the operator representation of 
the actions of indels, and the perturbation expansion (e.g., Dirac 1958; Messiah 1961a, 
1961b). We slightly modified them here so that they will be applicable to the finite-
time stochastic evolution operator. Using these techniques, we formally showed that 
the probability of an alignment can indeed be expressed as a summation of the 
probabilities over all global indel histories consistent with the alignment. This 
provided a concise and intuitive version of the theorem of Feller (1940), which 
theoretically underpinned the authenticity of the stochastic evolutionary simulation 
method by Gillespie (1977). Then, under a most general set of indel rate parameters, 
we went on to find a sufficient and nearly necessary set of conditions on the indel rate 
parameters and exit rates under which the alignment probability can be factorized into 
the product of an overall factor and the contributions from regions separated by 
gapless columns (or preserved ancestral sites).  We also showed that quite a wide 
variety of indel models could satisfy this set of conditions. Such models include not 
only the “long indel” model (Miklós et al. 2004) and the indel model of a genuine 
molecular evolution simulator, Dawg (Cartwright 2005), but also some sorts of 
models with rate variation across regions. Moreover, we proved that, as far as each 
LHS equivalence class is concerned, the probability calculated via the method of 
Miklós et al. (2004) is equivalent to that calculated via our ab initio formulation under 
their spatiotemporally homogeneous indel model. 
 To summarize, by depending purely on the first principle, this study 
established firm theoretical grounds on which other approximate indel probabilistic 
models can be based. And, as will be demonstrated in the subsequent papers (Ezawa, 
Graur and Landan 2015a,b), it also provides a sound reference point to which other 
indel models can be compared in order to see when and how well they can 
approximate the true alignment probabilities.  
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Appendix 
 
A1. Equivalence relations between products of operators representing 
overlapping indels 
In Subsection 2.3 of Results, we mainly discussed the equivalence relations between 
the products of operators representing non-overlapping indels, based on the 
fundamental binary equivalence relations, Eqs.(2.3.3a-d). Here, we will give some 
typical equivalence relations involving indels that overlap each other. 
 First, consider the action of two indels that are spatially nested or adjacent to 
each other (panel A of Figure 3). Because such actions are indistinguishable from the 
action of a single deletion, we have: 
M̂D (xB1, xE1) M̂D (xB2, xE2 ) ~ M̂D (xB2, xE2 + l1) for xB2 ≤ xB1 and xE2 ≥ xB1 −1,  

--- Eq.(A1.1)    
where l1 ≡ xE1 − xB1 +1. When xE2 = xB1 −1  and xB2 = xB1 , the 2nd event deletes a 
subsequence on the immediate left and on the immediate right, respectively, of the 
subsequence deleted by the 1st event.  
 Second, consider the action of two insertions that are spatially nested or 
adjacent to each other (panel B). In the state space SI  or SII , we cannot distinguish 
the action from the action of a single insertion. Thus, we have: 
       M̂I (x1, l1) M̂I (x2, l2 ) ~ M̂I (x1, l1 + l2 ) for x1 ≤ x2 ≤ x1 + l1 .  

--- Eq.(A1.2)    
When x2 = x1  and x2 = x1 + l1 , the 2nd event inserts a subsequence on the immediate 
left and on the immediate right, respectively, of the subsequence inserted by the 1st 
event. In the state space SIII , however, the left-hand side of Eq.(A1.2) is 
distinguishable from the right-hand side, or the left-hand side with different x2  or l2  
(while keeping the same l1 + l2 ) are distinguishable from each other. 
 Third, consider the action of a deletion and an insertion that overlap with each 
other. There are several different patterns of such cases. A deletion and a subsequent 
insertion can overlap or touch each other only when the insertion occurs exactly 
between the sites that flanked the deleted subsequence (Figure 3, panel C). Thus, we 
can differentiate these cases only through the patterns of an insertion followed by a 
deletion (panels D, E, F, G and H). There are four possible patterns: (a) cases where 
the deleted region completely encompasses the inserted subsequence (panel D); (b) 
cases where the deleted region is completely nested within the inserted subsequence 
(panel E); (c) cases where the deleted region overlaps the left fragment of the inserted 
subsequence (panel F); and (d) cases where the deleted region overlaps the right 
fragment of the inserted subsequence (panel G). The equivalence relations for these 
cases are as follows: 
M̂I (x, l) M̂D (xB, xE ) ~ M̂D (xB, xE − l) for xB ≤ x +1 and xE ≥ x + l ,   

--- Eq.(A1.3a)   
M̂I (x, l) M̂D (xB, xE ) ~ M̂I (x, l − lD ) for xB ≥ x +1 and xE ≤ x + l ,   

 --- Eq.(A1.3b)   
M̂I (x, l) M̂D (xB, xE ) ~ M̂I (x, l − l1) M̂D (xB, x) for xB ≤ x and x +1≤ xE < x + l ,  

--- Eq.(A1.3c)   
M̂I (x, l) M̂D (xB, xE ) ~ M̂I (x, l − l2 ) M̂D (xB, xE − l2 ) for x +1< xB ≤ x + l and xE > x + l .
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--- Eq.(A1.3d)    
Here lD ≡ xE − xB +1, l1 ≡ xE − x , and l2 ≡ x + l − xB +1 .  
Eqs.(A1.3a,b) exclude the case with xB = x +1  and xE = x + l , which yields a crucial 
equivalence relation (Figure 3, panel H): 
 
          M̂I (x, l) M̂D (x +1, x + l) ~ Î .     --- Eq.(A1.3e)  
 
And the right-hand sides of Eqs.(A1.3c,d) are also equivalent to the action of a 
deletion followed by an insertion exactly between the sites flanking the deleted 
subsequence (panel C). More precisely,  
M̂I (x, l) M̂D (xB, xE ) ~ M̂D (xB, x) M̂I (xB −1, l − l1) for xB ≤ x and x +1≤ xE < x + l ,
 

--- Eq.(A1.3c’)     
M̂I (x, l) M̂D (xB, xE ) ~ M̂D (x +1, xE − l) M̂I (x, l − l2 ) for x +1< xB ≤ x + l and xE > x + l .
 

--- Eq.(A1.3d’)    
Among these equations, Eqs.(A1.3a,d,e,d’) hold in any state space, SI , SII , or SIII , 
whereas Eqs.(A1.3b,c,c’) hold only in SI  or SII  but not in SIII  in its strict sense. (But 
Eqs.(A1.3c,c’) could hold also in SIII  if the space’s sense is broadened.) 
 Almost all the equivalence relations between local indel histories on the same 
region should be derived from serial applications of these equivalence relations, 
Eq.(A1.1), Eq.(A1.2), and Eqs.(A1.3a-e,c’,d’), possibly supplemented by the binary 
equivalences, Eqs.(2.3.3a-d), and the unary equivalences, Eqs.(2.3.1a-c). 
 
A2. “Decomposition” of Q̂M

D , deletion component of rate operator 
Using the unary equivalence relations, Eqs.(2.3.1a,b,c), we can further rewrite the 
definition of Q̂M

D , Eq.(2.4.2c’), into a summation of contributions from the deletions 
in the middle of the sequence (Q̂M

D;M ), on the left-end (Q̂M
D;L ), on the right-end ( Q̂M

D;R ), 
and from the whole-sequence deletions (Q̂M

D;W ), as follows: 
      Q̂M

D (t) = Q̂M
D;M (t)+ Q̂M

D;L (t)+ Q̂M
D;R (t)+ Q̂M

D;W (t) ,           --- Eq.(A2.1a) 
where  

Q̂M
D;M (t) ≡ s rD (xB, xE; s, t) s M̂D (xB, xE )xE=xB

min{xB+LD
CO , L(s)}−1

∑
xB=2

L(s)−1

∑⎡⎣⎢
⎤
⎦⎥

s∈S

∑ , 

--- Eq.(A2.1b)     

Q̂M
D:L (t) ≡ s rD;L (xE; s, t) s M̂D (1, xE )xE=1

min{LD
CO , L(s)−1}

∑⎡⎣⎢
⎤
⎦⎥

s∈S

∑

with rD;L (xE; s, t) ≡ rD (xB, xE; s, t)xB=xE−LD
CO+1

1

∑ ,

         --- Eq.(A2.1c) 

Q̂M
D;R (t) ≡ s rD;R (xB; s, t) s M̂D (xB,L(s))xB=max{2, L(s)−LD

CO+1}

L(s)

∑⎡⎣⎢
⎤
⎦⎥

s∈S

∑

with rD;R (xB; s, t) ≡ rD (xB, xE; s, t)xE=L(s)

xB+LD
CO−1

∑ ,

  ---Eq.(A2.1d) 
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Q̂M
D;W (t) ≡ s rD;W (s, t)

s∈S

∑ s M̂D (1,L(s))

with rD;W (s, t) ≡
0 if L(s)> LD

CO,

rD (xB, xE; s, t)xE=L(s)

xB+LD
CO−1

∑
xB=L(s)−LD

CO+1

1

∑ if L(s) ≤ LD
CO .

⎧
⎨
⎪

⎩⎪

 

---Eq.(A2.1e)    
Eqs.(A2.1a-e) could sometimes simplify theoretical thinking and also save 
computational costs by doing away with deletions that stick out of the boundaries of the 
sequence under consideration.  
 
A3. Multiplicativity of perturbation expansion: details 
An important aspect of our general continuous-time Markov model of indel processes 
is that, unlike any other indel probabilistic models proposed thus far (except those 
imposing overly simplistic restrictions on indels), it is multiplicative, that is, it 
satisfies the Chapman-Kolmogorov equation, Eq.(2.4.10): 
           P̂ID (tI , tM ) P̂

ID (tM , tF ) = P̂ID (tI , tF ) (tI < tM < tF )  .     ---Eq.(A3.1) 
Let’s see how this condition is satisfied by the perturbation expansion, Eq.(3.1.3), that 
is, 
               P̂ID (tI , tF ) = P̂(N )

ID (tI , tF )N=0

∞

∑ ,              ---Eq.(A3.2a) 

 with  

        

P̂(0)
ID (tI , tF ) = P̂0

ID (tI , tF ) = s exp − dt RX
ID (s, t)

tI

tF∫{ } s
s∈S

∑ ,

P̂(N )
ID (tI , tF ) =

tI<t1< <tN<tN+1=tF

∫∫ dt1 dtN P̂0
ID (tI , t1)T Q̂M

ID (t
i
)P̂0

ID (ti, ti+1)i=1

N

∏{ } .
 

 
--- Eq.(A3.2b)    

Substituting Eq.(A3.2a) into Eq.(A3.1) and comparing the terms with the same 
number of indel operators, we find that the following equation must be satisfied  for 
N = 0, 1, ... : 

            P̂(i)
ID (tI , tM ) P̂(N−i)

ID (tM , tF )i=0

N

∑ = P̂(N )
ID (tI , tF )     .     ---Eq.(A3.3) 

We will prove this by induction. For N = 0 , the equation can be proven easily: 
P̂(0)
ID (tI , tM ) P̂(0)

ID (tM , tF ) = s exp − dt RX
ID (s, t)

tI

tM∫{ } s
s∈S

∑ ′s exp − dt RX
ID ( ′s , t)

tM

tF∫{ } ′s
′s ∈S

∑

= s exp − dt RX
ID (s, t) − dt RX

ID (s, t)
tM

tF∫tI

tM∫{ } s
s∈S

∑

= s exp − dt RX
ID (s, t)

tI

tF∫{ } s
s∈S

∑ = P̂(0)
ID (tI , tF ) .

 
Next, assume that Eq.(A3.3) holds for a particular non-negative integer N . The left-
hand side of Eq.(A3.3) with N  replaced by N +1  can be rewritten as: 

P̂(i)
ID (tI , tM ) P̂(N+1−i)

ID (tM , tF )i=0

N+1

∑ = P̂0
ID (tI , tM ) P̂(N+1)

ID (tM , tF )+ P̂(i+1)
ID (tI , tM ) P̂(N−i)

ID (tM , tF )i=0

N

∑ .

 
--- Eq.(A3.4)     

To go further, we first notice that the following equation holds from Eq.(A3.2b): 
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            P̂(i+1)
ID (t1, t2 ) = dt P̂0

ID (t1, t)Q̂M
ID (t) P̂(i)

ID (t, t2 )t1

t2∫ .           --- Eq.(A3.5) 

Substituting it into the first term of the right-hand side of Eq.(A3.4), we have: 

       
P̂0
ID (tI , tM ) P̂(N+1)

ID (tM , tF ) = P̂0
ID (tI , tM ) dt P̂0

ID (tM , t)Q̂M
ID (t) P̂(N )

ID (t, tF )tM

tF∫
= dt P̂0

ID (tI , t)Q̂M
ID (t) P̂(N )

ID (t, tF )tM

tF∫ .
 

--- Eq.(A3.6a)     
Meanwhile, the second term of the right-hand side of Eq.(A3.4) can be rewritten as: 

P̂(i+1)
ID (tI , tM ) P̂(N−i)

ID (tM , tF )i=0

N

∑ = dt P̂0
ID (tI , t)Q̂M

ID (t) P̂(i)
ID (t, tM )tI

tM∫ P̂(N−i)
ID (tM , tF )i=0

N

∑

= dt P̂0
ID (tI , t)Q̂M

ID (t) P̂(i)
ID (t, tM ) P̂(N−i)

ID (tM , tF )i=0

N

∑⎡⎣⎢
⎤
⎦⎥tI

tM∫

= dt P̂0
ID (tI , t)Q̂M

ID (t)
tI

tM∫ P̂(N )
ID (t, tF ) .

 

--- Eq.(A3.6b)     
To get the last equation, the assumed Eq.(A3.3) for N  was used. Summing 
Eq.(A3.6a) and Eq.(A3.6b), we see that the right-hand side of Eq.(A3.4) becomes: 

    
dt P̂0

ID (tI , t)Q̂M
ID (t) P̂(N )

ID (t, tF )tM

tF∫ + dt P̂0
ID (tI , t)Q̂M

ID (t)
tI

tM∫ P̂(N )
ID (t, tF )

= dt P̂0
ID (tI , t)Q̂M

ID (t) P̂(N )
ID (t, tF )tI

tF∫ = P̂(N+1)
ID (tI , tF ) .

 

To get the last equation, Eq.(A3.5) for i = N was used. Thus, if Eq.(A3.4) holds for a 
particular N , then it holds also for N +1.  Therefore, Eq.(A3.4) holds for every non-
negative integer N , which guarantees that our stochastic evolution operator, 
Eq.(3.1.3), and its more specific representation, Eq.(3.1.8), do indeed satisfy the 
Chapman-Kolmogorov equation, up to a desired degree in the perturbation expansion. 
 
A4. Proof of factorization of multiple-time integration, Eq.(4.1.4) 
The identity, Eq.(4.1.4),  

tI<t (π
−1(1))< <t (π −1(N ))<tF

∫∫ dt(k,1) dt(k,Nk )
k=1

K

∏
⎛

⎝
⎜

⎞

⎠
⎟

π ∈Π M̂
⎡
⎣⎢

⎤
⎦⎥LHS

⎛

⎝
⎜

⎞

⎠
⎟

∑ Fk t(k,1),..., t(k,Nk )( )
k=1

K

∏

=
tI<t (k,1)< <t (k,Nk )<tF

∫∫ dt(k,1) dt(k,Nk ) Fk t(k,1),..., t(k,Nk )( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

k=1

K

∏ ,

  

--- Eq.(A4.1)   
where Fk t(k,1),..., t(k,Nk )( ) k =1, ..., K{ }  is any set of non-singular functions of 
multiple-time points, is one of the two essential elements for obtaining our sufficient 
and nearly necessary set of conditions for the factorability of the PWA probability. 
The identity states that, if we sum the multiple-time integration operations for global 
indel histories over a LHS equivalence class, it can be factorized into the product of 
multiple-time integration operations, each for a local indel history, over the LHS. 
Here, we prove this identity in a mathematically rigorous manner. 

 Let us remember here that Π M̂
⎡

⎣⎢
⎤

⎦⎥LHS

⎛

⎝
⎜

⎞

⎠
⎟  denotes the set of maps that correspond 

to global indel histories in a LHS equivalence class. Each of its elements is expressed 
as: 
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           π : (k, ik ) (k =1, ..., K; ik =1, ..., Nk ) ν (=1, ..., N ) . 
Then, we first note that, because the integrands and the sets of variables of integration 
are identical on both sides of Eq.(A4.1), proving this identity is equivalent to proving 
the equality (modulo differences of measure zero) between the domains of integration: 

       D(N ) π M̂
⎛

⎝
⎜

⎞

⎠
⎟ ; [tI , tF ]

⎡

⎣
⎢

⎤

⎦
⎥

π ∈Π M̂
⎡
⎣⎢

⎤
⎦⎥LHS

⎛

⎝
⎜

⎞

⎠
⎟

∪ =
k=1

K

× D(Nk ) M̂[k] ; [tI , tF ]
⎡
⎣⎢

⎤
⎦⎥ .    --- Eq.(A4.2) 

Here, D(Nk ) M̂[k] ; [tI , tF ]
⎡
⎣⎢

⎤
⎦⎥  is the domain of integration for the k  th local indel history, 

M̂[k]≡ M̂[k,1], ..., M̂[k,Nk ]⎡
⎣

⎤
⎦ : 

D(Nk ) M̂[k] ; [tI , tF ]
⎡
⎣⎢

⎤
⎦⎥≡ t(k,1), ..., t(k,Nk )( ) tI < t(k,1)< < t(k,Nk )< tF{ } .  --- 

Eq.(A4.3a) 

And D(N ) π M̂
⎛

⎝
⎜

⎞

⎠
⎟ ; [tI , tF ]

⎡

⎣
⎢

⎤

⎦
⎥  is the domain of integration for the global indel history, 

π M̂
⎛

⎝
⎜

⎞

⎠
⎟ : 

D(N ) π M̂
⎛

⎝
⎜

⎞

⎠
⎟ ; [tI , tF ]

⎡

⎣
⎢

⎤

⎦
⎥≡

t(1,1), ..., t(1,N1);

....;

t(K,1), ..., t(K,NK )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

tI < t(π
−1(1))< < t(π −1(N ))< tF

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
.  

--- Eq.(A4.3b)   
 To go further, let us introduce a new notation, Π(K )[N1, ..., NK ] , that represents 

the set Π M̂
⎡

⎣⎢
⎤

⎦⎥LHS

⎛

⎝
⎜

⎞

⎠
⎟  to remind that each of its N!

Nk !k=1

K

∏
 elements can be re-interpreted 

as a rearrangement of K sets, whose sizes areN1, ..., NK , into a single set of size 

N = Nkk=1

N

∑ . Then, each map π (K ) ∈Π M̂
⎡

⎣⎢
⎤

⎦⎥LHS

⎛

⎝
⎜

⎞

⎠
⎟=Π

(K )[N1, ..., NK ]  can be re-

expressed as a composite map, π (K ) = ρ (π (K−1), INk
)⎡⎣ ⎤⎦ . Here 

π (K−1) ∈Π(K−1)[N1, ..., NK−1]  is a rearrangement of K −1  of the original K  sets 
excluding the K  th set, INK

 is the identity map from the Nk  elements in the K  th set 

to themselves, and ρ ∈Π(2)[N − NK , NK ]  is a rearrangement of the K  th set and the 
remainder made from the K −1  sets. The numbers of the elements exactly match, 

because we have N!

Nk !k=1

K

∏
=

N!

(N − Nk )!Nk !
×
(N − Nk )!

Nk !k=1

K−1

∏
. Provided that the binary 

(i.e., K = 2 ) version of Eq.(A4.2) is proved, then we can apply them for each fixed 
π (K−1) ∈Π(K−1)[N1, ..., NK−1]  and all ρ ∈Π(2)[N − NK , NK ] , and we can factor out the 
contribution from the K  th local (or “separated”) indel history.  

This is formally proved as follows. First, the left-hand side of Eq.(A4.2) is 
re-expressed as: 
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D(N ) π ˆ
��
M
⎛

⎝
⎜

⎞

⎠
⎟ ; [tI , tF ]

⎡

⎣
⎢

⎤

⎦
⎥

π ∈Π(K )[N1, ..., NK ]
∪ = D(N ) ρ � ( ′π , INK

)⎡⎣ ⎤⎦ ˆ
��
M
⎛

⎝
⎜

⎞

⎠
⎟ ; [tI , tF ]

⎡

⎣
⎢

⎤

⎦
⎥

ρ∈Π(2 )[N−NK , NK ]
∪

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪′π ∈Π(K−1)[N1, ..., NK−1 ]
∪ .

 
--- Eq.(A4.4)  

On the right-hand side, we have ρ ( ′π , INK
)⎡⎣ ⎤⎦ M̂
⎛

⎝
⎜

⎞

⎠
⎟= ρ ′π ˆ ′M

⎛

⎝
⎜

⎞

⎠
⎟, M̂[K ]

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟  by 

definition. Here, ˆ ′M = M̂[1], ..., M̂[K −1]⎡
⎣⎢

⎤
⎦⎥ is the “reduced” LHS consisting of K −1 

out of the original K  local indel histories in M̂ , excluding the K  th local history, 
M̂[K ] . Substituting this into Eq.(A4.4), and assuming that Eq.(A4.2) holds with 
K = 2 , we have: 
 

    

D(N ) π M̂
⎛

⎝
⎜

⎞

⎠
⎟ ; [tI , tF ]

⎡

⎣
⎢

⎤

⎦
⎥

π ∈Π(K )[N1, ..., NK ]
∪

= D(N−Nk ) ′π ˆ ′M
⎛

⎝
⎜

⎞

⎠
⎟ ; [tI , tF ]

⎡

⎣
⎢

⎤

⎦
⎥× D

(Nk ) M̂[k] ; [tI , tF ]
⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭′π ∈Π(K−1)[N1, ..., NK−1 ]

∪

= D(N−Nk ) ′π ˆ ′M
⎛

⎝
⎜

⎞

⎠
⎟ ; [tI , tF ]

⎡

⎣
⎢

⎤

⎦
⎥

′π ∈Π(K−1)[N1, ..., NK−1 ]
∪

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
× D(Nk ) M̂[k] ; [tI , tF ]

⎡
⎣⎢

⎤
⎦⎥ .

   --- Eq.(A4.5) 

This series of equations re-expresses the above verbal reasoning in clear mathematical 
terms, and formally demonstrates that the domain of integration for the rightmost 
local indel history (i.e., the K  th local history) is indeed factored out. Iteratively 
applying the above reasoning to the remaining set of K −1  local indel histories, we 
can prove that the domains of integration for all local indel histories can be factored 
out. This finally gives Eq.(A4.2) and thus proves the identity, Eq.(A4.1), i.e., 
Eq.(4.1.4). Thus, the problem at hand was reduced to proving Eq.(A4.2) with K = 2 , 
which we will call the “binary domain identity” here. It is rewritten as: 
       

D(N1+N2 ) ρ M̂[1], M̂[2]⎡
⎣⎢

⎤
⎦⎥( ) ; [tI , tF ]⎡

⎣⎢
⎤
⎦⎥ρ∈Π(2 )[N1, N2 ]

∪ = D(N1 ) ˆ
�
M[1]; [tI , tF ]
⎡
⎣⎢

⎤
⎦⎥× D

(N2 ) ˆ
�
M[2]; [tI , tF ]
⎡
⎣⎢

⎤
⎦⎥.

 
--- Eq.(A4.6)    

Using Eqs.(A4.3a,b), and setting ti ≡ t(1, i)  and ′ti ≡ t(2, i) , it can be rewritten further 
as: 

(t1,..., tN1; ′t1,..., ′tN2 ) tI < t(ρ
−1(1))< < t(ρ−1(N1 + N2 ))< tF{ }

ρ∈Π(2 )[N1, N2 ]
∪

= (t1,..., tN1 ) tI < t1 < < tN1 < tF{ }× ( ′t1,..., ′tN2 ) tI < ′t1 < < ′tN2 < tF{ } .
    

--- Eq.(A4.6’)    
(In this equation and hereafter in this subsection, the identities are considered modulo 
differences of measure zero.) 
 We will prove this identity, Eq.(A4.6’), via mathematical induction regarding 
N2 . First, we show Eq.(A4.6) with N2 =1  holds for every fixed positive integerN1 . 
In this case, Π(2)[N1, N2 =1]  consists of N1 +1  elements, each of which inserts the 
event in the 2nd local history between the i  th and i+1  th events in the 1st local 
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history ( i =1,...,N1 −1), or places it before or after all events in the 1st local history. 
Thus, we have: 

(t1,..., tN1; ′t1) tI < t(ρ
−1(1))< < t(ρ−1(N1 +1))< tF{ }

ρ∈Π(2 )[N1, 1]
∪

= (t1,..., tN1; ′t1) tI < t1 < < tN1 < tF , ti < ′t1 < ti+1{ }
i=0

N1

∪

= (t1,..., tN1; ′t1) tI < t1 < < tN1 < tF , ti < ′t1 < ti+1{ }
i=0

N1

∪
⎧
⎨
⎩

⎫
⎬
⎭

= (t1,..., tN1; ′t1) tI < t1 < < tN1 < tF , tI < ′t1 < tF{ }
= (t1,..., tN ) tI < t1 < < tN1 < tF{ }× ( ′t1) tI < ′t1 < tF{ } .

 

Here we set t0 ≡ tI  and tN1+1 ≡ tF . This shows that Eq.(A4.6’) with N2 =1  holds for 
every N1 ∈ Ν1 . 

Next, let us assume that the binary domain identity, Eq.(A4.6’), holds for 
N2 = N  and for every N1 ∈ Ν1  (Ν1  is the set of positive integers), and see if the 
identity also holds for N2 = N +1 . For this purpose, we classify ρ ∈Π(2)[N1, N +1]  
according to the position of ′tN+1  relative to t1, ..., tN1 , and let ′Π (2)[N1, N +1; i]  (with 

i = 0,1,...,N1 ) be the subset of Π(2)[N1, N +1]  whose elements satisfy ti < ′tN+1 < ti+1 . 
Here we set t0 ≡ tI  and tN1+1 ≡ tF  again. For every ρ ∈ ′Π (2)[N1, N +1; i] , there exist a 

unique σ ∈Π(2)[i, N ]  such that: t ρ−1(ν )( ) = t σ −1(ν )( )  for ν =1,..., N + i , = ′tN+1  for 

ν = N + i+1 , and = tv−N−1  for v = N + i+ 2,..., N + N1 +1 . It could also be represented 
as: 
t ρ−1(1)( ),..., t ρ−1(N + N1 +1)( )( ) = t σ −1(1)( ),..., t σ −1(N + i)( ), ′tN+1, ti+1,..., tN1( ) .  -- 

Eq.(A4.7) 
Thus, σ ∈Π(2)[i, N ]  corresponds to the local sub-history before ′tN+1 . Taking 
advantage of these facts, the left-hand side of Eq.(A4.6’) with N2 = N +1  is re-
expressed as: 

(t1,..., tN1; ′t1,..., ′tN+1) tI < t(ρ
−1(1))<�< t(ρ−1(N1 + N2 +1))< tF{ }

ρ∈Π(2 )[N1, N+1]
∪

= (t1,..., tN1; ′t1,..., ′tN+1) tI < t(ρ
−1(1))<�< t(ρ−1(N1 + N2 +1))< tF{ }

ρ∈ ′Π (2 )[N1, N+1; i]
∪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i=1

N1

∪

= (t1,..., tN1; ′t1,..., ′tN+1) tI < t(σ
−1(1))<�< t(σ −1(N + i))< ′tN+1 < ti+1 <�< tN1 < tF{ }

σ∈Π(2 )[i, N ]
∪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i=1

N1

∪ .

 
--- Eq.(A4.8)   

Applying the assumed Eq.(A4.6’) with N2 = N  and N1 = i , and with tF  replaced by 
′tN+1 , to the expression in the square brackets on the rightmost hand side of Eq.(A4.8), 

we have: 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 4, 2015. ; https://doi.org/10.1101/023598doi: bioRxiv preprint 

https://doi.org/10.1101/023598
http://creativecommons.org/licenses/by/4.0/


 - 70 - 

(t1,..., tN1; ′t1,..., ′tN+1) tI < t(σ
−1(1))<�< t(σ −1(N + i))< ′tN+1 < ti+1 <�< tN1 < tF{ }

σ∈Π(2 )[i, N ]
∪

= (t1,..., tN1; ′t1,..., ′tN+1)
tI < t1 <�< ti < ′tN+1 < ti+1 <�< tN1 < tF,

tI < ′t1 <�< ′tN < ′tN+1

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

= (t1,..., tN1; ′t1,..., ′tN+1)
tI < t1 <�< ti < ti+1 <�< tN1 < tF,

tI < ′t1 <�< ′tN < ′tN+1, ti < ′tN+1 < ti+1

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.

 
--- Eq.(A4.9)    

Substituting Eq.(A4.9) back into the rightmost hand side of Eq.(A4.8), we finally get: 
(t1,..., tN1; ′t1,..., ′tN+1) tI < t(ρ

−1(1))< < t(ρ−1(N1 + N2 +1))< tF{ }
ρ∈Π(2 )[N1, N+1]
∪

= (t1,..., tN1; ′t1,..., ′tN+1)
tI < t1 < < ti < ti+1 < < tN1 < tF,

tI < ′t1 < < ′tN < ′tN+1, ti < ′tN+1 < ti+1

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪i=0

N1

∪

= (t1,..., tN1; ′t1,..., ′tN+1)

tI < t1 < < ti < ti+1 < < tN1 < tF,

tI < ′t1 < < ′tN < ′tN+1, ′tN+1 ti < ′tN+1 < ti+1{ }
i=0

N1

∪

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

 

= (t1,..., tN1; ′t1,..., ′tN+1)
tI < t1 < < ti < ti+1 < < tN1 < tF,

tI < ′t1 < < ′tN < ′tN+1, tI < ′tN+1 < tF

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

= (t1,..., tN1; ′t1,..., ′tN+1) tI < t1 < < tN1 < tF, tI < ′t1 < < ′tN+1 < tF{ }
= (t1,..., tN1 ) tI < t1 < < tN1 < tF{ }× ( ′t1,..., ′tN+1) tI < ′t1 < < ′tN+1 < tF{ } .

  

--- Eq.(A4.10)    
This final expression is nothing other than the right-hand side of Eq.(A4.6’) with 
N2 = N +1 . Thus, assuming that Eq.(A4.6’) holds for N2 = N  and for every N1 ∈ Ν1 , 
we did indeed show that it also holds for N2 = N +1  and for every N1 ∈ Ν1 . 
Therefore, the binary domain identity, Eq.(A4.6’), holds for every pair, 
(N1, N2 )∈ Ν1 ×Ν1 . This completes the proof of our key identity, Eq.(A4.2), and 
therefore the proof of the factorization of the multiple-time integration, Eq.(A4.1). 
 
A5. Proof of proposition 4.1.1 for factorization of exponent 
The other core element is the proposition 4.1.1: 
“Let s ⋅[k, ik ] ≡ s ˆ ′M [k, ik ]  and s ⋅[ ′k , i ′k ] ≡ s ˆ ′′M [ ′k , i ′k ]  be the states resulting from 

the actions of the equivalents of events M̂[k, ik ]  and M̂[ ′k , i ′k ] , respectively, on s ∈ S . 

And let s ⋅[k, ik ][ ′k , i ′k ] ≡ s ˆ ′M [k, ik ] ˆ ′M [ ′k , i ′k ]= s ˆ ′′M [ ′k , i ′k ] ˆ ′′M [k, ik ]  be the state 

resulting from the consecutive actions of the equivalents of M̂[k, ik ]  and M̂[ ′k , i ′k ]  on 
s . The equation for the exponents, Eq.(4.1.3’b), holds for every global history 

π ∈Π M̂
⎡

⎣⎢
⎤

⎦⎥LHS

⎛

⎝
⎜

⎞

⎠
⎟  and for each of its sub-histories that could occur in any sub-interval, 

[tI , t]  with t ∈ [tI , tF ] , if and only if the equation, 
 RX

ID (s, t)+ RX
ID (s ⋅[k, ik ][ ′k , i ′k ], t) = RX

ID (s ⋅[k, ik ], t)+ RX
ID (s ⋅[ ′k , i ′k ], t) ,  --- Eq.(4.1.5)    
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holds for every pair, M̂[k, ik ]  and M̂[ ′k , i ′k ]  (with k ≠ ′k ), in the LHS M̂ , for every 

possible state s ∈ S  before the equivalents of M̂[k, ik ]  and M̂[ ′k , i ′k ]  in the global 

histories in Π M̂
⎡

⎣⎢
⎤

⎦⎥LHS

⎛

⎝
⎜

⎞

⎠
⎟ , and at any time t ∈ [tI , tF ] .” 

It provides an essential part of our sufficient and nearly necessary set of conditions for 
the factorability of the PWA probability. Here, we prove this proposition via 
mathematical induction, similarly to the proof in Appendix A4. 
 We first reduce the problem into a binary one by mathematical induction 
regarding the number of local indel histories, K . As in Appendix A4, let 

Π(K )[N1, ..., NK ]denote the set of maps, Π M̂
⎡

⎣⎢
⎤

⎦⎥LHS

⎛

⎝
⎜

⎞

⎠
⎟ , each of whose elements is a 

rearrangement of K sets, of sizes N1, ..., NK , into a single set of size N = Nkk=1

N

∑ . 

And re-express each map π ∈Π(K )[N1, ..., NK ]  as a composite map, π = ρ (σ , INk
)⎡⎣ ⎤⎦ , 

where σ ∈Π(K−1)[N1, ..., NK−1] and ρ ∈Π(2)[N − NK , NK ] . Then, also as in Appendix 

A4, we have ρ (σ , INK
)⎡⎣ ⎤⎦ M̂
⎛

⎝
⎜

⎞

⎠
⎟= ρ σ ˆ ′M

⎛

⎝
⎜

⎞

⎠
⎟, M̂[K ]

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟  by definition, where 

ˆ ′M = M̂[1], ..., M̂[K −1]⎡
⎣⎢

⎤
⎦⎥  is the reduced LHS consisting of K −1 out of the original 

K  local indel histories in the LHS M̂ , excluding M̂[K ] . Thus, if the binary version 

of the proposition 4.1.1, with Π M̂
⎡

⎣⎢
⎤

⎦⎥LHS

⎛

⎝
⎜

⎞

⎠
⎟  replaced by Π(2)[N − NK , NK ] , is true for 

each fixed σ ∈Π(K−1)[N1, ..., NK−1] , we have the binary version of the factorization, 
Eq.(4.1.3’b): 

 

dt δRX
ID (s(ν ), sA, t)

t (π −1(ν ))

t (π −1(ν+1))

∫
ν=0

N

∑
⎧
⎨
⎩

⎫
⎬
⎭ s(0) = sA ,

s(ν ) = s(ν−1) ˆ ′M [π −1(ν )] ν=1,...,N{ }

= dt δRX
ID ( ′s ( ′ν ), sA, t)

t (σ −1( ′ν ))

t (σ −1( ′ν +1))

∫
′ν =0

N−NK

∑
⎧
⎨
⎩

⎫
⎬
⎭ ′s (0) = sA ,

′s (ν ) = ′s ( ′ν −1) ˆ ′′M [σ −1( ′ν )] ′ν =1,...,N−NK{ }

+ dt δRX
ID (siK , s

A, t)
t (k, iK )

t (k, iK+1)∫
iK=0

NK

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ s0 = sA ,

siK = siK −1 M̂ [k, iK ] iK=1,...,NK{ }

  --- Eq.(A5.1) 

for every possible π = ρ (σ , INk
)⎡⎣ ⎤⎦  with the fixed σ  and any ρ ∈Π(2)[N − NK , NK ] . 

The first summation on the right-hand side is the left-hand side of Eq.(4.1.3’b) with 
π ∈Π(K )[N1, ..., NK ]  replaced by σ ∈Π(K−1)[N1, ..., NK−1] . Thus, the problem was 
reduced to that of the factorization for the global indel histories equivalent to a set of 
K −1 local indel histories. By iteratively applying the binary version of the 
proposition 4.1.1 to the reduced problems, we will finally obtain the fully factorized 
form, i.e., the right-hand side of Eq.(4.1.3’b).  
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Therefore, all we have to do is to prove the binary version of the proposition 
4.1.1. To do so, we will rewrite it into a more tractable form. We first pick two 
integers, i ∈ {0,1,...,N1}  and j ∈ {0,1,...,N2} , and consider all sub-histories of indels 

composed of two local sub-histories, M̂[1, 1], ..., M̂[1, i]⎡
⎣

⎤
⎦  and M̂[2, 1], ..., M̂[2, j]⎡

⎣
⎤
⎦ . 

(If i = 0  or j = 0 , the corresponding local sub-history is considered as empty.) Each 
such sub-history corresponds to a map, ρ ∈Π(2)[i, j] , and the state resulting from the 
action of this sub-history on the state sA ∈ S  is represented, e.g., as: 
sA ⋅ρ ≡ sA M̂[ρ−1(1)] M̂[ρ−1(i+ j)] . As in Subsection 2.3, through the binary 

equivalence relations, Eq.(2.3.3a-d), we can show that  sA ⋅ρ  for each sub-history 

ρ ∈Π(2)[i, j]  is in fact equal to the state: 

     s[i; j] ≡ sA M̂[2, 1] M̂[2, j]⎡
⎣

⎤
⎦ M̂[1, 1] M̂[1, i]⎡
⎣

⎤
⎦ ∈ S( ) ,       --- Eq.(A5.2a)  

that is uniquely determined solely by the local sub-histories, M̂[1, 1],..., M̂[1, i]⎡
⎣

⎤
⎦  and 

M̂[2, 1],..., M̂[2, j]⎡
⎣

⎤
⎦ , and  the initial state, sA ∈ S . That is, the state sA ⋅ρ (= s[i; j])  is 

independent of further details of ρ ∈Π(2)[i, j] . (Naturally, we have s[0, 0]= sA .) 
Thus, the binary version of the proposition 4.1.1 is rephrased as follows. 
[ Proposition A5.1 ] 
 “Eq.(4.1.3’b) with K = 2  holds true for ∀π ∈Π(2)[N1, N2 ]   and for each of their sub-
histories during [tI , t]  with ∀t ∈ (tI , tF )  if and only if the equation,  
RX
ID (s[i−1; j −1], t)+ RX

ID (s[i; j], t) = δRX
ID (s[i; j −1], t)+ δRX

ID (s[i−1; j],, t) ,   
--- Eq.(A5.2b)      

holds for ∀i ∈ {1,...,N1} , ∀ j ∈ {1,...,N2} , and for ∀t ∈ (tI , tF ) .” 
 

Here comes the proof of the proposition A5.1.  First of all, we rewrite Eq. 
(A5.2b) in two different ways, as: 
    δRX

ID (s[i; j], s[i; j −1], t) = δRX
ID (s[i−1; j], s[i−1; j −1], t) ,   ---Eq.(A5.2b’) 

and 
    δRX

ID (s[i; j], s[i−1; j], t) = δRX
ID (s[i; j −1], s[i−1; j −1], t) .   ---Eq.(A5.2b”) 

These equations collectively indicate that the increment of the exit rate due to an indel 
event in one local indel history will not be influenced by the past events in the other 
local history. Indeed, these equations can be “solved” to give: 
            δRX

ID (s[i; j], s[i; j −1], t) = δRX
ID (s[0; j], s[0; j −1], t) ,   ---Eq.(A5.3a) 

            δRX
ID (s[i; j], s[i−1; j], t) = δRX

ID (s[i;0], s[i−1;0], t) .    ---Eq.(A5.3b) 
The right-hand sides of Eq.(A5.3a) and Eq.(A5.3b) are, respectively, the increment 
purely within the 2nd local history and that purely within the 1st local history. 
Replacing i  with ′i  in Eq.(A5.3b), and summing the result over ′i =1,.., i , we find: 

      
δRX

ID (s[i; j], s[0; j], t) = δRX
ID (s[ ′i ; j], s[ ′i −1; j], t)

′i =1

i

∑

= δRX
ID (s[ ′i ;0], s[ ′i −1;0], t)

′i =1

i

∑ = δRX
ID (s[i;0], s[0;0], t) .
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Using δRX
ID (s[i; j], s[0; j], t) = δRX

ID (s[i; j], sA, t)−δRX
ID (s[0; j], sA, t)  and s[0, 0]= sA , 

we get a key equation: 
     δRX

ID (s[i; j], sA, t) = δRX
ID (s[i;0], sA, t)+ δRX

ID (s[0; j], sA, t) .    --- Eq.(A5.4) 
This means that the increment of the exit rate by a sub-history ρ ∈Π(2)[i, j]  is 
decomposed as the summation of two increments, each by one of the local sub-
histories, M̂[1, 1],..., M̂[1, i]⎡

⎣
⎤
⎦  and M̂[2, 1],..., M̂[2, j]⎡

⎣
⎤
⎦ . 

Now, pick an indel history corresponding to a map π ∈Π(2)[N1, N2 ] , and 
consider the left-hand side of Eq.(A1.3’b) with K = 2 , i.e.,  

dt δRX
ID (s(ν ), sA, t)

t (π −1(ν ))

t (π −1(ν+1))

∫
ν=0

N

∑  with s(0) = sA  and s(ν ) = s(ν −1) ˆ ′M [π −1(ν )] for 

ν =1,...,N .  Let ik (ν )  ( k =1, 2 ) be the number of events in the local history 

M̂[k, 1],..., M̂[k, Nk ]⎡
⎣

⎤
⎦  that are equivalent to those included in the sub-history 

ˆ ′M [π −1(1)],..., ˆ ′M [π −1(ν )]⎡
⎣

⎤
⎦ (ν = 0,1,...,N ).  Then, we have i1(ν )+ i2 (ν ) =ν , and 

s(ν ) = s[i1(ν ), i2 (ν )] .  Thus, using Eq.(A5.4), the left-hand side of Eq.(A1.3’b) with 
K = 2 can be decomposed into the contributions from two local sub-histories: 

dt δRX
ID (s[i1(ν ), 0], s

A, t)
t (π −1(ν ))

t (π −1(ν+1))

∫
ν=0

N

∑ + dt δRX
ID (s[0, i2 (ν )], s

A, t)
t (π −1(ν ))

t (π −1(ν+1))

∫
ν=0

N

∑ .  

--- Eq.(A5.5)    
In each summation, ik (ν )  remains a particular value, e.g., ik , since v = π ([k, ik ])  until 
(and excluding) v = π ([k, ik +1])   (for k =1, 2 ). Taking account of it, Eq.(A5.5) 
becomes: 

dt δRX
ID (s[i1, 0], s

A, t)
t (1, i1 )

t (1, i1+1)∫
i1=0

N1

∑ + dt δRX
ID (s[0, i2 ], s

A, t)
t (2, i2 )

t (2, i2+1)∫
i2=0

N2

∑ .  --- Eq.(A5.5’) 

From the definition of s[i; j] , Eq.(A5.2a), we can see that Eq.(A5.5’) is nothing other 
than the right-hand side of Eq.(4.1.3’b) with K = 2 . The argument after Eq.(A5.4) 
applies to every history corresponding to π ∈Π(2)[N1, N2 ] . Thus, we proved that 
Eq.(4.1.3’b) with K = 2  holds if Eq.(A5.2b) holds. 

To prove the converse, we now assume that Eq.(4.1.3’b) with K = 2  holds 
for the indel history corresponding to every π ∈Π(2)[N1, N2 ] ,  as well as for each of 
its sub-histories during [tI , t]  with ∀t ∈ (tI , tF ) . Then, taking the time-derivative of 
both sides of Eq.(4.1.3’b) with K = 2  for any incomplete time-interval [tI , t] , we 
have, for a particular π ∈Π(2)[N1, N2 ] : 
            δRX

ID (s(ν ), sA, t) = δRX
ID (s[i1(ν );0], s

A, t)+ δRX
ID (s[0;i2 (ν )], s

A, t) ,  
using the ik (ν )  ( k =1, 2 ) defined above. Because this equation holds for any time-
interval [tI , t]⊂ [tI , tF ]  and for every map π ∈Π(2)[N1, N2 ] , we get exactly Eq.(A5.4) 
for  ∀i ∈ {0, 1,...,N1} , ∀ j ∈ {0, 1,...,N2} , and for ∀t ∈ (tI , tF ) . Then it is easy to show 
Eq.(A5.2b). Starting with the right-hand side of Eq.(A5.2b), we find: 
δRX

ID (s[i; j −1], sA, t)+ δRX
ID (s[i−1; j], sA, t)

= δRX
ID (s[i;0], sA, t)+δRX

ID (s[0; j −1], sA, t){ }+ δRX
ID (s[i−1;0], sA, t)+δRX

ID (s[0; j], sA, t){ }.
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Swapping the 1st and 3rd terms on the right-hand side, we have: 
δRX

ID (s[i; j −1], sA, t)+ δRX
ID (s[i−1; j], sA, t)

= δRX
ID (s[i−1;0], sA, t)+δRX

ID (s[0; j −1], sA, t){ }+ δRX
ID (s[i;0], sA, t)+δRX

ID (s[0; j], sA, t){ }
= δRX

ID (s[i−1; j −1], sA, t)+ δRX
ID (s[i; j], sA, t) .

 

Adding 2RX
ID (sA, t)  to the leftmost and rightmost sides of the above equation, we get 

Eq.(A5.2b). Thus, the converse was proved. 
 This proof of the proposition A5.1, combined with the proof above it resorting 
to the mathematical induction regarding K  given the proposition A5.1, completes the 
proof of the key proposition 4.1.1. 
 
A6. Probability of LHS equivalence class under “long indel” model 
Here, we consider the “long indel” model (Miklós et al. 2004), whose indel rate 
parameters are given by Eqs.(2.4.5a-e). Under this model, we will calculate the 
probability of a LHS equivalence class of (global) indel histories, conditioned on a 
given ancestral sequence, according to the prescription proposed by Miklós et al. 
(2004). And we will show that the probability calculated this way is indeed identical 
to that calculated via our theoretical formulation. 
 We first briefly review the method of Miklós et al. (2004). In their method, a 
PWA is scanned from left to right, and horizontally partitioned into “chop-zones.” In 
the bulk of the PWA, a chop-zone starts immediately on the right of a preserved 
ancestral site (PAS) and ends exactly at the next PAS. The leftmost chop-zone starts 
at the left-end of the PWA and ends exactly at the first PAS if at all, or otherwise ends 
at the right-end of the PWA. The rightmost chop-zone starts immediately on the right 
of the rightmost PAS, if at all, and ends at the right-end of the PWA. It should be 
noted that each chop-zone contains at most one PAS, and that the PAS contained in 
the chop-zone always resides at the right-end of the zone. 
 Conceptually, the conditional probability of each chop-zone is calculated by 
summing the contributions of all local indel histories consistent with the homology 
structure (Lunter et al. 2005) of the chop-zone. Then, according to the recipe of 
Miklós et al. (2004), (the indel component of) the probability of a given PWA, 
conditioned on the ancestral sequence, is given by the product of the conditional 
probabilities over all chop-zones that make up the PWA. Therefore, by extension, 
Miklós et al.’s probability of a LHS equivalence class of indel histories (consistent 
with the PWA) should be given by the product of the contributions from the local 
indel histories (including the empty histories), each confined in every chop-zone, over 
all chop-zones constituting the PWA. This is exactly what we will calculate in the 
following. 
 Now, as in Subsection 4.1 of Results, consider a LHS equivalence class, 

M̂
⎡

⎣⎢
⎤

⎦⎥LHS
 with M̂ = M̂[k,1], ..., M̂[k,Nk ]⎡

⎣
⎤
⎦{ }

k=1,...,K
, that is consistent with a given PWA, 

α(sA, sD ) , of an ancestral sequence ( sA ) and its descendant ( sD ). As near the bottom 
of Subsection 4.1, we can define the regions of α(sA, sD )  each of which potentially 
accommodates a local indel history, namely, γ1, γ2, ..., γκmax , as the region on the left of 
the leftmost PAS, the regions between two PASs next to each other, and the region on 
the right of the rightmost PAS. (Because the indel model at hand is space-
homogeneous and has freely mutable flanking regions, every local indel history in 
each such region is independent of the histories outside, both physically and regarding 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 4, 2015. ; https://doi.org/10.1101/023598doi: bioRxiv preprint 

https://doi.org/10.1101/023598
http://creativecommons.org/licenses/by/4.0/


 - 75 - 

the multiplication factor, as shown in Subsection 5.1 of Results.) Then, by 
appropriately distributing the local histories into such regions, we can provide a 

vector-representation of the LHS: M̂ = M̂[γ1], M̂[γ2 ], ..., M̂[γκmax ]( ) . Using these 

regions, each chop-zone of Miklós et al. (2004) can be constructed by putting together 
a region γκ  with its right-flanking PAS (for κ =1,..., κmax −1), or by a region alone 
(for κ =κmax ). According to Appendix A of Miklós et al. (2004), the contribution 
from the local history, M̂[γκ ]= M̂1[γκ ], ..., M̂Nκ

[γκ ]⎡
⎣

⎤
⎦ , in the chop-zone, cz(γκ ) , that is 

associated with γκ  is calculated as: 

PMik M̂[γκ ], [tI , tF ]( ) (sA[cz(γκ )], tI )⎡
⎣⎢

⎤
⎦⎥
= r(M̂ν [γκ ];φv−1)

ν=1

Nκ

∏

×
tI≡t0<t1< <tNκ <tNκ +1≡tF

∫∫ dt1 dtNκ exp − (tν+1 − tν ) RX (Mik )
ID (φv; cz(γκ ))

ν=0

Nκ

∑
⎧
⎨
⎩

⎫
⎬
⎭ φ0=s

A [cz(γκ )],
φν = φν−1 M̂ν [γκ ] ν=1,...,Nκ{ }

.

 
--- Eq.(A6.1)    

Here, sA[cz(γκ )]  is the portion of the ancestral state confined in the chop-zone cz(γκ ) , 
and φ0 (= s

A[cz(γκ )]), φ1, ..., φNκ  are the chop-zone-confined states that the local indel 
history went through. The expression is quite similar to each term in the perturbation 
expansion, Eq.(3.1.8b). Because each indel rate, r(M̂ν [γκ ];φv−1) , is independent of 
time, it was put outside of the multiple-time integration. And, because each “exit 
rate,” RX (Mik )

ID (φv; cz(γκ ))  (detailed later), is also time-independent, its time integration 
(in the exponent) was reduced to a simple multiplication by the time-lapse. The “exit 
rate” RX (Mik )

ID (φv; cz(γκ ))  needs some explanation. Because each chop zone (except 
cz(γ1) ) is defined conditionally on the PAS that is left-flanking the zone, and because 
we now know that the probability is factorable, we do not have to consider deletions 
that pierce through this PAS. Neither do we have to consider indel events completely 
outside of the chop zone. Therefore, taking advantage of the space-homogeneity of 
the indel rates, using the correspondence with Dawg’s model (Cartwright 2005), 
Eqs.(2.4.7a,b,c,d), and letting L(φv )  be the number of sites in the state φv  (including 
the PAS at the right-end of the zone, if at all), the “exit rate” RX (Mik )

ID (φv; cz(γκ ))  
according to Miklos et al.’s definition is expressed as: 

     RX (Mik )
ID (φv; cz(γκ )) = λI fI (l)l=1

LI
CO

∑
x=0

L(φv )−1∑ + λD fD (l)l=1

LD
CO

∑
x=1

L(φv )∑  --- Eq.(A6.2a) 

for κ = 2, ..., κmax −1 . It should be noted that the summation over the insertion 
positions ( x ) has the upper bound x = L(φν )−1 , because an insertion on the 
immediate right of x = L(φν )  belongs to the right-neighboring chop-zone ( cz(γκ+1) ). 
The summation over the indel lengths ( l ’s) is easily performed, and we get: 
    RX (Mik )

ID (φv; cz(γκ )) = (λI +λD )L(φv ) for κ = 2, ..., κmax −1.    --- Eq.(A6.2a’) 

When κ =κmax (≠1) , the expression of RX (Mik )
ID (φv; cz(γκ ))  is almost the same as 

Eq.(A6.2a); the only difference is that it also needs to include the insertions right-
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flanking the PWA (i.e., with x = L(φν ) ), whose rates are given by Eq.(2.4.6c). Thus, 
we have: 

   RX (Mik )
ID (φv; γκmax ) = (λI +λD )L(φv )+ λl

(end )

l=1

LI
CO

∑ for κmax ≠1.    --- Eq.(A6.2b) 

When κ =1(≠κmax ) , Eq.(A6.2a) is still useful, but we need two modifications, both 
because this chop-zone is not left-flanked by a PAS. First, insertions on the left-end 
(i.e., with x = 0 ) must have the rates given by Eq.(2.4.6c). Second, deletions 

“starting” at x =1  must have the rates μl
(end ) = μ ′l′l =l

LD
CO

∑ . Taking account of these 

modifications, we have: 

 RX (Mik )
ID (φv; cz(γ1)) = (λI +λD )(L(φv )−1)+ λl

(end )

l=1

LI
CO

∑ + μl
(end )

l=1

LD
CO

∑    --- Eq.(A6.2c) 

when κmax ≠1 . Because μl
(end )

l=1

LD
CO

∑ = μ ′l′l =l

LD
CO

∑
l=1

LD
CO

∑ = μ ′ll=1

′l

∑
′l =1

LD
CO

∑ = ′l μ ′l′l =1

LD
CO

∑ = lD λD , 

we get: 

 RX (Mik )
ID (φv; cz(γ1)) = (λI +λD )L(φv )− λI + λl

(end )

l=1

LI
CO

∑ + λD (lD −1) .    --- Eq.(A6.2c’) 

From Eqs.(A6.2a,b,c’), we find that RX (Mik )
ID (φv; cz(γκ )) ’s are always affine functions 

of L(φv )  with the slope (λI +λD ) , which is the same as that of the exit rate, RX
ID (s, t)  

given by Eq.(2.4.7e), for the evolution of an entire sequence under the “long indel” 
model. Thus, we have: 
δRX (Mik )

ID (φv, φv−1; cz(γκ )) ≡ RX (Mik )
ID (φv; cz(γκ )) − RX (Mik )

ID (φv−1; cz(γκ )) = (λI +λD )δl M̂v[γκ ]( ) ,
 

 --- Eq.(A6.3)     
where δl M̂v[γκ ]( )  is the change in L(φv )  caused by the event M̂v[γκ ] . This is exactly 

the same as the increment of the (actually time-independent) exit-rate: 
δRX

ID (s ⋅ M̂v[γκ ], s, t) ≡ RX
ID (s ⋅ M̂v[γκ ], t) − RX

ID (s, t) = (λI +λD )δl M̂v[γκ ]( ) ,    
--- Eq.(A6.4)   

caused by the event M̂v[γκ ]  on the entire sequence. By successively applying M̂ ′v [γκ ]  
( ′ν =1,...,ν ), we have: 

       δRX (Mik )
ID (φv, φ0; cz(γκ )) = δRX

ID (sν , s
A )

sν = sA M̂1[γκ ] M̂v [γκ ]
.  --- Eq.(A6.5) 

Therefore, we can rewrite the exponent in Eq.(A6.1) as: 

     

− (tν+1 − tν ) RX (Mik )
ID (φv; cz(γκ ))

ν=0

Nκ

∑

= − (tNκ+1 − t0 )RX (Mik )
ID (φ0; cz(γκ )) − (tν+1 − tν )δRX (Mik )

ID (φv, φ0; cz(γκ ))
ν=0

Nκ

∑

= − (tNκ+1 − t0 )RX (Mik )
ID (φ0; cz(γκ )) − (tν+1 − tν )δRX

ID (sν , s
A )

ν=0

Nκ

∑
⎡

⎣
⎢

⎤

⎦
⎥
s0=s

A

sν = sν−1 M̂ν [γκ ] v=1,...,Nκ{ }

.

  

--- Eq.(A6.6)    
Substituting this back into the right hand side of Eq.(A6.1), and comparing the result 
with Eq.(4.1.1b) supplemented by Eq.(3.1.8b), we have: 
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PMik M̂[γκ ], [tI , tF ]( ) (sA[cz(γκ )], tI )⎡

⎣⎢
⎤
⎦⎥

= exp −(tF − tI )RX (Mik )
ID (sA[cz(γκ )]; cz(γκ )){ }μP M̂[γκ ], [tI , tF ]( ) (sA, tI )⎡

⎣⎢
⎤
⎦⎥
.
   

--- Eq.(A6.7)    
According to the method of Miklós et al. (2004), the probability of the LHS 

equivalence class, M̂
⎡

⎣⎢
⎤

⎦⎥LHS
 with M̂ = M̂[γ1], M̂[γ2 ], ..., M̂[γκmax ]( ) , should be defined 

as: 

PMik M̂
⎡

⎣⎢
⎤

⎦⎥LHS
, [tI , tF ]

⎛

⎝
⎜

⎞

⎠
⎟ (s

A, tI )
⎡

⎣
⎢

⎤

⎦
⎥≡ PMik M̂[γκ ], [tI , tF ]( ) (sA[cz(γκ )], tI )⎡

⎣⎢
⎤
⎦⎥κ=1

κmax∏ .   

--- Eq.(A6.8)   
Substituting Eq.(A6.7) into Eq.(A6.8) yields: 

PMik M̂
⎡

⎣⎢
⎤

⎦⎥LHS
, [tI , tF ]

⎛

⎝
⎜

⎞

⎠
⎟ (s

A, tI )
⎡

⎣
⎢

⎤

⎦
⎥

= exp −(tF − tI ) RX (Mik )
ID (sA[cz(γκ )]; cz(γκ ))κ=1

κmax∑{ } μP M̂[γ ′κ ], [tI , tF ]( ) (sA, tI )⎡
⎣⎢

⎤
⎦⎥

′κ =1

κmax

∏ .

  

--- Eq.(A6.8’)    
 
Substituting Eqs.(A6.2a’,b,c’) into the summation in the exponent on the right hand 
side, we get: 

  
RX (Mik )
ID (sA[cz(γκ )]; cz(γκ ))κ=1

κmax∑

= (λI +λD ) L(sA[cz(γκ )])κ=1

κmax∑ + −λI + 2 λl
(end )

l=1

LI
CO

∑⎛⎝⎜
⎞
⎠
⎟+ λD (lD −1)

⎧
⎨
⎩

⎫
⎬
⎭
.
  --- Eq.(A6.9)    

On the right hand side, the expression in the braces is exactly 
ΔLong λI , {λl

(end )}, λD, fD (.)⎡⎣ ⎤⎦  in Eq.(2.4.7e), and we also have 

L(sA[cz(γκ )])κ=1

κmax∑ = L(sA ) . Thus, the equation is further reduced to: 

RX (Mik )
ID (sA[cz(γκ )]; cz(γκ ))κ=1

κmax∑ = (λI +λD )L(s
A )+ ΔLong λI , {λl

(end )}, λD, fD (.)⎡⎣ ⎤⎦= RX
ID (sA, t)

 
--- Eq.(A6.9’)    

for κmax >1 . [In the case where κmax =1 , by the way, arguments similar to those 
leading to Eqs.(A6.2b,c’) reveals that RX (Mik )

ID (sA[cz(γ1)]; cz(γ1)) = RX
ID (sA, t)  holds, and 

thus that Eq.(A6.9’) trivially holds.] Now, substituting Eq.(A6.9’) back into 
Eq.(A6.8’) while taking account of its the time-independence of RX

ID (sA, t)  under this 
model, we finally get: 

PMik M̂
⎡

⎣⎢
⎤

⎦⎥LHS
, [tI , tF ]

⎛

⎝
⎜

⎞

⎠
⎟ (s

A, tI )
⎡

⎣
⎢

⎤

⎦
⎥= exp − dt RX

ID (sA, t)
tI

tF∫{ } μP M̂[γκ ], [tI , tF ]( ) (sA, tI )⎡
⎣⎢

⎤
⎦⎥

κ=1

κmax

∏ .

 
--- Eq.(A6.8”)    
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The right hand side of Eq.(A6.8”) is exactly that of Eq.(4.1.7), i.e., the probability of 

the LHS equivalence class M̂
⎡

⎣⎢
⎤

⎦⎥LHS
 calculated via our ab initio theoretical formulation, 

under the “long indel” model, Eqs.(2.4.7a-e).  
 Actually, this equivalence between the probability via our ab initio 
formulation and that via Miklos et al.’s method (2004) should hold under any indel 
models with factorable PWA probabilities described in Section 5 of Results, as long 
as the “chop-zones” are re-defined appropriately. Its explicit proof will be left as an 
exercise for the readers. (The key is the decomposition of the entire exit rate into the 
contributions from (modified) chop-zones.) 
 
A7. Derivation of Eq.(5.2.6) for “difference between differences” of exit rate of 
neutral region flanked by completely conserved regions 
Here we derive Eq.(5.2.6), which explicitly expresses the “difference between 
differences” of the exit rate in the model where a neutrally evolving region is flanked 
by biologically essential regions or sites. Remember that we are considering a 
sequence state s ∈ S  with L(s) = L , and the action of two separated deletions, 
M̂D1 ≡ M̂D (x1, x1 + l1 −1)  and M̂D2 ≡ M̂D (x2, x2 + l2 −1)  with x1 ≥1  and 
x 1+l1 < x2 ≤ L − l2 +1 , on the state.  And we use the notations, s1 ≡ s M̂D1 , 

s2 ≡ s M̂D2 , and s21 ≡ s M̂D2M̂D1 .  Then, substituting L(s1) = L − l1 , L(s2 ) = L − l2 , 
and L(s21) = L − l1 − l2  into Eq.(5.2.5), we have: 

  
δRX

ID (s1, s, t) = − l1 gI (l, t)
l=1

LI
CO

∑ + (L − l1 − l +1)gD (l, t)
l=1

L−l1

∑ − (L − l +1)gD (l, t)
l=1

L

∑

= −l1 gI (l, t)
l=1

LI
CO

∑ − l1 gD (l, t)
l=1

L−l1

∑ − (L − l +1)gD (l, t)
l=L−l1+1

L

∑ ,

     

--- Eq.(A7.1a)     
and  

   

δRX
ID (s21, s2, t) = − l1 gI (l, t)

l=1

LI
CO

∑ + (L − l1 − l2 − l +1)gD (l, t)
l=1

L−l1−l2

∑ − (L − l2 − l +1)gD (l, t)
l=1

L−l2

∑

= −l1 gI (l, t)
l=1

LI
CO

∑ − l1 gD (l, t)
l=1

L−l1−l2

∑ − (L − l2 − l +1)gD (l, t)
l=L−l1−l2+1

L−l2

∑

= −l1 gI (l, t)
l=1

LI
CO

∑ − l1 gD (l, t)
l=1

L−l1−l2

∑ − (L − ′l +1)gD ( ′l − l2, t)
′l =L−l1+1

L

∑ .

  

---Eq.(A7.1b)      
Subtracting Eq.(A7.1b) from Eq.(A7.1a), we get: 

δRX
ID (s1, s, t) − δRX

ID (s21, s2, t) = −l1 gD (l, t)
l=L−l1−l2+1

L−l1

∑ + (L − l +1) gD (l − l2, t)− gD (l, t)[ ]
l=L−l1+1

L

∑ .

 
---Eq.(A7.2)      

This is exactly Eq.(5.2.6). 
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Figures 1-12 (with legends) 
 

A. Indel history B.  In SI C.  In SII D.  In SIII

sI

s1 = sI M̂D (3,3)

s2 = s1 M̂I (5, 2)

s3 = s2 M̂D (2,3)

sF = s3 M̂I (5,1)
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E. Resulting MSA (in SII)

I 1 2 3 4 5 6 - - - 7

1 1 2 - 4 5 6 - - - 7

2 1 2 - 4 5 6 8 9 - 7

3 1 - - - 5 6 8 9 - 7

F 1 - - - 5 6 8 9 A 7

F. Resulting PWA (in SII)

I 1 2 3 4 5 6 - - - 7

F 1 - - - 5 6 8 9 A 7

 

Figure 1. Example indel history and resulting alignments. 
Panel A shows an example indel history. Panels B, C and D illustrate its 
representation in the state spaces SI , SII  and SIII , respectively. Each sequence state 
in panel A is horizontally aligned with its representation in the three state spaces. E. 
The resulting MSA among the sequence states (in space SII ) that the indel history 
went through. F. The resulting PWA between the initial and final sequences, 
represented in terms of the states in SII . In both E and F, the bold italicized characters 
in the leftmost column are the suffixes indicating the sequence states in panel A. In 
panels C, E, and F, the number in each site represents its ancestry, but not necessarily 
its site number (i.e., its spatial coordinate, or order in the sequence). The ‘A’ in the 
final sequence represents ten (as in the hexadecimal numbering system), to overcome 
the space shortage. In panel D, each site has two numbers. The upper number is the 
sequence source identifier, and the lower number represents the relative position of 
the site in the original source sequence. For clarity, the deleted sites are colored 
magenta or red, and the inserted sites are colored cyan or blue. It should be noted, 
however, that these colorings (especially of the deleted ones) are not directly included 
in the sequence state representations. In this example, the initial state, sI , is of length 
7 (i.e., L(sI ) = 7 ).  
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Figure 2. Equivalent indel histories involving two non-overlapping indel events.   
Panels A and B show equivalent histories, each involving a deletion and an insertion, 
which result in the same alignment (panel C). Panels D and E show equivalent 
histories, each involving two insertions. Both of them give rise to the alignment in 
panel F. All indel histories are represented in the state space SIII . As in Figure 1, 
deleted sites are colored magenta, and inserted sites are colored cyan or blue. 
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Figure 3. Equivalence relationships involving indels that overlap or touch each 
other. 
A. The successive action of two nested (or mutually touching) deletions 
( M̂D (3, 4)M̂D (2,3) ) is equivalent to a single deletion ( M̂D (2, 5) ). B. The successive 
action of two nested (or mutually touching) insertions ( M̂I (1, 2)M̂I (2, 2) ) is equivalent 
to a single insertion ( M̂I (1, 4) ). C. A deletion ( M̂D (2, 2) ) followed by an insertion 
between the deletion-flanking sites ( M̂I (1, 2) ). D. An insertion ( M̂I (2,1) ) followed by 
the deletion of a region encompassing the inserted subsequence ( M̂D (2, 4) ) is 
equivalent to a single deletion ( M̂D (2,3) ). E. An insertion ( M̂I (1, 4) ) followed by the 
deletion of a region nested within the inserted sequence ( M̂D (3, 4) ) is equivalent to a 
single insertion ( M̂I (1, 2) ). F. If the state space is SI  or SII , an insertion ( M̂I (2,3) ) 
followed by a left-overlapping deletion ( M̂D (2,3) ) is equivalent to a non-overlapping 
but mutually touching pair of an insertion and a subsequent deletion 
( M̂I (2, 2)M̂D (2, 2) ), which is also equivalent to the result of panel C. G. If the state 
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space is SI  or SII , an insertion ( M̂I (1,3) ) followed by a right-overlapping deletion 
( M̂D (4, 5) ) is equivalent to a non-overlapping but mutually touching pair of an 
insertion and a subsequent deletion ( M̂I (1, 2)M̂D (4, 4) ), which is also equivalent to 
the result of panel C. H. An insertion ( M̂I (1,3) ) and a subsequent exact deletion of the 
inserted subsequence ( M̂D (2, 4) ) result in a sequence state identical to the initial one. 
The sequence states are represented in the space SIII . The magenta and red boxes 
represent sites to be deleted. The cyan and blue boxes represent inserted sites. The 
yellow boxes represent inserted sites that are to be deleted. 
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Figure 4. Phylogenetic correctness condition. 
A. This condition states that, if two sequences in a MSA hold homologous sites (the 
“N”s aligned in the column), all internal nodes along the path connecting the two 
sequences must also hold the site (the filled circles on the tree). B. Another 
phylogenetically correct configuration, which forms a single, connected “web” of 
nodes (and branches) holding the site. C. A phylogenetically wrong configuration, 
where there are two mutually disconnected “web”s, indicating two independent 
insertions (, one of which was followed by a deletion). Such a history must give rise 
to two independent columns, as in panel D. E. Another phylogenetically wrong 
configuration, which must be represented as two separate configurations, as in panel F. 
Each of the panels A, B, C and E consists of a tree and a MSA column enclosed by a 
dashed box. The ‘-‘ in each column represents a gap, meaning that the site is absent. 
The open circle in each tree represents the absence of the site from the sequence at the 
node. The red and the blue lightening bolts represent a deletion and an insertion, 
respectively. 
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Figure 5. Ambiguities in interpretation of PWA.   
A. A deletion ( M̂D (2,3) ) followed by an insertion between the deletion-flanking sites 
( M̂I (1,3)). Two alternative PWAs that could result from this indel history are shown 

in panels B and C. D. An alternative indel history, M̂I (1,3), M̂D (5, 6)⎡
⎣

⎤
⎦ , that can result 

in the PWA in panel B. E. An alternative indel history, M̂I (3,3), M̂D (2,3)⎡
⎣

⎤
⎦ , that can 

give rise to the PWA in panel C. We followed the same notations as in Figure 2. 
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Figure 6. PWA representations of somewhat complex indel history. 
A. An example 3-event history, 
M̂I (x, lI + ′l + ′′l ), M̂D (x + lI + ′l +1, xE1 + lI + ′l + ′′l ), M̂D (xB2, x + ′l )⎡
⎣

⎤
⎦, with x = 2 , lI = 2 , 

′l = 2 , ′′l =1, xE1 = 4 , and xB2 = 2 . B. A PWA that would be output by a simulator 
that faithfully records the actually occurred indels and their outcomes. C. Two 
alternative “parsimonious” PWAs that would commonly be output by existing 
alignment programs, when the history in panel A actually occurred. D, E, and F. 
Three parsimonious interpretations of both of the PWAs in panel C. 
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Figure 7. Equivalence relations between (local) indel histories along tree. 
Given a MSA [panel A], we can conceive of some indel histories consistent with it 
[shown, e.g., in panels B, C, D and E]. These indel histories are equivalent, in the 
sense that they give rise to the same MSA. Each of panels B, C, D and E consists of 
an indel history mapped on the left tree, and two other trees (middle and right) 
showing whether the site corresponding to each MSA column is present in (a filled 
circle) or absent from (an open circle) the sequence at each node. In the left tree, the 
sequence state at each node is represented by the parenthesized list of MSA columns 
present in the sequence. And the set of blue/red parenthesized numbers, + /−(x, y, z) , 
accompanying each blue/red lightening bolt represents the set of MSA columns 
inserted/deleted by the event. The move between the histories can be interpreted as a 
contraction or extension of the “web” of nodes (and branches) possessing each site, 
which changes the ancestral states at the internal nodes. Such a “web” transformation 
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could be accompanied by an equivalence move between histories along each relevant 
branch as exemplified in Appendix A1 (not shown here). In all panels, S1-S4 are the 
sequence names, and the MSA columns are numbered 1-4. 
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Figure 8. Examples of “null local indel histories.” 
A. Here, for clarity, the effect of null local indel histories is represented with a block 
of contiguous “null” MSA columns, each of which consists only of gaps (columns 2 
and 3). B, C, D. Examples of null local indel histories that could give rise to the null 
MSA columns in panel A. 
This figure uses the same notation as Figure 7 does. 
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Figure 9. Enriched repertoire of non-parsimonious local indel histories by null 
local indel histories. 
Usually, the MSA in panel A most likely resulted from the parsimonious local indel 
history in panel B. Although the non-parsimonious local indel history in panel C 
could also give rise to the MSA in panel A, usually it is much less likely. However, if 
we notice that the extended MSA in panel D is also equivalent to that in panel A, we 
also notice that another class of non-parsimonious local indel histories shown in panel 
E could also result in the MSA. This could enhance the total likelihood that this class 
of non-parsimonious local indel histories is responsible for the MSA. 
In panels D and E, the ID “g” is assigned to the gap-only column, to facilitate the 
comparison between histories C and E. 
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⎣

⎤
⎦,

M̂[2]= M̂I (7,1), M̂D (8,8)⎡
⎣

⎤
⎦=

ˆ ′MI (4,1), ˆ ′MD (5, 5)⎡
⎣

⎤
⎦,

M̂[3]= M̂I (8, 2), M̂I (10,1)⎡
⎣

⎤
⎦=

ˆ ′MI (7, 2), ˆ ′MI (8,1)⎡
⎣

⎤
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D. LHS (vector representation):

M̂ = M̂[γ1], M̂[γ2 ], ..., M̂[γ7 ]( )
with

M̂[γ1]= M̂[γ2 ]= M̂[γ4 ]= M̂[γ7 ]= [],

M̂[γ3]= M̂[1], M̂[γ5 ]= M̂[2], M̂[γ6 ]= M̂[3].
 

Figure 10. “Vector” representation of local history set (LHS) along time interval.   
A. An example global indel history, consisting of six indel events and seven resulting 
sequence states (including the initial state sI ). B. The resulting MSA among the 
sequence states that the indel history went through. The boldface letters in the 
leftmost column indicates the sequence states in the global history (panel A). The 1-
9,A-D in the cells are the ancestry identifiers of the sites (in the state space SII ). The 
magenta and red cells represents the sites to be deleted. The cyan and blue cells 
represent the inserted sites. The yellow cells represent the inserted sites that are to be 
deleted. Below the MSA, the underbraces indicate the regions γκ  (κ = 3, 5, 6  in this 
example) that actually accommodate local indel histories. And the yellow wedges 
indicate the regions γκ  (κ =1, 2, 4, 7  in this example) that can potentially 
accommodate local indel histories, but that actually do not. In this example, we have 
K = 3 , N1 = N2 = N3 = 2  and κmax = 7 . C. The original representation of the LHS. In 

each defining equation for M̂[k]  ( k =1, 2, 3 ), the expression in the middle is the local 
history represented by its action on the initial state sI . And on the rightmost side is 
the representation by the actual indel events in the global history (in panel A). The 
prime there indicates that each defining event is equivalent to, but not necessarily 
equal to, the corresponding event in the global history. D. The vector representation of 
the LHS. The “[]” denotes an empty local history, in which no indel event took place. 
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⎣

⎤
⎦, [], [], [], [], M̂D (11,11)⎡

⎣
⎤
⎦, [], []( ) .

 
Similarly,

M̂ (b6) = M̂[γ1(b6)], ..., M̂[γ13(b6)]( ) = [], [], [], [], [], [], [], [], [], [], M̂I (10,1)⎡
⎣

⎤
⎦, [], []( ) ,

M̂ (b2) = M̂[γ1(b2)], ..., M̂[γ14 (b2)]( ) = [], [], [], [], [], M̂I (5,1)⎡
⎣

⎤
⎦, [], [], [], [], [], [], [], []( ) ,

M̂ (b3) = M̂[γ1(b3)], ..., M̂[γ14 (b3)]( ) = [], [], [], [], [], [], [], [], [], [], [], [], [], []( ) ,

M̂ (b4) = M̂[γ1(b4)], ..., M̂[γ13(b4)]( ) = [], [], [], M̂D (4, 4)⎡
⎣

⎤
⎦, [], [], [], [], [], [], [], [], []( ) .

D. LHS along the tree (vector representation):

M̂ (b){ }
T

= M̂ (b){ }
T

C1[ ], ..., M̂ (b){ }
T

C10[ ]
⎛

⎝
⎜

⎞

⎠
⎟ ,

with

M̂ (b){ }
T

CΚ[ ] = { } for Κ =1,2,3, 5, 6, 7, 9,10 ,

M̂ (b){ }
T

C4[ ] = M̂[γ6 (b5)]= M̂I (5,1)⎡
⎣

⎤
⎦, M̂[γ4 (b1)]= M̂D (4, 5)⎡

⎣
⎤
⎦, M̂[γ6 (b2)]= M̂I (5,1)⎡

⎣
⎤
⎦, M̂[γ4 (b4)]= M̂D (4, 4)⎡

⎣
⎤
⎦{ } ,

M̂ (b){ }
T

C8[ ] = M̂[γ11(b6)]= M̂I (10,1)⎡
⎣

⎤
⎦, M̂[γ9 (b1)]= M̂D (11,11)⎡

⎣
⎤
⎦{ } .

 
 

 

Figure 11. MSA regions potentially able to accommodate local indel histories 
along tree. 
A. A global indel history along a tree. Sequence IDs are assigned to the nodes. Each 
branch is accompanied by an ID (b1- b6 ) and a global indel history along it. The “R” 
stands for the root. B. Resulting MSA of the “extant” sequences at external nodes and 
the ancestral sequences at internal nodes. The boldface letters in the leftmost column 
are the node IDs. Below the MSA, the underbraces indicate the regions CΚ  (Κ = 4, 8  
in this example) that actually accommodate local indel histories along the tree. And 
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the yellow wedges indicate the regions CΚ  (Κ =1, 2, 3, 5, 6, 7, 9, 10  in this example) 
that can potentially accommodate local indel histories along the tree, but that actually 
do not. In this example, we have Κmax =10 . C. LHSs along the branches (in the 
vector representation). As examples, the PWAs along branches b1  and b5  are also 
shown, along with their own regions that can potentially accommodate local histories. 
D. The LHS along the tree (vector representation). Only the non-empty components 
were shown explicitly. This figure follows basically the same notation as Figure 10 
does. A cell in the MSA is colored only if it is inserted/deleted along an adjacent 
branch. 
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I 1 - 2 - 3 4 5 6 7 8 - 9 A B

1 1 - 2 - 3 - 5 6 7 8 - 9 A B

2 1 - 2 - 3 - 5 6 7 8 C 9 A B

3 1 - 2 - 3 - 5 - 7 8 C 9 A B

4 1 - 2 D 3 - 5 - 7 8 C 9 A B

5 1 E 2 D 3 - 5 - 7 8 C 9 A B

F 1 E 2 - 3 - 5 - 7 8 C 9 A B

A. Regions of indel rate changes, and a moderate indel history

γ1 γ2 γ3 γ4 γ6

R
at
e Ε1 Ε2

γ5 γ7 γ8

I 1 - 2 - 3 4 5 6 7 8 - 9 A B

1 1 - 2 - 3 - 5 6 7 8 - 9 A B

2 1 - 2 - 3 - 5 6 7 8 C 9 A B

3 1 - 2 - 3 - 5 - 7 8 C 9 A B

4 1 - 2 D 3 - 5 - 7 8 C 9 A B

5 1 E 2 D 3 - 5 - 7 8 C 9 A B

6 1 E 2 D 3 - 5 - 7 8 C 9 - -

F 1 E 2 - 3 - 5 - 7 8 C 9 - -

B. A history with a sticking-out deletion

γ1 γ2 γ3 γ4 γ6

R
at
e Ε1 Ε2

γ5  

I 1 - 2 - 3 4 5 6 7 8 9 - A B

1 1 - 2 - 3 - 5 6 7 8 9 - A B

2 1 - 2 - 3 - 5 6 7 8 9 C A B

3 1 - 2 - 3 - 5 - - - 9 C A B

4 1 - 2 D 3 - 5 - - - 9 C A B

5 1 E 2 D 3 - 5 - - - 9 C A B

F 1 E 2 - 3 - 5 - - - 9 C A B

C. A history with a bridging deletion

γ1 γ2 γ3 γ4

R
at
e Ε1 Ε2

γ5 γ6  
Figure 12. Example of partially factorable indel model, Eqs.(5.3.1a,b). 
In each panel, the graph above the MSA schematically shows the indel rates of the 
regions. In the example here, indel rate increments are confined in two regions, E1  
and E2 . Other than that, the figure uses the same notation as in Figure 10. A. When 
all indels are either completely within or completely outside of the regions. Although 
the deletion of a site with the ancestry ‘4’ and the deletion of a site with the ancestry 
‘6’ are separated via a preserved ancestral site (with the ancestry ‘5’), they are lumped 
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together into a single local indel history, because they are both within the region E1 . 
B. When a deletion sticks out of the region of an indel rate increment. The deletion of 
the two sites (with the ancestries ‘A’ and ‘B’) sticks out of the region E2 . In this case, 
γ6  is extended to encompass this deletion, and end up engulfing the original γ7  and 
γ8  (in panel A). All indel events within this extended γ6  define a single local indel 
history. C. When a deletion bridges the two regions of indel rate increments. The 
deletion of the three sites (with the ancestries ‘6’, ‘7’ and ‘8’) bridges the regions E1  
and E2 . In this case, the regions E1  and E2 , as well as the spacer region between 
them, are put together to form a “meta-region,” which in turn determines a revised γ4 , 
and the indel events within it are lumped together to form a single local indel history. 
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