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Abstract7

1. Advances in genomics and informatics have enabled the production of large phylogenetic8

trees. However, the ability to collect large phenotypic datasets has not kept pace.9

2. Here, we present a method to quickly and accurately gather morphometric data using10

crowdsourced image-based landmarking.11

3. We find that crowdsourced workers perform similarly to experienced morphologists on12

the same digitization tasks. We also demonstrate the speed and accuracy of our method13

on seven families of ray-finned fishes (Actinopterygii).14

4. Crowdsourcing will enable the collection of morphological data across vast radiations of15

organisms, and can facilitate richer inference on the macroevolutionary processes that16

shape phenotypic diversity across the tree of life.17

Keywords: crowdsourcing, morphometrics, phenotyping, morphology, comparative methods,18

macroevolution, Actinopterygii19

Introduction20

Integrating phenotypic data, such as anatomy, behavior, physiology, and other traits, with21

phylogenies is powerful strategy for investigating the patterns of biological evolution. Recent22

advances in next-generation sequencing (Meyer et al. 2008; Shendure & Ji 2008) and sequence23

capture technologies (Faircloth et al. 2012; Lemmon et al. 2012) have made phylogenetic24

inference of large radiations of organisms possible (McCormack et al. 2012, 2013; Faircloth et25

al. 2013, 2014). However, similar breakthroughs for generating new phenotypic datasets have26

been comparatively uncommon, likely due to the high expense and effort required (reviewed27

in Burleigh et al. 2013).28
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Creating these large phenotypic datasets has generally required an extended dedicated ef-29

fort of measuring and describing morphological or behavioral traits that are then coded30

into a comprehensive data matrix. One such example is the Phenoscaping project (http:31

//kb.phenoscape.org; Deans et al. 2015), and related efforts in the Vertebrate Taxonomy On-32

togeny (Midford et al. 2013) and Hymenoptera Anatomy Ontology (Yoder et al. 2010), which33

require large amounts of researcher effort to collate. Other approaches include using machine34

learning (Dececchi et al. 2015), machine vision (Corney et al. 2012a; b), or natural language35

processing (Cui 2012) to identify or infer phenotypes. These statistical techniques function36

ideally with either a large training dataset (e.g., a predefined ontogeny database) or a com-37

plex model (Brill 2003; Halevy et al. 2009; Hastie et al. 2009), both of which also require38

intensive researcher effort to build and validate. Finally, methods such as high-throughput39

infrared imaging, mass spectrometry, and chromatography have been successfully used in40

plant physiology (Furbank & Tester 2011) and microbiology (Skelly et al. 2013), but these41

methods may not be applicable for zoological researchers. These approaches all share a similar42

goal of collecting large comparative datasets, but also require large investments in researcher43

effort. This bottleneck in researcher availability has limited the scope of work in comparative44

biology.45

Although it is now possible to build phylogenetic trees with thousands of tips, and pheno-46

typic data sets have similarly been growing larger and larger, the traits that are typically47

studied at this scale tend to be simple: geographic occurrences (Jetz et al. 2012), one or two48

continuous characters (Harmon et al. 2010; Rabosky et al. 2013), a single discrete character49

(Goldberg et al. 2010; Aliscioni et al. 2012; Price et al. 2012), or some combination of these50
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(Pyron & Burbrink 2014; Zanne et al. 2014). A richer understanding of the forces that shape51

macroevolution requires the collection of more detailed phenotypic trait data at scale.52

Here we present a method and toolkit to efficiently collect two-dimensional geometric mor-53

phometric phenotypic data at a high-throughput “phenomic” scale. We developed a novel54

web browser-based image landmarking application, and use Amazon Mechanical Turk (https:55

//www.mturk.com) to distribute digitization tasks to remote workers (hereafter turkers) over56

the Internet, who are paid for their contributions. We evaluate the accuracy and precision57

of turkers by assigning identical image sets and digitization protocols to users who are expe-58

rienced with fish morphology (hereafter experts), and compare the inter- and intra-observer59

differences between turkers and experts. To illustrate the efficiency of this approach, we con-60

struct a phylogenetic analysis pipeline to download photographs and phylogenies of seven61

actinopterygiian families from the web, collect Mechanical Turk shape results, analyze the62

rate of diversification and body shape evolution using BAMM (Rabosky 2014), and com-63

pare the time required for this workflow to traditional approaches. We also discuss the role64

that crowdsourcing is best suited in large-scale morphological analyses, and suggest ways to65

integrate crowdsourced data as part of larger initiatives to digitize biodiversity.66

Materials and methods67

Amazon Mechanical Turk68

Amazon Mechanical Turk (“MTurk”) is a web-based service where Requesters can request69

work, known as Human Intelligence Tasks (“HITs”) to be performed by Workers. Workers70

work from home and submit the tasks over the Internet, where Requesters review it, and, if71

they are satisfied with the results, accept the work and pay the Worker. We use MTurk as72
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a platform to distribute our geometric morphometric tasks and financially compensate the73

worker accordingly. Scientific collection of data over MTurk and similar services has generally74

been limited to the fields of psychology and computer science, and there have been few75

attempts to crowdsource biological trait data (Burleigh et al. 2013).76

Web-based geometric morphometrics77

We developed an geometric morphometric digitization application that runs completely on78

the user’s local web browser, using the HTML5 Canvas interface. This simplifies the in-79

frastructure challenge of needing to serve many crowdsourced workers simultaneously, since80

workers will not need to download desktop software such as tpsDig (http://life.bio.sunysb.81

edu/ee/rohlf/software.html) before generating data. The web application is configured with82

a simple JavaScript Object Notation (JSON) file that describes the landmarks necessary83

to complete an image digitization task (Supplemental Figure S1). Point landmarks, semi-84

landmark curves, and linear measurements are all supported. The software is available at85

https://github.com/jonchang/eol-mturk-landmark.86

Although digitizing and landmarking a single image (microtasks sensu Good & Su 2013) is87

effective for high-throughput work on MTurk, it is unsuitable for conducting controlled ex-88

periments. To solve this issue we also created a server-side application backend that automat-89

ically distributes tasks according to a configurable set of images and experimental protocol.90

This application mimics an official Amazon Mechanical Turk interface endpoint, to facilitate91

drop-in replacement for an existing MTurk workflow. External non-MTurk workers can also92

participate in the same experiment, ensuring consistent comparisons across separate groups.93

The software is available at https://github.com/jonchang/fake-mechanical-turk.94
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Reliability analysis95

Collecting landmark-based geometric morphometric data at scale permits detailed analysis96

of different sources of error, such as among- and within-observer variation (Von Cramon-97

Taubadel et al. 2007). To assess whether the quality of data gathered by workers recruited98

through Amazon Mechanical Turk was significantly different than traditionally-collected data,99

we asked turkers (n = 21) and experts (n = 8) to landmark a set of five fish images, five100

times each. All participants used the same protocol and same software to digitize the same101

set of fishes. The landmarks were carefully selected based on previously-published literature102

concerning fish shape (Supplemental Figure S2; Fink & Zelditch 1995; Cavalcanti et al. 1999;103

Rüber & Adams 2001; Klingenberg et al. 2003; Chakrabarty 2005; Frédérich et al. 2008;104

Claverie & Wainwright 2014; Thacker 2014). We also ensured that the chosen landmarks105

included morphological features that were relatively straightforward to digitize (the position106

of the eye) and features that were likely to be more challenging to digitize (the position of107

the preopercle bone), in order to test for turker and expert differences over a spectrum of108

difficulties. We report the inter-observer reliability for turkers and experts by computing the109

ratio of the among-individual and the sum of the among-individual and measurement error110

variance components in a repeated measures nested MANOVA (Palmer & Strobeck 1986;111

Zelditch et al. 2012).112

To assess the differences between turker and experts on a per-landmark basis, we first com-113

pared the median turker position to the median expert position of each landmark. We assumed114

that the expert median was the true position of that landmark, and calculated the absolute Eu-115

clidian distance. Larger distances would indicate low turker accuracy, while smaller distances116

would indicate high turker accuracy. We then examined the variance in turker landmarks. For117
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each landmark, we rotated the cloud of points to maximize variance in one dimension, and118

calculated the log-ratio of median absolute deviations (MAD) between turkers and experts.119

This rotation is a conservative approach for assessing the difference in variance between these120

two groups, because it maximizes any apparent differences in landmark position. A positive121

log-ratio indicated that experts had lower variance than turkers, while a negative log-ratio122

indicated that turkers had lower variance. For all subsequent analysis, we excluded landmarks123

where turkers performed especially poorly, where either the accuracy or precision components124

for a given landmark exceeded 1.5 times the interquartile range of that component.125

To determine whether turkers and experts were statistically distinguishable, we performed126

a non-parametric MANOVA using the randomized residual permutation procedure (RRPP)127

with 1,000 iterations (Collyer et al. 2014). The RRPP method reduces the effect of the “curse128

of dimensionality” (p >> n, where the number of predictors greatly exceeds the number129

of observations), a common problem in geometric morphometrics, and has been shown to130

have increased statistical power compared to a method where the raw data are randomized131

instead (Anderson & Braak 2003). We test for a difference between mean turker and expert132

shapes against a null model of no difference between turker and expert changes, taking into133

account species-specific differences. A difference between models was considered significant if134

the p-value was less than α = 0.05.135

As a separate test, we use linear discriminant analysis (LDA, Ripley 1996), a statistical classi-136

fication algorithm that finds features to differentiate between different classes of data, in this137

case turkers and experts. We assessed the accuracy of the LDA classification using 10-fold138

cross validation (CV), which splits our data into 10 equally-sized groups, using nine for train-139

ing and one for validation (Kohavi 1995; Hastie et al. 2009). An acceptable misclassification140
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rate varies depends on application, but here we use a 25% misprediction rate as a standard141

for sufficient accuracy. This is a highly forgiving standard, since a 50% misprediction rate is142

no better than a coin flip, and a 25% misprediction rate would still erroneously classify one143

in four turkers as experts or vice versa. We also use quadratic discriminant analysis (QDA),144

which relaxes some of the assumptions of LDA, and similarly report the QDA misclassification145

rate.146

We calculated the per-individual median shape for each species used, as well as the consensus147

turker and morphologist shapes, and projected these shapes into Procrustes space, to visualize148

the orthogonalized differences in median shape among and between the types of digitizers.149

Example: a phenomic pipeline for comparative phylogenetic analysis150

A common strategy in fish comparative studies is to examine evolutionary dynamics within a151

single family (Ferry-Graham et al. 2001; Alfaro et al. 2005, 2007; Rocha et al. 2008; Hernandez152

et al. 2009; Dornburg et al. 2011; Frédérich et al. 2013; Santini et al. 2013; Sorenson et al.153

2013; Claverie & Wainwright 2014; Thacker 2014), potentially due to the extensive amount154

of time necessary to collect data. To test whether our method can improve on the case where155

the data collection method is geometric morphometrics, we use the average time it took an156

expert to measure a single fish image and predict the time it would take for a single individual157

expert to measure all images at 5x replication, and compare it to the time it took turkers to158

collect these measurements at the same replication level. If the turkers in aggregate annotated159

images more quickly than a single expert would have, this suggests that the parallelization160

afforded by crowdsourcing is effective at reducing the total time required for data collection.161
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To demonstrate the utility of obtaining comparative data using this method, we use previously162

published phylogenies for seven fish families: Acanthuridae (Sorenson et al. 2013), Balistoidae,163

Tetraodontidae (Santini et al. 2013), Apogonidae, Chaetodontidae, Labridae (Cowman & Bell-164

wood 2011; Choat et al. 2012), and Pomacentridae (Frédérich et al. 2013). We matched 147165

species to left-lateral images from the Encyclopedia of Life (http://eol.org/) using their ap-166

plication programming interface (Parr et al. 2014). Crowdsourced workers placed landmarks167

describing body shape variation following a standard protocol (Supplementary Material). The168

Cartesian position of these landmarks were used in a generalized Procrustes analyses (Gower169

1975; Rohlf & Slice 1990), which centers, scales, and rotates landmark configurations to min-170

imize the least-squares distance between shapes. We then determined the major components171

of shape variation using a Procrustes-aligned principal components analysis (PCA) (Mardia172

et al. 1979; Bookstein 1991) with the R package geomorph (Adams & Otarola-Castillo 2013),173

and used these principal components axes for subsequent analyses.174

We used Bayesian Analysis of Macroevolutionary Mixtures (BAMM; Rabosky 2014) to esti-175

mate rates of speciation and body shape evolution for all seven families. For the characters176

describing body shape, we use the PC axes whose eigenvalues exceeded the corresponding ran-177

dom broken-stick component (Jackson 1993; Legendre & Legendre 1998). BAMM estimates178

the location of rate shifts in either diversification or character evolution using a transdimen-179

sional (reversible jump) Markov Chain Monte Carlo method that samples a variety of models180

of lineage diversification and trait evolution. We assessed convergence and mixing using Tracer181

(Rambaut & Drummond 2007). We also repeated each analysis and simulated under the prior182

(without data) to exclude rate heterogeneity that occurred solely due to stochastic processes.183
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We use a Bayes Factor criterion of BF > 5 to enumerate the set of credible shifts (Shi &184

Rabosky 2015) and visualized them in R using BAMMtools (Rabosky et al. 2015).185

Results186

Reliability analysis187

For nearly all landmarks, turkers only differ from the expert consensus by a few tens of pixels188

(Figure 1, Supplemental Figure S3). The most accurate and precise points are those that are189

related to the position of the eye (landmarks E1 and E2). The least accurate are those in190

the opercular series (O1-O5), particularly the ones related to the preopercle (O1-O3) likely191

because in certain groups (e.g., Tetraodontidae) the preopercle is difficult to visualize from192

external morphology alone. Experts were generally more precise than turkers, however there193

were some landmarks where the turkers converged on very similar locations. Based on these194

results we exclude in subsequent analyses the landmarks relating to the distal margins of all195

fins (A3, A4, P3, P4, D3, D4), the preopercle bones (O1-O3), the dorsal fin for triggerfishes196

(D1, D2), and the opercular opening for pufferfishes (O4-O5), due to low turker accuracy.197

The inter-observer reliability of turkers and experts as measured by the ratio of among-198

individual and sum of the among-individual and measurement error ANOVA components199

was 96.4% and 90.9%, respectively. Although there is no current standard for acceptable200

levels of measurement reliability (Von Cramon-Taubadel et al. 2007), these percentages are201

not low enough to suggest pathologies in the measurement protocol.202
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Table 1: Misprediction rate of linear discriminant analysis

(LDA) and quadratic discriminant analysis (QDA) with 10-

fold cross validation for each fish image. The discriminant

model for each family was unable to meet the standard of

one in four misclassifications, and in some cases, the more

flexible QDA method performed worse than the LDA model.

Family LDA QDA

Acanthuridae 0.446 0.370

Apogonidae 0.428 0.425

Balistidae 0.452 0.429

Chaetodontidae 0.438 0.424

Gobiidae 0.465 0.444

Labridae 0.416 0.382

Pomacanthidae 0.466 0.412

Scorpaenidae 0.496 0.468

Tetraodontidae 0.442 0.490

The non-parametric MANOVA with RRPP failed to detect a significant difference between203

turker and expert shapes (p = 0.376, Z = 1.006007, F = 0.9938314). Similarly, both linear204

and quadratic distriminant analysis with 10-fold cross validation (Table 1) were unable to205

reliably distinguish between these two groups, for any given family. Although for some images206

the classifier showed slight improvement beyond a 50% coin flip, in all cases our model fell207
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short based on a one in four (25%) acceptable misclassification rate. We conclude that, for208

any given sample of landmarks, it is challenging to statistically distinguish between expert-209

provided and turker-provided landmark configurations.210

We projected turker and expert shape configurations into morphospace (Figure 2, Supplemen-211

tal Figure S4) Although the overall space occupied by each family’s shape configurations vary,212

in practice, the aggregated median turker and expert shapes are not qualitatively different.213

The only exception is the triggerfishes (Balistidae), likely due to turker confusion over the214

exact location of dorsal fin due to their reduced anterior dorsal fin.215

Phenomic pipeline for comparative phylogenetic analysis216

Using a median expert time of 171.1s (~2.85 minutes) per image, we estimate that a single217

morphologist would take 25151.7s (~6.99 hours) to landmark all 147 images. At 5x replication,218

this would take 1772596s (~20.52 days). By comparison, turkers took a total of 19789s (~5.5219

hours) to complete all images at 5x replication.220

Using the broken-stick method of determining a PCA stopping point, we analyzed PC 1221

through PC 5. We project per-species consensus shapes into Procrustes space (Figure 4,222

Supplemental Figure S5). The BAMMtools analysis uncovered substantial amounts of het-223

erogeneity in the rate of body shape evolution and speciation in each family (Figure 5).224

Significant shifts in the rate of shape evolution or speciation were detected in three families:225

Labridae, Apogonidae, and Pomacentridae. The significant shifts in speciation rate corrob-226

orate those found in Cowman & Bellwood (2011) through either MEDUSA (Alfaro et al.227

2009) or a relative cladogenesis statistic (Nee et al. 1992). Two significant shifts in shape228

evolution rate occur in the wrasses (Labridae). The first rate shift occurs deep in the tree,229
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corresponding to the lineage containing the labrine, scarine, and cheiline tribes. The other230

shift is nested within that group, in Sparisoma. One shift in speciation rate also occurs in231

the wrasses, encompassing the genera Chlorurus and Scarus. One shift in speciation rate232

occurs in the cardinalfishes (Apogonidae), encompassing members of the genera Apogon, Ar-233

chamia, Zoramia, Ostorhinchus, Cheilodpterus, Gossamia, Fowleria, and Phaeoptyx (Apogo-234

nini + Apogonichthynini sensu Mabuchi et al. 2014). One shift in the rate of shape evolution235

occurs in the damelfishes (Pomacentridae) in the genus Amphiprion.236

Discussion237

We have shown that crowdsourcing through Amazon Mechanical Turk is a tractable approach238

for generating reliable trait data at an unprecedented scale. Using this framework, it is possible239

to distribute thousands of images to workers, collect the data, and send it to a comparative240

analysis pipeline. We have also demonstrated that it is possible to identify the set of geometric241

morphometric landmarks that can be reliably captured by nonspecialists. We found that for242

certain landmarks there was significant between and within group disagreement. Based on243

median average deviation, points belonging to the opercular series and those that locating244

the distal margin of the dorsal and anal fins were particularly challenging, compared to the245

experts. Based on these results, nonspecialist turkers are unlikely to replace experts for all246

morphometric tasks. However, by digitizing less than 5% of our dataset with experts, we247

were able to identify groups of landmarks that exhibited extremely poor performance and248

excluded these. Furthermore, we were able to obtain biologically significant results from a249

dataset collected entirely by turkers. Through combining expert knowledge with the sheer250

scale of the Amazon Mechanical Turk workforce, it is possible to collect and assess large251
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quantities of morphometric data, with an order of magnitude improvement in throughput252

over traditional approaches.253

Reliability254

One advantage of the crowdsourced method we develop here is that inter-observer error can be255

readily assessed. Traditional geometric morphometric studies often rely on a single observer256

for practical reasons (the pool of trained geometric morphometricians is limited), and to257

avoid individually-driven systematic biases in data collection. Although this common practice258

may reduce bias, it also precludes meaningful assessment of differences among observers.259

Our results show that inter-observer variance can be substantial for some landmarks even260

among expert digitizers. Therefore, explicitly accounting for inter-observer error is critical261

to determine the efficacy of each individual landmark and the replicability of the study as a262

whole. Inter-observer error signals which landmarks can be relied on and which merit further263

consideration, as we have done in this analysis. The quantification of inter-observer error is a264

strict requirement of our workflow, as it would otherwise be impossible to arrive at a single265

consensus shape across several turkers working independently. This requirement ensures that266

inter-observer error is not ignored or bypassed due to the difficulty of assessing it.267

In our analysis, we assessed the quality of a variety of landmarks between turkers and ex-268

perts. Unsurprisingly, turkers performed exceptionally poorly for several landmarks requiring269

knowledge of fish anatomy. For example, the landmarks that describe the shape of the fish’s270

caudal fin asked workers to mark the distal tip of the first principal fin ray. Even when271

turkers are armed with a definition and a comparison between procurrent and principal fin272

rays, the experts’ experience and training allow them to substantially outperform turkers in273
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identifying this point. Furthermore, experts generally had lower disagreement in their land-274

mark placement when compared to turkers, even for landmarks that turkers found especially275

difficult. These differences between experts and MTurk workers have also been observed in276

image categorization tasks (Deng et al. 2009; Van Horn et al. 2015). However, it is possible277

that an improved training protocol could result in better collection of these difficult land-278

marks. Turkers have been found to perform well in extremely detailed video annotation tasks279

(Vondrick et al. 2013), provided that researchers conduct pre-task training and post-task280

validation. Implementing these pre-task requirements would be a straightforward avenue to281

improve accuracy for future work.282

The role of crowdsourced phenotypic data collection in modern comparative studies283

The traditional way of collecting phenotypic data involves enormous researcher effort and284

significant morphological expertise. For example, Brusatte et al. (2014b) used a 853 character285

discrete character matrix for 150 taxa to estimate the rate of morphological evolution in the286

transition from theropod dinosaurs to modern birds. These data were collected over the course287

of 20 years as part of the Therapod Working Group (Brusatte et al. 2014a). O’Leary et al.288

(2013) combined the work of MorphoBank contributors (O’Leary & Kaufman 2011) with289

literature review to generate 4,541 characters for 86 species. Rabosky et al. (2013) examined290

7,822 species of ray-finned fish and used a single quantitative measure (body size) collected291

from FishBase (Froese & Pauly 2014), whose data are contributed from the scientific literature292

by experts. All of these studies share the same requirement for intensive researcher effort, but293

the data collected is generally either broad (many species) or deep (many characters). In294

this study, we collected a phenotypically rich dataset across great taxonomic breadth. This295
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approach can easily be scaled to permit unprecedented, massive comparative analyses on new,296

phenotypically rich datasets.297

This method does not threaten to replace experienced morphologists. Though certain con-298

spicuous landmarks can be rapidly collected by turkers, other types of analyses will require299

landmarks that can only be identified by experts and thus cannot use the high-throughput300

method presented here. Although this can likely be alleviated by implementing more sophis-301

ticated training regimes, the implicit anatomical knowledge that morphologists have must be302

made explicit in the form of a written protocol for turkers to follow. The cost of developing303

a clearer and simpler protocol that still captures the essence of the morphological characters304

of interest must be weighed against the benefit of higher-throughput from turker data col-305

lection, and for many such analyses this tradeoff is impractical. However, for such analyses306

where crowdsourcing is a viable alternative, our approach allows experts to move beyond data307

collection and into a role of developing training materials for nonspecialists and validating308

the data collected by crowdsourced workers.309

Approaches involving statistical techniques like machine vision and natural language pro-310

cessing have yet to make significant headway in automatically collecting morphological data.311

Although methods to automatically measure leaves exist (Corney et al. 2012a; b), these312

require 2D specimens to eliminate parallax error, as well as high-contrast mounting paper313

backgrounds for effective automatic outline detection. More sophisticated methods for lower-314

quality images or organisms with more 3D structure have yet to be developed. Natural lan-315

guage processing of the scientific literature could potentially be used for automatic extraction316

of morphological characters using DeepDive (Peters et al. 2014; Shin et al. 2015), but it may317

require impractically large corpus sizes (Brill 2003; Halevy et al. 2009). Crowdsourcing can318
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augment and enhance these statistical techniques. For example, the algorithm in Corney et319

al. (2012a) occasionally captures non-leaf objects and systematically underestimates leaf sizes.320

MTurk workers could improve this method by confirming the presence of a leaf in the image321

segment and measure the leaf size to ground truth the algorithm’s results.322

A third alternative to using expert morphologists and crowdsourced workers to collect data323

is through citizen science. Citizen scientists are enthusiasts that volunteer to collect data or324

contribute annotations to a scientific endeavor. They can specialize in a particular field, such325

as birds, plants, or fungi. Compared to Amazon Mechanical Turk workers, citizen scientists are326

typically unpaid, but can produce higher quality work due to their expertise. For example, a327

study comparing citizen scientists and MTurk workers showed that for an image segmentation328

task MTurk workers had higher throughput and comparable accuracy to citizen scientists, but329

MTurk workers performed poorly when asked to identify birds to the species level (Van Horn330

et al. 2015).331

Suitability for other systems332

Our novel pipeline to download images, upload them to Amazon MTurk, and process them333

using BAMM and BAMMtools showcases the ability to rapidly collect phenotypic data. Most334

of the time taken to collect these data were spent on waiting for worker results; however, a335

majority of the data had already been collected at the 1-hour mark. An online methodology336

could conceivably improve on this analysis time, by iteratively refining its results as new data337

streamed in from Amazon’s servers.338

Although there are limitations in the type and accuracy of data that can be collected through339

MTurk crowdsourcing, even a simplified protocol can produce meaningful biological results340
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that are concordant with previous hypotheses in these groups. We detected a significant341

shift in the rate of body shape evolution in Labridae, restricted to the wrasse tribes Labrini,342

Cheilini, and Scarini. The scarines and cheilines are mostly reef-associated (Froese & Pauly343

2014), which has been proposed as an environment that drives diversification rate changes in344

marine teleosts (Alfaro et al. 2007; Cowman & Bellwood 2011; Price et al. 2011). These results345

suggest that evolution of body form may also be influenced by environmental association346

(Claverie & Wainwright 2014). Although the example we present here was necessarily limited,347

extending this technique to generate new phenotypic datasets for existing large phylogenetic348

trees such as fishes (Rabosky et al. 2013), birds (Jetz et al. 2012), mammals (Bininda-Emonds349

et al. 2007), and angiosperms (Zanne et al. 2014) would be straightforward, especially for taxa350

where image data are already aggregated in a database such as FishBase (Froese & Pauly351

2014) or the Encyclopedia of Life (Parr et al. 2014).352

Our approach hits a “sweet spot” on the three axes of expertise, effort, and computational353

complexity. We use researcher expertise to identify a comparative hypothesis, and design a354

data collection protocol to specifically test this hypothesis. Amazon Mechanical Turk supplies355

a large source of worker effort that collects data according to protocol. Finally, computational356

statistical techniques validate the accuracy of our data and identify outliers and other errors357

in data collection. Researchers do not have to spend time digitizing collections, workers need358

not generate biological hypotheses, and biologists will not have to solve open questions in359

the fields of machine vision and natural language processing in order to answer questions360

in comparative biology. The task of phenomic-scale data collection is split up and efficiently361

allocated according to the strengths of each role, without overly relying on any one axis to362

carry out the entire task.363
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Our work fills the niche of gathering phenotypic data across large radiations, which has been364

a challenging open research question (Burleigh et al. 2013). Even seemingly obvious pheno-365

types, such as the woodiness of plant species, are incomplete and sampled in a biased manner366

(FitzJohn et al. 2014), potentially misleading inference on a global scale. This method unlocks367

the potential of high-throughput data collection, and shifts the data bottleneck for morpholog-368

ical research onto acquiring suitable images for quantification, and developing higher-quality369

worker training regimens to enable collection of more sophisticated data. The burden is now370

on experienced taxonomists and morphologists to create protocols that are simple enough to371

be understood by MTurk workers, but comprehensive enough to test hypotheses of interest372

across the tree of life. Additionally, museums and other institutions must increase their ef-373

forts to make their biodiversity collections available digitally, including images suitable for374

morphological research. The problem of difficult-to-retrieve dark data is well-known (Heidorn375

2008), but without either physical access to the collections or an image of the specimen,376

morphological data is impossible to acquire.377

Our results suggest that, where possible, crowdsourcing should be an integral part of any378

large-scale morphological analysis. Crowdsourcing should play a key role in unlocking the379

“dark data” present in biodiversity collections by providing a high-throughput way to extract380

the phenotypic data present in specimens. Furthermore, coordinating efforts from digitizing381

museum collections, natural language processing and machine vision software, citizen sci-382

entists, expert morphologists and taxonomists, and crowdsourced Mechanical Turk workers383

would result in an extremely powerful pipeline that could generate a “phenoscape” across the384

tree of life.385
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Figure 1: Per-family breakdown of accuracy vs. precision for each landmark. Accuracy is represented as the
difference between the median turker location for that landmark and the median expert location, with the
expert location assumed to be the true location. Precision is represented as the log-ratio of median absolute
deviations between turkers and experts. More positive numbers indicate better expert precision, whereas more
negative numbers indicate better turker precision. Points highlighted in red are those determined to be outliers
(1.5 imes IQR). See Supplemental Information for a labeled version of this figure.
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Figure 2: Morphospace projection for each observer’s mean shape. Blue points indicate experts, while red
points indicate turkers. The mean shape for all turkers and experts for a given family is the point outlined in
black for each family, and connected with a black line to help emphasize the difference between turker and
expert mean shapes. The convex hull for each family is drawn to show the amount of among-observer shape
variation.
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Figure 3: Line plot showing time to receive results for any given image (x axis) and the total fraction of the
data set received (y axis). Landmarks were first received eight minutes after creation of the Amazon MTurk
task, and at least one replicate was received for every image at the 80 minute mark.
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Figure 4: Morphospace for seven families of ray-finned fishes. Each point indicates a separate species; families
are separated by colors. The convex hull for each family is drawn to show area of morphospace occupied by
each family. Figures for other PC axes are present in the Supplemental Material.
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Figure 5: Rates of shape evolution for PC1 (a, b) and speciation (c, d) across seven families of fishes. Phylorate
plots (a, c) color branch lengths by rates of shape evolution (a) and speciation (c), where warmer colors
indicate faster rates of evolution. Significant rate shift events (pp > 0.95) are indicated on the phylorate plot
as a red circle on the corresponding branch. Median log rates of shape evolution (b) and speciation (d) through
time, where black lines indicate the background rate and red lines indicate the rate of evolution in a clade
experiencing a significant shift in rate, corresponding to red circles in (a) or (c).
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