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Abstract 7 

 Many classical ecological and evolutionary theoretical frameworks posit that competition 8 

between species is an important selective force. For example, in adaptive radiations, resource 9 

competition between evolving lineages plays a role in driving phenotypic diversification and 10 

exploration of novel ecological space. Nevertheless, current models of trait evolution fit to 11 

phylogenies and comparative datasets are not well designed for incorporating the effect of 12 

competition. The most advanced models in this direction are diversity-dependent models where 13 

evolutionary rates depend on lineage diversity. However, these models still treat changes in traits 14 

in one branch as independent of the value of traits on other branches, thus ignoring the effect of 15 

species similarity on trait evolution. Here, we consider a model where the evolutionary dynamics 16 

of traits involved in interspecific interactions are influenced by species similarity in trait values 17 

and where we can specify which lineages are in sympatry. We develop a maximum-likelihood 18 

based approach to fit this model to combined phylogenetic and phenotypic data. Using 19 

simulations, we demonstrate that the approach accurately estimates the simulated parameter 20 

values across a broad range of parameter space. Additionally, we develop tools for specifying the 21 

biogeographic context in which trait evolution occurs. In order to compare models, we also apply 22 

these biogeographic methods to specify which lineages interact sympatrically for two diversity-23 

dependent models. Finally, we fit these various models to morphological data from a classical 24 

adaptive radiation (Greater Antillean Anolis lizards). We show that models that account for 25 

competition and geography perform better than other models. Given the importance of 26 

interspecific interactions, in particular competition, in many ecological and evolutionary 27 

processes, this model is an important new tool for using comparative datasets to study 28 

phenotypic evolution. 29 
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 Interactions between species can be strong selective forces. Indeed, many classical 34 

evolutionary theories assume that interspecific competition has large impacts on fitness. 35 

Character displacement theory (Brown and Wilson 1956; Grant 1972; Pfennig and Pfennig 36 

2009), for example, posits that interactions between species, whether in ecological or social 37 

contexts, drive adaptive changes in phenotypes. Similarly, adaptive radiation theory has been a 38 

popular focus of investigators interested in explaining the rapid evolution of phenotypic disparity 39 

(Grant and Grant 2002; Losos 2009; Mahler et al. 2013; Weir and Mursleen 2013), and 40 

competitive interactions between species in a diversifying clade are a fundamental component of 41 

adaptive radiations (Schluter 2000; Losos and Ricklefs 2009; Grant and Grant 2011). 42 

 Additionally, social interactions between species, whether in reproductive (Gröning and 43 

Hochkirch 2008; Pfennig and Pfennig 2009) or agonistic (Grether et al. 2009, 2013) contexts, are 44 

important drivers of changes in signal traits used in social interactions. Several evolutionary 45 

hypotheses predict that geographical overlap with closely related taxa should drive divergence in 46 

traits used to distinguish between conspecifics and heterospecifics (Wallace 1889; Fisher 1930; 47 

Dobzhansky 1940; Mayr 1963; Gröning and Hochkirch 2008; Ord and Stamps 2009; Ord et al. 48 

2011). Moreover, biologists interested in speciation have often argued that interspecific 49 

competitive interactions are important drivers of divergence between lineages that ultimately 50 

leads to reproductive isolation. Reinforcement, or selection against hybridization (Dobzhansky 51 
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1937, 1940), for example, is often thought to be an important phase of speciation (Grant 1999; 52 

Coyne and Orr 2004; Rundle and Nosil 2005; Pfennig and Pfennig 2009). 53 

 Despite the preponderance of classical evolutionary processes that assume that 54 

interspecific interactions have important fitness consequences, existing phylogenetic models of 55 

trait evolution treat trait evolution within a lineage as independent from traits in other lineages. 56 

For example, in the commonly-used Brownian motion and Ornstein-Uhlenbeck models of trait 57 

evolution (Cavalli-Sforza & Edwards 1967, Felsenstein 1988), once an ancestor splits into two 58 

daughter lineages, the trait values in those daughter lineages do not depend on the trait values of 59 

sister taxa. Some investigators have indirectly incorporated the influence of interspecific 60 

interactions by fitting models where evolutionary rates at a given time depend on the diversity of 61 

lineages at that time (e.g., the “diversity-dependent” models of Mahler et al. 2010, Weir and 62 

Mursleen 2013). While these models capture some parts of the interspecific processes of central 63 

importance to evolutionary theory, such as the influence of ecological opportunity, they do not 64 

explicitly account for trait-driven interactions between lineages, as trait values in one lineage do 65 

not vary directly as a function of trait values in other evolving lineages. 66 

 Recently, Nuismer and Harmon (2015) proposed a model where the evolution of a 67 

species’ trait depends on other species’ traits. In particular, they consider a model, which they 68 

refer to as the model of phenotype matching, where the probability that an encounter between 69 

two individuals has fitness consequences declines as the phenotypes of the individuals become 70 

more dissimilar. The consequence of the encounter on fitness can be either negative if the 71 

interaction is competitive, resulting in character divergence (matching competition, e.g. resource 72 

competition), or positive if the interaction is mutualistic, resulting in character convergence 73 

(matching mutualism, e.g. Müllerian mimicry). Applying Lande’s formula (Lande 1976) and 74 
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given a number of simplifying assumptions—importantly that all lineages evolve in sympatry—  75 

this model yields a simple prediction for the evolution of a population’s mean phenotype.  76 

 Here, we develop inference tools for fitting the matching competition model (i.e., the 77 

phenotype matching model of Nuismer and Harmon incorporating competitive interactions 78 

between lineages) to combined phylogenetic and trait data. We begin by showing how to 79 

compute likelihoods associated with this model. Next, we use simulations to explore the 80 

statistical properties of maximum likelihood estimation of the matching competition model 81 

(parameter estimation as well as the power and type I error rates). While the inclusion of 82 

interactions between lineages is an important contribution to quantitative models of trait 83 

evolution, applying the matching competition model to an entire clade relies on the assumption 84 

that all lineages in the clade are sympatric. However, this assumption will be violated in most 85 

empirical cases, so we also developed a method for incorporating data on the biogeographical 86 

overlap between species for this model and for the linear and exponential diversity-dependent 87 

trait models of Weir & Mursleen (2013), wherein the evolutionary rate at a given time in a tree 88 

varies as a function of the number of lineages in the reconstructed phylogeny at that time (see 89 

also Mahler et al. 2010). 90 

We then fit the model to data from a classical adaptive radiation: Greater Antillean Anolis 91 

lizards (Harmon et al. 2003; Losos 2009). Many lines of evidence support the hypothesis that 92 

resource competition is responsible for generating divergence between species in both habitat use 93 

(e.g., Pacala and Roughgarden 1982) and morphology (Schoener 1970; Williams 1972; see 94 

review in Losos 1994). Thus, we can make an a priori prediction that model comparison will 95 

uncover a signature of competition in morphological traits that vary with habitat and resource 96 

use. However, in spite of the importance of interspecific competition to adaptive radiation 97 
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theory, the role of competition in driving adaptive divergence has been historically difficult to 98 

measure (Losos 2009) because trait divergence resulting from competition between lineages 99 

during their evolutionary history should have the effect of eliminating competition between those 100 

lineages at the present. Nevertheless, the signature of such competition may be detectable in the 101 

contemporary distribution of trait values and their covariance structure (Hansen and Martins 102 

1996; Nuismer and Harmon 2015), and as such, the matching competition model should provide 103 

a good fit to morphological data collected on anoles. Given the well-resolved molecular 104 

phylogeny (Mahler et al. 2010, 2013) and the relatively simple geographical relationships 105 

between species (i.e., species are restricted to single islands, Rabosky and Glor 2010; Mahler and 106 

Ingram 2014), the Greater Antillean Anolis lizards provide a good test system for exploring the 107 

effect of competition on trait evolution using the matching competition model. 108 

 109 

METHODS 110 

Likelihood Estimation of the Matching Competition Model 111 

 We consider the evolution of a quantitative trait under the matching competition model of 112 

Nuismer & Harmon (2015) wherein trait divergence between lineages will be favored by 113 

selection. In our version of the model, we remove stabilizing selection to focus on the effect of 114 

competition. The evolution of a population’s mean phenotype is thus given by (Eq. S38 in 115 

Nuismer & Harmon 2015 with 𝜓  = 0): 116 

 117 

𝑧!
′ =   𝑧! + 𝑆 𝜇 − 𝑧! +   𝛿            (Eq. 1) 118 

 119 
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where drift is incorporated as a Gaussian variable 𝛿 with mean = 0 and variance = 𝜎!  (the 120 

Brownian motion rate parameter) and S measures the strength of interaction (more intense 121 

competitive interactions are represented by larger negative values), 𝑧!
′  is the mean trait value for 122 

lineage i after a infinitesimally small time step, and 𝜇 is the mean trait value for the entire clade 123 

at the beginning of that time step. Hence, if a species trait value is greater (respectively smaller) 124 

than the trait value average across species in the clade, the species’ trait will evolve towards even 125 

larger (respectively smaller) trait values.    126 

Like several other models of quantitative trait evolution (Harmon et al. 2010, Weir & 127 

Mursleen 2013), the expected distribution of trait values on a given phylogeny under the 128 

matching competition model follows a multivariate normal distribution with mean vector made 129 

of terms each equal to the character value at the root of the tree and variance-covariance matrix 130 

determined by the parameter values and phylogeny. Nuismer & Harmon (2015) provide the 131 

system of ordinary differential equations describing the evolution of the variance and covariance 132 

terms through time (their Eqs.10b and 10c). These differential equations can be integrated 133 

numerically from the root to the tips of phylogenies to compute expected variance-covariance 134 

matrices and the associated likelihood values given by the multivariate normal distribution.  135 

Additionally, to relax the assumption that all of the lineages in a clade coexist 136 

sympatrically, we included a term to specify which lineages co-occur at any given time-point in 137 

the phylogeny, which can be inferred, e.g., by biogeographical reconstruction. The resulting 138 

system of ordinary differential equations describing the evolution of the variance and covariance 139 

terms through time are: 140 

	
  141 

	
  142 
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 146 

where 𝑣! is the variance for each species i at time t and 𝑣!,! is the covariance for each species pair 147 

i,j at time t. Eq. 2b describes the evolution of the covariance at time t if species i and j are in 148 

sympatry at time t . If they are not, 
!!!,!
!"

= 0 such that the covariance between species i and j 149 

remains fixed, The terms 𝜎! and S are as specified above, Ai,j equals 1 at time t if i and j are 150 

sympatric at that time, and 0 otherwise (Fig. 1), and 𝑛! = 𝐴!"!
!!!  is the number of lineages 151 

interacting with lineage i at time t (equal to the number n of lineages in the reconstructed 152 

phylogeny at time t if all species are sympatric). Here, we consider the matrix A to be a block 153 

diagonal matrix, such that sets of interacting species are non-overlapping, as in the case of Anolis 154 

lizards (Fig. 1). This implies that if species i and j are sympatric, then 𝑛! =   𝑛! and 𝑣!,! = 𝑣!,!. 155 

Note that when S = 0 or n = 1 (i.e., when a species is alone), this model reduces to Brownian 156 

motion. This model has three free parameters: 𝜎!, S and the ancestral state 𝑧! at the root. As with 157 

other models of trait evolution, the maximum likelihood estimate for the ancestral state is 158 

computed through GLS using the estimated variance-covariance matrix (Grafen 1989; Martins 159 

and Hansen 1997). 160 

We used the ode function in the R package deSolve (Soetaert et al. 2010) to perform the 161 

numerical integration of the differential equations using the “lsoda” solver, and the Nelder-Mead 162 

algorithm implemented in the optim function to perform the maximum likelihood optimization. 163 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 31, 2015. ; https://doi.org/10.1101/023473doi: bioRxiv preprint 

https://doi.org/10.1101/023473


	
   9 

Codes for these analyses are freely available on github (https://github.com/hmorlon/PANDA) 164 

and included the R package RPANDA (Morlon 2014). 165 

 166 

Incorporating Geography into Diversity-Dependent Models 167 

 Using the same geography matrix A described above for the matching competition model 168 

(Fig. 1), we modified the diversity-dependent linear and exponential models of Weir & Mursleen 169 

(2013) to incorporate biological realism into the models, because ecological opportunity is only 170 

relevant within rather than between biogeographical regions. The resulting variance-covariance 171 

matrices, V, of these models have the elements: 172 

 173 

𝐕!" = (𝜎!!!
!!! + 𝑏𝑛!)(max 𝑠!" − 𝑡!!!, 0 −max 𝑠!" − 𝑡!, 0 )      (Eq. 3) 174 

 175 

for the diversity-dependent linear model, and 176 

 177 

𝐕!" = (𝜎!!!
!!! ×  𝑒!!!)(max 𝑠!" − 𝑡!!!, 0 −max 𝑠!" − 𝑡!, 0 )      (Eq. 4) 178 

 179 

for the diversity-dependent exponential model, where 𝜎!! is the rate parameter at the root of the 180 

tree, b and r are the slopes in the linear and exponential models, respectively, sij is the shared 181 

path length of lineages i and j from the root of the phylogeny to their common ancestor, 𝑛! is the 182 

number of sympatric lineages (as above) between nodes at times  tm-1 and tm (where t1 is 0, the 183 

time at the root, and tM is the total length of the tree) (Weir & Mursleen 2013). When b or r = 0, 184 

these models reduce to Brownian motion. 185 

 186 
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Simulation-based Analysis of Statistical Properties of the Matching Competition Model 187 

 To verify that the matching competition model can be reliably fit to empirical data, we 188 

simulated trait datasets to estimate its statistical properties (i.e., parameter estimation, power, and 189 

type I error rates). For all simulations, we began by first generating 100 pure-birth trees using 190 

TreeSim (Stadler 2014). To determine the influence of the number of tips in a tree, we ran 191 

simulations on trees of size n = 20, 50, 100, and 150. We then simulated continuous trait datasets 192 

by applying the matching competition model recursively from the root to the tip of each tree 193 

(Paradis 2011), following Eq. 1. For these simulations, we set 𝜎!  = 0.05 and systematically 194 

varied S  (-1.5, -1, -0.5, -0.1, or 0). Finally, we fit the matching competition model to these 195 

datasets using the ML optimization described above. 196 

 To determine the ability of the approach to accurately estimate simulation parameter 197 

values, we first compared estimated parameters to the known parameters used to simulate 198 

datasets under the matching competition model (S and 𝜎!). We also quantified the robustness of 199 

these estimates in the presence of extinction by estimating parameters for datasets simulated on 200 

birth-death trees; in addition, we compared the robustness of the matching competition model to 201 

extinction to that of the diversity-dependent models. These two latter sets of analyses are 202 

described in detail in the Supplementary Appendix 1. 203 

To assess the power of the matching competition model, we compared the fit of this 204 

model to other commonly used trait models on the same data (i.e. data simulated under the 205 

matching competition model). Specifically, we compared the matching competition model to (1) 206 

Brownian motion (BM), (2) Ornstein-Uhlenbeck/single-stationary peak model (OU, Hansen & 207 

Martin 1996), (3) exponential time-dependent (TDexp, i.e., the early burst model, or the ACDC 208 

model with the rate parameter set to be negative, Blomberg et al. 2003; Harmon et al. 2010), (4) 209 
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linear time-dependent evolutionary rate (TDlin, Weir and Mursleen 2012), (5) linear rate 210 

diversity-dependent (DDlin, Mahler et al. 2010; Weir and Mursleen 2013), and (6) exponential 211 

rate diversity-dependent (DDexp, Weir and Mursleen 2013). These models were fitted using 212 

geiger (Harmon et al. 2008) when available there (BM, OU, TDexp, TDlin), or using our own 213 

codes, available in RPANDA (Morlon 2014) when they were not available in geiger (DDlin, 214 

DDexp). Support for each model was determined using Akaike weights (Burnham and Anderson 215 

2002). 216 

 We assessed the type I error rate of the matching competition model by calculating the fit 217 

of this model to datasets simulated under the same trait models mentioned above. For BM and 218 

OU models, we generated datasets from simulations using parameter values from the appendix of 219 

Harmon et al. 2010 scaled to a tree of length 400 (BM, 𝜎!  = 0.03; OU, 𝜎!  = 0.3, α = 0.06). For 220 

both the linear and exponential versions of the time- and diversity-dependent models, we 221 

simulated datasets with starting rates of 𝜎!  = 0.6 and ending rates of 𝜎!  = 0.01, declining with a 222 

slope determined by the model and tree (e.g., for time-dependent models, the slope is a function 223 

of the total height of the tree; for the TDexp model, these parameters result in a total of 5.9 half-224 

lives elapsing from the root to the tip of the tree, Slater and Pennell 2014). These simulations 225 

were performed using our own codes, available in RPANDA (Morlon 2014). As above, we 226 

calculated the Akaike weights for all models for each simulated dataset. 227 

 228 

Fitting the Matching Competition Model of Trait Evolution to Caribbean Anolis Lizards 229 

To determine whether the matching competition model is favored over models that ignore 230 

interspecific interactions in an empirical system where competition is known to have influenced 231 

character evolution, we fit the matching competition model to a morphological dataset on adult 232 
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males of 100 species of Greater Antillean Anolis lizards and the time calibrated, maximum clade 233 

credibility tree calculated from a Bayesian sample of molecular phylogenies (Mahler et al. 2010, 234 

2013; Mahler and Ingram 2014). We included the first four size-corrected phylogenetic principal 235 

components from a set of 11 morphological measurements, collectively accounting for 93% of 236 

the cumulative variance explained  (see details in Mahler et al. 2013). Together, the shape axes 237 

quantified by these principal components describe the morphological variation associated with 238 

differences between classical ecomorphs in Caribbean anoles (Williams 1972). In addition to the 239 

matching competition model, we fit the six previously mentioned models (BM, OU, TDexp, TDlin, 240 

DDexp, and DDlin) to the Anolis dataset. 241 

For the matching competition model and diversity-dependent models, to determine the 242 

influence of designating clades as sympatric and allopatric, we fit the model for each trait using 243 

two sets of geography matrices (i.e., A in Eq. 1b, 2, & 3, see Fig. 1): one where all lineages were 244 

set as sympatric, and another following the biogeographical reconstruction presented in Fig 18.3 245 

of Mahler and Ingram (2014). To simplify the ML optimization, we restricted S to take negative 246 

values while fitting the matching competition model including the biogeographical relationships 247 

among taxa. 248 

 249 

RESULTS 250 

Statistical Properties of the Matching Competition Model 251 

 Across a range of S values, maximum likelihood optimization returns reliable estimates 252 

of parameter values (Fig. 2). As the number of tips increases, so does the reliability of maximum 253 

likelihood parameter values (Fig. 2). Parameter estimates remain reliable in the presence of 254 

extinction, unless the extinction fraction is very large (Supplementary Appendix 1). When 255 
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datasets are simulated under the matching competition model, model selection generally picks 256 

the matching competition model as the best model (Figs. 3, S1); the strength of this 257 

discrimination depends on both the S value used to simulate the data and the size of the tree 258 

(Figs. 3, S1). 259 

 We found that the matching competition model behaves similarly to a model of declining 260 

evolutionary rates through time, as the rate parameter values of the TDexp model estimated on 261 

data generated under the matching competition model became increasingly negative under 262 

increasing levels of competition (Fig. S2). The dynamics of this declining rate were better 263 

described by an exponential decline in rates than by a linear one (Table S1). 264 

 Simulating datasets under BM, OU, DDexp, and DDlin generating models, we found that 265 

there is a reasonably low type I error rate for the matching competition model (Fig. 4a,b,e,f). 266 

When character data were simulated under a TDlin model of evolution, the matching competition 267 

and/or the diversity-dependent models tended to have lower AICc values than the TDlin model, 268 

especially among smaller trees (Figure 4d). For data generated under a TDexp model, model 269 

selection always favored the matching competition model over the TDexp model (Fig. 4c). 270 

 271 

Competition in Greater Antillean Anolis Lizards 272 

 For the first four phylogenetic principal components describing variation in Anolis 273 

morphology, we found that models that incorporate species interactions fit the data better than 274 

models that ignore them (Table 1). PC1 and PC3, which describe variation in hindlimb/hindtoe 275 

and forelimb/foretoe length (Mahler et al. 2013), respectively, are fit best by the matching 276 

competition model. PC2 and PC4, which describe variation in body size (snout vent length) and 277 

lamellae number, respectively, are fit best by the exponential diversity-dependent model. 278 
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Additionally, in every case, models that incorporated the geographic relationships among species 279 

in the tree outperformed models that assumed that lineages interact in sympatry at the clade level 280 

(Table 1). 281 

 282 

DISCUSSION 283 

 The inference methods we present here represent an important new addition to the 284 

comparative trait analysis toolkit. Whereas previous models had not accounted for the influence 285 

of trait values in other lineages on character evolution, the matching competition model takes 286 

these into account. Furthermore, extending both the matching competition model and two 287 

diversity-dependent trait evolution models to incorporate geographic networks of sympatry 288 

further extends the utility and biological realism of these models. 289 

 We found that the matching competition property has increasing power and accuracy of 290 

parameter estimation with increasing tree sizes and competition strength. We also found that, for 291 

most of the generating models we tested (but see below), the matching competition model is not 292 

erroneously favored using model selection (i.e., there is a reasonably low type-I error rate). As 293 

with all other models, the statistical properties of the matching competition model will depend on 294 

the size and shape of a particular phylogeny as well as specific model parameter values. Future 295 

investigators can employ other approaches, such as phylogenetic Monte Carlo and posterior 296 

predictive simulations directly on their empirical trees (Boettiger et al. 2012, Slater & Pennell 297 

2014), to assess the confidence they can have in their results  298 

We found that data generated under time-dependent models were often fit better by 299 

models that incorporate interspecific interactions (i.e., density-dependent and matching 300 

competition models) (Fig. 4c,d). This was especially true for the TDexp model, often referred to 301 
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as the early-burst model—the matching competition model nearly always fit data generated 302 

under the TDexp model better than the TDexp model (Fig. 4c). We do not view this as a major 303 

limitation of the model for two reasons. First, the TDexp model is known to be statistically 304 

difficult to estimate on neontological data alone (Harmon et al. 2010; Slater et al. 2012; Slater 305 

and Pennell 2014). Accordingly, since the matching competition model also describes declining 306 

evolutionary rates from the root to the tip of the tree (Fig. S2, Table S1), it is perhaps not 307 

surprising that the matching competition model fits data generated under the TDexp model well. 308 

Secondly, and more importantly, time-dependent models are not process-based models, but 309 

rather incorporate time since the root of a tree as a proxy for ecological opportunity or available 310 

niche space (Harmon et al. 2010; Mahler et al. 2010; Slater 2015). The matching competition and 311 

density-dependent models explicitly account for the interspecific competitive interactions that 312 

time-dependent models purport to model, thus we argue that these process-based models are 313 

more biologically meaningful than time-dependent models (Moen and Morlon 2014).  314 

Because the matching competition model depends on the mean trait values in an evolving 315 

clade, maximum likelihood estimation is robust to extinction, whereas the diversity-dependent 316 

models are less so (Appendix S1, Figs. S3-S6). Nevertheless, given the failure of maximum 317 

likelihood to recover accurate parameter estimations at high levels of extinction (𝜇: 𝜆 ≥ 0.6), we 318 

suggest that these models should not be used in clades where the extinction rate is known to be 319 

particularly high. In such cases, it would be preferable to adapt the inference framework 320 

presented here to include data from fossil lineages (Slater et al. 2012), which could be easily 321 

done by integrating the ordinary differential equations described in Eq. 2a and 2b on non-322 

ultrametric trees. 323 
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 For all of the traits we analyzed, we found that models incorporating both the influence of 324 

other lineages and the specific geographical relationships among lineages were the most strongly 325 

supported models (though less strikingly for PC3 and PC4). The matching competition model is 326 

favored in the PCs describing variation in relative limb size. Previous research demonstrates that 327 

limb morphology explains between-ecomorph variation in locomotive capabilities and perch 328 

characteristics (Losos 1990, 2009; Irschick et al. 1997), and our results suggest that the 329 

evolutionary dynamics of these traits have been influenced by the evolution of limb morphology 330 

in other sympatric lineages. These results support the assumption that interspecific interactions 331 

resulting from similarity in trait values are important components of adaptive radiations (Losos 332 

1994, Schluter 2000), a prediction that has been historically difficult to test (Losos 2009, but see 333 

Mahler et al. 2010). In combination with previous research demonstrating a set of convergent 334 

adaptive peaks to which lineages are attracted (Mahler et al. 2013), our results suggest that 335 

competition likely played an important role in driving lineages toward these distinct peaks. 336 

We imagine that the matching competition model and biogeographical implementations 337 

of diversity-dependent models will play a substantial role in comparative studies of interspecific 338 

competition. There are many possible extensions of the tools developed in this paper. In the 339 

current implementation of interspecific geographic overlap, the matrices of sympatry/allopatry 340 

are assumed to be block diagonal matrices. In the future, the model can be extended to more 341 

complex geography matrices that are more realistic for mainland taxa (e.g., using ancestral 342 

biogeographical reconstruction, Ronquist and Sanmartín 2011; Landis et al. 2013), and can also 343 

specify degrees of sympatric overlap (i.e., syntopy). Additionally, although the current version of 344 

the model is rather computationally expensive with larger trees (with 100 or more tips), future 345 

work to speed up the calculation of the variance-covariance matrix under the matching 346 
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competition model would allow the inclusion of uncertainty in biogeographical reconstruction 347 

(e.g., from samples of stochastic maps). The current form of the model assumes that the degree 348 

of competition is equal for all interacting lineages. Future modifications of the model, such as 349 

applications of stepwise AICc algorithms (Alfaro et al. 2009; Thomas and Freckleton 2012; 350 

Mahler et al. 2013) or reversible-jump Markov Chain Monte Carlo (Pagel and Meade 2006; 351 

Eastman et al. 2011; Rabosky 2014; Uyeda and Harmon 2014), may be useful to either identify 352 

more intensely competing lineages or test specific hypotheses about the strength of competition 353 

between specific taxa. Improvements could also be made on the formulation itself of the 354 

evolution of a species’ trait as a response to the phenotypic landscape in which the species 355 

occurs. The current formulation (Eq. 1) corresponds to a scenario in which the rate of phenotypic 356 

evolution on a lineage gets higher as the lineage deviates from the mean phenotype, although 357 

character displacement theory, for example, posits that selection for divergence should be the 358 

strongest when species are most ecologically similar (Brown & Wilson 1956). Finally, a great 359 

array of extensions will come from modeling species interactions not only within clades, but also 360 

among interacting clades, as in the case of coevolution in bipartite mutualistic or antagonistic 361 

networks, such as plant-pollinator or plant-herbivore systems (Bartosek et al. 2012).      362 

 In addition to uncovering a signature of competitive interactions in traits used in 363 

exploitative competition for resources (e.g., trait-axes along which adaptive radiations proceed, 364 

Schluter 2000), the tools presented here can be used to test several hypotheses that have 365 

historically been difficult to test using phylogenetic comparative methods. For example, various 366 

hypotheses about the dynamics of traits involved in social interactions that posit that interspecific 367 

interactions have played an important role in shaping contemporary trait values (e.g., Pfennig 368 

and Pfennig 2012; Grether et al. 2013) are beginning to be tested at comparative scales (Seddon 369 
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et al. 2013; Tobias et al. 2013; Martin et al. 2015). However, the tools available for such analyses 370 

have been limited (e.g., sister-taxa comparisons) relative to those available to test 371 

macroevolutionary hypotheses about within-taxa processes. By comparing the fits of the 372 

matching competition model with other models that do not include competitive interactions 373 

between lineages, biologists can directly test hypotheses that make predictions about the role of 374 

interspecific interactions in driving trait evolution. 375 

 376 
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Table & Figure legends 522 

Table 1. Comparison of model fits for the first four phylogenetic principal components of a 523 

morphological dataset of Greater Antillean anoles. Models run incorporating geography matrices 524 

are indicated by “+ GEO”, and models with the lowest AICc for each trait are shaded and written 525 

in bold text. Parameter values presented follow the nomenclature of Eqs. 2-4 in the main text, 526 

and k represents the number of parameters estimated for each model. Note that TDexp is the 527 

ACDC model (or the early-burst model when r < 0). OU model weights were excluded because 528 

𝛼  was estimated to be 0 for each trait, and thus the OU model was equivalent to BM. 529 

 530 

Figure 1. Illustration of geography matrices (defined between each node) delineating which 531 

lineages interact in sympatry in an imagined phylogeny. These matrices were used to identify 532 

potentially interacting lineages for the matching competition and both diversity-dependent 533 

models of character evolution (see Eqs. 2-4 in the main text). Anolis outline courtesy of Sarah 534 

Werning, licensed under Creative Commons (http://creativecommons.org/licenses/by/3.0/). 535 

 536 

Figure 2. Parameter estimation under the matching competition model. As tree size increases 537 

and/or the magnitude of competition increases (i.e., the S parameter in the matching competition 538 

model becomes more negative), so does the accuracy of ML parameter estimates of (A) S (n = 539 

100 for each tree size and S value combination; red horizontal lines indicate the simulated S 540 

value) and (B) the accuracy of ML parameter estimates of 𝜎! (n = 500 for each tree size; red 541 

horizontal lines indicate the simulated 𝜎! value). The numbers below the violin plots in (B) show 542 

the number of outliers removed for plotting. 543 

 544 
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Figure 3. The statistical power of the matching competition increases with tree size and with 545 

increasing levels of competition (i.e., increasingly negative S values).  546 

 547 

Figure 4. Type-I error simulation results for the matching competition model. When the 548 

generating model is either (A) BM, (B) OU, (E) DDexp (for larger trees) or (F) DDlin, the 549 

generating model is largely favored by model selection. However, both (C) TDexp and (D) TDlin 550 

(for smaller trees) are erroneously rejected as the generating model. 551 

 552 
  553 
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Table 1. 554 
 555 
Trait Model k 𝝈𝟐 𝒃 r S ln(𝓛) 𝚫AICc Akaike weights 
pPC1 BM 2 0.0033 —	
   —	
   —	
   -13.68 22.40 <0.01 
 OU 3 0.0033 —	
   —	
   —	
   -13.68 24.52 — 
 TDexp 3 0.0324 —	
   -0.068 —	
   -5.20 7.55 0.02 
 TDlinear 3 0.0113 -0.019 — —	
   -4.88 6.92 0.03 
 LDexp 3 0.0184 —	
   -0.028 —	
   -4.37 5.90 0.04 
 LDexp + GEO 3 0.0086 —	
   -0.043 —	
   -7.28 11.72 <0.01 
 LDlin 3 0.0089 -0.00008 —	
   —	
   -4.89 6.94 0.02 
 LDlin + GEO 3 0.0042 -0.000042 —	
   —	
   -10.34 17.84 <0.01 
 MCsym 3 0.0010 —	
   —	
   -0.037 -3.67 4.50 0.08 
 MC + GEO 3 0.0010 —	
   —	
   -0.037 -1.42 0 0.80 
pPC2 BM 2 0.0027 —	
   —	
   —	
   -4.69 8.55 0.01 
 OU 3 0.0027 —	
   —	
   —	
   -4.69 10.67 — 
 TDexp 3 0.0046 —	
   -0.014 —	
   -4.30 9.89 <0.01 
 TDlinear 3 0.0047 -0.011 — —	
   -4.23 9.75 <0.01 
 LDexp 3 0.0041 —	
   -0.006 —	
   -4.27 9.84 <0.01 
 LDexp + GEO 3 0.0067 —	
   -0.039 —	
   0.65 0 0.84 
 LDlin 3 0.0041 -0.00002 —	
   —	
   -4.21 9.72 <0.01 
 LDlin + GEO 3 0.0035 -0.000035 —	
   —	
   -1.57 4.44 0.09 
 MCsym 3 0.0021 —	
   —	
   -9.9e-3 -3.95 9.19 <0.01 
 MC + GEO 3 0.0019 —	
   —	
   -0.014 -2.90 7.10 0.02 
pPC3 BM 2 0.0010 —	
   —	
   —	
   45.57 1.4 0.11 
 OU 3 0.0010 —	
   —	
   —	
   45.57 3.5 — 
 TDexp 3 0.0020 —	
   -0.019 —	
   46.30 2.06 0.08 
 TDlinear 3 0.0019 -0.013 — —	
   46.41 1.85 0.09 
 LDexp 3 0.0017 —	
   -0.008 —	
   46.40 1.86 0.09 
 LDexp + GEO 3 0.0015 —	
   -0.017 —	
   46.67 1.33 0.11 
 LDlin 3 0.0017 -0.000009 —	
   —	
   46.46 1.74 0.09 
 LDlin + GEO 3 0.0013 -0.000014 —	
   —	
   46.58 1.5 0.10 
 MCsym 3 0.0007 —	
   —	
   -0.012 46.75 1.17 0.12 
 MC + GEO 3 0.0007 —	
   —	
   -0.015 47.33 0 0.22 
pPC4 BM 2 0.0006 —	
   —	
   —	
   69.07 1.96 0.07 
 OU 3 0.0006 —	
   —	
   —	
   69.07 4.09 — 
 TDexp 3 0.0015 —	
   -0.015 —	
   70.55 1.12 0.10 
 TDlinear 3 0.0012 -0.011 — —	
   70.45 1.32 0.09 
 LDexp 3 0.0012 —	
   -0.0061 —	
   70.52 1.18 0.10 
 LDexp + GEO 3 0.0010 —	
   -0.019 —	
   71.11 0 0.17 
 LDlin 3 0.0011 -0.00002 —	
   —	
   70.39 1.45 0.08 
 LDlin + GEO 3 0.0008 -0.000035 —	
   —	
   70.66 0.92 0.11 
 MC 3 0.0004 —	
   —	
   -0.015 71.1 0.02 0.17 
 MC + GEO 3 0.0004 —	
   —	
   -0.013 70.6 1.03 0.10 
 556 

557 
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Figure 1. 558 
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Figure 2. 562 
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Figure 3 565 
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 567 
Figure 4. 568 
 569 
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Supplementary Appendix 1: Estimating the effect of extinction on parameter estimation for 586 

the matching competition and density-dependent models. 587 

 588 

 Given that the matching competition and diversity-dependent models take into account 589 

the number of interacting lineages, extinction may affect our ability to recover true parameter 590 

values. To estimate the impact of extinction, we simulated 100 trees with 100 extant species, 591 

varying the extinction fraction (𝜇: 𝜆 = 0.2, 0.4, 0.6, and 0.8). As above, we recursively simulated 592 

traits using the matching competition model with 𝜎!  = 0.05 and S = -1.5, -1, -0.5, -0.1, or 0, and 593 

the linear and exponential diversity-dependent models with starting rates of 𝜎!  = 0.6 and ending 594 

rates of 𝜎!  = 0.01. We then estimated the maximum likelihood parameter estimates for the 595 

generating models by fitting the models to the trait values for extant species and the tree with 596 

extinct lineages removed. In the case of the matching competition model, because many 597 

simulated birth-death trees with high extinction rates have substantially older root ages, the 598 

simulated trait datasets for some trees had very large variances. For these biologically unrealistic 599 

trait datasets (i.e., variance in trait values ≥ 1x108 ), ML does not yield reliable parameter 600 

estimates, so we removed them from further analyses (the sample size of included simulations is 601 

reported in Fig. S3, S4). 602 

 Parameter estimates are quite robust to extinction under the matching competition model 603 

(Fig. S3, S4), and much more so than under both diversity-dependent models (Fig. S5,S6). Under 604 

the matching competition model, the maximum likelihood optimization returns reliable estimates 605 

of S and 𝜎!  values used to simulate datasets on trees with extinct lineages (Fig. S3, S4), although 606 

the estimates become much less reliable with larger extinction fractions, likely because 607 

simulations under the matching competition model were unbounded, resulting in trait datasets 608 
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with biologically unrealistic variances. Under both diversity-dependent models, the magnitude of 609 

both the slope and 𝜎!  parameter values are increasingly underestimated with increasing 610 

extinction fractions (Fig. S5, S6). 611 

 612 
  613 
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Table S1. Data generated under the matching competition model are better fit by the TDexp 614 

model than by the TDlin model. ΔAICc [90% CI] presented for the matching competition (MC) 615 

and time dependent models. 616 

 617 
tips S value MC TDexp TDlin 
20 -1.5 0 [0, 0.68] 6.04 [3.20, 10.53] 12.17 [1.27, 67.92] 
 -1 0 [0, 2.17] 3.96 [1.87, 7.47] 4.18 [0.78, 25.03] 
 -0.5 0 [0, 2.76] 2.74 [1.70, 4.06] 2.42 [0.97, 6.36] 
 -0.1 2.37 [0, 2.79] 2.79 [1.83, 5.04] 2.1 [0.85, 3.11] 
 0 2.47 [0, 2.98] 2.79 [2.17, 6.0] 2.06 [0.88, 3.62] 
50 -1.5 0 [0,0] 8.46 [5.57, 12.06] 63.24 [11.75, 216.11] 
 -1 0 [0,0] 5.51 [3.45, 8.49] 17.26 [3.50, 67.67] 
 -0.5 0 [0, 1.57] 2.53 [1.36, 5.01] 1.87 [0.51, 8.29] 
 -0.1 1.83 [0, 2.37] 2.27 [1.44, 4.09] 1.86 [0.51, 3.2] 
 0 1.98 [0.09, 2.45] 2.27 [1.37, 4.62] 1.61 [0.05, 3.39] 
100 -1.5 0 [0,0] 10.56 [7.11, 13.92] 208.76 [61.32, 442.7] 
 -1 0 [0,0] 7.02 [4.93, 8.84] 45.69 [6.44, 149.18] 
 -0.5 0 [0, 1.43] 3.34 [1.61, 4.62] 3.67 [0.63, 15.55] 
 -0.1 1.60 [0, 2.12] 2.04 [0.99, 2.45] 1.95 [0.61, 4.36] 
 0 1.83 [0, 2.11] 2.13 [0.98, 4.41] 1.52 [0, 4.77] 
150 -1.5 0 [0,0] 11.77 [8.74, 14.23] 392.29 [177.79, 835.42] 
 -1 0 [0,0] 7.63 [5.80, 10.14] 80.58 [27.51, 232.06] 
 -0.5 0 [0, 1.0] 3.50 [2.35, 6.11] 5.71 [0.42, 29.24] 
 -0.1 1.45 [0, 2.17] 1.83 [0.81, 2.61] 1.6 [0.19, 6.49] 
 0 1.81 [0, 2.18] 2.08 [1.02, 4.45] 1.67 [0, 5.98] 

  618 
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Supplementary Figure 1. As tree size and/or the degree of competition (S) increases, model 619 

selection becomes more reliable. Comparison of Akaike weights (median & 90% CIs) for NH, 620 

BM, OU, and EB models when simulated under various levels of competition (S = -1.5, -1, -0.5, 621 

-0.1, and 0) for trees with 20, 50, 100, and 150 tips. 622 
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Supplementary Figure 2. Maximum likelihood estimates of ACDC rate parameters (i.e., TDexp 627 

where rate parameters can take both positive and negative values) fit to data generated under the 628 

matching competition model. As the level of competition increases (i.e., as S becomes 629 

increasingly negative), the estimated rate parameter of the ACDC model becomes increasingly 630 

negative. 631 
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Supplementary Figure 3. Simulation results showing the effect of varying the extinction fraction 634 

on estimation of the S parameter for the matching competition model. Red horizontal lines 635 

indicate the simulated S values, and numbers above sets of simulations indicate the sample size 636 

of included simulations under those scenarios (see main text for more details). 637 

 638 

 639 
  640 

-1.5

-1.0

-0.5

0.0

0.5

-1.5

-1.0

-0.5

0.0

0.5

-1.5 -1 -0.5 -0.1 0 -1.5 -1 -0.5 -0.1 0
simulated S parameter

M
L 

es
tim

at
e 

of
 S

 p
ar

am
et

er

μ:λ = 0.2# μ:λ = 0.4#

μ:λ = 0.6# μ:λ = 0.8#

91#99#

56#

94#
99#

9#

42#

simulated S value#

M
L 

es
tim

at
e 

of
 S

 p
ar

am
et

er
#

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 31, 2015. ; https://doi.org/10.1101/023473doi: bioRxiv preprint 

https://doi.org/10.1101/023473


	
   41 

Supplementary Figure 4. Simulation results showing the effect of varying the extinction fraction 641 

on estimation of the 𝜎! parameter for the matching competition model. Red horizontal lines 642 

indicate the simulated 𝜎!  value (0.05), the numbers below sets of simulations indicate the sample 643 

size of included simulations under those scenarios (see main text for more details), and the 644 

number in parentheses indicate sample size after  𝜎!  values > 0.25 re removed. 645 
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Supplementary Figure 5. Simulation results showing the effect of varying the extinction fraction 649 

on slope (top) and 𝜎!   (bottom) parameters for the exponential diversity-dependent model. 650 

Increasing extinction levels result in increasingly underestimated slope values and 𝜎!  parameters. 651 

Red horizontal lines indicate the simulated parameter values. 652 
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Supplementary Figure 6. Simulation results showing the effect of varying the extinction fraction 655 

on slope (top) and sigma-squared (bottom) parameters for the linear diversity-dependent model. 656 

Increasing extinction levels result in increasingly underestimated slope values and 𝜎!  parameters. 657 

Red horizontal lines indicate the simulated parameter values. 658 
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